Kinetic aspects of interaction between dopamine transporter and N-substituted nortropane derivatives

Date

2017-07-07

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Ravimiarenduse eesmärgiks on üha efektiivsemate ravimite loomine ning selle protsessi üheks tunnustatud suunaks on sihtmärkvalguga üha tugevamini seostuvate molekulide otsing, sest ravimi toimet seostatakse eelkõige selle kompleksi püsivusega. Üks võimalus seondumisefektiivsuse suurendamiseks on aeglaselt laguneva kompleksi tekitamine ravimaine ja sihtmärkvalgu vahel. See aeglaselt lagunev kompleks võimaldab ravimainel olla pikemalt seostunud ning mida stabiilsem see kompleks on, seda suurem on efekt. Tulemusena saab kasutada väiksemaid ravimi kontsentratsioone samaväärse raviefekti saavutamiseks. Aeglasemalt lagunevate komplekside tuvastamiseks tuleb analüüsida ühendite seondumise kiirust valgule ning seda tehakse läbi kineetilise analüüsi, mis tähendab et uuritakse ainete seondumise kiirust sihtmärkvalguga. Sõltuvalt struktuurist võivad ühendid omada erinevaid sidumistaskute täitmise kiiruseid. Käesolevas töös analüüsiti N-asendatud nortropaani derivaatide, mis on teada-tuntud psühhostimulantide analoogid, ja dopamiini transportvalgu seondumisefektiivsust ning kineetilisi parameetreid. Dopamiini transportvalk vastutab virgatsaine, dopamiini, reguleerimise eest meie ajus, on osaline mitmete neurodegeneratiivsete haiguste korral ning on sihtmärgiks paljudele narkootikumidele ja ravimitele. Mõned nortropaani derivaadid on võimelised moodustama aeglaselt laguneva kompleksi, samas kui mõnevõrra modifitseeritud ühendid ei ole. Dissertatsioonis määrati ühendite bioaktiivsused ning tuvastati aeglast kompleksi moodustavad ühendid. Aeglase kompleksi moodustumise tundlikkust uuritavate ühendite suhtes saab määrata ka teiste ravim-valk süsteemide korral. Selline lähenemine võimaldab suurendada ravimainete efektiivsusi läbi stabiilsemate komplekside moodustamiste.
Drug design has focused on increasing the effectiveness of binding of small molecules to the target protein in order to yield more potent drugs. It’s important to emphasize that usually drug has its effect when it’s bound. One way to increase drug effectiveness has been to modulate how tightly a drug molecule binds to its target, which usually is a protein in our bodies. To study this, a parameter called drug residence time has been devised to represent an additional shift of equilibrium towards a more stable drug-protein complex, i.e. molecules are more tightly bound to the protein. The longer drug residence time the more stable drug-protein complexes are and, therefore, lower doses of pharmaceuticals are needed to treat various diseases. Although physically not correct, this parameter represents the duration of binding and subsequently the length of effect. These slowly dissociating complexes, that enhance the effectiveness of a drug, can only be differentiated by using a kinetic analysis. This means that the rate of occupying a binding pocket is monitored. Drugs with different structure can have different rates of binding. In this thesis, the binding effectiveness and kinetics have been determined for a series of N-substituted nortropane derivatives when binding to dopamine transporter. Dopamine transporter is a protein abundant in our brain, which responsible for the regulation of neurotransmitter dopamine. Some of these molecules under investigation bind rapidly and some slowly and, in this case, small structural features in the molecule distinguish between them. Although this sensitivity of mechanisms to ligand structure is illustrated in the case of nortropane analogs binding to dopamine transporter, a similar situation can occur in other drug-protein systems. The role of drug-target kinetics should not be underestimated in drug design.

Description

Väitekirja elektrooniline versioon ei sisalda publikatsioone

Keywords

dopamiinitransport, membraanivalgud, retseptorit siduv valk, radioligandid, biokineetika, ravimidisain, dopamine transport, membrane proteins, receptor binding protein, radioligands, biokinetics, drug design

Citation