Show simple item record

dc.contributor.advisorJänes, Alar, juhendaja
dc.contributor.advisorThomberg, Thomas, juhendaja
dc.contributor.authorHärmas, Meelis
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.date.accessioned2020-07-14T11:08:16Z
dc.date.available2020-07-14T11:08:16Z
dc.date.issued2020-07-14
dc.identifier.isbn978-9949-03-424-6
dc.identifier.isbn978-9949-03-425-3 (pdf)
dc.identifier.issn1406-0299
dc.identifier.urihttp://hdl.handle.net/10062/68504
dc.descriptionVäitekirja elektrooniline versioon ei sisalda publikatsiooneet
dc.description.abstractKuna elektrijaamu (tuule-, päikese-, hüdro-, tuumaenergia jne) mugavalt kaasas kanda ei saa, on ikka vaja uuemaid ja paremaid energiasalvestusseadmeid, mida saab tasku panna. Energiat saab salvestada näiteks superkondensaatorisse. Energiasalvestusseadmeid iseloomustab nende energia ja võimsus. Mida rohkem energiat saab seadmesse, näiteks elektriauto akusse, salvestada, seda kaugemale saab see auto sõita enne, kui aku tühjaks saab. Kui sama aku on ka suure võimsusega, siis suudab see aku energiat kiiremini välja anda ehk auto kiirendus on suurem. Superkondensaatorid on väga hea võimsusega energiasalvestusseadmed (hind võimuse ühiku kohta <1 EUR kW−1), kuid nendesse “mahub” korraga vähe energiat (hind energia ühiku kohta > 4500 EUR (kWh)−1). Seega kasutatakse superkondensaatoreid põhiliselt rakendustes, kus on oluline energiat salvestada/kätte saada väga kiiresti. Näiteks nutitelefoni kaamera välk saab oma energia superkondensaatorilt. Üks tähtsamaid superkondensaatori koostisosi on elektroodid. Tavaliselt tehakse elektroodid poorsest süsinikust, mis on olemuselt sarnane aktiivsöega, mida kasutatakse näiteks söetablettides. Poorseid süsinikke iseloomustab eripind ehk suur pindala väikese massi kohta. Selles töös sünteesiti mitmeid huvitava ehitusega suure eripinnaga süsinikmaterjale, kasutades lähteainetena glükoosi, sahharoosi ja turvast. Sünteesitud süsinikmaterjalidest tehti edasi superkondensaatori elektroodid ja neid kasutati superkondensaatori katserakus. Nähti, et mõned sünteesitud materjalid koosnesid 1 μm (umbes 100 korda väiksem kui juuksekarva läbimõõt) kerakujulistest osakestest. Nende väikeste sfääride sees on keeruline poorne võrgustik, mille eripind oli suurusjärgus 2000 m2 g−1 ja kuhu pääsevad ligi ioonid ja molekulid. Uurimuse käigus selgus, et igasuguse suurusega poorid pole võrdselt head selleks, et saada suure võimsusega superkondensaatorit. Selgus, et suure võimsusega superkondensaatorite valmistamiseks on äärmiselt vajalikud poorid, mille läbimõõt on ligi 1 nm või laiem (läbimõõt, mis on sarnane DNA molekuli läbimõõdule).et
dc.description.abstractSince the conventional power plants (wind, solar, hydro, nuclear, etc) currently do not fit in the pocket there is still an ever-increasing problem of needing newer and better energy storage devices. A part of the solution seems to come in the form of a device called supercapacitor. At first approximation, any energy storage system can be described by two main key parameters: energy and power. An electric car with a high energy battery system means it can drive further without needing to refill. If the same system had high power, then the car's acceleration from would be fast. That said, at equal basis, supercapacitors are considered to be cheap for obtaining high power values (<1 EUR kW−1) but costly in terms of energy storage (>4500 EUR (kWh)−1). Thus supercapacitors are used in applications that require high power intakes and outputs. For example, a smartphone camera uses supercapacitors for the flash. One of the most influential supercapacitor components is electrodes. Most commonly the electrodes are made of carbon materials that are in nature similar to the carbon materials used in charcoal tablet and carbon materials in water filters. They all function because of a high active surface area. In the current study, several promising high surface area carbon materials were synthesised using glucose, saccharose and peat as precursors. Resulting materials were meticulously evaluated in a supercapacitor test cell and interpreted using modern structural analysis methods. Obtained results revealed that some synthesised materials consisted of 1 m (about 100 times smaller than the diameter of a human hair) spherical particles. Inside of these extremely small particles lays a complex porous network where a lot of additional surfaces is located (>2000 m2 g−1). These pores are accessible to small particles like ions and molecules that can find a home at pores. However, not all pores are equally good. Data indicated that the best pores for making high power supercapacitors were approximately 1 nm in diameter or wider (close to the diameter of a DNA molecule).en
dc.description.urihttps://www.ester.ee/record=b5361855et
dc.language.isoenget
dc.relation.ispartofseriesDissertationes chimicae Universitatis Tartuensis;197
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcondensers (electricity)en
dc.subjectelectric double layeren
dc.subjectmicrostructureen
dc.subjectactivated carbonen
dc.subject.otherdissertatsioonidet
dc.subject.otherETDet
dc.subject.otherdissertationset
dc.subject.otherväitekirjadet
dc.subject.otheraktiivsüsiet
dc.subject.othermikrostruktuuret
dc.subject.otherelektriline kaksikkihtet
dc.subject.otherkondensaatorid (elektr.)et
dc.titleImpact of activated carbon microstructure and porosity on electrochemical performance of electrical double-layer capacitorsen
dc.title.alternativeAktiveeritud süsinike mikrostruktuuri ja poorsuse mõju elektrilise kaksikkihi kondensaatorite omadusteleet
dc.typeThesiset


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

openAccess
Except where otherwise noted, this item's license is described as openAccess