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1. INTRODUCTION 

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor. It 
was initially discovered as a mediator of toxic effects of various environmental 
chemicals, which are often secreted into the atmosphere as organic waste. These 
chemicals include a wide range of polycyclic/halogenated aromatic hydro-
carbons, of which the most well-recognized is 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD). TCDD is also known as the highest-affinity AHR ligand. 
However, research in AHR biology over the past few decades has revealed that 
this protein has a broad range of functions other than being a sensor to toxic sub-
stances. 

Evidence on the importance of this receptor in normal physiology has emerged 
from studies using knock-out animal models as well as the result of studying 
AHR in human tissues. It has been discovered that AHR has a crucial role in the 
immune system and liver function. AHR has also been shown to have a funda-
mental role in several tissues serving a barrier function, including skin and lung 
tissues, but also in the placenta. Moreover, the role of AHR in the gut immune 
system has been demonstrated, being a sensor to a variety of dietary molecules, 
whether produced by stomach acid or microbial metabolism. Additional evidence 
has shown the importance of AHR in the brain, several cancers, but also in 
reproductive tissues. Several studies investigating the role of this protein have 
found AHR to function as a regulator of ovarian follicle development. Further-
more, increasing evidence of AHR in embryogenesis has emerged over the past 
years, suggesting that AHR may regulate developmental potency, including 
pluripotency and differentiation of stem cells. 

Nowadays, the role of AHR in cellular homeostasis has also been established 
by discoveries of numerous endogenous AHR ligands, including tryptophan 
catabolite kynurenine. Clinical sampling of AHR expression as well as basic 
research studying the role of AHR has paved way to the prospect of using this 
protein as a therapeutic target. Indeed, today’s research in AHR biology is widely 
focused on its potential to serve as a marker in various diseases, but also as being 
a cellular target in modulation of treatment outcomes. However, the knowledge 
about the exact functions of this protein is far from complete. In addition, many 
studies have pointed out the complex nature of AHR by having tissue- and cell-
specific functions. Additionally, the health outcomes of AHR regulation are 
highly dependent on the timing and threshold of the expression as well as changes 
in the activity of this protein. 

Collectively, there is much research to be done in elucidating the mechanisms 
by which the expression of AHR is regulated. For exploiting the potential of AHR 
in therapeutic targeting and treatment of several diseases, it is imperative to work 
on obtaining a detailed understanding on the cellular signalling of AHR. This 
study focused on investigating the expression and regulation of the aryl hydro-
carbon receptor in cells with high developmental potential, including murine 
ovarian granulosa cells and human embryonic stem cells.  
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2. OVERVIEW OF LITERATURE 

2.1. Early development and folliculogenesis 

2.1.1. Stem cells 

During the very early stages of embryonic development, a small number of cells 
are known as totipotent stem cells and have the potential to differentiate into any 
cell types of the organism, including extraembryonic tissues. As embryonic 
development progresses, cells in the embryo reorganise, specialise and gradually 
start losing their differentiation capacity. Pluripotent stem cells, arising from the 
inner cell mass (ICM) of the blastocyst, are cells that have the capacity to self-
renew and differentiate into multiple types of cells, excluding extraembryonic 
tissues. The differentiation of these cells gives rise to three germ layers – 
ectoderm, mesoderm and endoderm. 

In addition to embryonic stem cells, some adult stem cells have the capacity 
to develop into a limited range of cell types. The primary function of these cells 
is to replace lost cells in mature tissues. As stem cells differentiate, vast changes 
in the gene expression, signalling network and morphology take place (Bai et al., 
2012). In pluripotent stem cells, the state of self-renewal is governed by core 
pluripotency factors OCT4, SOX2 and NANOG (Boyer et al., 2005; Loh et al., 
2006). These factors have the capacity to enhance their own expression and sup-
press the expression of genes essential for differentiation, thus assuring the state 
of self-renewal. The differentiation of pluripotent cells is generally accompanied 
by the downregulation of these pluripotency factors and upregulation of lineage-
specific genes. 
 
 

2.1.2. Ovarian development and folliculogenesis 

Ovarian development begins from a bipotential gonad during embryogenesis. In 
mouse, primordial germ cells (PGCs) colonize the genital ridge around ED 10.5 
(Edson et al., 2009; Hirshfield, 1991; Pepling, 2006; Tingen et al., 2009). Germ 
cells go through rapid proliferation and form clusters by remaining attached by 
tubular intercellular bridges due to incomplete cytokinesis (Hirshfield, 1991; 
Merchant & Zamboni, 1972; Pepling & Spradling, 1998). Germ cell clusters are 
surrounded by a single layer of somatic cells, forming germ cell nests (Guigon & 
Magre, 2006; Hirshfield & DeSanti, 1995). Germ cells are mitotically arrested 
until ED 12.5, when they enter meiosis and become known as oocytes (Pepling, 
2006). The progression of oocytes through the meiotic prophase I continues until 
ED 17.5, when they become arrested in the diplotene stage. A substantial number 
of germ cells are lost during this period in a process called attrition (Tilly, 1996). 
Although attrition occurs in both mitotic and meiotic germ cells, most of the 
PGCs are lost post-mitotically at ED 13.5 and postnatal day (PND) 5 (Ghafari 
et al., 2007; Hirshfield, 1991; McClellan et al., 2003; Pepling & Spradling, 2001). 
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Surviving oocytes assemble into primordial follicles, which contain an oocyte 
surrounded by a basement membrane and a single layer of flattened granulosa 
cells (Figure 1). These granulosa cells are often referred to as pre-granulosa cells. 
Primordial follicle formation is known to vary between species. While the first 
primordial follicle formation has been reported to occur on postnatal day 2 in 
mice, these follicles form 4.5 months after fertilization in humans (Hirshfield, 
1991; Peters, 1969). 

Follicle formation is accompanied by rapid proliferation of somatic cells. 
However, somatic cell division ceases once primordial follicles have formed. 
Additionally, lack of differentiation has been reported in this quiescent state 
(Guraya & Guraya, 1985). Proliferation of pre-granulosa cells will not resume 
until further follicular growth and meiosis of the oocytes remains incomplete until 
ovulation. 

 
Figure 1. Schematic representation of different stages of mammalian folliculo-
genesis. Primordial follicles are derived from germ cell cyst. The oocyte in primordial 
follicles is surrounded by basement membrane and flattened granulosa cells (GCs). In 
primary follicles, the oocyte becomes surrounded by cuboidal GCs. By reaching 
secondary stage, two layers of GCs surround the oocyte. Preantral follicle development 
does not require gonadotropin stimulus. At puberty, follicle growth becomes dependent 
on FSH stimulus. At this stage, a fluid filled cavity (antrum) is formed. Further antral 
follicle growth is accompanied with GC proliferation and differentiation. Ovulation 
occurs in response to rising concentration of LH. After ovulation, remaining granulosa 
and theca cells undergo terminal differentiation and form the corpus luteum. 
 
Most of the follicles remain in the quiescent state for a long time. First signs of 
reawakened follicles appear after resumption of granulosa cell proliferation. This 
process is followed by enlargement of the oocyte and change of granulosa cells 
to a cuboidal state (Figure 1) (Hirshfield, 1991). During further progression of 
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follicles, the growth of the oocyte ceases, whereas granulosa cells continue 
extensive proliferation. The follicles becomes surrounded by steroidogenic cells 
(theca interna) and connective tissue cells (theca externa) (Hirshfield, 1991). In 
mouse, first thecal cells occur after the oocyte has reached its full size and is 
surrounded by 2-3 layers of granulosa cells (Peters, 1969). Further follicular 
development is characterised by the formation of fluid-filled cavity (i.e. antrum) 
between granulosa cells. As follicular fluid accumulates, the antral cavity increases 
rapidly until ovulation (Figure 1). 

The last stages of follicle maturation are characterised by significant changes 
in somatic cells, which have gone through differentiation. Granulosa cells in these 
follicles are heterogeneous, varying by morphological, but also by functional 
characteristics (Zoller & Weisz, 1979). Mural granulosa cells, which reside in the 
outer part of the follicle, develop more steroidogenic features. This is supported 
by evidence showing these cells to have fragile lysosomes (Zoller & Weisz, 1980). 
Additionally, characteristic changes in the theca layer take place. The inner layer 
of thecal cells is interlaced with vascular channels and have multiple charac-
teristics identifying them as steroidogenic cells (O’Shea et al., 1978). Theca 
externa layer is mainly formed by cells resembling fibroblasts, but also smooth-
muscle cells (O’Shea, 1970). The fully-grown follicle contains granulosa and 
theca cells, which are highly differentiated and possess tissue-specific features. 
The most prominent feature of granulosa cells is the presence of follicle stimu-
lating hormone (FSH) receptors (FSHR) and luteinising hormone (LH) receptors 
(LHR) (Nimrod et al., 1976; Zeleznik et al., 1981). In addition, granulosa cells 
contain a large number of steroidogenic enzymes, including aromatase, which is 
involved in oestradiol production (Fortune et al., 1986). Theca cells, on the other 
hand, are the main source for the production of androgens (Howard et al., 1988). 
 
 

2.1.3. Hypothalamus/pituitary/ovary axis 

Hypothalamus-pituitary-ovary axis (HPOA) forms the central part of folliculo-
genesis signalling cascade. HPOA is essential for the regulation of hormonal 
balance and contains a tightly regulated feedback system (Freeman, 2006). 
Hypothalamus is responsible for the synthesis and release of gonadotropin-
releasing hormone (GnRH) from neurons in the anterior hypothalamic areas, 
medial preoptic and arcuate nucleus to the anterior pituitary gland. GnRH stimu-
lates the pituitary to produce and release FSH and LH from the gonadotrophic 
cells. FSH binds to corresponding FSH receptors in the ovarian granulosa cells, 
thus stimulating follicle growth and steroidogenesis. LH binds to LH receptors 
and its main function is to stimulate ovulation. Ovarian steroid hormones (i.e. 
oestrogen, progesterone), which are produced in response to gonadotropin 
stimulation, affect hypothalamus and pituitary in a feedback mechanisms to 
suppress the release of GnRH, FSH and LH (Neill et al., 2006). 
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2.1.4. Hormonal signalling 

Ovarian follicles display first signs of functional maturation after the beginning 
of oestradiol secretion, which is produced in response to FSH (Luderer & 
Schwartz, 1994). Oestradiol at the initial stages of follicle maturation stimulates 
granulosa cell proliferation (Robker & Richards, 1998). Moreover, oestradiol 
increases the sensitivity of the pituitary to GnRH, resulting in increased FSH 
production (Quiñones-Jenab et al., 1996). As a result of a feedback loop, FSH 
stimulates oestrogen production by binding to FSH receptors on the surface of 
proliferating granulosa cells. Reaching to antral stage, follicular granulosa cells 
begin to express LH receptors, another distinct feature of the functional maturation 
process. Precisely controlled hormonal balance between gonadotropins and steroid 
hormones supports further progress of follicular maturation, leading to a significant 
increase in the number of LH receptors on granulosa cells. Then, a rapid increase 
in LH concentrations occurs, resulting in ovulation of the oocyte from the follicle 
(Edson et al., 2009). 
 
 

2.1.5. Gonadotropins and steroid hormones. Hormone receptors. 

The family of glycoprotein hormones consists of FSH, LH, human chorionic 
gonadotropin (hCG) and thyroid-stimulating hormone (TSH). Hormones have a 
heterodimeric structure, comprising of alpha-subunit and beta-subunit (Pierce & 
Parsons, 1981). It is established that the alpha-subunits of these hormones are 
very similar. However, the N-terminal residue of the beta-subunit is unique to 
each hormone and is responsible for the specificity in biological activity 
(Loumaye et al., 1998). The alpha-subunit of FSH consists of 89 amino acids and 
the beta-subunit consists of 111 amino acids. LH shares the amino acid length of 
the alpha-subunit, whereas the beta-subunit is reported to be composed of 112 to 
115 amino acids (McClamrock, 2003). A single gene located on chromosome 6 
is responsible for encoding the alpha-subunit. Beta-subunits for FSH and LH are 
encoded by genes located in chromosome 11 and 19, respectively (Jameson et al., 
1991). Additional difference between FSH and LH is the number of glycosylation 
sites with FSH containing four and LH containing three asparagine-linked glyco-
sylation sites. The distinct features of these hormones in the biological activity 
may thus be influenced by the differences in carbohydrate moieties known to 
affect pharmacokinetics (Shoham & Insler, 1996).  

Hormonal signalling and transcytosis in the ovary are mediated by 
gonadotropin receptors. FSHR and LHR belong to the subgroup of G-protein 
coupled receptors (GPCRs). These receptors contain a large extracellular domain, 
which is responsible for the binding of hormones (Milgrom et al., 1997). Charac-
terisation of the amino sequences of these receptors by cloned cDNA sequencing 
has revealed that they contain a seven times transmembrane domain. The  
N-terminal extracellular domain is composed of leucine-rich repeats and is the 
binding site for hormones. The intracellular C-terminal domain of the receptor is 
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relatively short and is involved in downstream GPCR signalling by being a target 
to G-protein receptor kinase (Milgrom et al., 1997). 

hCG is primarily produced by differentiated syncytiotrophoblasts and is 
important in the maintenance of pregnancy. Alpha-subunit of this hormone shares 
similarity to FSH, LH and TSH, whereas the beta-subunit is 80–85% homologous 
to LH (Nwabuobi et al., 2017). In the organism, hCG and LH act on the same 
receptor (LHR, also known as LHCGR). However, differences in the cellular and 
molecular response and activation of the signalling cascades have been reported 
previously (Casarini et al., 2012). 

In the ovary, FSH receptors are expressed on granulosa cells at every stage of 
follicular maturation. LH receptors, on the other hand, are limited to theca and 
granulosa cells of follicles, which have reached the antral stage (Bao & Garverick, 
1998; Lapolt et al., 1992). Activation of FSH and LH receptors by binding of the 
gonadotropins is known to stimulate adenylyl cyclase, which results in an 
increase of intracellular cAMP levels. This, in turn, activates protein kinase A 
(PKA) (Carlone & Richards, 1997; Mukherjee et al., 1996). Most of the actions 
of FSH on granulosa cell differentiation have been shown to be mediated by PKA 
(Puri et al., 2016). PKA, in turn, is directly involved in phosphorylation of cAMP 
response element (CREB) or histone H3 in granulosa cells (Salvador et al., 2001). 
 
 

2.2. The aryl hydrocarbon receptor (AHR) 

2.2.1. AHR background 

The aryl hydrocarbon receptor (AHR) was initially discovered in the middle of 
70s as a receptor for binding environmental pollutants and mediating the 
induction of enzyme responsible for the metabolism of xenobiotics (Poland et al., 
1976). Earlier studies thus mainly focused on investigating the role of AHR in 
detoxification of these substances. It took years before it was discovered that this 
protein might have important physiological roles. The evidence for this was 
gained using knock-out animals, but also investigation of the Ahr gene sequence, 
which revealed its old evolutionary origin (Fernandez-Salguero et al., 1995; Hahn, 
2002; Schmidt et al., 1996). During the past few decades, this ligand-activated 
transcription factor has been extensively studied for its endogenous roles, as well 
as for its potential as a therapeutic target in treatment of multiple diseases (Opitz 
et al., 2011; Sadik et al., 2020; Safe et al., 2020; Wang et al., 2021). 
 

2.2.2. AHR structure 

AHR belongs to the basic helix-loop-helix (bHLH) family of proteins. Cloning 
of the mouse Ahr revealed that this protein contains 805 amino acid residues. The 
structural organisation of Ahr is representative of proteins belonging to bHLH-PAS 
(Per/Arnt/Sim) family of transcription factors (Burbach et al., 1992). In human, 
AHR consists of 848 amino acid residues (Uniprot). The bHLH domain, located 
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in the N-terminal region of AHR, is responsible for binding DNA (Figure 2) 
(Pandini et al., 2007). Additionally, the N-terminus functions as a mediator of AHR 
interaction with its nuclear partner – aryl hydrocarbon receptor nuclear trans-
locator (ARNT). 

The N-terminal region also contains the nuclear localisation signal (NLS), 
which is followed by PAS-A and PAS-B domains. These sequences have been 
found in PER, ARNT and SIM proteins. The latter is known as the Drosophila 
„single-minded“ protein, involved in neuronal development. PAS domains are 
necessary for the binding of heat shock protein 90 (HSP90) and AHR-interacting 
protein (AIP). PAS domain is also responsible for ligand binding and AHR-
ARNT interaction in the nucleus (Petrulis et al., 2000). The C-terminal end of 
AHR contains three separate transcription activation domains (TADs) (Ma et al., 
1995). Between PAS-B and TAD resides a 81 peptides long inhibitory domain 
(ID), suggested to act as an inhibitor of the AHR TA domain without the presence 
of agonist (Figure 2) (LaPres et al., 2000). 

 
Figure 2. Schematic representation of AHR structure. bHLH – basic helix-loop-helix 
domain; PAS (Per-Arnt-Sim) domains (A and B); ID – inhibitory domain; TAD – 
transactivation domain; NLS – nuclear localisation signal; HSP90 – heat shock protein 
90; ARNT – aryl hydrocarbon receptor nuclear translocator; the locations of functional 
binding domains are indicated by bars. 
 
 

2.2.3. AHR signalling 

In an inactive state, AHR resides in the cytoplasm and forms a complex with two 
HSP90 molecules, AIP and a co-chaperone p23 (Kazlauskas et al., 1999; Meyer 
& Perdew, 1999). After activation of AHR by its ligand, AHR translocates to the 
nucleus, where it is released from its cytoplasmic chaperone complex (Figure 3). 
AHR then heterodimerises with ARNT (Larigot et al., 2018). ARNT shares a 
structural similarity with AHR and the formation of the dimer in the nucleus is 
necessary for the AHR to bind to xenobiotic response elements (XREs, also 
known as dioxin response elements, DREs). The core sequence of this element 
and the main binding motif for AHR is 5’-GCGTG-3’ (Dere et al., 2011). 

Dimerization with ARNT is required for the transactivation of AHR target 
genes (including CYP1A1, the most well-known AHR target gene) (Nebert & 
Gonzalez, 1987). Additionally, AHR activation increases the expression of AHR 
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repressor (AHRR). Following an increase in AHRR concentration, a negative 
feedback loop is formed. AHRR starts binding to ARNT, thus inhibiting AHR-
ARNT dimerization. Monomeric AHR is then transported to cytoplasm and sub-
jected to proteosomal degradation (Figure 3) (Mimura & Fujii-Kuriyama, 2003). 
 

Figure 3. AHR signalling pathway. Mechanism of transcriptional activation of AHR 
target genes. Unliganded AHR resides in the cytoplasm, forming a complex with 
chaperone proteins. Following ligand binding, AHR translocates to the nucleus, is 
released from chaperones and heterodimerises with ARNT. The formed heterodimer 
binds XRE motif sequence in DNA and activates transcription of AHR target genes. 
Increasing concentrations of AHRR result in a negative feedback loop. AHRR binds 
ARNT, thus inhibiting AHR-ARNT dimerization and subjecting monomeric AHR to 
proteosomal degradation. 
 
 

2.2.4. AHR ligands 

AHR was initially discovered as a receptor for various xenobiotics. The most 
studied AHR ligand is TCDD, which is known to have the highest affinity to 
AHR (Denison & Nagy, 2003). The xenobiotic class of AHR ligands also include 
dibenzofurans, biphenyls, 3-methylcholantrene (3-MC), benzo[alpha]pyrene and 
benzanthracenes (Farrell et al., 1987; Gillner et al., 1985; Jensen et al., 2010; 
Kolasa et al., 2013).  

More recent studies have presented knowledge about the existence of a 
plethora of endogenous ligands. Several flavonoids have been identified as AHR 
ligands, including quercetin and galangin (Ciolino et al., 1999; Zhang et al., 2003). 
AHR ligands can also be classified by their dietary origin. This class of AHR 
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ligands is most well-represented by indole-3-carbinol (I3C), which is derived 
from indole glucosinolates found in cruciferous vegetables (Bjeldanes et al., 1991; 
Gillner et al., 1985). This compound is further processed in the organisms by the 
acidic environment in the stomach and as a result several molecules are produced, 
capable to activate AHR (Murray et al., 2014). Of these ligands, indolo[3,2b]-
carbazole has the highest affinity for the AHR (Bjeldanes et al., 1991). Inter-
estingly, these dietary compounds have been shown to increase intestinal retention 
and function of group 3 innate lymphoid cells and intraepithelial lymphocytes 
through AHR (Li et al., 2011; Qiu et al., 2013). These findings have indicated 
that AHR and its endogenous ligands may serve barrier function roles. 

Another class of endogenous AHR ligands are derivative products of tryp-
tophan metabolism pathway. These include kynurenine, kynurenic acid, indoxyl 
sulfate, a putative endogenous ligand ITE and a UV photoproduct 6‑formy-
lindolo[3,2b]carbazole (FICZ) (DiNatale et al., 2010; Mezrich et al., 2010; Öberg 
et al., 2005; Schroeder et al., 2010). Studies investigating the functional pro-
perties of these ligands and subsequent AHR activation have revealed all of these 
tryptophan metabolism products to have important biological effects. Further-
more, recent studies have implied that the variety of AHR endogenous agonists 
also contain serotonin and dopamine (Manzella et al., 2018; Park et al., 2020). 

The increasing number of discovered AHR ligands has raised discussion about 
the potential of using these ligands to manipulate AHR pathway with the aim to 
gain beneficial health outcomes. Indeed, based on this, various antagonists have 
been developed for this purpose, including e.g. CH-223191 and StemRegenin1 
(Boitano et al., 2010; Kim et al., 2006). Interestingly, resveratrol, commonly 
present in red wine, has reported to be an antagonist of AHR (Casper et al., 1999).  
 
 

2.2.5. AHR and cancer 

The role of AHR in tumourigenesis and cancer progression has been 
demonstrated using Ahr knock-out (AhrKO) mice. It has been shown that after 
diethylnitrosamine treatment these mice develop more liver adenomas and 
inflammatory marker gene expression (Fan et al., 2010). Studies have also 
reported the spontaneous formation of colon tumours in these mice, suggesting 
Ahr to have a tumour suppressor role (Metidji et al., 2018). Moreover, Ahr 
activation in wild type animals by exogenous ligands protected against 
chemically induced and genetic models of colon cancer (Díaz-Díaz et al., 2016; 
Furumatsu et al., 2011; Kawajiri et al., 2009; Villarroya-Beltri et al., 2013). The 
suppressive role of Ahr on cancer has also been reported in multiple tissues. Ahr 
is proposed to act as a tumour suppressor in melanoma, as its knock-down was 
shown to induce primary melanoma progression (Contador-Troca et al., 2013). 
AHR was also reported to be a tumour suppressor-like gene in glioblastoma (Jin 
et al., 2019). Additional studies have shown AHR to be a tumour suppressor in 
SHH medulloblastoma (Sarić et al., 2020) and in pituitary adenomas (Formosa et 
al., 2017; Sarić et al., 2020). 
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Notably, there is a lot of controversy related to the functions of AHR in 
regulation of tumourigenesis. Evidence derived from multiple studies, which in 
contrast to being a tumour suppressor, have shown AHR to function as an onco-
genic protein. It was shown that AHR is highly expressed in several human 
tumours, including glioblastoma (Gramatzki et al., 2009). AHR antagonism or 
knock-down was shown to inhibit glioblastoma cell survival and migration in this 
study. A following study demonstrated that an endogenous AHR ligand kynure-
nine, produced by the metabolism of tryptophan by indoleamine-2,3-dioxygenase 
and tryptophan-2,3-dioxygenase, promoted AHR-dependent glioblastoma cell 
survival and motility (Opitz et al., 2011). In addition, the oncogenic role of AHR 
in medulloblastoma and adenocarcinoma has been reported, further showing the 
dual and controversial role of AHR in cancer (Dever & Opanashuk, 2012; 
Jaffrain-Rea et al., 2009). Tumour promoting role of AHR has additionally been 
shown in head and neck cancer (DiNatale et al., 2011). High AHR expression has 
also been reported in clear cell renal cell carcinoma and oesophageal tumours 
(Ishida et al., 2015; Zhang et al., 2012). Collectively, the controversy behind cell 
and tissue specific roles of AHR in cancer remains. The increased detailed 
knowledge about AHR expression in different tissues and ligand-specific 
conditions is needed to clarify the functions of AHR and its role in cancer for-
mation and progression. 
 
 

2.2.6. Therapeutic targeting of AHR 

Increasing evidence today points to the fact that AHR and AHR activation by its 
ligands have an important part in several diseases, including cancers. This has led 
to the prospect of using AHR as a therapeutic target, which can be modulated by 
exogenous stimuli. Considering the controversial roles of the AHR in cancer, the 
main challenge behind this, however, is the selection of the right modulator, 
taking into consideration the type of cancer, but also the dose of the ligand. 
Nevertheless, the potential of targeting AHR in cancer treatment has gained 
immense attention in scientific community (Mulero-Navarro & Fernandez-
Salguero, 2016; Paris et al., 2021). Additionally, there is increasing knowledge 
about the importance of tumour microenvironment (TME) in cancer progression. 
The presence of different immune cells in TME are considered to have key 
functions in regulation of the intricate signalling between cancer and immune 
system. Crucially, the role of AHR in TME has been shown by a number of 
studies (Liu et al., 2017; Platten et al., 2012; Sadik et al., 2020; Xue et al., 2018). 

Several cancers are resistant to chemotherapy and this has demanded the 
development of new possibilities in cancer treatment. Cancer immunotherapy is 
now widely considered one of the most promising treatment opportunities. Survival 
of cancer cells is often mediated by checkpoint immunomodulation, resulting in 
disrupted balance between immune surveillance and cancer cell proliferation 
(Alsaab et al., 2017). Checkpoint inhibitors, such as those preventing the inter-
action between programmed cell death 1 (PD-1) and programmed cell death 
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ligand 1 (PD-L1), are a novel class of inhibitors and are now being widely used 
in medicine. 

PD-1 is highly upregulated in T-cells in the tumour microenvironment 
(Mahoney et al., 2015). PD-L1 binding to PD-1 results in the dampening of T-cell 
activity, culminating in an exhausted phenotype and decreased proliferation of 
these immune cells (Alsaab et al., 2017). Despite PD-L1 being expressed in 
multiple non-cancer tissues or cells to control the degree of inflammation, cancer 
cells have hijacked this mechanism and upregulate PD-L1 expression to escape 
immune surveillance. The role of AHR in this process has been shown in liver 
cancer cells (Wang et al., 2017). Moreover, a recent study demonstrated that 
kynurenine was secreted from melanoma cancer cells to cytotoxic (CD8+)  
T-lymphocytes in TME via SLC7A8 and PAT4 transporters. This resulted in 
AHR binding to PDCD1 gene (encoding for PD-1 protein) promoter and up-
regulation of its expression (Liu et al., 2018). Although the use of checkpoint 
inhibitors has demonstrated enormous success, the positive outcome from the use 
of these inhibitors is limited to a subset of cancers, referring to the necessity of 
additional treatment options. Nowadays, inhibitors of IDO and TDO, enzymes 
responsible for the production of kynurenine, as well as AHR inhibitors combined 
with the use of immune checkpoint inhibitors are in the highlight of cancer immune 
therapies, showing huge potential in targeted treatment (Sadik et al., 2020). 
 
 

2.2.7. AHR in stem cells 

Nowadays, regenerative therapies by stem cell transplantation are being used in 
disease treatment. Therefore, there is a need to study the role and expression of 
AHR in stem cells. Previous studies have aimed to use AHR as a target in modu-
lating different properties of adult stem cells. It was shown that StemRegenin1, 
an antagonist of AHR, increased the expansion and proliferative capacity of 
hematopoietic stem cells (HSCs) (Boitano et al., 2010). HSC self-renewal has 
been shown to be influenced by AHR modulation in another study. This study 
demonstrated the attenuating effect of RNA-binding protein Musashi-2 (MSI2) 
on AHR signalling through post-transcriptional regulation of canonical AHR 
signalling pathway components (Rentas et al., 2016). 

The relevance of AHR in stem cells has also been investigated using known 
AHR ligands. In mouse, it has been established that embryonic stem cell differen-
tiation into cardiomyocytes is disrupted by TCDD (Neri et al., 2011; Wang et al., 
2016). In addition, human embryonic stem cell (hESC) differentiation into cardio-
myocytes was recently shown to be impaired by TCDD (Fu et al., 2019). Studies 
aiming to characterise the role of AHR during neural differentiation of stem cells 
have revealed the suppressive effect of TCDD on neural precursor cell pro-
liferation in mouse (Latchney et al., 2011). During hESC differentiation, TCDD 
treatment was shown to increase neural rosette formation and the number of cells 
positive for tyrosine-hydroxylase (TH), an enzyme involved in dopamine syn-
thesis. The result of this study indicated that AHR activation in stem cells could 
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influence pluripotent stem cell differentiation (Sarma et al., 2019). In addition, 
TCDD has been shown to affect endodermal differentiation, by impairing hESC 
differentiation into pancreatic lineage. TCDD induced hypermethylation of 
PRKAG1 in these cells, an important regulator of insulin secretion (Kubi et al., 
2019). 

Apart from having an effect on differentiation of stem cells, the role of AHR 
in the maintenance of pluripotency in human embryonic stem cells has been 
studied. It was shown recently that AHR is a key factor in the maintenance of 
hESC self-renewal. Importantly, the known endogenous ligand kynurenine was 
shown to be responsible for this effect (Yamamoto et al., 2019). These data 
altogether indicate fundamental roles of AHR in stem cells. 
 
 

2.2.8. AHR in ovarian folliculogenesis 

The evidence on the importance of AHR in reproductive system became apparent 
by studies investigating the effect of TCDD on oestrus cycle and ovulation in rats. 
It was found that TCDD caused irregularities in cycles, showing features of 
prolonged oestrus (Li et al., 1995a). Furthermore, it was shown that TCDD caused 
reduced ovulation rate and number of ovulated oocytes, although exact mecha-
nisms remained elusive (Li et al., 1995a). Additionally, it was established that in 
female rats, TCDD reduced the ovarian weight gain induced by equine chorionic 
gonadotropin (eCG) as well as number of animals ovulating (Li et al., 1995b). 
Moreover, it was found that TCDD alters the level of hormones, as it increased 
serum oestradiol levels, but decreased peak levels of FSH and LH in gona-
dotropin-primed animals. A decrease in oestradiol levels, which normally occurs 
in preovulatory follicles after LH-surge, was diminished in TCDD-treated rats. 
Additionally, it was shown that TCDD influenced the number of ovulating rats 
as well as the number of recovered oocytes in hypophysectomised rats. These 
results suggested TCDD to have a bilateral effect on reproduction by alteration 
of the normal functioning of HPO axis, but also directly influencing the ovary (Li 
et al., 1995b). Although the involvement of AHR was not studied, at that time 
TCDD was known to be the highest-affinity ligand of the aryl hydrocarbon 
receptor. 

Further evidence on the importance of Ahr in reproductive system has become 
apparent using AhrKO mice. Studies have found these mice to display several 
reproductive defects, such as slower ovarian follicle growth and reduced ability 
to ovulate, reduced number of antral follicles and reduced number of corpora 
lutea (Barnett et al., 2007a; Barnett et al., 2007b; Benedict et al., 2000, 2003). 
Additionally, disturbed ovarian cyclicity has been reported (Baba et al., 2005). 
These mice have been reported to have difficulties in maintaining pregnancy. 
Although AhrKO mice are fertile, they exhibit smaller litter size that WT mice 
(Abbott et al., 1999; Baba et al., 2005). Previous studies have also demonstrated 
that AhrKO mice are characterised by decreased ability to produce oestrogen in 
the ovary. It was shown that Ahr is involved in direct regulation of Cyp19a1, a 
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gene encoding the enzyme aromatase, which is involved in oestradiol production 
(Baba et al., 2005). Additionally, a recent study demonstrated reduced intra-
ovarian Cyp19a1 expression and oestradiol synthesis in juvenile AhrKO mice 
(Devillers et al., 2020). The AhrKO mouse model has also revealed that these 
mice have reduced responsiveness of antral follicles to gonadotropins FSH and 
LH. This reduction was shown to be caused by reduced number of FSH and LH 
receptors on follicular granulosa cells (Baba et al., 2005; Barnett et al., 2007a). The 
importance of Ahr in the ovary has further been suggested by studies showing 
that Ahr regulates the Fshr gene expression by binding to its promoter via E-box 
(Barnett et al., 2007a; Teino et al., 2012). 
 
 

2.2.9. Regulation of AHR 

Researchers have thoroughly investigated the role of AHR in multiple tissues by 
modulating its activity using various agonists and antagonists. However, there is 
less data on how Ahr expression is regulated. Thus far, studies investigating the 
expression of Ahr in different tissues and organs have implied that the regulation 
of Ahr is highly dependent on species, tissue and cellular context (Esser et al., 
2018). 

Studies investigating Ahr expression in ovarian granulosa cells have shown 
that in macaque, Ahr is significantly upregulated in response to ovulatory LH-surge 
(Chaffin et al., 1999). Contrarily, in mature rat granulosa cells, a reduction in Ahr 
mRNA levels has been shown during pro-oestrus, which represents the ovulatory 
stage in response to LH-surge (Chaffin et al., 2000). Additionally, studies using 
rat granulosa cells have presented evidence on the downregulation of Ahr in 
response to FSH treatment, although these experiments were done in vitro and may 
not represent relevant physiological conditions (Bussmann & Barañao, 2006). 

Previous studies investigating AHR during the initial stages of development 
in human cells have shown that AHR is expressed at 1-cell stage, downregulated 
at 2-cell stage, followed by upregulation at later stages (Yamamoto et al., 2019). 
Contrarily, in mouse, Ahr expression is repressed in embryonic stem cells (ESCs), 
but increases after differentiation of these cells to embryoid bodies (EBs) (Peters 
& Wiley, 1995; Wu et al., 2002). In mouse ESCs, Ahr expression has also been 
shown to be repressed by pluripotency factors Oct4, Sox2 and Nanog by binding 
of these proteins to the regulatory regions of Ahr gene (Ko et al., 2014). The 
repression of Ahr by pluripotency factors was necessary for the maintenance of 
mitotic progression and pluripotency (Ko et al., 2016). Differences between 
species are also illustrated by the data showing that in human embryonic stem 
cells (hESCs), AHR expression has been detected in several cell lines (Yamamoto 
et al., 2019). Additionally, AHR was indicated as a key factor responsible for the 
maintenance of pluripotency and AHR activation by its endogenous ligand 
kynurenine was considered as a responsible mechanism (Yamamoto et al., 2019). 
This study also showed downregulation of AHR in response to ectodermal 



23 

differentiation, further suggesting the role of AHR in maintenance of pluripo-
tency. Taken together, AHR regulation in cells with high developmental potential, 
including ovarian granulosa cells and pluripotent stem cells, seems to be under 
strict regulation of multiple factors and is dependent on species, tissues, but also 
the stage of development. 
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3. AIMS OF THE STUDY 

The aims of this dissertation were to investigate the expression of aryl hydro-
carbon receptor in cells with high developmental potential, i.e. oocyte supporting 
mouse granulosa cells and human embryonic stem cells. In particular, this study 
focused on elucidating the following topics: 
 
1) Investigating the expression as well as the regulation mechanisms of Ahr in 

murine granulosa cells of preovulatory follicles after the LH-surge. 
 
2) Studying the expression as well as the regulation mechanisms of Ahr in 

ovarian granulosa cells during the follicle maturation to preovulatory phase 
prior to LH-surge. 

 
3) Clarifying the expression pattern and role of AHR in pluripotency and 

differentiation in human embryonic stem cells. 
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4. RESULTS AND DISCUSSION 

4.1. Transcriptional repression of the Ahr gene  
by LHCGR signalling in preovulatory granulosa cells  

is controlled by chromatin accessibility (Ref. I) 

4.1.1. hCG inhibits Ahr protein and mRNA expression in murine GCs 

Previous studies have shown that Ahr expression changes in granulosa cells 
(GCs) of preovulatory follicles. An increase in Ahr mRNA levels in response to 
hCG treatment was shown in macaque preovulatory GCs (Chaffin et al., 1999). 
Contrarily, Ahr expression was shown to be repressed in rat GCs at this stage of 
folliculogenesis (Chaffin et al., 2000). In addition, studies have shown regulation 
of Ahr expression by FSH (Bussmann & Barañao, 2006; Teino et al., 2012). 
However, there is little data on the mechanisms, how gonadotropin hormones 
regulate Ahr expression. This study aimed to elucidate this matter, focusing on 
studying Lhcgr-dependent regulation of Ahr in murine preovulatory GCs. 

Experiments in the current study were grounded on classical superovulation 
scheme. This method is based on exogenous hormonal stimulation of sexually 
immature prepubertal female mice lacking naturally occurring cyclic maturation 
of ovarian follicles. To study the expression of Ahr gene and Ahr protein level in 
preovulatory GCs, mice were initially primed with 5 IU of PMSG, which is an 
analogue of FSH. PMSG is widely used for induction of follicular maturation in 
the ovary. PMSG causes somatic GCs to proliferate and differentiate, which, 
concurrent with oocyte maturation, leads to formation of dominant follicles ready 
to ovulate. To induce ovulation, mice were 48 h later injected with 5 IU of hCG, 
which is an analogue of LH. 

To measure the effect of hCG on Ahr protein level in preovulatory GCs, cells 
were isolated before or 12 h after the injection of ovulatory dose of hCG or 
vehicle (control), followed by Western blot analysis. The results from three 
independent experiments showed a 4-fold reduction in Ahr protein level (Fig. 1A 
in Ref. I). Next, we aimed to determine whether the change in protein level is 
paralleled with changes in gene expression. For this, mRNA levels in isolated 
GCs were measured by RT-qPCR before (0 h) or after (48 h) PMSG treatment 
and after hCG (PMSG 48 h + hCG 12 h) treatment. PMSG treatment for 48h 
resulted in significant increase of Ahr mRNA level and subsequent decrease after 
12 h hCG treatment (Fig. 1B in Ref. I). In addition to GCs, lysates were made 
from whole ovaries with the aim to evaluate whether the change in Ahr expression 
is confined to GCs. Although 48 h PMSG treatment increased Ahr mRNA levels, 
12 h hCG treatment had no significant effect on downregulation of Ahr transcript 
levels (Fig. 1B. in Ref. I), most likely because of the presence of other types of 
cells. 

To further demonstrate the effect of hCG on Ahr repression, PMSG-primed 
mice were treated with 5 IU hCG or saline (vehicle control) for 12 h. RT-qPCR 
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analysis of Ahr mRNA revealed over 75% reduction in GCs isolated from mice 
treated with hCG compared to vehicle treated control (Fig. 1C in Ref. I). Con-
sidering the aim to get a more detailed understanding on the regulation of Ahr in 
further experiments, an in vitro system was set up aiming to emulate conditions 
present in vivo. For this, GCs isolated from PMSG-treated mice were cultured for 
12 h with or without the presence of 5 IU/ml hCG. Measurement of Ahr mRNA 
levels showed similar expression pattern, implying that Lhcgr signalling on Ahr 
expression can be successfully studied in vitro (Fig. 1C in Ref. I). As with in vivo 
experiments, Ahr upregulation was seen after 12 h of GC culture in non-treated 
(control) conditions (Fig. 1C in Ref. I). The residual effect of increased Ahr 
expression is also apparent in the results of in vivo experiments, which were per-
formed to investigate temporal changes in Ahr expression during 12 h (Fig. 1D 
in Ref. I). Specifically, in non-treated mice (PMSG 48 h + NT 12 h) a continuous 
increase in Ahr expression was seen throughout 12 h. Conversely, profound hCG-
dependent downregulation of Ahr occurs after 8 h when compared to PMSG-
treated cells (0 h). Moreover, a significant decrease in Ahr mRNA can be observed 
after 4 h when compared to vehicle treated control (Fig. 1D in Ref. I). Thus, we 
conclude that the start of Ahr repression is set to happen within this time-frame. 
 
 

4.1.2. hCG-dependent decrease in Ahr mRNA levels involves PKA 
activation but not ongoing protein synthesis 

Our next goal was to evaluate possible signalling pathways taking part in hCG-
dependent downregulation of Ahr expression. Previous studies have shown that 
Lhcgr signalling results in elevation of intracellular cAMP levels, which in turn 
activates PKA (Marsh & Savard, 1966). Downstream effects of PKA signalling 
in GCs have further been demonstrated to include activation of ERK1/2 pathway, 
but also modification of histones. To study whether PKA pathway participates in 
hCG-dependent downregulation of Ahr, GCs from PMSG-primed mice were 
cultured and treated with forskolin (Fsk, 10 μM), which is a known PKA activator. 
Similarly to hCG, 12 h Fsk treatment resulted in nearly 85% downregulation of 
Ahr, suggestive of the involvement of PKA pathway in hCG-dependent repression 
of Ahr (Fig. 2A in Ref. I). Indeed, addition of PKA inhibitor H89 (10 μM) 
eliminated this effect, when the cells were treated with either hCG or Fsk, further 
demonstrating that PKA activation is necessary in suppressing Ahr expression by 
hCG (Fig. 2A in Ref. I). The involvement of ERK1/2 signalling in this process 
was evaluated by adding ERK1/2 inhibitor U0126 (10 μM) to the culture medium 
of hCG or Fsk treated GCs. hCG and Fsk repressed Ahr expression in the presence 
of ERK1/2 inhibitor, indicating that this pathway is not required for Ahr re-
pression (Fig. 2A in Ref. I).  

To gain further insight into the mechanisms participating in Ahr regulation by 
hCG, we investigated if Ahr repression requires new protein synthesis. For this, 
GCs were treated for 1 h with cycloheximide (CHX, 10 μg/ml), which inhibits 
translation in cells. After this, either hCG or Fsk was added to the medium. CHX 
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treatment without additional stimulus resulted in 5-fold increase of Ahr transcript 
levels (in Fig. 2B in Ref. I). This suggests that new protein synthesis is required 
for the repression of Ahr at the basal level in preovulatory GCs. However, 
inhibition of translation did not abolish the repressive effect of hCG or Fsk on 
Ahr mRNA levels, implying that hCG-dependent downregulation of Ahr by PKA 
is likely to result from a more direct signalling cascade, which does not require 
ongoing protein synthesis (Fig. 2B in Ref. I). 
 
 

4.1.3. The expression of Ahr is controlled by transcription rate  
but not mRNA stability 

The abundance of mRNA in cells can be controlled transcriptionally by rate of 
transcription or post-transcriptionally by mRNA degradation. Considering these 
two levels of gene regulation mechanisms, the next aim was to clarify, how the 
amount of Ahr mRNA is controlled in preovulatory GCs in response to hCG. To 
measure transcriptional activity of Ahr, we quantified Ahr hnRNA levels by RT-
qPCR. Being a predecessor of mRNA, hnRNA is unspliced and due to its very 
short half-life the amount of hnRNA in cells can be considered a good indicator 
of transcriptional activity of a gene (Bentley, 1999; Elferink & Reiners, 1996). 
To measure Ahr hnRNA levels, we used primers covering the boundaries of exon 
2 and intron 2 (Fig. 3A in Ref. I). The results of in vivo experiments showed a 
significant 40% reduction in Ahr hnRNA levels after 4 h of hCG vs vehicle treat-
ment and nearly 70% reduction at 12 h (Fig. 3B in Ref. I). A decrease in hnRNA 
level is a clear indicator of reduced transcriptional activity. To confirm this, we 
performed experiments investigating the effect of hCG on Ahr mRNA stability 
in the presence of actinomycin D (ActD, 1 μg/ml), which blocks transcription in 
cells. For this, GCs isolated from PMSG-primed mice were pre-incubated with 
or without 5 IU/ml hCG for 4 h in vitro and Ahr mRNA levels were analysed by 
RT-qPCR at 0, 1.5, 3 and 4.5 h after addition of ActD. There were no significant 
differences in the degradation rate of Ahr mRNA between hCG and vehicle 
treated GCs (Fig. 3C in Ref. I). These results verify that hCG-dependent repres-
sion of Ahr gene in preovulatory GCs is an outcome of decreased transcriptional 
activity. 

Studies using reporter gene assays have shown that Ahr expression can be 
controlled by various cis-elements or trans-factors (FitzGerald et al., 1996; 
Garrison & Denison, 2000). Thus, we aimed to measure, if hCG has a repressive 
effect on Ahr promoter activity. We transfected GCs with a vector containing Ahr 
promoter region from –1425 to +367 bp relative to transcription start site (TSS). 
After transfection, GCs were incubated for 9 h before adding 5 IU/ml hCG or 
vehicle to the medium followed by reporter gene activity analysis 12 h later. After 
normalisation to β-galactosidase transfection control, no effect of hCG was seen 
on Ahr promoter activity, when compared to vehicle treated cells (Fig. 3D in 
Ref. I). Simultaneously, Ahr mRNA levels were measured to evaluate if the 
unseen effect may have been caused by the long pre-incubation period (9 h). The 
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repressive effect of hCG on endogenous expression of Ahr was still present (data 
not shown). 

However, transiently transfected reporter genes, as opposed to endogenous 
genes, are not necessarily assembled into similar structure of chromatin, the latter 
of which may be crucial for gene regulation (Hebbar & Archer, 2008; Smith & 
Hager, 1997). To address this issue, we evaluated if chromatin remodelling may 
have a role in Ahr regulation. Chromatin proteins histones can be modified in 
various ways to alter the state of chromatin and thus the accessibility of regulatory 
factors influencing transcription. Common histone modifications – acetylation 
and deacetylation – are descriptive of active and inactive regions in genome, 
respectively. To investigate if repression of Ahr expression by hCG is influenced 
by chromatin remodelling, we used a selective HDAC inhibitor Trichostatin A 
(TSA, 100 ng/ml). GCs from PMSG-primed mice were cultured and pre-treated 
with TSA for 1 h. Then, hCG or Fsk was added to the medium for 12 h, followed 
by RT-qPCR analysis. Results of this experiment showed that the repressive 
effect of hCG or Fsk was abolished in the presence of TSA (Fig. 3E in Ref. I), 
confirming that chromatin remodelling events are necessary for Ahr down-
regulation.  
 
 

4.1.4. hCG-dependent repression of Ahr transcription  
is caused by chromatin remodelling 

Our next aim was to confirm in a more detailed manner if hCG-dependent down-
regulation of Ahr is a result of reduced chromatin accessibility by using the in 
vivo chromatin accessibility assay (Chromatin Accessibility by Real-Time PCR, 
CHART-PCR). Nuclei were isolated from hCG or vehicle treated GCs and 
subjected to DNase I digestion. The accessibility of chromatin was indirectly 
evaluated by measuring the level of recovered DNA by qPCR in regions of 
interest, in this case Ahr promoter region from –176 to –77 bp and Ahr intron 
region +5859 to +5929 bp from TSS (Fig. 4A in Ref. I). The results, showing fold 
change of recovered DNA from GCs of hCG-treated over GCs of vehicle treated 
mice, demonstrate a significant increase (4-fold and 7-fold) in qPCR amplified 
DNA from Ahr promoter region after 10 or 20 U of DNase I digestion relative to 
undigested nuclei (Fig. 4B in Ref. I). Furthermore, the amount of recovered DNA 
in Ahr intron region +5859 to +5929 bp was not altered by hCG treatment com-
pared to vehicle controls (Fig. 4B in Ref. I). Together, these results show that 
Lhcgr-dependent downregulation of Ahr expression occurs via decreased 
chromatin accessibility at the promoter region of Ahr gene. 

Collectively, this study showed that Ahr expression in murine preovulatory 
GCs is repressed by Lhcgr signalling. Repression of Ahr was shown to be depen-
dent on PKA activation, whereas ERK signalling is not involved. Additional 
elucidation of regulation mechanisms revealed that Lhcgr-dependent Ahr re-
pression occurs by decreased transcriptional activity, not by mRNA degradation. 
Several studies have shown that rapid epigenetic changes take place in ovarian 
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cells during folliculogenesis (Christenson et al., 2001; LaVoie, 2005). Several 
genes important for folliculogenesis have been shown to be regulated by epi-
genetic mechanisms, e.g. histone modifications resulting in changed chromatin 
structure (Nimz et al., 2010). In this study, we showed that Lhcgr-dependent Ahr 
repression is diminished in the presence of histone deacetylase inhibitor, sug-
gesting that epigenetic mechanisms are involved. Additionally, this study demon-
strated decreased chromatin accessibility at Ahr promoter in response to hCG. 
 
 

4.2. FSH/LH-dependent upregulation of Ahr in murine 
granulosa cells is controlled by PKA signalling and  

involves epigenetic regulation (Ref. II) 

4.2.1. The upregulation of Ahr in GCs during follicular  
maturation requires both FSH and LH activity 

It has been showed that Ahr mRNA levels increase during follicle maturation in 
adult cycling rats (Chaffin et al., 2000). Previous studies have also reported Ahr 
upregulation in response to PMSG (Baba et al., 2005; Teino et al., 2014). This 
hormone has an intrinsic FSH activity, but also a residual capacity to activate LH 
receptors (Combarnous et al., 1984). To study Ahr expression in murine ovarian 
GCs during follicle maturation, mice were injected once with 5 IU of PMSG, 
5 IU of FSH or vehicle. GC isolation and Western blot analysis were performed 
48 h later to measure the amount of Ahr protein. Data from three independent 
experiments showed an average of 6-fold increase in Ahr protein level after 
PMSG treatment (Fig. 1A and B in Ref. II). FSH alone had no effect on the 
abundance of Ahr protein (Fig. 1A and B in Ref. II). Similar results were obtained 
in Ahr mRNA analysis from PMSG-treated GCs, although to a smaller extent 
(3.5-fold) (Fig. 1C in Ref. II). Notably, the extent of the increase is comparable 
to those reported by Chaffin et al. (2000) in cycling rats. Interestingly, a minor, 
but statistically significant upregulation of Ahr mRNA was measured in response 
to FSH treatment (Fig. 1C in Ref. II). Treatment of mice with 5 IU of LH or 5 IU 
of hCG alone had no effect on Ahr expression (Suppl. Fig. 1A in Ref. II). 

The difference in FSH action on the change of Ahr protein and mRNA level 
may be caused by the short half-life of FSH compared to PMSG. On the other 
hand, additional LH activity may be required to elevate Ahr protein level. To 
clarify this issue, mice were injected four times every 12 h either with 1.5 IU FSH 
or with a combination of 1.5 IU FSH and 1.25 IU LH. GCs were isolated 48 h 
after the initial injection. Western blot analysis of Ahr protein showed that FSH 
alone is insufficient to increase Ahr protein (Fig. 1D and E in Ref. II). However, 
its level was significantly increased, when mice received a combined treatment 
of FSH and LH (Fig. 1D and E in Ref. II). These data demonstrate that both 
gonadotropins are necessary to elevate Ahr protein in ovarian GCs and cor-
roborate that the previously seen positive action of PMSG on Ahr likely 
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comprises LH-dependent signalling. Additionally, measurement of Ahr mRNA 
levels in these cells confirmed the necessity of both FSH and LH to upregulate 
Ahr expression (Fig. 1F in Ref. II). FSH treatment alone, following this experi-
mental protocol, again elevated Ahr mRNA level while having no effect on Ahr 
protein. In addition, Ahr hnRNA levels – a good surrogate of transcriptional 
activity due to its short half-life – were measured, and similar results to mRNA 
were seen (Suppl. Fig. 1B in Ref. II). To demonstrate the efficiency of hormonal 
stimulation, we also measured the expression of follicle maturation marker genes, 
which were upregulated in response to combined (FSH + LH) treatment (Suppl. 
Fig. 1C in Ref. II). 

Our data show that both gonadotropins are crucially important in elevating 
Ahr levels. On the other hand, neither of the gonadotropins alone were able to 
increase Ahr. While FSH is an initiator of follicle maturation, the inability to 
augment Ahr levels could be explained by its incapacity to induce proper 
follicular maturation. Indeed, it has been shown that FSH treatment alone results 
in a smaller number of antral follicles compared to FSH + LH or PMSG treatment 
(Ruman et al., 2005). The lack of proper maturation was further reflected by our 
results showing no changes in follicle maturation marker genes’ expression in 
response to FSH treatment (Suppl. Fig. 1C in Ref. II), again emphasizing the 
importance of additional LH signalling. Although LH has a fundamental role in 
follicle maturation, it is distinct from FSH and its importance becomes more 
predominant in the second stage of follicle maturation, as the expression of LH 
receptors starts to occur in GCs of antral follicles (Menon et al., 2018). Therefore, 
the action of FSH on Ahr transcription, but not on protein level, may be a simul-
taneous result of improper follicle maturation and lack of sufficient LH signalling. 

Alternatively, the possibility of post-transcriptional regulation of Ahr tran-
script cannot be ruled out. Recent studies have suggested that LH may control the 
expression of a large set of genes by regulating their protein levels post-tran-
scriptionally (Bahrami et al., 2017; Khan et al., 2015; Li et al., 2015). LH holding 
a cohort of genes at steady-state levels by miRNAs has also been shown in GCs 
(Carletti & Christenson, 2009). Thus, it is a promising idea that the expression of 
Ahr may also be allocated to LH-dependent post-transcriptional control, e.g. via 
regulating Ahr-targeting miRNA(s). This, however, needs to be confirmed in 
further studies. Collectively, these data show that FSH and LH are both required 
for the upregulation of Ahr in ovarian GCs during follicle maturation, but also 
suggest there may be post-transcriptional regulatory processes involved, most 
likely dependent on LH action. 
 
 

4.2.2. The effect of PMSG on the expression dynamics of Ahr and 
follicle maturation marker genes 

To start gaining insight into the mechanistic side of Ahr regulation, we first aimed 
to investigate the temporal pattern of Ahr expression in response to PMSG. For 
this, mice were injected with 5 IU of PMSG or vehicle (NT) and GCs were 
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isolated before (0h) or every 12 h up to 48 h post-injection. Ahr protein levels 
were analysed by Western blot. The results showed that compared to vehicle 
treated GCs, Ahr levels are significantly increased 24 h after hormone injection 
(1.6-fold) and increased continuously up to five times 48 h later (Fig. 2A and B 
in Ref. II). Analysis of Ahr transcript levels followed this pattern, although 
statistically significant upregulation was detected 36 h after injection (Fig. 2C in 
Ref. II). The temporal pattern herein is also concordant with formerly suggested 
notion that the rise in Ahr levels requires LH signalling, which is predominant in 
the second stage of follicle maturation.  

Follicle maturation and GC differentiation is accompanied by an increase in 
several marker genes, most notably Fshr, Cyp19a1 and Lhcgr (Chakraborty & 
Roy, 2015; Findlay & Drummond, 1999; Lapolt et al., 1992; Peng et al., 1991; 
Richards, 1994; Richards et al., 1995; Sites et al., 1994). To validate the efficiency 
of hormonal stimulation, we measured the expression of these three marker genes 
in GCs isolated at aforementioned time points. The results show the upregulation 
of all three genes compared to NT control (Fig. 2D, E and F in Ref. II). PMSG 
increased Fshr mRNA 5.3-fold at 24 h reaching to 7.3-fold increase 48 h after 
injection (Fig. 2D in Ref. II). Cyp19a1 mRNA levels were elevated 20-fold 
already after 12 h and culminated to a 40-fold increase at 48 h (Fig. 2E in Ref. II), 
whereas Lhcgr expression was increased 25-fold after 12 h and 95-fold at 48 h 
after PMSG (Fig. 2F in Ref. II). Maximal points in the expression of the latter 
two were detected at 36 h – 50-fold and 130-fold increase for Cyp19a1 and Lhcgr, 
respectively. No changes in non-treated controls were detected. 

Studies have shown that Ahr may participate in oestradiol production in the 
ovary by regulating the expression of aromatase – a product of Cyp19a1 gene 
(Baba et al., 2005). In addition, Fshr has been reported to be regulated directly 
by Ahr in the ovary (Barnett et al., 2007a; Teino et al., 2012). Considering this, 
another focus of determining the dynamic pattern of the expression of these 
selected genes was the comparison between Ahr and its possible target genes in 
ovarian GCs. However, the increase in Ahr expression occurred relatively late 
when compared to Fshr and Cyp19a1 (Fig. 2A-E in Ref. II). There is a possibility 
that relatively high dose of PMSG is sufficient to upregulate these two genes via 
different routes and diminishes the importance of Ahr. Still, since Fshr and 
Cyp19a1 are crucial for follicle development, the importance of Ahr in regulation 
of Fshr and Cyp19a1 at basal level cannot be excluded. 
 
 

4.2.3. Ahr is upregulated in large antral follicles in response to PMSG 

To analyse Ahr spatial distribution in ovarian follicles, ovaries were collected 
from 5IU PMSG or non-treated (NT) mice and cryosections were subjected to 
immunofluorescence analysis. Results indicated that Ahr, to a small extent, seems 
to be present in follicles of all sizes (Fig. 3A in Ref. II). PMSG treatment results 
in ovarian maturation and is illustrated by the presence of large antral follicles 
(Fig. 3B in Ref. II). Furthermore, Ahr was highly expressed in these follicles, 
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particularly in mural GCs, whereas cumulus GCs seemed to lack Ahr protein 
(Fig. 3B in Ref. II). This finding is supported by a study showing higher Ahr 
mRNA levels in mural GCs compared to cumulus cells (Wigglesworth et al., 
2015). Moreover, this correlation was also evident in the case of Lhcgr mRNA, 
which supports our previous suggestion of the importance of Lhcgr signalling on 
Ahr expression. 

Collectively, these results show that Ahr is upregulated in large antral follicles. 
Additionally, it was demonstrated that PMSG induces follicular maturation in our 
experiments, as evidenced by the previously seen increased maturation marker 
gene expression (Fig. 2D in Ref. II) and formation of antral follicles (Fig. 3B in 
Ref. II). 
 
 

4.2.4. Ahr is downregulated by protein kinase A signalling pathway 

Ovarian follicle maturation to preovulatory stage requires FSH signalling 
(McGee & Hsueh, 2000). It is known that most of the actions of FSH are mediated 
by elevation of intracellular cAMP levels, which activates PKA (Puri et al., 2016; 
Salvador et al., 2001). The next aim of this study was to investigate, if and how 
is PKA signalling involved in Ahr expression regulation. Follicle maturation was 
induced by injecting mice with 5 IU PMSG and GCs were isolated 24 h later, 
since this is the time when Ahr upregulation begins, as demonstrated earlier 
(Fig. 2A, B and C in Ref. II). GCs were then cultured in vitro. To monitor the 
activity of PKA we measured the levels of phosphorylated cAMP response 
element (p-CREB). CREB is a well-known target protein of PKA (Gonzalez-
Robayna et al., 1999; Mukherjee et al., 1996). After 4 h cell culture, Western blot 
analysis showed a profound decrease (up to 83%) in the amount of p-CREB, 
indicative of diminished PKA activity. Simultaneously, an increase in the amount 
of Ahr protein (3.9-fold increase) was seen, compared to 0 h (Fig. 4A and B in 
Ref. II). This suggests that PKA activity may be necessary to repress Ahr due to 
the inverse correlation between the two. Indeed, treatment of GCs with 10 μM 
Fsk – a compound that activates adenylyl cyclase and thus activates PKA sig-
nalling pathway – resulted in a significant decrease in Ahr protein level (38%), 
while p-CREB levels were measured to be 2.8-fold higher (Fig. 4A and B in 
Ref. II). 

The decline in p-CREB levels (and PKA activity), which was observed after 
4 h cell culture, may be caused by the loss of gonadotropin stimulus present in in 
vivo conditions. To test this, PKA activity was further monitored by measuring 
the expression of Fshr, Cyp19a1 and Lhcgr. The expression of these genes have 
been shown to be dependent on PKA signalling (Hunzicker-Dunn & Maizels, 
2006; Minegishi et al., 1997). RT-qPCR analysis of mRNA levels of these genes 
showed that rapid downregulation occurs after GC cell culture, suggestive of the 
diminished PKA activity (Suppl. Fig. 3A, B and C in Ref. II). Forskolin, on the 
other hand, reversed this effect by elevating the expression of these genes at 12 h 
and 24 h time points (Suppl. Fig. 3 A, B and C in Ref. II). 
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The effect of forskolin on Ahr repression was also evident after measuring Ahr 
mRNA levels, which decreased by 44% after 2 h followed by 58% decrease after 
4 h Fsk treatment (Fig. 4D in Ref. II). To verify that PKA signalling was 
responsible for the decrease, GCs were treated with known PKA inhibitor H89 in 
combination with Fsk or vehicle (NT). Addition of H89 abolished the repressive 
effect of Fsk on Ahr, confirming that PKA signalling is required in Ahr down-
regulation. Moreover, after further cell culture for up to 24 h we saw a consistent 
increase in Ahr mRNA (Suppl. Fig. 4A in Ref. II) and also Ahr hnRNA (Suppl. 
Fig. 4B in Ref. II), concordant with the previously made assumption of the loss 
of PKA activity in cell culture without external stimuli. 

To assess PKA activity in ovarian GCs during follicle maturation in vivo, mice 
were primed with 5 IU PMSG or vehicle (NT) and GCs were isolated before (0h) 
or every 12 h during 48 of treatment. Western blot analysis was performed to 
measure p-CREB levels. The results showed the presence of p-CREB in non-
treated cells, indicating basal levels of PKA activity in GCs (Fig. 4E and F in 
Ref. II). When mice received PMSG, decrease in p-CREB levels was observed 
24 h after the injection (Fig. 4E and F in Ref. II), similarly to the results shown 
previously (Maizels et al., 2001). Although this effect was reversed at 36 h and 
48 h, the opposite relationship between Ahr and p-CREB levels in the mid-phase 
of ovarian follicle maturation process suggests that decrease in PKA activity is 
required for elevating Ahr in the ovary. 
 
 

4.2.5. The increased transcription of Ahr in response to PMSG is 
regulated by chromatin accessibility 

Our next aim was to elucidate, whether Ahr transcript levels were augmented by 
increased transcriptional activity of the Ahr gene or was the increase controlled 
by changes in mRNA stability. To study the PMSG effect on the rate of tran-
scription, we initially measured Ahr hnRNA levels in GCs of PMSG and vehicle 
treated mice. Cells were isolated every 12 h at various time points (0 to 48 h 
during gonadotropin treatment). RT-qPCR measurements show that PMSG 
induced a 4.7-fold upregulation of Ahr hnRNA at 36 h and 5.6-fold increase at 
48 h after the injection, respectively (Fig. 5A in Ref. II). To evaluate the influence 
of PMSG on Ahr mRNA stability, GCs from PMSG-primed mice (48 h) were 
cultured and the effect of PMSG on Ahr mRNA levels were measured with or 
without the presence of the transcription inhibitor actinomycin D (ActD). Cells 
were collected at this point in time due to abundance of Ahr protein, mRNA and 
hnRNA levels, the latter being indicative on active transcription. Ahr mRNA 
levels increased in cell culture 4 h after the addition of 5 IU/ml PMSG to the 
medium, but were significantly reduced after abolishing transcription with ActD 
(Fig. 5B in Ref. II). Additionally, there were no differences in Ahr transcript 
levels between NT and PMSG-treated cells in the presence of ActD (Fig. 5B in 
Ref. II), showing that PMSG does not augment Ahr mRNA stability. Together, 



34 

these data show that PMSG-dependent Ahr upregulation in ovarian GCs is 
regulated via increased mRNA synthesis. 

It has been reported that activation of genes by FSH signalling involves multiple 
cis-elements and trans-acting factors (Fitzgerald et al., 1998; Richards, 1994). In 
addition, Ahr promoter contains several regulatory elements that can be targeted 
by gonadotropin signalling (Fitzgerald et al., 1998; Garrison & Denison, 2000). 
To study if PMSG influences Ahr promoter activity, GCs from immature mice 
were cultured and transfected with a reporter vector containing Ahr promoter. 
The 1792 bp reporter vector (–1425 to +367 bp relative to TSS) was constructed 
previously (Teino et al., 2014). This sequence has been reported to contain all the 
necessary elements for constitutive promoter activity (Fitzgerald et al., 1998; 
Garrison & Denison, 2000). The effect of PMSG on luciferase activity was 
measured 48 later. Although promoter activity was detected in non-treated cells, 
no additional effect was observed in response to PMSG treatment (Fig. 5C in Ref. 
II). The undetected effect might be explained by the now widely accepted view 
that regulatory elements of a gene can be located far from TSS, but can also be 
explained by the presence of other regulatory mechanisms in PMSG-dependent 
upregulation of Ahr, e.g. chromatin remodelling. 

Several studies have shown that the Ahr gene expression can be controlled 
epigenetically (Englert et al., 2012; Garrison et al., 2000; Zhang et al., 1996). We 
showed previously that in murine preovulatory GCs Ahr is downregulated by 
condensation at its promoter region in response to hCG (Teino et al., 2014). 
Considering the bivalent characteristic of Ahr promoter, as illustrated previously, 
our goal was to investigate if the upregulation of Ahr during follicle maturation 
(before the LH-surge) is controlled by changes in chromatin structure (Ko et al., 
2014). For this, immature mice were treated with 5 IU of PMSG or vehicle for 48 
h, after which GCs were isolated and subjected to CHART-PCR analysis. The 
state of chromatin structure was assessed by analysing DNase I accessibility to 
the region –176 to –77 bp of Ahr promoter. CHART-PCR results indicated that 
PMSG increased the accessibility of DNA at Ahr promoter (Fig. 5D in Ref. II). 
For positive control of this experiment, we used Cyp19a1 due to the evidence that 
this gene is downregulated by chromatin remodelling in preovulatory GCs in 
response to hCG and due to our experimental data showing Cyp19a1 to be 
upregulated during follicle maturation (Fig. 2E in Ref. II) (Lee et al., 2013). We 
demonstrated increased accessibility of DNase I to the promoter region of 
Cyp19a1 (Fig. 5D in Ref. II). No effect of PMSG on DNase I accessibility to the 
promoter region of Pax7, used as negative control, was detected compared to non-
treated control (Suppl. Fig. 5 in Ref. II). 

A couple of studies have shown that FSH can modify the structure of chromatin 
through direct phosphorylation of histones by PKA. There are studies showing 
this process to cause a reduction in chromatin condensation, but also that PKA 
activity can be necessary to keep the chromatin in a closed state (Collas et al., 
1999; DeManno et al., 1999; Salvador et al., 2001). Although FSH and LH exert 
their effect largely via PKA pathway, it is also established that low and high levels 
of PKA activity can have differential effects on target gene expression in granulosa 
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cells (Gonzalez-Robayna et al., 1999; Richards et al., 1995). Considering the 
temporal decrease in PKA activity in mid-phase follicle maturation (Fig. 4E and 
F in Ref. II), coupled with Ahr upregulation, it is reasonable to suggest that PKA 
may modulate Ahr expression through epigenetic changes this way. The exact 
mechanisms, however, remain unknown. Considering the repressive effect of 
PKA on Ahr expression in preovulatory follicles and during the initial phase of 
follicle maturation, it is an interesting subject for further studies to explain, how 
Ahr is upregulated in large antral follicles in the presence of PKA activity (Teino 
et al., 2014). 
 

 
 

4.3.1. AHR is downregulated during non-directed differentiation  
into embryoid bodies (EBs) 

In order to gain first insight into the role of AHR during early differentiation, we 
studied its expression during hESC differentiation into embryoid bodies (EBs). 
Mimicking in vivo conditions, EBs resemble 3D structures containing cells from 
all three lineages. Previously, Ahr upregulation in mouse ESC differentiation into 
EBs has been shown (Ko et al., 2014). We aimed to investigate, how AHR is 
regulated in human ESCs. 

 
4.3. Impact of AHR ligand TCDD on human embryonic  

stem cells and early differentiation (Ref. III) 

Recent studies have underscored the important role of AHR in cells with high 
developmental potential. Numerous studies have shown that modulating AHR 
activity by various agonists or antagonists can have profound effects on multiple 
biological processes, including cell proliferation and differentiation. Inhibition of 
AHR activity by StemRegenin 1 has been shown to induce the proliferation and 
expansion of hematopoietic stem cells (HSCs) (Boitano et al., 2010). In addition 
to adult stem cells, emerging evidence has also implied AHR to interfere with 
differentiation of embryonic stem cells (ESCs). It was recently shown that 
modulating AHR activity by TCDD profoundly impacted ESC differentiation into 
cardiomyocytes (Fu et al., 2019; Wang et al., 2016). The impact of TCDD has 
also been shown to affect neural and endodermal differentiation of ESCs (Kubi 
et al., 2019; Sarma et al., 2019). Several studies have determined that AHR is 
expressed in stem cells, although its expression level is dependent on develop-
mental stage of the cells. Additionally, differences in mouse and human ESCs 
have been reported (Peters & Wiley, 1995; Wu et al., 2002; Yamamoto et al., 
2019). Still, there is little data on AHR expression and functions in human ESCs 
and during the initial stages of hESC differentiation. Considering the future per-
spectives in regenerative therapies and the possibilities of using AHR as a thera-
peutic target, it is of interest to characterise AHR expression and study the role 
of this protein in pluripotent stem cells and during early differentiation. 
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Western blot analysis of AHR protein showed a significant decrease (77%) 
after 5 days of hESC differentiation into EBs (Fig. 1A in Ref. III). Down-
regulation was further confirmed by RT-qPCR analysis of AHR mRNA, which 
decreased by 66% in EBs (Fig. 1B in Ref. III). In addition to H9 hESC line, 
similar reduction in mRNA was determined in H1 cell line (Fig. 1B in Ref. III). 
To confirm the differentiation of hESCs, we analysed the expression level of core 
pluripotency marker genes – OCT4, SOX2 and NANOG. Significant reduction in 
the expression of OCT4 and NANOG validate the differentiation (Fig. 1C in 
Ref. III). The expression of SOX2 remained unchanged, indicating that neural 
direction is the preferred lineage of spontaneous differentiation, as reported 
before (Fig. 1C in Ref. III) (Fong et al., 2008). Taken together, our data reveal 
that when studying AHR expression in stem cells, the species-dependent dif-
ferences must be taken into account. In addition, a similar regulation in different 
hESC lines suggests a broader biological, rather than single cell line-specific role 
of this protein in the early stages of pluripotent stem cell differentiation. 
 
 

4.3.2. AHR expression shows distinct patterns during directed 
differentiation into three lineages 

Our next goal was to characterise AHR expression in a more detailed manner. 
Specifically, we aimed to determine the temporal pattern of AHR transcription 
during directed differentiation into all three lineages. H9 hESCs were dif-
ferentiated into neural progenitors, definitive endoderm and early mesoderm cells 
using commercial differentiation kits. Accordingly, neural differentiation was 
carried out for 7 days, whereas endodermal and mesodermal differentiation was 
performed for 5 days. In neural progenitors, Western blot analysis showed a sig-
nificant decrease (45%) in AHR protein levels after three days of differentiation 
(Fig. 2A in Ref. III). Starting from day 5, AHR levels showed an increasing trend, 
reaching to significantly higher levels at day 7, compared to day 4 (4.13-fold 
increase) or hESCs (2.27-fold increase) (Fig. 2A in Ref. III). Analysis of AHR 
mRNA levels revealed a similar pattern with minor differences. Particularly, AHR 
downregulation was seen already after 2 days of differentiation and remained low 
until day 5. Compared to day 5, higher AHR transcript levels were measured at 
day 6 and 7. However, when compared to hESCs, no statistically significant 
increase was detected (Fig. 2B in Ref. III). Similar expression pattern in hESCs 
after neural differentiation has been reported previously in a study, which showed 
that AHR levels decreased after 3 and 6 days of differentiation (Yamamoto et al., 
2019). This study proposed that AHR and its endogenous ligand kynurenine are 
necessary to maintain the hESCs in a state of self-renewal. 

For validation of differentiation, we measured the expression of pluripotency- 
and lineage-specific marker genes. Reduction of OCT4 and NANOG mRNA was 
seen from day 1 (Fig. 2C in Ref. III). Additionally, SOX2 levels remained un-
changed, indicative of neural differentiation (Fig. 2C in Ref. III). Neural 
differentiation was further confirmed by measured increase in PAX6 and OTX2 
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mRNA levels (Suppl. Fig. 1A and B in Ref. III). Differentiation of hESCs into 
definitive endoderm resulted in downregulation of AHR protein from day 3 and 
remained at low levels (20% of the initial level) at day 5 (Fig. 2D in Ref. III). RT-
qPCR analysis of AHR mRNA showed comparable results, although a significant 
decrease was detected from day 2 (Fig. 2E in Ref. III). Differentiation was 
confirmed by downregulation of pluripotency marker genes OCT4, SOX2 and 
NANOG (Fig. 2F in Ref. III) and upregulation of endodermal marker genes 
SOX17 and GATA4 (Suppl. Fig. 1C and D in Ref. III). AHR protein levels also 
decreased during mesodermal differentiation, starting from day 2 (41% decrease) 
(Fig. 2G in Ref. III). At day 5, AHR protein was essentially undetectable (Fig. 2G 
in Ref. III). Notably, from day 2, a second molecular weight band was detected by 
Western blot analysis. This may be the result of the used AHR antibody 
recognising an unknown protein. On the other hand, the inverse correlation 
between the AHR protein could indicate post-translational cleavage. AHR mRNA 
levels were downregulated by 49% at day 2, followed by nearly undetectable 
levels from day 3 (Fig. 2H in Ref. III). Pluripotency marker genes were down-
regulated upon mesodermal differentiation (Fig. 2I in Ref. III) with concurrent 
upregulation of mesoderm-specific marker genes T and HAND1 (Suppl. Fig. 1E 
and F in Ref. III). Overall, the downregulation of AHR after hESC differentiation 
is supportive of its role in pluripotency maintenance. Furthermore, distinct 
temporal pattern between different lineages indicates its lineage-specific roles. 
 
 

4.3.3. TCDD does not affect pluripotency- or  
differentiation-specific marker gene expression 

Considering the possibility of AHR in the maintenance of stem cell self-renewal, 
our next goal was to study the effect of TCDD, the most potent AHR agonist, on 
pluripotency of hESCs. Firstly, flow cytometry analysis was performed to 
determine the proportion of OCT4+SOX2+NANOG+ cells in non-treated, DMSO 
or 10 nM TCDD-treated cells after 3 days. No effect of TCDD was seen, 
compared to non-treated (NT) or DMSO-treated cells (Suppl. Fig. 2A in Ref. III). 
TCDD did not alter the expression of OCT4, SOX2 and NANOG compared to NT 
or DMSO-treated cells, suggesting no effect on pluripotency (Suppl. Fig. 2B in 
Ref. III). AHR activation and functionality of AHR pathway was validated by 
measuring the expression of well-known AHR target gene CYP1A1, which was 
upregulated 7-fold upon TCDD treatment (Suppl. Fig. 2C in Ref. III). Taken 
together, our results show that TCDD has no influence on hESC pluripotency. 

Since TCDD-dependent derailment of differentiation in various cell types 
with high developmental potential has been reported, we aimed to study if TCDD 
has an effect on early differentiation of hESCs. For this, we analysed the effect 
of TCDD on lineage-specific marker genes in 10 nM TCDD or DMSO-treated 
cells. Previous studies have shown that the effects elicited by TCDD on early 
differentiation depend on the stage of treatment (Fu et al., 2019; Sarma et al., 
2019). Particularly, pre-treatment of pluripotent cells before differentiation has 



38 

been shown to have the most profound influence (Fu et al., 2019). Accordingly, 
in this study hESCs were pre-treated with DMSO or 10 nM TCDD for 3 days 
prior to differentiation with commercial media containing DMSO or 10 nM 
TCDD. 

Neural differentiation resulted in upregulation of lineage-specific marker 
genes PAX6 and OTX2 in the presence of DMSO (Fig. 3A and B in Ref III). 
However, TCDD did not alter the expression of these genes. Additionally, no 
effect of TCDD was observed on mRNA levels of AHR, OCT4, SOX2 and 
NANOG (Suppl. Fig. 3A, B, C and D in Ref. III). TCDD upregulated CYP1A1 
expression in these cells, indicative of active AHR pathway (Suppl. Fig. 3E in 
Ref. III). Endodermal differentiation in the presence of DMSO resulted in 
upregulation of endodermal marker genes SOX17 and GATA4 (Fig. 3C and D in 
Ref. III). The expression of these genes was not influenced by TCDD (Fig. 3C 
and D in Ref. III). The lack of TCDD effect was also seen on the expression of 
AHR, OCT4, SOX2 and NANOG in these cells (Suppl. Fig. 4A, B, C and D in 
Ref. III). In early mesoderm cells, upregulation of lineage-specific marker genes 
T, HAND1 and GSC was observed in the presence of DMSO (Fig. 3E, F and G in 
Ref. III). Additional effect of TCDD on the expression of these genes was not 
observed (Fig. 3E, F and G in Ref. III). As with neural and endodermal dif-
ferentiation, mesodermal differentiation resulted in downregulation of AHR, 
OCT4, SOX2 and NANOG expression. Compared to DMSO treatment, TCDD 
appeared to have no significant influence of the expression of these genes (Suppl. 
Fig. 5A, B, C and D in Ref. III). 

It has been previously shown that TCDD impairs differentiation of hESCs by 
inhibiting the expression of lineage-specific marker genes T (mesoderm) and 
SOX17 (endoderm) (Fu et al., 2019; Kubi et al., 2019). However, our data demon-
strate that TCDD does not affect early differentiation, at least in the context of 
this experimental setting and analysed marker genes. In addition, TCDD did not 
alter the expression of pluripotency marker genes. Previous studies, however, 
have demonstrated the binding of AHR to regulatory regions of OCT4, SOX2 and 
NANOG (Cheng et al., 2015; Stanford et al., 2016; Yamamoto et al., 2019). It is 
imperative to consider that these results may be explained by different protocols 
used or the proposed ligand and cell specific roles of AHR. 

 
 

4.3.4. Impact of TCDD on hESC and early differentiation 

To gain a more detailed understanding on the effects of TCDD, we analysed its 
impact on global gene expression in hESCs and differentiated cells by high-
throughput mRNA sequencing (RNA-seq). In hESCs, gene expression profile 
was analysed after 3 days of treatment with DMSO or 10 nM TCDD. Addi-
tionally, DMSO or 10 nM TCDD pre-treated (days) hESCs were differentiated 
into neural progenitor (7 days), definitive endoderm (5 days) or early mesoderm 
cells (5 days) in the presence of DMSO/TCDD followed by RNA-seq analysis 
(Fig. 4A in Ref. III). The results showed that TCDD altered gene expression 
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profile in hESCs and differentiated cells. The most prominent changes were 
detected in mesodermal lineage (Suppl. Fig. 6 in Ref. III). More specifically, 
86 genes (p < 0.05) were upregulated in hESCs in response to TCDD treatment. 
55 genes were upregulated in definitive endoderm cells, 263 in early mesoderm 
cells and 114 genes in neural progenitors (Fig. 4B in Ref. III). 32 genes were 
found to be downregulated in response to TCDD in hESCs. Also, TCDD down-
regulated 73 genes in endodermal cells, 501 in mesodermal cells and 59 in neural 
cells (Fig. 4C in Ref. III). The complete expression profile in pluripotent cells, 
but also differentiated cells was in line with the gene expression analysis pre-
sented above. 

Gene ontology (GO) analysis was carried out with differentially expressed 
genes (p < 0.05) to find relevant biological pathways affected by TCDD treat-
ment. In hESCs, top pathways related to genes that were influenced by TCDD 
were associated to pattern specification, embryonic organ development and organ 
morphogenesis (Fig. 4D in Ref. III). In definitive endoderm cells, cell prolifera-
tion and regulation of membrane potential were among top biological pathways 
associated with TCDD-regulated genes. In early mesoderm cells, differentially 
expressed genes were mostly related to intracellular signalling, whereas GO 
analysis after neural differentiation showed extracellular matrix and structure 
organisation among eminent pathways (Fig. 4C in Ref. III). There were TCDD-
affected pathways that were common to different cell types, including cellular 
response to cyclic compounds in hESCs and neural progenitors. The overall 
results, however, reveal a distinct pattern between lineages, which suggests AHR 
to have lineage-specific roles during early differentiation. This assumption is 
supported by our finding that only a small set of genes were found to be regulated 
by TCDD commonly in multiple cell types (Fig. 4E in Ref. III). Among these 
were classical AHR target genes such as TIPARP, CYP1A1, CYP1B1 and AHRR, 
but also several less-characterised genes or non-coding RNA genes were detected 
(Fig. 4E in Ref. III). 

In order to get insight into potential direct AHR target genes, we performed 
ChIP-seq analysis with hESCs, definitive endoderm cells and neural progenitors 
after 100 nM TCDD treatment for 1.5 h. Early mesoderm cells were excluded 
from this experiment due to extremely low levels of AHR protein (Fig. 2G in 
Ref. III). For initial quality control, ChIP-qPCR with known AHR target genes 
was carried out before and after library preparation (Suppl. Fig. 7–9 in Ref. III). 
AHR binding to nearby regions of known target genes CYP1A1 (Fig. 4F in 
Ref. III), AHRR, TIPARP and CYP1B1 were evaluated as additional proof of the 
quality of the experimental procedure (Suppl. Fig. 10 in Ref. III). DNA motif 
analysis of combined enriched regions including all three cell types reveal 
previously known AHR consensus motif 5’-GCGTG-3’ as top enriched motif, 
being present in 57% of target sequences (Fig. 4G in Ref. III). Analysis of ChIP-
seq results revealed 199 AHR-bound (+/– TCDD) regions in hESCs (Fig. 4H in 
Ref. III). 93 AHR-bound regions were detected in neural progenitors and 49 
AHR-bound regions in definitive endoderm cells (Fig. 4H in Ref. III). In addition, 
several genes were bound by AHR (within 200 kbp +/– from TSS) in different 
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cell types (Suppl. Table 1 in Ref. III). GO analysis of AHR-bound genes in hESCs 
revealed top biological pathways to be regulation of transcription and positive 
regulation of RNA metabolic processes (Fig. 4I in Ref. III). Top biological 
pathways related to AHR-bound genes after endodermal differentiation are cell-
cell and WNT signalling, while AHR-bound regions in neural progenitor cells are 
associated to neurogenesis (Fig. 4H in Ref. III). 

For further analysis with the aim to determine AHR target genes we sorted out 
differentially regulated genes that were also associated with AHR binding. In 
pluripotent hESCs, we discovered 28 upregulated genes which had TCDD-
induced binding of AHR within +/– 200 bp from TSS, suggesting that AHR may 
be directly involved in activating the expression of these genes (Table 1 in Ref. 
III). Increase in mRNA levels and associated binding of AHR was common to 
several known AHR target genes, e.g. AHRR, TIPARP, CYP1A1 and CYP1B1 
(Table 1 in Ref. III). In addition, these data suggest the role of AHR in regulating 
several genes known for their role in early embryonic development. SIX3 and 
SIX6 are involved in regulation of multipotent neuroretinal progenitor cells, 
LRAT in regulating retinoid homeostasis in early development and RORA has 
been shown to regulate differentiation and survival of Purkinje cells (Cook et al., 
2015; Diacou et al., 2018; Sears & Palczewski, 2016). Also, the role of LHX4 in 
the control and development of pituitary gland has also been established (Mullen 
et al., 2007). Interaction between AHR and these developmentally important genes 
has not been described before. However, LHX4 and SIX3 have been reported to 
be associated with cleft palate, a hallmark phenotype of TCDD toxicity (Mimura 
et al., 1997; Ozturk et al., 2013; Rochette et al., 2015). 

TCDD exposure during foetal development has been associated with several 
health risks pointing to neurological defects. Sarma et al., (2019) showed that 
TCDD increased the number of neuronal rosettes and the amount of TH-positive 
neuronal cells during early hESC differentiation, although the exact mechanisms 
remained elusive. Our result may possibly enlighten this matter, as we found 
several TCDD-regulated possible target genes of AHR, which are shown to play 
a role in neural differentiation. For example, RORA is expressed and develop-
mentally regulated in several regions of the brain. These include thalamus and 
Purkinje cells (Cook et al., 2015). RORA has been shown to be critical for survival 
and differentiation of Purkinje cells, but also for genes related to dendritic dif-
ferentiation and glutamatergic pathway (Hamilton et al., 1996). Additionally, 
TCDD effects on AHR binding and upregulation of mRNA were common to 
LRAT and EXOC2 (Table 1 in Ref. III). Furthermore, regulatory regions of these 
genes were bound by AHR not only in TCDD-treated cells, but also in non-treated 
cells. This suggests that AHR participates in endogenous regulation of these genes. 
The importance of EXOC2 in human brain development has been demonstrated 
previously, as mutations in this gene can cause severe developmental defects 
(Bergen et al., 2020). Pathogenic variants of this gene have been associated with 
abnormalities in brain such as severe developmental delay, dysmorphism, poor 
motor skills and microcephaly. Moreover, a recent study showed that activation 
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of AHR by its endogenous ligand kynurenine was an essential link between Zika-
virus induced microcephaly (Giovannoni et al., 2020). 

Of the likely AHR target genes, found in this study, one of the most highly 
upregulated was LRAT. LRAT is a key protein in retinoid/visual cycle and is 
highly expressed in eye (Sears & Palczewski, 2016). Dysregulation of this gene has 
been related to early onset retinal dystrophy (Thompson et al., 2001). Intriguingly, 
GO analysis of TCDD-affected genes showed visual perception among the top 
biological pathways (Fig. 4D in Ref. III). Additionally, oculomotor defects have 
been reported in Ahr knockout mice (Chevallier et al., 2013). Moreover, SIX3 and 
SIX6, possible AHR target genes in hESCs, are known to be expressed during 
development of the early stages of visual system and are required for the mainte-
nance of multipotent retinal progenitor cells (Diacou et al., 2018; Jean et al., 1999; 
Oliver et al., 1995; Toy & Sundin, 1999). Taken together, the findings gathered 
in this study regarding AHR target genes in hESCs shed light on the roles of this 
protein in stem cells and early development, with additional suggestion on the 
important role in eye development. 

Combined analysis of RNA-seq and ChIP-seq data in endodermal cells showed 
none of the genes associated with nearby AHR binding were differentially 
expressed. However, differentially expressed four genes in endodermal cells had 
AHR binding in hESCs. TCDD upregulated the expression of CDCA7L and 
S1PR1, whereas substantial downregulation of MYADML2 and CUZD1 was seen 
in these cells (Table 2 in Ref. III). Interestingly, CUZD1 was upregulated in 
hESCs, illustrative of the cell-specific role of AHR in gene regulation during 
development. Mesodermal differentiation resulted in 16 differentially expressed 
genes upon TCDD treatment, which were associated with AHR binding in hESCs, 
definitive endoderm or neural progenitor cells (Table 3 in Ref. III). Intriguingly, 
in early mesoderm cells TCDD downregulated 10 of these genes. Considering 
essentially undetectable levels of AHR in these cells (Fig. 2G in Ref. III), this 
result hints that the influence of TCDD is more profound on pluripotent stem 
cells, rather than on differentiated cells. Thus, the observed results are possible 
secondary effects elicited by TCDD-AHR signalling in hESCs. This suggestion 
is supported by Fu et al., (2019), which emphasised the importance of TCDD pre-
treatment of hESCs in this kind of experiment. 

Gene expression analysis of genes associated with AHR binding after neural 
differentiation showed upregulation of known AHR target genes. The most 
noticeable change was in the expression of CYP1A1 having a 35-fold increase 
(Table 4 in Ref. III). Most of the genes, presented in Table 4 in Ref. III, had 
TCDD-induced binding of AHR in hESCs and neural progenitor cells (including 
LRAT and LINC00886). The expression of GRB7, IKZF3, CYP27A1, CCDC60 
and TSC22D1 were specific only to neural cells. Intriguingly, TCDD toxicity on 
early development can also be presumed by the seen upregulation of known 
trophectoderm marker genes CCKBR and CDX2. 

As previous studies have reported TCDD to influence gene expression by 
epigenetic changes, our next aim was to analyse TCDD treatment on chromatin 
accessibility in hESCs on a global level by ATAC-seq (Assay for Transposase 
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Accessible Chromatin followed by high-throughput sequencing). ATAC-seq was 
performed using DMSO or 10 nM TCDD pre-treated hESCs, due to this window 
being most susceptible to TCDD effects (Fu et al., 2019; Sarma et al., 2019). We 
detected 157 overall genomic regions with differentially accessible chromatin 
caused by TCDD. Interestingly, results showed eight regions having reduced 
accessibility in response to TCDD compared to DMSO-treated cells. The expres-
sion of six genes that were associated with these regions (CRYM, GFOD1, GLRX5, 
NPIPB3, SIRT5, TCLB1), however, did not change in these cells. Contrarily, 
TCDD induced increase in chromatin accessibility within 149 regions that were 
associated with 222 genes. Among these, AHR binding to the proximity of TSS 
of 11 genes (e.g. ITGA6, RCC2, ZNF532, DLX2, MALT1, PADI4) was also deter-
mined. In several cases, AHR binding and increased chromatin accessibility was 
also accompanied by the increased expression of these genes, suggesting that 
AHR may be directly involved in transcriptional activation of these genes in human 
embryonic stem cells. In fact, TIPARP, a well-documented AHR target gene was 
among these few. 

This study did not focus on studying endogenous roles of AHR in stem cells. 
Still, our data from ChIP-seq analysis revealed that a number of regions in DMSO-
treated hESCs or differentiated cells were bound by AHR. Sequencing analysis 
of AHR binding sites revealed numerous genes with strong binding effect common 
only to hESC cells (e.g. NDUFAF7, NEUROG3, OPA1, BICD1, EIF4G2, 
FAM218A, HS3ST5, METTL9, CCDC34, ALDH1A1, PRICKLE1, ROR1, SMAD7, 
SPN, ETAA1, KCTD1, PRDM2, DUSP6, ACACA, ASAP1, RBPMS, SLC8B1, 
TCPN1). Contrarily, we found AHR binding within 1 kbp of TSS of a number of 
genes commonly in hESCs, endodermal and neural cells (e.g. BAD, NUDT3, 
DAGLA, DICER1, CBX3, HNRNPA2B1, STRBP, SLC39A10, DDX17, TPRA1, 
SEPTIN7, EPC2, TIPARP, LINC00886). Among these, strong AHR binding was 
seen in promoters of DICER1, HNRNPA2B1, NUDT3 and DDX17, which have 
been shown to be involved in RNA processing (Suppl. Fig. 12 in Ref. III). 
Regulation of RNA metabolic and biosynthesis processes were also determined 
by GO analysis of AHR-bound genes to be one of the main biological pathways 
(Fig. 4I in Ref. III). 

DICER1 is known to be a vital component in the miRNA bioprocessing. 
Importantly, DICER1 has been shown to be essential for stem cell renewal 
(Teijeiro et al., 2018). HNRNPA2B1 is an RNA-binding protein having a role in 
miRNA processing and alternative splicing, but also involved in miRNA sorting 
into exosomes (Alarcón et al., 2015; Villarroya-Beltri et al., 2013). NUDT3 and 
DDX17 are involved in mRNA decapping and miRNA biogenesis (Grudzien-
Nogalska et al., 2016; Ngo et al., 2019). In addition, AHR binding was seen in the 
promoter of miR-302-367 cluster, which has been shown to regulate pluripotency 
(Balzano et al., 2018; Lipchina et al., 2012). Further studies are needed to clarify 
the role of AHR in regulation of these genes and thereby its functions in controlling 
stem cell pluripotency and early differentiation. 

Research in the field of AHR biology has focused largely on studying the role 
of this protein in cancer. Numerous studies have reported that AHR is highly 
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expressed in several cancer tissues, including glioblastoma and hepatocellular 
carcinoma (Opitz et al., 2011; Wang et al., 2017). In these cancers, biomarkers have 
been described to predict therapeutic outcomes, including e.g. CDCA7L, BICD1, 
DDX17, S1PR1 and SEPT7 (Hou et al., 2016; Huang et al., 2017; Ji et al., 2019; 
Rostami et al., 2019; Xue et al., 2019; Zhang et al., 2016). This study provides 
evidence that AHR might be directly involved in regulation of these genes. 
Collectively, the identification of novel potential AHR targets opens up interesting 
avenues in discovering the role of AHR is cellular homeostasis and disease. 
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SUMMARY 

AHR has been in the focus of scientific research over four decades. Although 
initially discovered as a mediator of toxicity for environmental pollutants, sub-
stantial evidence has been gathered showing that AHR has a fundamental role in 
normal physiology. This has been implied by studies with knock-out animal 
models as well as the gained knowledge about the vast number of endogenous 
ligands for this receptor. The explicit biological function of AHR in regulating 
cellular homeostasis has been shown in various organs and tissues, most promi-
nently in the immune system, liver, skin, lung, fat tissue, brain and cancer. Addi-
tionally, AHR has been discovered to be important in reproductive system, as 
well as in stem cells. The complex nature of this protein has urged to study its 
expression and functions in different cells. The current thesis focused on 
characterising the expression of the Ahr gene in murine ovarian granulosa cells 
and human embryonic stem cells. A particular focus was placed on elucidating 
the regulatory mechanisms controlling the expression of Ahr. In addition, this 
thesis aimed to expand the knowledge on the role of AHR in cellular homeostasis 
by identification of AHR target genes. 

The importance of Ahr in the ovary was first suggested by studies showing 
TCDD to act as an endocrine disruptor, inhibiting steroidogenesis. Further studies 
using Ahr knockout mice have shown its significant role in maintaining preg-
nancy and regulating development of ovarian follicles and ovulation. Mice lacking 
Ahr display disturbances in steroidogenesis, have slower ovarian follicle growth 
and less antral follicles. Moreover, studies have demonstrated reduced respon-
siveness to gonadotropin stimuli by decreased expression of FSH and LH recep-
tors on GCs, leading to perturbed ovulation. These data have suggested that Ahr 
itself is regulated by gonadotropins. 

In this study, the reduction of Ahr expression at mRNA and protein levels 
were shown in GCs of preovulatory follicles in response to LH signalling. The 
repressive effect of LH on Ahr expression was shown to be mediated by PKA, 
but not ERK pathway. Additionally, relatively rapid downregulation of Ahr in 
these cells resulted from decreased transcription rate and involved epigenetic 
remodelling at Ahr promoter. The second part of this study investigated the 
expression of Ahr during ovarian follicle maturation, prior to LH-surge. Con-
versely, Ahr expression was increased during this phase and was demonstrated to 
be dependent on both FSH and LH. The upregulation of Ahr was suggested to 
involve post-transcriptional regulation mechanisms likely dependent on LH 
signalling. This study showed that the increased amount of Ahr protein is con-
fined to mural GCs of large antral follicles. The upregulation of Ahr resulted from 
increased transcription rate and was regulated by changes in chromatin conden-
sation. Additionally, PKA repressed Ahr in these cells. This suggested that a 
decrease in FSH mediated PKA activity seen in the mid-phase of follicle matu-
ration period may be an activation barrier for the upregulation of Ahr in vivo. 
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Collectively, the fluctuation of Ahr in differentiating murine granulosa cells 
indicates Ahr to have specific time- and tissue-dependent physiological role. 

The fluctuation of AHR expression has also been previously described in cells 
with higher developmental potential than granulosa cells. With this in mind, the 
last part of this thesis aimed to describe the expression of AHR in pluripotent 
stem cells. Using hESCs, AHR expression was shown to decrease during the initial 
stages of differentiation. Additionally, directed differentiation into neural pro-
genitors, early mesoderm and definitive endoderm cells showed distinct expres-
sion patterns. This study provided evidence that AHR ligand TCDD has a profound 
impact on gene expression during hESC differentiation. This was evidenced by 
genome-wide analysis of its effect on AHR binding to DNA as well as measured 
changes in the expression profile. Finally, the knowledge on AHR signalling was 
expanded by identification of novel AHR target genes, using combined analysis 
of high-throughput sequencing from ChIP-seq, RNA-seq and ATAC-seq. Taken 
together, the results presented in this dissertation broaden our understanding on 
the fundamental biological role of aryl hydrocarbon receptor. Notably, gaining 
this knowledge is a crucially important step in further studies aspiring to exploit 
its value as a therapeutic target in treatment of various diseases. 
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SUMMARY IN ESTONIAN 

Arüülsüsivesinike retseptori uurimine hiire munasarja 
granuloosarakkudes ja inimese embrüonaalsetes tüvirakkudes 

Arüülsüsivesinike retseptor (AHR) on transkriptsioonifaktor, mida on tänaseks 
uuritud üle neljakümne aasta. Kuigi AHR avastati esialgu kui erinevate mürgiste 
keskkonnakemikaalide toime vahendaja, on nüüdseks kogunenud hulgaliselt 
tõendeid selle valgu füsioloogilise tähtsuse kohta. Sellele järeldusele on aidanud 
jõuda katsed AHR-i nokaut katseloomadega. Ühtlasi on praeguseks avastatud 
suur hulk endogeenseid ühendeid, millel on võime moduleerida rakkudes AHR-i 
aktiivsust. AHR-i bioloogilist tähtsust on näidatud paljudes organites ja kudedes. 
Enim on tähelepanu pälvinud selle retseptori osatähtsus immuunsüsteemis, maksas, 
nahas, kopsudes, rasvkoes, ajus ning vähkkoes. Andmed on samuti viidanud 
AHR-i olulisusele reproduktiivsüsteemis, aga ka arenevates kudedes ning tüvi-
rakkudes. Tulenevalt selle valgu komplekssest iseloomust, on AHR-i uuringutes 
peetud vajalikuks pidada silmas asjaolu, et AHR-il võivad sageli olla raku- ja 
koespetsiifilised ülesanded. Käesolev töö keskendus arüülsüsivesinike retseptori 
uurimisele hiire munasarja granuloosarakkudes ning inimese embrüonaalsetes 
tüvirakkudes. Täpsemalt uuriti ka seda, milliste mehhanismide kaudu reguleeri-
takse AHR-i geeni avaldumist. Lisaks avardati teadmisi AHR-i füsioloogilisest 
tähtsusest, tehes kindlaks, milliste geenide avaldumist uuritav transkriptsiooni-
faktor otseselt mõjutab. 

Ahr-i tähtsus munasarjas sai algselt ilmsiks katsete käigus, mis näitasid, et 
keskkonnas levinud saasteainel ja Ahr-i ligandil TCDD-l on negatiivne mõju 
endokriinsüsteemile, mõjutades oluliselt steroidhormoonide tootmist. Edasised 
katsed Ahr-i nokaut hiirtega näitasid, et Ahr on vajalik tiinuse säilitamises, muna-
sarja folliikulite kasvus ning ovulatsioonis. Neil hiirtel täheldati häireid steroid-
hormoonide sünteesis, aeglasemat folliikulite kasvu ning väiksemat antraalsete 
folliikulite arvu. Veelgi enam, Ahr-i puudumine väljendus munasarja folliikulite 
vähenenud reageerimisvõimekuses gonadotropiinidele. Viimane oli põhjustatud 
vähenenud folliikuleid stimuleeriva hormooni (FSH) ning luteiniseeriva hor-
mooni (LH) retseptorite arvust granuloosarakkude pinnal, millega kaasnevad 
häired ovulatsiooni toimumisel. Gonadotropiinide (FSH ja LH) rangelt regu-
leeritud tase organismis ning Ahr-i tähtsus munasarjas on andnud põhjust uurida, 
milline on gonadotropiinide mõju Ahr-ile. 

Käesolevas töös näidati hiire munasarja granuloosarakkude näitel, et LH 
stimulatsioon, mis kutsub esile ovulatsiooni, pärssis neis rakkudes Ahr-i geeni 
avaldumist. LH represseeriv mõju Ahr-ile toimus läbi proteiin kinaas A (PKA) 
signaaliraja. Lisaks, LH suhteliselt kiire inhibeeriv mõju Ahr-ile toimus läbi tran-
skriptsioonilise aktiivsuse vähenemise ning hõlmas epigeneetilist remodelleeri-
mist Ahr-i promootoralal. Töö teises osas uuriti, kuidas toimub Ahr-i geeni 
avaldumine munasarjas küpseva folliikuli granuloosarakkudes, enne ovulatoorset 
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LH doosi. Töö tulemustest selgus, et folliikulite küpsemise käigus kuni pre-
ovulatoorse staadiumini suurenes nii Ahr-i mRNA kui ka valgu tase. Näidati, et 
valgu taseme suurenemiseks on vajalik mõlema gonadotropiini, nii FSH kui ka 
LH koosmõju. Katsete tulemused, mis näitasid FSH mõju Ahr-i mRNA, aga mitte 
valgu taseme suurenemisele, viitasid post-transkriptsioonilisele regulatsiooni-
mehhanismile, milleks on tõenäoliselt vajalik LH signaaliraja aktivatsioon. Leiti, 
et Ahr-i valgu tase tõuseb esmajoones suurte, antraalsete folliikulite muraalsetes 
granuloosarakkudes. Mehhanismide uurimise tulemusena selgus, et Ahr-i mRNA 
taseme tõus oli põhjustatud geeni suurenenud transkriptsioonilisest aktiivsusest 
ning kontrollitud kromatiini pakkimise kaudu Ahr-i promootoralal. Leiti, et PKA 
signaalirada mõjus pärssivalt Ahr-i avaldumisele ka küpsevate folliikulite granu-
loosarakkudes in vitro. Hinnates lähemalt PKA aktiivsust granuloosarakkudes in 
vivo, järeldus, et hetkeline vähenemine PKA aktiivsuses folliikulite küpsemise 
keskstaadiumi võib olla vajalik selleks, et Ahr-i geen saaks avalduda. Muuhulgas, 
muutuv Ahr-i avaldumise tase diferentseeruvates hiire munasarja granuloosa-
rakkudes viitab Ahr-i spetsiifilistele, ajast ning koest sõltuvatele füsioloogilistele 
ülesannetele. 

Varasemad uuringud on täheldanud Ahr-i avaldumise taseme muutusi ka 
suurema arengupotentsiaaliga rakkudes kui granuloosarakud. Seda silmas pidades 
keskenduti käesoleva töö viimases osas AHR-i uurimisele embrüonaalsetes 
tüvirakkudes. Inimese embrüonaalsetes tüvirakkudes näidati AHR-i taseme vähe-
nemist rakkude spontaansel diferentseerumisel. AHR-i avaldumise vähenemist 
nähti ka tüvirakkude suunatud diferentseerimisel neuraalseteks eellasrakkudesks, 
varajase mesodermi ja definitiivse endodermi rakkudeks, kuigi erinevate arengu-
suundade vahel ilmnesid märgatavad erinevused. Lisaks sellele näidati antud 
töös, et TCDD-l on oluline mõju tüvirakkude diferentseerumisele. Sellele viitas 
ülegenoomne sekveneerimisanalüüs, mille käigus hinnati antud kemikaali mõju 
AHR-i seondumisele DNA-ga, aga ka geenide avaldumise mustri muutusele. 
Viimaks, kombineerides ülegenoomse sekveneerimise andmeid AHR-i seondumis-
kohtadest genoomis, avaldunud geenide tasemest ning kromatiini ligipääseta-
vusest, tuvastati mitmed uudsed AHR-i märklaudgeenid neis rakkudes. Kokku-
võtvalt avardavad töös esitatud tulemused teadmisi AHR-i füsioloogilisest täht-
susest. Saadud teadmised AHR-i avaldumise ning ülesannete kohta on olulised 
selleks, et kasutada AHR-i moduleerimist mitmete haiguste ravi eesmärgil. 
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