DSpace
    • English
    • Deutsch
    • Eesti
  • English 
    • English
    • Deutsch
    • Eesti
  • Login
View Item 
  •   DSpace @University of Tartu
  • Loodus- ja täppisteaduste valdkond
  • Arvutiteaduse instituut
  • MTAT magistritööd – Master's theses
  • View Item
  •   DSpace @University of Tartu
  • Loodus- ja täppisteaduste valdkond
  • Arvutiteaduse instituut
  • MTAT magistritööd – Master's theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Madala kvaliteediga sõrmejäljepiltide klassifitseerimine

Thumbnail
View/Open
thesis.pdf (11.38Mb)
extra.bdoc (22.15Kb)
Date
2018
Author
Tertychnyi, Pavlo
Metadata
Show full item record
Abstract
Traditsioonilised sõrmejälgede tuvastamise süsteemid kasutavad otsuste tegemisel minutiae punktide informatsiooni. Nagu selgub paljude varasemate tööde põhjal, ei ole sõrmejälgede pildid mitte alati piisava kvaliteediga, et neid saaks kasutada automaatsetes sõrmejäljetuvastuse süsteemides. Selle takistuse ületamiseks keskendub magistritöö väga madala kvaliteediga sõrmejälgede piltide tuvastusele – sellistel piltidel on mitmed üldteada moonutused, nagu kuivus, märgus, füüsiline vigastatus, punktide olemasolu ja hägusus. Töö eesmärk on välja töötada efektiivne ja kõrge täpsusega sügaval närvivõrgul põhinev algoritm, mis tunneb sõrmejälje ära selliselt madala kvaliteediga pildilt. Eksperimentaalsed katsed sügavõppepõhise meetodiga näitavad kõrget tulemuslikkust ja robustsust, olles rakendatud praktikast kogutud madala kvaliteediga sõrmejälgede andmebaasil. VGG16 baseeruv sügavõppe närvivõrk saavutas kõrgeima tulemuslikkuse kuivade (93%) ja madalaima tulemuslikkuse häguste (84%) piltide klassifitseerimisel.
 
Fingerprint recognition systems mainly use minutiae points information. As shown in many previous research works, fingerprint images do not always have good quality to be used by automatic fingerprint recognition systems. To tackle this challenge, in this thesis, we are focusing on very low-quality fingerprint images, which contain several well-known distortions such as dryness, wetness, physical damage, presence of dots, and blurriness. We develop an efficient, with high accuracy, deep neural network algorithm, which recognizes such low-quality fingerprints. The experimental results have been conducted on real low-quality fingerprint database, and the achieved results show the high performance and robustness of the introduced deep network technique. The VGG16 based deep network achieves the highest performance of 93% for dry and the lowest of 84% for blurred fingerprint classes.
 
URI
http://hdl.handle.net/10062/66136
Collections
  • MTAT magistritööd – Master's theses [633]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV