Show simple item record

dc.contributor.advisorOja, Peeter, juhendaja
dc.contributor.advisorKirsiaed, Evely, juhendaja
dc.contributor.authorShah, Gul Wali
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.date.accessioned2019-11-19T12:44:27Z
dc.date.available2019-11-19T12:44:27Z
dc.date.issued2019-11-19
dc.identifier.isbn978-9949-03-096-5
dc.identifier.isbn978-9949-03-097-2 (pdf)
dc.identifier.issn1024-4212
dc.identifier.urihttp://hdl.handle.net/10062/66667
dc.description.abstractDissertatsioonis on käsitletud kolme probleemi splainide teooriast. Esiteks vaadeldakse kuupsplainidega histopoleerimist. Antud on suvaliselt paiknevate sõlmedega ja suvaliste kõrgustega histogramm. Näidatakse, et alati on olemas histopoleeriv kuupsplain üldka-su¬tatavate rajatingimuste korral. Splaini leidmisel kasutatakse erinevaid esitusi. Teiseks uuritakse suvalise võrgu korral histopoleeriva polünomiaalse perioodilise splaini ole¬mas-olu. Saadud tulemustest järelduvad kirjandusest varem teadaolevad tulemused ühtla¬se võrgu korral. Kolmas probleem, mida dissertatsioonis lahendatakse, on ruut/lineaar ratsionaalsplainidega histopoleerimine. Taolised splainid säilitavad lähteandmete kume-ru¬se, sest nad on ise alati selle omadusega. Et vabadus on siin splaini sõlmede valikus, on loomulik küsida, kas suvalise rangelt kumera histogrammi korral on võimalik valida splaini sõlmed nii, et eksisteeriks histopoleeriv ruut/lineaar ratsionaalsplain. Vastus on siin eitav. Uurimisel leitakse splaini parameetreid määrav baasvõrrandite süsteem ning splaini eksisteerimine on samaväärne selle mittelineaarse süsteemi lahendi olemasoluga. Probleemi lahendamiseks on leitud splaini sobiv esitus.et
dc.description.abstractThe dissertation treats three kinds of problems from the theory of splines. Firstly, a par¬ti-cular interpolation problem about the cubic spline histopolation with arbitrary place¬ment of histogram knots and spline knots between them is discussed. A cubic spline is studied provided that its integral on a prescribed interval equals the area of the corres¬pon¬ding histogram rectangle. It is considered the most common boundary value con¬di¬tions like given values of the spline and its first and second derivatives in endpoints of given interval and then solved the problem of existence and uniqueness of the solution for such histopolation problem. Secondly, the periodic polynomial spline histopolation problem with the arbitrary placement of histogram knots and coinciding histogram knots is considered. Several results about the existence and uniqueness of solution are obtained and they imply known results in the case of uniform grid. In the last problem, the rational spline histopolation of convex data is studied. For the concern about the con¬vexity, an appropriate tool is interpolation or histopolation with quadratic/linear rational splines because these splines keep the sign of its second derivative on the whole interval. For this reason the given histogram is assumed to be strictly convex. The main task is at the study of existence of solution for a nonlinear system of basic equations to determine the values of second derivatives in spline knots. The other parameters in the representation of spline are determined from a linear system with regular matrix. It is shown that there is a strictly convex histogram without the solution of histopolation problem for any choice of spline knots.en
dc.description.urihttps://www.ester.ee/record=b5242833et
dc.language.isoenget
dc.relation.ispartofseriesDissertationes mathematicae Universitatis Tartuensis;128
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectfunktsioonid (mat.)et
dc.subjectlähendamineet
dc.subjectsplainidet
dc.subjectinterpoleerimineet
dc.subject.otherdissertatsioonidet
dc.subject.otherETDet
dc.subject.otherdissertationset
dc.subject.otherväitekirjadet
dc.subject.otherapproximationen
dc.subject.othersplinesen
dc.subject.otherinterpolationen
dc.subject.otherfunctions (math.)en
dc.titleSpline approximationsen
dc.title.alternativeSplainidega lahendamineet
dc.typeThesiset


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

openAccess
Except where otherwise noted, this item's license is described as openAccess