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2. ABBREVIATIONS AND SYMBOLS 

AC alternating current 
aC amorphous carbon 
AFM atomic force microscopy 
ATR attenuated total reflection 
BMPyrrDCA 1-butyl-1-methylpyrrolidinium dicyanamide 
C differential capacitance 
Cdl electrical double layer capacitance 
Cmin capacitance minimum 
Cpseudo pseudo-capacitance 
CS series differential capacitance 
c concentration 
C(0001) basal plane of highly orientated pyrolytic graphite 
CDC(TiC) titanium carbide derived carbon
C, E capacitance vs. electrode potential curve 
CV cyclic voltammetry 
D diffusion coefficient 
DC direct current 
E electrode potential 
Edip electroreflectance absorption peak energy 
EF Fermi level energy 
Emin potential at capacitance minimum 
Eσ=0  potential of zero total charge 
E(t) potential at time t 
EC equivalent circuit 
EDL electrical double layer 
EIS electrochemical impedance spectroscopy 
EMImBF4 1-ethyl-3-methylimidazolium tetrafluoroborate 
ER electroreflectance 
F Faraday constant 
f frequency in Hz 
Fc ferrocene 
FTIR Fourier transform infrared spectroscopy 
hkl Miller indices 
HOPG highly oriented pyrolytic graphite 
I electrode current 
IA current amplitude 
i imaginary unit (√−1) 
I(t) current at time t 
IR infrared 
IRAS infrared absorption spectroscopy 
IRRAS infrared reflection absorption spectroscopy 
IL ionic liquid 
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j electrode current density 
m mass of a particle 
MD molecular dynamics 
n number of electrons 
nmol number of moles of electrons 
PDCA polydicyanamide 
PMImI 1-propyl-3-methylimidazolium iodide 
pzc potential of zero charge 
Q electric charge 
Rad adsorption resistance 
Rct charge transfer resistance 
RD diffusion resistance 
RF radio-frequency 
rms root mean square roughness 
RTIL room temperature ionic liquid 
S surface area of the electrode 
SC supercapacitor 
SEIRA surface enhanced infrared absorption 
STM scanning tunneling microscopy 
t time 
UHV ultra high vacuum 
XRD X-ray diffraction 
Z impedance 
Z′ real part of impedance 
Z′′ imaginary part of impedance 
ZW Warburg−like finite−length diffusion impedance 
δcred/δx reduced species concentration gradient 
μ molecular dipole moment 
v potential scan rate 
π Pi number 
 phase angle shift 
χ2 chi−square function 
ω angular frequency  
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3. INTRODUCTION 

Electrochemical energy storage and conversion devices are the basis of a 
sustainable energy economy of the future. Whether it is solar cells that convert 
electromagnetic radiation into electrical energy, fuel cells that consume chem-
ical energy to power transportation, electrolysis cells that convert water into 
fuel, secondary batteries powering consumer electronics, supercapacitors that 
deliver considerable energy savings for high-power applications or dielectric 
capacitors that allow for efficient conversion between AC and DC signals, we 
are surrounded by advanced electrochemical devices. The active part of all of 
these devices is the interface between two dissimilar phases, where all the 
electrochemical reactions take place and energy is stored. In order to design 
more efficient electrochemical devices, however, detailed knowledge of this 
interface is of vital importance. This thesis focuses specifically on capacitive 
energy storage devices and the difference between purely electrostatic-, 
dielectric- and pseudo-capacitors from the perspective of their interfacial  
behaviour in ionic liquid electrolytes. 

Ionic liquids (ILs) are a class of low-temperature liquid phase salts. Interest 
in ILs is centred around the ability to tune the properties of an IL by varying the 
chemical composition of both the cation and anion that compose the IL. In such 
a way it is possible to derive a mixture that has the desired physical and 
chemical properties for the specific application in mind. For example, many 
electrochemical systems require electrolytes to have high ionic conductivity, 
low viscosity and high electrochemical stability for efficient use, which ILs can 
deliver [1]. Other devices, such as dye-sensitized solar cells, require the 
electrolyte to be electrochemically reactive but stable to atmospheric moisture, 
also achieved by ILs [2]. Such versatility is also utilised in this work examining 
the electrochemical behaviour of three different ILs for application in electro-
chemical energy storage. 

The main aims of the thesis are to: 
a) Derive an advanced understanding of the processes that govern the 

electrical double layer formation between an ionic liquid and electrodes 
of variable electronic properties [I–V] 

b) Understand the energy storage mechanism of polydicyanamide based 
dielectric capacitors [VI–VII] 

c) Study the mechanism of iodide ion specific adsorption from an ionic 
liquid at different bismuth single crystal planes [VIII] 

Both classical electrochemical measurements, physical characterization methods 
as well as in situ infrared spectroscopy are employed in order to understand the 
mechanism of energy storage at IL│electrode interfaces and design more  
efficient and higher specific energy electrochemical devices for the future. 
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4. LITERATURE OVERVIEW 

4.1. Electrical double layer 
The formation of the electrical double layer (EDL) is based on the Volta 
problem [3]. When two phases of dissimilar electric potentials intersect, a layer 
is formed at the interface between the two materials that controls the drop in 
electric potential between the two phases, consuming energy in the process. The 
EDL is always neutral, but can have a considerable amount of electric charge 
built up within the separate phases, which amounts to the energy stored within 
the EDL. The storage of electrostatic energy within the EDL has been a matter 
of scientific curiosity since the invention of the Leyden jar in 1745 [4]. By  
observing that the capacitance of the device is linearly dependent on the 
dielectric property of the insulator and inversely proportional to the thickness of 
the insulator, Helmholtz [5] proposed the first model for the EDL in electrolyte 
solutions, proposing a double layer model of opposite charges on separate sides 
of the interface with a constant, linear decrease of potential between the layers, 
which adequately describes the behaviour of dielectric capacitors. In order to 
explain specific experimental data for electrode│electrolyte interfaces, many 
models have been developed over the 20th century to account for specific 
differences in EDL behaviour. Gouy and Chapman [6,7] studied the surface 
energy of Hg in dilute aqueous electrolyte solutions while Stern [8] improved 
upon their effort to also consider more concentrated electrolytes. Rice [9] first 
proposed the dependence of EDL capacitance on electronic properties of the 
electrode. Frumkin [10] and Grahame [11] first considered the effects of 
chemical interaction on the EDL formation in specifically adsorbing media. 
Finally, Gerischer [12,13] introduced effects of semi-conductor and semi-metal 
electrodes to the volume of EDL theories [14]. All these theories fundamentally 
describe charged phases of a single interface, while electrochemical systems 
always constitute of at least two interfaces in order for polarization of the system 
to be changed. Thus it should be no surprise that the EDL exists even when there 
is no charge within either phase, the potential of zero charge (pzc), in direct 
contradiction with the original definition of a “double layer” [5]. This is primarily 
because the absence of charge does not imply an absence of electrical potential 
difference between the phases in contact. Indeed, the work function of metals is 
significantly higher than that of dielectric materials [14], which means that 
electrons are more stabilized in the conductive phase than the dielectric phase, 
with the difference amounting to the electrochemical work function. 

It has been shown that within the limitation of ideal polarizability, the pzc well 
correlates with the electronic work function of single crystal metal planes [15]. 
The EDL thus describes an interfacial region that limits electrons from crossing 
the interfacial barrier, being limited by the oxidation potential in the positive 
polarization range and reduction potential in the negative polarization range. The 
difference between these two potentials is called the ideal polarizability potential 
range and is a property of a combination of electrode and electrolyte. 
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Figure 1. Schematic of the electrical double layer at electrode│ionic liquid interface 

with major physical parameters electric field strength F, potential E and charge Q. 

 

 

Fig. 1 shows a model of the interface between an electrode and an IL electrolyte 

also showing the dependence of major physical parameters characteristic to the 

EDL. In ILs the dependence of capacitance on electrode potential is often 

described by the mean-field theory based model by Kornyshev [16]. The model 

is loosely based [17] on the derivations of the Gouy-Chapman-Stern model, 

with added consideration for finite ion size and a free parameter describing the 

compressibility of an IL. Different from models developed for electrolyte 

solutions, the model by Kornyshev shows the C, E curve having a maximum at 

the pzc, with the capacitance decreasing with either positive or negative  

polarization, explained by effects of lattice saturation and overscreening [18]. In 

order to better describe experimental observations [19–26] of the capacitance-

potential dependence of the EDL in ILs, many additional modelling [27–34] and 

theoretical [16,18,35–39] considerations have been published and reviewed 

[40,41]. 

 

4.2. Ionic liquids 

ILs are a class of ionic, salt-like materials that are liquidous at low temper-

atures. The official definition of ILs uses the boiling point of water as a point of 

reference: “Ionic liquids are ionic compounds which are liquid below  

100 °C” [42]. In particular, salts that are liquids at room temperature are called 

room temperature ionic liquids (RTIL). RTILs are a class of non-molecular 
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ionic solvents with low melting points. The accepted definition of an RTIL is 
any salt that has a melting point lower than 20-25°C [40,42]. 

The first RTIL was reported by Walden in 1914 [43]. It was based on the 
ethylammonium cation and nitrate anion. Thereafter, many ILs containing a 
variety of cations and anions of different sizes have been synthesized for 
specific applications. Air- and water-stable ILs are increasingly employed to 
replace organic solvents in a variety of chemical processes due to their non-
volatile, non-flammable nature, and in some cases, stability at temperatures over 
400 °C [44]. 

ILs have mediocre ionic conductivities compared with those of organic 
solvents/electrolyte systems (up to 30 mS cm−1). At elevated temperatures, for 
example 200 °C, a conductivity above 0.1 S cm−1 can be achieved for some ILs. 
However, at room temperature their conductivities are lower than those of 
concentrated aqueous electrolytes. Because ILs are composed entirely of ions, it 
would be expected that ionic liquids have high ionic conductivities. This is not 
the case since the conductivity of any solution depends not only on the number 
of charge carriers but also on their mobility. The large constituent ions of ILs 
reduce the ion mobility which, in turn, leads to lower conductivity. Further-
more, ion aggregation leads to higher viscosity. The conductivity of ILs is  
inversely related to their viscosity [45]. 

Generally, ILs are more viscous than common organic solvents and their 
viscosities range from 10 mPa·s to above 1 Pa·s at room temperature. The 
viscosity of ILs is determined by van der Waals forces and hydrogen bonding. 
Electrostatic interactions also play an important role. Alkyl chain lengthening in 
the cation leads to an increase in viscosity due to stronger van der Waals forces 
between the alkyl chains of cations, leading to increase in the energy required 
for molecular motion, or even formation of aggregates. Also, the ability of 
anions to form hydrogen bonds has a pronounced effect on viscosity [45,46].  

Most ILs have higher density than water with values ranging from 0.9 for 
typical ILs to 1.6 g cm−3 for ILs with bulky anions. Density strongly depends on 
the size of the cycle in the cation, on the length of the alkyl chains of the cation, 
the symmetry of ions and on the interaction forces between the cations and the 
anions. ILs with aromatic head rings, in general, present greater densities than 
pyrrolidinium head ring ILs and piperidinium ring ILs. Density also increases 
with the increase of symmetry of the cations [42]. 

Ionic liquids can be thermally stable up to temperatures of 400 °C, however, 
the absolute thermal stability is usually overestimated due to kinetic limitations 
in IL decomposition. The thermal stability of ionic liquids is limited by the 
strength of their heteroatom-carbon bonding, their heteroatom–hydrogen bonds 
and basicity of the anion. Long exposure of ILs to high temperatures can lead to 
radical decomposition. Most ILs have extremely low vapour pressures, which 
enables water removal by heating under vacuum [45,47]. 

The electrochemical stability range of an electrolyte is the electrochemical 
potential range within which the electrolyte is neither reduced nor oxidized at a 
passive electrode. This value determines the electrochemical stability of a 
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dielectric media. ILs have significantly wider electrochemical stability ranges 
than aqueous electrolytes, hence the dual usability as both solvent and electro-
lyte has opened interesting possibilities in the field of fundamental and applied 
electrochemical studies. For instance, ILs have been already used as electrolytes 
in capacitors, electrodeposition of metals and alloys, electrocatalysis and energy 
storage devices and for optimizing the heterogeneous reaction mechanism 
[48,49]. 

Due to RTILs high stability under applied potential, low vapour pressure, 
excellent thermal stability, good ionic conductivity, non-flammable and tune-
able properties, the RTIL│electrode interface attracts considerable attention, 
determining the characteristics of various electrochemical energy storage and 
conversion devices, including secondary batteries, fuel cells and dye-sensitized 
solar cells [48–52]. RTILs are considered as possible electrolytes for gas 
sensing applications, since their favourable properties (low-volatility, high 
thermal stability, good gas solubility) mean that the sensor does not dry out, and 
provides the possibility for gas sensing at high temperatures [53]. 

In 1992, Wilkes and Zaworotko reported the first air and moisture stable 
ionic liquids based on 1-ethyl-3-methylimidazolium cation with either tetra-
fluoroborate or hexafluorophosphate anion [54]. Although the melting point of 
1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) (13 °C) is too high 
for many practical applications, it is a widely used RTIL for analysing the 
influence of the chemical nature of different metal electrodes on the 
RTIL│interface parameters [26,55–63]. Problems with viscosity and conducti-
vity can be overcome via mixing of different ILs or by small additions of 
organic solvents [64–66]. Table 1 outlines some of the major physical para-
meters of the ILs applied in this thesis. 

 
 

Table 1. Physical parameters of the applied ionic liquids at room temperature. 

Ionic liquid Density /  
g cm−3 

Viscosity 
/ mPa·s 

Melting 
point / °C 

Conductivity / 
mS cm−1 

EMImBF4 1.28 37 13 14 
BMPyrrDCA 0.95 50 −55 12.4 

PMImI 1.54 880 - 0.58 
Ref. [67–71] 
 
 

4.3. In situ infrared absorption spectroscopy 
Over the last two decades, in situ infrared (IR) spectroelectrochemistry has 
become an increasingly applied analytical method in electrochemistry, and has 
developed strongly in terms of the diversity of electrochemical systems that 
have been studied. This transition may be associated with the ready availability 
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of relatively inexpensive, research grade Fourier transform infrared (FTIR) 
spectrometers. In contrast to the early 1980s, the detection of organic mono-
layers is now commonplace and there are other exciting works in fields such as 
organometallic spectroelectrochemistry, in-depth studies of the EDL, time-
resolved electrokinetic studies, electrocatalysis as a function of potential and the 
semiconductor│electrolyte interface [72–75]. 

IR spectroscopy is an analytical technique for chemical compound identific-
ation. This is because different chemical functional groups absorb infrared 
radiation at different wavelengths, dependent upon the nature of the particular 
chemical bonding within the groups present. The method is relatively fast, 
sensitive, easy to handle and provides many different sampling techniques for 
gases, liquids and solids. Important aspects are the convenient qualitative and 
quantitative evaluation of the spectra [72,76–78]. IR spectroscopy is typically 
operated in the Mid-IR range between 4000-400 cm-1 when it is used for 
chemical compound identification. 

The IR spectral region comprises fundamental vibrations of bound atoms. 
Whenever such bound atoms absorb infrared radiation, they vibrate, exhibiting 
IR absorption bands. The condition for a normal vibration j to be IR active is a 
change in molecular dipole moment µ during the vibration: 

 
 μ௝ = μ଴ + ൬ ఋஜఋ௤ೕ൰ ௝ݍ + ଵଶ ൬ఋమஜఋ௤ೕమ൰ ௝ଶݍ + ⋯  (1) 

 
where q is the normal coordinate describing the motion of atoms during a 
normal vibration. With respect to the direction of the vibrational movement, we 
may distinguish between stretching vibrations (changes of bond lengths) and 
deformation vibrations (changes of bond angles). Deformation vibrations may 
be subdivided into different bending, twisting, wagging and rocking modes. 
Subdivision for stretching vibrations refer to the symmetry of the motion 
(symmetric or asymmetric, in-plane or out-of-plane vibrations) [76]. 

Fourier Transform (FT) is a mathematical conversion that allows to measure 
the entire IR spectrum signal simultaneously, afterwards converting the meas-
urement results mathematically into a wavenumber vs. transmission spectrum. 
The relative simplicity of the resulting FTIR analytical methods allows it to be 
widely used for the analysis of a range of different materials. It is often used in 
the packaging industry to analyse monomeric materials for purity, and to 
identify polymers (polyethylene, polyester, nylon) and their compositions [77]. 

The advantages of FTIR include high throughput, multiplex advantage, 
better signal-to-noise ratio and precise wavenumber measurement. The major 
disadvantage of FTIR is the appearance of features present on the spectrum of a 
sample that are not from the sample. Common examples of artefacts in FTIR 
spectra include water vapour and carbon dioxide peaks [76]. 

The non-electrochemical surface enhanced IR absorption effect was first 
reported by Hartstein and co-workers in 1980 [79]. Osawa et al. pioneered the 
application of this technique for in situ electrochemical IR studies on metal thin 
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films [73,80]. Surface enhanced infrared absorption spectroscopy (SEIRAS) 
spectra show marked enhancement of the infrared absorption of adsorbed 
species, up to 100 times that expected on a smooth, bulk metal electrode. A thin 
metal overlayer excites surface plasmon polaritons of the metal film, the strong 
electromagnetic fields associated with this excitation provide a sensitive probe 
of the metal│electrolyte interface, with high enhancement in sensitivity being 
claimed over the more conventional infrared reflection absorption spectroscopy 
(IRRAS) method [72]. 

The mechanism has two distinct parts that complement each other to give the 
large enhancement that is observed. The major contributor is the electro-
magnetic mechanism. This is the effect of the source radiation exciting surface 
plasmons of the metal surface. This then causes the molecules that have their 
vibrational dipole moments in line with the electric field absorb more of the 
energy from the source radiation [73,81].  

The other contributors are the chemical interactions. The only one well 
known is the effect of chemisorption. If the molecules are chemisorbed then 
resonance coupling with the electric field is induced on the surface of the metal, 
resulting in a much higher enhancement factor. If they are electrostatically 
adsorbed, no resonance coupling can take place. There seem to be other 
chemical interactions occurring as the calculated enhancement effects are still a 
factor of too low [73]. 

The application of SEIRA to electrochemistry is very wide. The one 
example that was discussed was using SEIRA to help determine the mechanism 
of irreversible electrochemical reactions. However, SEIRA can also be used to 
probe the structure of the EDL at the electrochemical interface. This is 
significant because it helps to understand electrocatalytic reactions and energy 
storage processes. Also, microsecond time resolved monitoring of reversible 
reactions is possible [60,82–86]. 

Both the electrolyte and the metal thin film will damp the evanescent wave 
of reflecting IR radiation by absorbing energy from it. Hence, it is crucial to 
ensure that the metal working electrode layer, whilst being thick enough to 
ensure metallic conduction, is not too thick for the evanescent wave to reach the 
electrode│electrolyte interface [72]. 
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Figure 2. Constructed variable angle (45-65 degrees) in situ IR spectroelectrochemical 

cell with corresponding IR beam path. 

 

The application of SEIRAS (Fig. 2) experiments at solid│liquid interfaces with 

well-defined metal thin films deposited onto highly refractive, IR-transparent 

substrates has several advantages in comparison to IRRAS studies, employing 

the so-called thin electrolyte film configuration (1 to 5 μm) between the optical 

window and the working electrode: high and specific surface sensitivity with an 

enhancement of signal up to 100 times stronger compared to IRRAS measure-

ments; dominant first layer signal enhancement effect (compact layer region) 

with a short decay length of the enhancement field up to 3 to 4 nm toward the 

electrolyte bulk; signal from the interface and solution background are of 

comparable magnitude and can be separated by applying a potential modulation 

method and no severe limitations for mass transport and potential perturbation 

arise [82,87]. 

Osawa approximated the polarizability of different metals as well as their 

dielectric functions: 
 

𝛼 = {
(𝜀𝑑−𝜀𝐵𝑅)[𝜀𝑚𝐿1+𝜀𝑑(1−𝐿1)]+𝑄(𝜀𝑚−𝜀𝑑)[𝜀𝑑(1−𝐿2)+𝜀𝐵𝑅𝐿2]

[𝜀𝑑𝐿2+𝜀𝐵𝑅(1−𝐿2)][𝜀𝑚𝐿1+𝜀𝑑(1−𝐿1)]+𝑄(𝜀𝑚−𝜀𝑑)(𝜀𝑑−𝜀𝐵𝑅)𝐿2(1−𝐿2)
}     (2) 

 

where εm, εd, εh, and εBR are the dielectric functions of the metal bulk, the 

adsorbed molecules, the substrate, and the effective function of the medium, 

respectively [88]. 

SEIRAS method has been mainly used for analysing coinage metals and 

platinum metals, but it was shown that this method could be used also for other 

metals like Bi [87,89], Sn [85] and Cd [90]. Within ILs, the surface enhance-

ment has been previously shown for Au and Pt [60,91–93], also showing how 

the potential dependant restructuring of the EDL in some ILs is kinetically 

hindered due to anion conformations. Fig. 3 shows the neat IR spectrum of 

EMImBF4 IL and table 2 summerizes the major IR absorption peak positions of 

the spectrum. 
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Figure 3. IR spectrum of neat EMImBF4 IL calculated for monolayer absorbence. 

Numbering of some atoms in EMIm
+
 cation used for infrared peak assignment. 

 

 

Table 2. EMImBF4 ATR spectrum interpretation. 

Wavenumber / 

cm
−1

 

Vibration 

type 
Vibration characterization 

3164 ν Symmetric C2-H; C4-H; C5-H stretching 

3124 ν Asymmetric C2-H; C4-H; C5-H stretching 

1573 ν Asymmetric C2; N1 stretching 

1171 δ C2H in-plane rocking 

1037 ν B-F stretching 

848 δ C2-H out-of-plane rocking 

756 δ C4-H; C5-H out-of-plane rocking 

704 δ C2-H; C4-H out-of-plane twisting 

ν – valence band, δ – deformation band 

 

 

4.4. Cyclic voltammetry 

Cyclic voltammetry is widely used as the first electrochemistry experiment to 

acquire qualitative and quantitative information about electrochemical systems. 

In the CV method, the electrode potential, E, is cycled with a constant scan rate, 
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ߥ = ܧ݀ ⁄ݐ݀ , between two potential extrema (the applied potential varies 
linearly), and the current value is recorded. The resulting current vs. potential 
plot, the cyclic voltammogram, gives an overview of the processes occurring at 
the electrochemical interface [94–96]. 

For a simple fully reversible redox reaction, it is possible to express the 
development of the current density at the electrode as (at 25°C): 

 
 ݆ = ݊Fܦ ቀడ௖ೝ೐೏డ௫ ቁ௫ୀ଴ (3) 
 

where j is current density, n is number of electrons, F is Faraday constant, D is 
diffusion coefficient, δcred/δx is the concentration gradient of reduced species. 
For a reversible one electron transfer reaction (n = 1) when Dox = Dred (ox – 
oxidized form, red – reduced form), the difference between oxidation and 
reduction current peaks is 58 mV [94,96]. 

Usually electrode potential is scanned linearly to the negative potential 
extreme first (forward scan) and thereafter in reverse (backward scan) to the 
positive potential extreme, and back to the initial potential value. If there are 
charge transfer processes taking place within the measured potential range, 
current peaks, corresponding to reduction (forward scan) or oxidtation 
(backward scan) processes, will emerge. The peak current, jp, is described by 
the Randles-Sevcik equation for fully reversible systems: 

 
 ݆௣  =  (2.69 · 10ହ) ݊௠௢௟ଷ ଶ⁄  ଵ/ଶ (4)ݒ ଵ/ଶܦ ܿܵ 
 

where nmol is the number of moles of electrons transferred in the reaction, S is 
the area of the electrode, c is the analyte concentration, D is the diffusion 
coefficient, and v is the applied potential scan rate [94,97].  

One can distinguish three major groups of electrode processes; charge-
transfer controlled reactions, electrode adsorption controlled processes and 
mass-transfer limited processes. In case of the adsorption step limited process 
the current peak value is proportional to the potential sweep rate applied. 
Furthermore, the charge circulated during the sweeps can provide information 
on the surface coverage of adsorbed species. For diffusional mass-transfer step 
controlled processes, the peak current is directly proportional to the square root 
of the potential scan rate. Charge-transfer limited processes can exibit highly 
complex kinetic behaviour [94,96–98]. 

The exact shape and quantitative features of the voltammograms depend on a 
variety of parameters, for example the adsorption isotherm followed, the surface 
concentration of the redox species, the presence or absence of intermolecular 
forces between the adsorbed molecules and reversibility of electrochemical 
reactions [94,96]. 
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4.5. Electrochemical impedance spectroscopy 
Impedance spectroscopy and alternating current impedance method have grown 
in popularity in recent years. Initially applied for the determination of the EDL 
capacitance and in AC polarography, nowadays are often applied to characterise 
processes at complex interfaces. Electrochemical impedance spectroscopy (EIS) 
studies the system response to the application of a periodic small amplitude AC 
voltage signal by measuring the current through the electrochemical cell. 
Analysis of the system response contains information about the interface, its 
structure and reactions taking place at the interface [99,100]. 

During the experiment sinusoidal perturbations are applied to the electro-
chemical system:  

 
(ݐ)ܧ  = ஺ܧ  sin  (5) ,ݐ߱
 

where E(t) is the potential at time t, EA is the potential amplitude, ω is the 
angular frequency with a relationship to frequency f in Hz: ߱ =  The .݂ߨ2 
current response I(t) will be a sinusoid at the same frequency but shifted in 
phase in case of capacitive or inductive interfaces: 
 
 

(ݐ)ܫ  = ஺ܫ sin(߱ݐ +  (6) ,(ߔ
 

where I(t) is the current at time t, IA is the current amplitude and  is phase 
angle shift by which the voltage follows the current. According to the Ohm’s 
law, the impedance is defined as the ratio of voltage and current 
 

 ܼ = ா(௧)ூ(௧) . (7) 
 

Impedance has magnitude and phase angle and thus is a vector quantity. 
Therefore, it is convenient to be presented as 
 

 ܼ =  ஺ܼ(cos ߔ +  ݅ sin) =  ܼ′ +  ܼ݅′′, (8) 
 

where ݅ = √−1, Z′ is real part of impedance, and Z′′ the imaginary part of the 
impedance [100–102]. 

The EIS method is destructive in principle, meaning that a small AC voltage 
signal is applied to the interface which induces a counteracting AC current to 
stabilize the interface. By applying signals of differing frequencies, processes 
taking place with different time constants can be probed. In general, for 
electrochemical systems, three main non-distributed fundamental processes that 
can be ascribed are: resistive (such as faradic charge transfer) corresponding to 
a 0-degree phase shift between the voltage and current signals; diffusion (such 
as semi-finite length diffusion of reactants) corresponding to a −45-degree 
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phase shift, and capacitive (such as purely electrostatic, adsorption rate limited 
electrical double layer formation with capacitance) processes that show a −90-
degree shift between the AC voltage and current signals. The dependence of the 
interfacial resistance on applied signal frequency can be calculated from the 
measurement and plotted in a complex plane whereby the real part of the 
resistance Zʹ () shows the resistive and the imaginary part Zʺ () shows the 
capacitive part of the interfacial resistance. Calculated complex resistance plots 
based on certain electrical equivalent circuit (EC) elements can be fitted to the 
experimental data, with each component representing one physical process that 
takes place at the electrochemical interface. Dependent upon the measurement 
quality, each set of data can be described by one or more ECs and the quality of 
the fit can then be evaluated based on statistical fitting error. Each possible 
physical process ascribed to an interface can be represented as a separate 
element (or combination of elements for diffusion) in the overall equivalent 
scheme and its validity can be tested based on its effect on the overall fitting 
error. If the addition of a free variable does not decrease the overall fitting error 
by at least 50%, it is considered to not be a descriptive part of the overall 
equivalent scheme that characterizes the interfacial processes [103]. By 
ascribing all the possible physical processes that can occur at the interface and 
testing their validity, one can derive an overall equivalent scheme that best fits 
the measurement results and thus the occurring interfacial processes.  
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5. EXPERIMENTAL 

5.1. Electrode fabrication and characterization 
Pb, Au, Bi and amorphous carbon (aC) thin-layer films were deposited using 
AJA International UHV magnetron sputtering system applying the following 
parameters: base vacuum 10−9 Torr, 3 mTorr Ar pressure. The film deposition 
rate was controlled using a quartz crystal microbalance. Atomic force micro-
scopy (AFM) images were measured by Agilent Technologies Series 5500 
system in either non-contact or contact regime. Table 3 outlines the major 
technical parameters for thin film deposition [55,56,104]. 

 
 

Table 3. Technical parameters for magnetron sputtering. 

Deposited 
electrode 

Power 
source 

Deposition 
rate/ Å s−1 

Temperature/ 
°C 

Target 
purity 

20 nm aC 200 W DC 0.2 190 99.999% 
graphite 

20 nm Bi 25 W RF 1 25 99.999% Bi 
20 nm Au 10 W RF 0.1 100 99.999% Au 
50 nm Pb 25 W RF 1 25 99.995% Pb 

 
 
Graphene electrodes were prepared from chemical vapor deposition grown 
single layer graphene films on copper foil (from Graphenea), which were 
attached onto glass plates using an epoxy glue, followed by dissolution of the 
Cu layer with 1 M FeCl3 solution during 40 min at 60°C. 10 μm thick HOPG 
films were ripped from a HOPG cube (Veeco) [71]. The crystallographic 
orientation of the Bi(hkl) single crystals was determined and controlled by the 
X-ray diffraction method [105]. 
 
 

5.2. Infrared spectroelectrochemistry measurements 
 The IR spectroscopic measurements were performed using a PerkinElmer 
Spectrum GX FTIR equipped with a liquid nitrogen-cooled mid-range MCT 
detector and the electrochemical measurements were conducted using an 
Autolab PGSTAT 30 potentiostat in a three-electrode glass cell (Fig. 2) with an 
Ag│AgCl wire in the same IL as a quasi-reference electrode. EMImBF4 from 
Sigma-Aldrich (>99 %, “for electrochemistry”, H2O ∼150 ppm) or Solvionic 
(99.5 %, H2O ~100 ppm) was additionally dried in ultrahigh vacuum at 90°C 
for 24 h, until reaching a pressure of 5·10−9 Torr and water content below the 
detection limit of Karl-Fischer method (< 10 ppm) [55,56,104]. 
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A thin (~5 µm) HOPG layer is glued onto the ZnSe hemisphere with a thin 

layer (~300 nm) of dielectric epoxy glue and exfoliated with scotch tape. 

Usually only one exfoliation is required to produce a see-trough layer of thin-

film graphite on the hemisphere. Although the produced surface is somewhat 

uneven, the hemisphere setup requires only the middle, infrared active part of 

the hemisphere to be uniformly covered. Optical transmission and Raman 

spectroscopy measurements suggest the thinner parts of the electrode to  

compose of <10 layers of graphene. Fig. 4a shows the experimental setup of the 

thin film measurements [106]. 

 
 

Figure 4. Infrared setup configuration for IR measurements with Pb, Au, Bi, graphite 

(a) and CDC(TiC) electrodes (b). 

 

 

The carbide-derived carbon (CDC) porous supercapacitor electrodes were 

prepared from 0.2-2 micrometre sized carbon powder (made from TiC by 

chlorination process [107]) + 5% PTFE binder, roll-pressed to form a 100 μm 

thick electrode and sputter-coated with 2 μm thick Al layer in order to increase 

electronic conductivity. Aluminium contact layer is stable in dry EMImBF4 due 

to the low solubility of formed Al2O3 and AlF3 layers. The specific surface area 

for microporous carbon SBET = 1860 m
2 

g
−1 

was estimated according to the 

Brunauer–Emmett–Teller (BET) theory [108]. 3 mm diameter CDC(TiC) (Al 

layer facing upwards) electrodes were pressed against ATR hemisphere using 

perforated aluminium foil as a spring and an electrical contact (Fig. 5b). IL 

immersed between the ZnSe and the electrode from the sides as the glass cell 

has 6 mm inner diameter. 

The choice of infrared transparent window is crucial as it gives the optical 

enhancement, but it also must be chemically resistant to the ionic liquid as well 

as to the products formed during electrolysis. Ge, Si and ZnSe materials were 

tested and it was found that the first two dissolve at about E > 0.2 V, which 

makes these materials unsuitable for the detection of anodic products. Our 

constructed experimental system [55,56] uses 10 mm diameter infrared trans-

parent ZnSe (infrared refractive index n = 2.4) hemisphere as the support for the 
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working electrode (Fig. 4a). The small glass cell also includes a Pt spiral 
counter electrode and a Luggin capillary for the connection of the reference 
electrode to the cell. 0.4 cm3 EMImBF4 was added into the dried cell inside an 
argon filled glove box, and the cell was thereafter sealed with PTFE stoppers. 
An IR beam was directed through a ZnSe wire grid polarizer (Pike Techno-
logies) and a ZnSe lens to the ATR hemisphere at 45 to 65 degrees of incidence. 
IR measurements were carried out in an inert atmosphere at the temperature of 
23°C [56]. 

About 20% decrease in IR light energy (reaching to the detector) can be 
detected by placing the CDC(TiC) electrode against ZnSe surface – indicating 
that IR light surely reaches the electrodes and a portion of IR light is absorbed 
in the carbon matrix. From the intensity of IL peaks, thickness of about 1 μm 
can be estimated for the IL layer between CDC(TiC) and ZnSe. 

The measurement setup consisted of an Autolab system as electrode 
potential controller and a Spectrum GX, which measures infrared spectra. 128 
scans at a resolution of 4 cm−1 were collected at each potential and the meas-
urement cycle was repeated at least 3 times. The resulting spectra were 
calculated by dividing the sample with the reference spectrum and presented as 
absorbance A, so that positive-going bands represent a gain of a particular 
species at the sample potential relative to that at the reference potential, chosen 
as the pzc. The measured bands were assigned to certain vibrations with the 
help of DFT-B3LYP calculations applying GAUSSIAN 09 software [109]. 
Calculated IR band frequencies were multiplied by 0.96, which is a common 
practice as the DFT calculation tends to overestimate the peak wavenumbers 
[56,104]. 

 
5.3. Electrochemistry measurements 

Electrochemical measurements with graphene, aC and HOPG electrodes were 
conducted in a three electrode glass cell, which holds 0.35 mL of IL and also 
includes a Pt spiral counter electrode [56]. An Ag│AgCl wire in the same IL 
was used as a reference electrode and it was connected to the cell with a Luggin 
capillary. The cell was pressed against an electrode using a silicon seal. It  
is important to note that the measurements were carried out in an argon  
filled glove-box and before experiments the 1-butyl-1-methylpyrrolidinium  
dicyanamide (BMPyrrDCA) (Solvionic; purity 99.5%) was additionally dried in 
UHV at 110°C for 24 h, until reaching a pressure of 5·10−9 Torr and water 
content below the detection limit of Karl-Fischer method (<10 ppm) [71]. 

1-Propyl-3-methylimidazolium iodide (PMImI), Merck, (Solapur, 99.9%, 
H2O ≤ 300 ppm) has been used for the single-crystal electrochemistry experi-
ments. All measurements were carried out in a three-electrode electrochemical 
cell at a constant temperature of 23 °C. Electrochemically polished Bi(hkl) 
single crystal electrodes were used as the working electrodes, Pt net as the 
counter electrode, and Pt wire as the reference electrode. The reference 
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electrode was separated from the working electrode compartment by a Luggin 
capillary.  

Calibration of the reference electrode potential was conducted by potentio-
metry measurements in a three-electrode electrochemical cell. A platinum wire 
immersed into a solution of EMImBF4 containing the minimum quantitative 
amount (2.5 mM) of ferrocene (Fc) (Sigma-Aldrich, >98%) was used as the 
working electrode, and a platinum wire as the reference electrode. The IL was 
used in the reference electrode compartment separated from the EMImBF4 + 
ferrocene solution by a Luggin capillary, which restricted the mechanical 
mixing of the ionic liquid + ferrocene with reference electrode IL used. A plati-
num net was used as the counter electrode. Thus, the overall electrochemical 
system for calibration of the Pt electrode was: 

 
Pt│IL║EMImBF4 (Fc) (c = 2.5 mM) │Pt 

 
The cyclic voltammetry and electrochemical impedance spectroscopy methods 
were used to investigate the electrochemical characteristics of the Bi(hkl) │ 
PMImI system using Autolab PGSTAT 320 with FRA II. Stable current density 
values were established after 3 h polarization of Bi(hkl) under negative potential 
at −1.8 V vs. Pt in the same IL. All measurements were carried out inside a 
glove box (MBraun, H2O < 1 ppm, O2 < 1 ppm). 

Potential cycling rates between 1 and 100mV s−1 were applied and  
impedance spectra were measured within ac frequency range from 10−1 to 104 
Hz with 15 mV ac modulation amplitude. Calculated impedance spectra, based 
on various ECs, have been fitted to the experimental spectra using the nonlinear 
least-squares minimization method. Fitting error of χ2 < 10−3 has been 
established for all the fitted systems [105]. 
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6. RESULTS AND DISCUSSION 

6.1. (I-V) Electrochemical and in situ IR measurements of 

electrode materials 

6.1.1. Analysis of AFM data 

Fig. 5 shows the AFM topography images of four of the thin-film electrodes 

that were used in in situ IR experiments. It is seen that while Pb and Au 

electrodes (Fig. 5 b, c) look mostly similar, differing mostly in particle size, the 

Bi and graphite electrodes have significantly different surface structures.  

 

 
 

Figure 5. AFM topography images of magnetron sputtered Bi (20 nm) (a), Pb (50 nm) 

(b) and Au (20 nm mass thickness) (c) thin films on a glass slide and thin-film graphite 

electrode (d) on epoxy/ZnSe. 
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This is primarily because both Au and Pb are fcc metals while both Bi and 
graphite have a layered crystal structure. The peculiar, sharpened surface 
structure of Bi (Fig. 5a) is supported by the fact that XRD measurements show 
the thin film mostly having the Bi(111) plane exposed. The surface of the thin-
film graphite electrode (Fig. 6d) is seen to have a wavy underlayer covered by 
large plateaus of graphite. The average plateau size is over 4 μm. Statistical 
parameters for the AFM images in Fig. 6 are given in table 4. 
 
 
Table 4. AFM surface parameters for the surfaces described in Fig. 5. 

Electrode R rms Grain-size 
20 nm Bi 1.043 4.2 nm 62 nm 
50 nm Pb 1.205 19.1 nm 117 nm 
20 nm Au 1.028 3.2 nm 72 nm 

Thin-film graphite 1.000 0.7 nm - 
 
 
It is seen that while three of the electrodes are relatively smooth (R< 1.05), the 
Pb film has significantly higher roughness parameters, mostly due to the higher 
thickness of the deposited layer. That said, the grain size does not vary too 
much between the metallic electrodes, while no grains are seen for the graphite 
electrode. It should be noted that both the Pb and Au thin films are non-
conductive due to being composed of spatially separate nano-islands and thus 
require a conductive underlayer for the measurement. 
 

 
6.1.2. Analysis of CV and EIS data 

Cyclic voltammetry curves in Fig. 6 [V] show that the Bi│EMImBF4 system is 
ideally polarisable within electrode potential region from −2.1 to −0.1 V (Fc/Fc+ 
in same IL) [55], while surface oxidation (dissolution of Bi) starts at 0 V, 
followed by redeposition at –1.4 V, as seen by the reduction peak on Fig. 6. The 
ideal polarizability region has been established for other metals in EMImBF4 
ionic liquid as well: −1.9 < E < −0.3 V for Pb [110], −1.9 < E < +1.7 V for Au. 
It should be noted that for all metallic electrodes, residual faradic peaks owing 
to the decomposition of trace water impurities are still detected at E < −1.6 V. 
For C(0001) and C(TiC) electrodes a wide region of ideal polarizability has 
been observed [56]. In situ IR data confirm that within given E region all 
electrodes did not show quick surface reactions [55,56,106,110]. 
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Figure 6. Cyclic voltammograms of the EMImBF4│X system measured at 10 mV/s 

within the region of ideal polarizability (electrochemical stability range) where X 

denotes the electrode material, denoted in the figure. 

 

 

Series capacitance CS values at fixed frequencies have been calculated from 

impedance spectra and are given in Fig. 7. The capacitance has been normalized 

to the RAFM surface area for better comparison [15,111]. For all electrodes a 

clear capacitance minimum (Cmin) has been observed with the value of Emin 

strongly dependent on the electrode material chemical composition. The Cmin 

value increases in the order: C(0001) < Bi ~ Pb < Au (negative E region). Very 

low CS value for C(0001) can be simulated using combined density functional 

theory (electrode surface layer) and molecular dynamic (RTIL layer) model, 

where the so-called quantum chemical capacitance [16,35,112] of the thin 

surface film for graphene and C(0001) plays very important role. Similarly to 

aqueous medium, the potential drop within C(0001) and Bi surface layers is 

more important than within IL layers [15,16,35,111]. It should be stressed that 

for C(0001) the electrical double layer region is from −1.9 to +1.7 V and at 

−1.9 > E > +1.7 reduction of cations and oxidation of anions and/or the 

electrode started [56].  
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Figure 7. Capacitance vs. potential curves of the EMImBF4│X system measured at  

200 Hz within the region of ideal polarizability (electrochemical stability range), where 

X denotes the electrode material. CDC(TiC) supercapacitor electrode areal capacitance 

measured at 2 mHz (right-hand axis). 
 

 

For titanium carbide derived carbon CDC(TiC) very deep capacitance minimum 

has been observed (Fig. 7) with Emin = Eσ=0 = 0 V (vs. Fc/Fc
+
 in EMImBF4) 

indicating that in addition to C(0001) (so called graphitic areas) noticeable 

amount of high index planes are exposed having more positive Eσ=0 than Eσ=0 for 

C(0001). Thus, the capacitance vs. potential data depend on the structure of the 

carbon electrode used. For C(0001) a very deep capacitance minimum has been 

measured with Emin = Eσ=0 = −0.3 V (vs. Fc/Fc
+
 in EMImBF4).  

There was only weak hysteresis in C, E curve within E −1.9 to +1.7 V. For 

C(0001), CDC(TiC) and semimetallic Bi C, E curves have U-shape, but for 

metallic Au and Pb electrodes the M-shape (so-called double maxima camel 

shape) C, E curves were measured. There is no significant capacitance 

hysteresis for Bi and Pb electrodes if the electrode potential has been cycled 

within the region of ideal polarizability. However, for Au there is noticeable 

capacitance hysteresis even when E has been kept within the ideal polarizability 

region. This effect can be explained by slow adsorption/desorption kinetics 

(formation of strongly adsorbed anions layer) at Au surface similarly to the data 

by Pajkossy et al. for Au(hkl) [19,113]. In addition, surface restructuring of Au 

is possible with potential cycling back to E ≈ Emin.  

Thus, for Au and Pb the M-shape (so-called camel shape) C, E curve,  

suggested by Kornyshev et al. [16,35,112], has been measured. Only for 

C(0001), CDC(TiC) and Bi (at Q < 0) there is no overcharging (if electrode kept 



31 

within electrical double layer region) effects at high negative or high positive 
electrode potentials (surface charge densities). Interestingly for Pb a strongly 
asymmetric C, E curve has been shown, similarly to H2O + NaF (KF) 
electrolytes [15], indicating that BF4

− anions have some specific interactions 
with Pb surface. As the image plane position depends on the surface charge 
density, the C, E curves in Fig. 7 have been integrated with respect to potential 
and values of ±10 and 13 μC cm−2 have been calculated for the C(0001) and Au 
electrodes, respectively. For Bi and Pb asymmetric limits of +7;−10 and +7;−4 
μC cm−2 have been calculated. Thus, there is no large difference in the image 
plane position for the C(0001) electrode in comparison to the metallic 
electrodes based on surface charge density alone. 

It should be noted that detailed fitting of Ctot, E curves to Kornyshev et al. model 
[16] is not very straightforward, because the surface roughness and energetic 
inhomogeneity effects have very pronounced influence on the Ctot, E shape, 
especially within E ≈ Emin ≈ Eσ≈0 region [15,111]. Thus, further developments of 
model [35] taking into account the surface roughness and strong energetic 
inhomogeneity of polycristalline surfaces are inevitable for detailed analysis of 
capacitance, potential data. A recent article comparing three single crystal Bi planes 
in an IL [105] has shown that there are indeed differences in both the shape and 
value of C, E curves for the same metal but different single crystal planes, and this 
difference becomes very large when the specific adsorption of ions is considered. It 
should also be noted that the C, E curves for the semimetallic C(0001), CDC(TiC) 
and Bi electrodes do not inherently support the existence of “two” double layers, as 
neither show a capacitance decrease at extreme negative surface charge values 
[16,35,112]. This is likely due to interaction between the ionic and electronic part of 
the EDL which causes a significant shift in the interfacial ionic structuring when the 
centre of electronic charge is located within the electrode surface (carbon 
electrodes) or very close to the electrode surface (Bi). 

 
 

6.1.3. Analysis of Pb│EMImBF4 interface 

The in situ SEIRA technique has successfully been extended for the study of 
thin film Pb electrodes [IV]. Fig. 8 shows the potential dependent p-polarized 
SEIRA spectra for the 50 nm thick Pb layer deposited onto a silicon 
hemisphere, measured relative to the pzc. The s-polarized spectra show the 
exact same intensities and dependences in this system. The spectral region 
between 1140 and 1080 cm−1 shows typical noise caused by the absorption of 
the Si substrate and were removed from Fig. 8. The produced spectra are seen to 
have relatively narrow peaks, in accordance with other SEIRA measurements 
[86] and are interpreted to stem from the first surface layer alone, i.e. the dense 
layer, with the changes in the spectra governed by the surface selection rule 
[81]. Thus, positive peaks in the spectra result from either the dynamic dipole of 
a particular species turning into a position more perpendicular to the surface 
relative to that of the pzc or an increase of a particular species at the surface, 
relative to the pzc. The two different modes can be distinguished between by 
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looking at the whole spectra of a particular species (either anion or cation); if all 

changes are in the same direction, a change in surface coverage is likely the 

cause, while changes in orientation produce peaks in both directions. It is to be 

pointed out that only peaks within the 1060 to 980 cm
−1

 spectral region are 

produced by the anion and thus it is difficult to assess changes in anion 

orientation due to the symmetrical shape of the species. From literature [114] it 

is known that a ‘free’ (this is interpreted as a solvated tetrafluoroborate anion 

with specific interactions with the solvent alone) tetrafluoroborate anion is 

expected to have a triply degenerate asymmetric stretching vibration at  

1100 cm
−1

 and a solvated contact ion pair with lithium cation would have an 

infrared absorption band at 1060 cm
−1

. However, neither of these peaks are 

observed for the neat IL by us [115] or others [116]. Instead, a broad peak is 

observed between 1060 and 1020 cm
−1

. Interestingly, for the interface between 

EMImBF4 and different semimetals, such as bismuth [117], amorphous carbon 

[115] or thin-film graphite [106], the same peak is observed at 1020 cm
−1 

or 

even lower wavenumber. All this suggests that the anions in the IL are not ‘free’ 

(with no specific interactions) and can instead be described as forming different 

associate structures (specifically interacting multi-ion associates) that could 

change with respect to electrochemical polarization due to stronger specific 

interactions of ions with the electrode surface. It can be interpreted that the 

changes in the position of the anion asymmetric stretching vibration are both 

due to ion-ion interactions as well as ion electrode surface interactions, which 

will be further discussed when considering the impact on the EDL formation. 

 
 

Figure 8. P-polarized in situ SEIRA spectra for 50 nm Pb on Si│EMImBF4 system at 

selected potentials within the electrochemical stability limits. Electrode potential of 

−1.2 V was used as the reference potential and is shown for clarity.  
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EMIm
+
 cation peaks for the Pb│EMImBF4 system are interpreted as: 3172 

(νC2−H stretch), 3140 (νH−C4C5−H asymmetric stretch), 3032 (νC2−H−Pb 

stretch), 2908 (νC8−H symmetric stretch), 1568 (ring inner plane asymmetric 

stretch, νC2–N1−C4), 1168 (δC2–H inner plane rock). Numbering of atoms in 

EMIm
+
 cation is shown in Fig. 3. The assignment of peaks is done with 

guidance from quantum chemical calculations also considering solvation. 

However, due to extremely strong electrostatic forces at the interface, it is 

difficult to model the ions at the interface as either ion pairs or separate ions, 

with the directions of the dynamic dipole moments between the two seen as 

highly significant and thus accurate accounts for the cation tilt angle are 

difficult if not impossible to establish. Qualitative assessments of the changes at 

the interface can nevertheless still be made. The cation is seen to shift from a 

more parallel orientation at the pzc to a perpendicular orientation at most 

negative potentials with the ethyl group (2912 cm
−1

) significantly more parallel 

to the surface normal than at pzc. As the ethyl group rotates quite freely 

anyway, the negative IR peak can be also explained as it fades away from the 

surface at negative potentials, compared to pzc. A graphical representation of 

this is shown in Fig. 9.  

 

 
Figure 9. Graphical representation of the reorientation of ions at the Pb interface at 

positive (+), neutral near pzc and negative (−) polarization according to the spectra 

shown in Fig. 8. 

 

 

The C2-H hydrogen is seen to be pointing toward the surface (new peaks at 

3080, 3032 cm
−1

) while the bipolar nature of the cation peaks at 1568 and  

1168 cm
−1

 also show that the cation vibrations are less effected by interactions 

with anions at extreme negative potentials, as the peaks shift from ion associate 

like vibrations to a spectrum characteristic of separate ion vibrations. It is 

interesting to note the increase of the anion asymmetric stretching vibration at 

negative potentials, which could be explained by the weaker interaction 

between the anion and the Pb electrode surface at more negative potentials, 

allowing for more intensive vibrational states (the anion is considered to adsorb 

in the 1-F-down orientation, retarding the perpendicular vibration and producing 

weak parallel vibrations). Such treatment considers that the anion adsorption is 
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somewhat chemical in nature (and is in line with DFT calculations produced for 

Bi (111) [37]). The spectra show that both ions are at the surface or in the 

spectral vicinity at both extremes of the ideal polarizability potential region, as 

no complete ion exchange at the surface has been established. 

The cation is seen to shift to a more perpendicular orientation to the surface 

normal at positive potentials, relative to the pzc, and shown graphically in Fig. 

9. At these potentials the C2-H hydrogen is seen to point away (peaks at 3184, 

3140 cm
−1

) from the surface with the ethyl group (2908 cm
−1

) again nearly 

parallel to the surface (fades away from the surface), thus producing a  

configuration in which the centre of cationic charge is shifted as far away from 

the surface as possible. 

 

 
 

Figure 10. Integrated peak areas of the p-polarized in situ SEIRA spectra for 50 nm Pb 

on Si│EMImBF4 system. The anion (BF4
−
, peak at 1056 cm

−1
) (a) and cation (EMIm

+
, 

peak at 1170 cm
−1

) (b) peak areas are shown relative to the pzc at −1.2 V. 

 

 

Of particular interest is the strong bipolar behaviour of the anion peaks, shifting 

to almost 70 cm
−1

 lower wavenumber at most positive potential region. Integrated 

band intensities are demonstrated in Fig. 10b. Such a large change is rarely seen 

even for SEIRA spectra and is attributed to the complete dissociation of the ion 

association (ion-ion interactions) within the dense layer and a high surface 

coverage of anions at the Pb film electrode surface. This would signify a shift 

from ion-associate-like screening at potentials near the pzc (for example, dipole 

screening interaction) to charge based screening at the potential extremes 

(primarily coulombic interaction). The same effect, albeit a smaller shift (up to 

16 cm
−1

) is observed, too, for the cations at both positive and negative potential 

extremes, shown in Fig. 10a. Interestingly, this strong bipolar behaviour of the 

ion absorption peaks mainly coincides with the capacitance maxima of the C, E 
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curve, providing additional reasoning for the shape of the C, E curve in Fig. 7, 
particularly as to why a decrease of capacitance is observed at extreme 
potential. 

The association of ions has been used as an explanation for the characte-
ristic behaviour of ILs at metal interfaces as well, even to the extent to suggest 
ILs to behave as dilute electrolyte solutions [118]. However, different from that 
particular article, the results of our in situ SEIRA measurements for the 
Pb│EMImBF4 interface do not suggest the existence of long-lived, stable ion 
pairing between cations and anions, which is an important distinction to be 
made. A recent theoretical study [119] has shown that within a mean-field level 
of theory, only a third of the particles constituting an IL can be described as ion 
pairs, and that those pairs would be relatively short-lived. However, because the 
study adopts the general hard-spheres description of an IL, this result cannot be 
considered absolute. Indeed, when considering the spectra of a neat IL, no 
differentiation between ion pairs, ‘free’ ions or a particular ion association 
structure can be made. Unsurprisingly, in order to simulate infrared spectra of 
ILs quantum mechanics are required [116,120], confirming that ion association 
is indeed a significant part of the description of ILs, although describing them 
as a solution of ion pairs is a major oversimplification. 

 
 

6.1.4. Analysis of Au│EMImBF4 interface 

Fig. 11 shows the p-polarized SEIRA spectra for the 20 nm Au film deposited 
onto a ZnSe hemisphere previously coated with 20 nm layer of aC required for 
electrical conductivity of the Au layer. It should be noted that identical 
experiments have been conducted with Si hemisphere and no aC underlayer (the 
Si hemisphere is in itself conductive) and almost identical spectra were 
measured, however, since the dissolution of Si starts at +0.2 V the positive 
potential limit could not be probed. Even with a passive aC [115] underlayer it 
was not possible to measure the whole range of positive potentials up to +1.6 V 
as in electrochemistry measurements because of surface oxidation of Au at  E  > 
+1.2 V. This reversible process is due to the water impurities and does not 
significantly hinder electrochemistry measurements. For in situ IR, however, 
means that surface enhancement effect is altered and thus the background signal 
becomes unstable. Overall, the potential dependence of spectral features is 
similar for the Au│EMImBF4 system as that seen for the Pb│EMImBF4 
system: sharp potential dependent peaks for the BF4

− anion between 1000 and 
1030 cm−1 and complex, mostly bipolar peaks for the EMIm+ cation. The 
potential dependence of the most intense cation and anion peaks are shown in 
Fig. 12. The peak areas for the EMIm+ cation have been multiplied by 15 for 
better comparison (15 corresponds to the spectral ratio of anion-to-cation peak 
area in neat EMImBF4 IL). A basic bipolar dependence is observed from the 
peak area dependence on potential, however, it should be noted that the 
exchange between anions and cations is significantly more intense at potentials 
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more positive of the pzc than in the negative polarization range. This is likely 

due to the electrophilic nature of Au as well as smaller ion volume for the 

tetrafluoroborate anion compared to that of the imidazolium cation. It can also 

be observed that the decrease for the anion signal at 1016 cm
−1

 largely stops at 

−0.9 V and levels off thereafter. This is likely due to the extreme surface 

enhancement effect of the Au electrode [88], whereby the depletion of the 

compact layer of anions results in the system effectively becoming “blind” to 

the change of anion concentration in the EDL. That said, we can still observe 

changes as well as increase in the cation absorption spectra down to −1.9 V, 

consistent with the interpretation that only ions within the compact layer are 

probed. It should also be noted that the potential at which no more significant 

changes in the anion spectra are observed correlates well with the negative 

potential peak of the C, E curve for the Au│EMImBF4 system and could relate 

to the formation of such a feature. The same cannot be observed in the positive 

polarization region as the peaks show changes up to the potential limit of  

+1.1 V. As far as the bipolar peak behaviour observed for the Pb│EMImBF4 

system is concerned, the same basic dependence is also observed in case of Au 

electrode, however, on a smaller scale for the anion peaks. 

 

 

Figure 11. P-polarized in situ SEIRA spectra for 20 nm Au on aC/ZnSe│EMImBF4 

system at selected potentials within the electrochemical stability limits. Electrode 

potential of −0.1 V (pzc) was used as the reference potential and is shown for clarity. 
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Figure 12. Comparison of the anion (BF4
−
, peak at 1016 cm

−1
) and cation (EMIm

+
, 

peak at 1164 cm
−1

) peak areas relative to the applied potential for the in situ SEIRA 

spectra of the 20 nm Au │ EMImBF4 interface measured relative to the reference 

spectrum at −0.1 V from the data seen in Figure 11. 

 

 

It is observed that the major anion absorption peak shifts from 1032 cm
−1

 at 

extreme negative polarization region to 1016 cm
−1

 at most positive potential of 

+1.1 V. For the EMIm
+
 cation, multiple strong bipolar peaks are observed 

thorough the whole wavenumber range at 1560, 1360, 1164 and 740 cm
−1

. 

These peaks signify that not only the concentration of cations within the 

compact layer is changing but that the orientation also changes. Similar to the 

Pb system, the cation is seen to orient with the C2-H hydrogen toward the Au 

surface in the negative polarization range, resulting in strong bipolar absorption 

peaks at 1560 and 1164 cm
−1

. For the positive polarization range an orienta-

tional determination is more difficult to make as complete depletion of the 

compact layer of cations is considered to take place. Overall, the double layer 

behaviour as well as spectral dependence is highly similar for both Pb and Au 

systems. The overall shape of the absorbence vs. potential graph is very close to 

that calculated based on the Oldham model [17] and considering exponential 

decrease of signal with distance [91], particularly in the negative polarization 

range. 

 
 

6.1.5. Analysis of Bi│EMImBF4 interface 

Fig. 13 shows the potential dependent in situ IRA spectra of the 20 nm 

Bi│EMImBF4 system [I]. Although the spectra show high intensity of IL band 
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changes, they are completely different from the spectra for Pb and Au. All the 

spectral bands are positive relative to the reference potential at pzc, however, 

the spectral absorption bands do not correspond to the neat EMImBF4 IL. Both 

the major cation and anion bands are shifted toward lower wavenumbers and the 

intensity ratio of the representative bands is seen to change relative to applied 

potential, as shown in Fig. 14. 

The peak intensities in Fig. 14 are normalized corresponding to the ratio of 

the neat, liquid spectrum of EMImBF4 [115]. It is observed that at positive 

polarization the ratio increases toward higher anion peak absorption and at 

negative polarization the ratio increases toward higher cation peak absorption. 

These factors suggest that the absorption bands indeed correspond to changes 

within the EDL, but the spectral enhancement is completely different from that 

of Au and Pb [60,110]. Given that Bi has significant semi-metallic properties 

[117,121], this is also to be expected. Overall, the spectral results suggest that 

the absorption bands originate primarily from the change in the diffuse part of 

the EDL, where increased layering of IL-associates takes place in addition to 

the direct charge compensation shown by relative band intensities. This is in 

accordance with in situ AFM force-distance curves in IL media [122,123]. 

Interestingly, the IR band intensities show almost identical dependence to the C, 

E curves measured for the same electrode in Fig. 7. 

 

 
 

Figure 13. P-polarized in situ IRA spectra for 20 nm Bi on ZnSe│EMImBF4 system at 

selected potentials within the electrochemical stability limits. Electrode potential of 

−0.8 V was used as the reference potential and is shown for clarity. 
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Figure 14. Comparison of the anion (BF4
−
, peak at 1020 cm

−
) and cation (EMIm

+
, 

peak at 1168 cm
−1

) peak areas relative to the applied potential for the in situ IRA spectra 

of the 20 nm Bi │ EMImBF4 interface measured relative to the reference spectrum at 

−0.8 V from the data seen in Figure 13. 

 

 

6.1.6. Analysis of thin-film graphite│EMImBF4 interface 

Fig. 15 shows the potential dependent in situ IR spectra for the thin-film 

graphite│EMImBF4 interface [III]. Three distinct areas of different spectral 

information have been outlined in the figure. The most striking and perhaps 

most interesting are the extremely wide (approximately 1000 cm
−1 

wide) gaus-

sian shaped peaks with very strong potential-position dependence, as shown in 

Fig. 16.  

Such features could not be characterized by conventional theory of vibra-

tional spectroscopy and are instead interpreted to result from the potential 

induced change of the reflective properties of the thin-film graphite electrode; 

as in situ ER spectroscopy [124,125] data. 
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Figure 15. P-polarized in situ infrared spectra of the thin-film graphite on epoxy/ 

ZnSe│EMImBF4 system. The spectra are shifted in the vertical direction for clarity. 

Areas where different spectral information has been extracted have been outlined. 

 

 
 

Figure 16. P-polarized in situ infrared spectra of the thin-film graphite│EMImBF4 

system outlining the electroreflectance area of Fig. 15 for negative (a) and positive (b) 

polarization regions. 

 

 

From a fundamental standpoint, the peaks signify the excitation of electrons to 

the empty π-orbitals of graphite at the K point [126] by infrared irradiation, 

which shift due to the applied electric potential at the interface. Due to the 

limited spectral range and other spectral features, the peaks are either not seen 
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or easily detected within the range from 0.4 to −0.6 V. Fig. 17a shows the 

potential E dependence of the peak maxima Edip. 

 

 

Figure 17. The dependences of Edip (a) and G band position (b) on electrode potential 

from the spectral data in Figure 15. 

 

 

It can be seen that there is an almost perfectly linear dependence between the 

peak dips and electrode potential, with exactly the same absolute slope of 0.233 

eV V
−1

 at both the positive and negative potential side, in excellent agreement 

with the surface electronic structure of graphite [126]. Similar graphs of Edip vs. 

E have been shown for low index crystal faces of Au and Ag [124,127]. 

However, the exact mechanism generating this effect is still under discussion. 

While it has been proposed that this dependency represents the applied effective 

field strength on the respective material surface states, such assumptions could 

not be confirmed by theory [124]. On the contrary, large differences exist 

between different crystal faces, metals and cathodic and anodic regimes for 

which many unconfirmed explanations have been given. More interestingly, the 

Edip vs. E plot slopes for metal interfaces are always positive [124], contrary to 

what is seen in case of our measurements. Thus, it is suggested that, under the 

condition of ideal polarizability, the Edip vs. E plot slope is specific only to the 

electrode surface electronic states, therefore carrying no information about the 

electrolyte side of the electric double layer. That said, these peaks have been 

confirmed [124] to offer extremely interesting information for systems with 

partial charge-transfer or specific adsorption and therefore ER allows 

conducting the electron transfer studies of graphite interfaces. Another feature 

in the potential dependence spectra is the G band, characteristic of sp
2
 carbon 

materials at approximately 1570 cm
−1

. While the ER spectra represent the shift 

in empty surface states, the G band is specific to the bonding between carbon 

atoms and thus to the filled electron orbitals. Fig. 17b shows the potential 
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dependence of the maxima of the G band relative to the applied electrode 

potential. A familiar V-shape dependence of the G band wavenumber on E can 

be seen, characteristic of the shift in electronic structure due to the applied 

electrode potential. Exactly the same effect has been seen in in situ Raman 

measurements of the graphene interface [128] for which the potential 

dependence is very similar. 

Finally, the spectrum also shows the vibrational energy levels of the 

electrolyte side of the interface- the infrared absorption (IRA) spectra, outlined 

in Fig. 18. 

 

 

Figure 18. P-polarized in situ infrared spectra of the thin-film graphite│EMImBF4 

system outlining the IRAS area of Figure 15. 

 

 

The observed peaks are interpreted to be characteristic mainly of the diffuse part 

of the EDL, highly similar to what was seen for the Bi│EMImBF4 system. 

Firstly, the peak area- potential dependence with a minimum confirms the IRA 

spectra are very intensive, up to 50 times (200 times compared to HOPG  

measured in an infrared reflection-absorption setup) more so than those 

measured for the amorphous carbon interface [115].  
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Figure 19. (a) Dependence of the major anion (BF4

−
, peak at 1020 cm

−1
) and cation 

(EMIm
+
, peak at 1170 cm

−1
) infrared absorbance peaks on electrode potential for the 

thin-film graphite│EMImBF4 interface. (b) Dependence of the anion-to-cation peak 

intensity on electrode potential from the data given in part (a). 

 

 

Although the IRA spectra also represent different interfacial properties and 

structures as well as different electrode thicknesses (20 nm thick amorphous 

carbon compared to <5 nm thick thin-film graphite), such increase of signal 

(usually known as an enhancement effect) is rare even for rough metallic  

surfaces. Theoretical models [129] and experiments with graphene micro-

ribbons [130] have predicted that the plasmonic resonance of graphene is 

applicable for spectroscopy in the terahertz frequency range. A recent article 

[131] has also shown that graphene nano-ribbon arrays exhibit plasmonic 

enhancement of adsorbed structures. Thus, it is concluded that the plasmonic 

resonance of graphene [132] is applicable for the investigation of the electrical 

double layer structure.  

The V-shape of capacitance vs. potential curve has proven to originate from 

a semiconductor-like space-charge region inside of the electrode [12,133] 

highly similar to what has been shown for graphene in the same IL [134]. 

However, it should be noted that the overall thickness of the diffuse layer in the 

IL also follows this basic V-shape dependence. If we look further into the 

details of the compositional changes within the diffuse layer, the relative 

intensity of anion-to-cation peak area is shown in Fig. 19b. It should be noted 

that in a pristine IR spectrum of bulk EMImBF4 the ratio of the most intense 

anion-to-cation peaks is 15 [104]
 
so it is immediately obvious that the structure 

and composition at the interface is considerably altered by the screening of 

electrode potential. Although not quantitative, the ratio shows two general areas 

within the polarization region- at and near the pzc from −1.3 to +0.9 V (purple 

squares) we observe a parabolic dependence on potential, consistent with the 

consideration of the diffuse layer. It is likely that as the field strength increases 
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with polarization, the ion associates adopt a more favourable alignment at the 
interface to more effectively screen the impeding electric field [115].  
Dissociation of ion associates within the diffuse layer is another probable cause 
[104]. It is highly unlikely that the actual ratio of anions-to-cations at the 
interface is the cause of this effect as the same principal response is observed 
for both positive and negative polarization. In the second potential area, at 
potentials lower than −1.3 and higher than +0.9 V (green circles), a weak linear 
correlation is observed at the extreme potentials, showing a decrease of the 
anion-to-cation ratio at the negative potential limit and an increase within the 
positive potential limit, consistent with direct charge compensation within the 
EDL, also seen for the compact layer in case of Pb and Au. Thus the results are 
consistent with the potential dependent layering shown by AFM and X-ray 
measurements as well as with the change in the degree of ion association shown 
by enhanced IR measurements [104,122,135]. 

 
 

 
6.1.7. Analysis of CDC(TiC)│EMImBF4 interface 

Fig. 20 shows the in situ IR spectra of the CDC(TiC)│EMImBF4 interface [II] 
measured in the reflection-absorption configuration shown in Fig. 4b. Compared 
to all the previous systems, the spectra show a completely different spectral 
dependence: all the observed peaks are negative relative to the reference 
potential of −0.2 V and the absorption bands are identical to that of the neat 
EMImBF4 IL [115]. Although it was hoped that spectra could be measured of 
the changes inside the porous carbon electrode, the spectral changes suggest that 
what is being probed is the thin IL layer directly adjacent to the porous 
electrode surface. Thus, the peaks form because of the actuation of the electrode 
caused by EDL charging, similar to what has been shown with in situ 
dilatometry measurements of similar CDC electrodes [136]. Fig. 21 shows the 
potential dependence of the relative peak areas of major anion and cation 
absorption bands based on the spectra in Fig. 20. It is observed that a negative 
parabolic dependence on potential is followed for both anion and cation 
absorption bands at 1040 and 1172 cm−1, respectively. 
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Figure 20. P-polarized in situ IRRAS spectra of the CDC(TiC) on ZnSe│EMImBF4 

interface measured relative to the reference spectrum at −0.2 V. The spectra are shifted 

by a constant in the vertical direction for clarity. 

 

 

 
 

Figure 21. Comparison of the anion (BF4
−
, peak at 1040 cm

−1
) and cation (EMIm

+
, 

peak at 1172 cm
−1

) peak areas relative to the applied potential for the in situ IRRAS 

spectra of the CDC(TiC)│EMImBF4 interface measured relative to the reference 

spectrum at −0.2 V from the data seen in Figure 21. 
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The ratio of anion-to-cation peak area is between 15 and 18 for the whole 

polarization range, close to that of the neat EMImBF4 IL [115]. This reinforces 

the fact that the peaks do not correspond to changes within the EDL but rather 

IL at the surface of the porous carbon electrode, showing that an additional 

amount of IL is absorbed by the CDC(TiC) electrode from the IL bulk when 

polarization is applied to the supercapacitor electrode [136,137]. Considering 

the measurements at graphite │EMImBF4 interface, this is required because of 

the increased IL layering within the micropores of the CDC(TiC) electrode. 
 

 

6.2. (VI-VII) Dielectric capacitor based on 

electropolymerizable dicyanamide anions 

6.2.1. Analysis of CV, EIS and AFM data 

CVs of the single layer graphene│BMPyrrDCA IL [VI

10 V are shown in Fig. 22. It is seen that there is a large oxidation peak at  

+2.2 V vs. Ag│AgCl for the first CV scan of the measurement, followed by the 

current levelling off at approximately half of the peak current value up to 10 V. 

The current value decreases close to 0 for the reverse scan at 5 V and only 

increases again going beyond 8 V for the second scan. After 10 CV scans the 

system is fully passivated up to 10 V. This kind of behaviour is not typical for 

IL interfaces, particularly electrode materials that do not form solid oxides and 

has only been show for a select few anion compositions in ILs [71,138,139]. 

Capacitance dependence on passivation potential is shown in Fig. 23a for three 

different flat carbon electrodes. 

 

 

 
 

Figure 22. Passivation of single layer graphene electrode. Low scan rate cyclic 

voltammograms for the graphene│BMPyrrDCA system. 

-VII] measured up to  
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Figure 23. Dependence of capacitance (a) and dielectric thickness (b) on the passivating 

potential applied for the graphene, HOPG and aC flat carbon electrodes in 

BMPyrrDCA. 

 

 

 

Capacitance of the passivated carbon electrodes is between 1.2 and 1.5 μF cm
−2

 

at 2 V (Fig. 23a), which is nearly the same value as the unmodified graphene 

electrode at pzc, but 6 times lower than at −2 V [71]. It was found that the 

capacitance value decreases with maximal passivation potential applied; for 

example, at 3.4 V it is between 0.44 and 0.52 μF cm
−2

 for the carbon electrodes, 

decreasing down to about 0.15 μF cm
−2

 at passivation potential of 10 V. This is 

consistent with the consideration of a dielectric capacitor whereby the 

capacitance is inversely proportional to dielectric thickness. 

The ex situ AFM data in Fig. 23b, measured for cleaned aC electrodes after 

passivating up to the noted potential, indicate that the film thickness after 

passivation up to 3.4 V is 12 nm and the thickness increases linearly with 

increase in passivation potential applied, up to 38 nm at 10 V. Linear increase of 

dielectric film thickness caused by the increase of passivation potential is an 

expected result; however, surprisingly high capacitance value at 2 V is a new 

phenomenon and could be related to the system having both properties of a 

dielectric- and an EDL-capacitor. 

 

 

6.2.2. In situ IRA spectra of thin-film graphite│PDCA 

In situ IR spectroscopy analysis performed during dielectric layer formation at 

aC and HOPG electrodes show a sharp absorption band at 2172 cm
−1

, a broad 

absorption band in the region 1750-1050 cm
−1

 centred at 1540 cm
−1

, and 

absorption bands at 766 and 718 cm
−1

. Quantum chemical calculations indicate 

that =N−C≡N sequence gives an IR absorption band near 2172 cm
−1

; thus 
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suggesting that the product, polydicyanamide (PDCA) has mainly a linear 

carbon skeleton as shown in Fig. 24.  

 

 

Figure 24. Proposed reaction scheme for the formation of the carbon-nitrogen polymer 

PDCA. 

 

 

Although the side-chains have conjugated bonds, the main carbon skeleton does 

not have a conjugated π-electron system, which is why the polymer is a 

dielectric. Several similar inorganic carbon-nitrogen polymers are known, such 

as paracyanogen (NCCN)x, paraisocyanogen (CNCN)x, and polycyanogen 

(NC(CN))x [140,141]. Interestingly, paracyanogen, which contains polyaro-

matic cycles, is a semiconductor, but paraisocyanogen and polycyanogen are 

also dielectric materials [140,141]. 

In order to better understand the energy storage mechanism for the 

carbon│PDCA dielectric capacitors, in situ IRA spectra of the thin-film 

graphite│BMPyrrDCA system have been measured at different passivation 

potentials, shown in Fig. 25. It is seen that familiar wide ER peaks are 

measured, similar to the ER peaks for graphite│EMImBF4 system when the 

capacitor is measured at passivation potential vs. reference potential at 0 V. The 

difference, however, is that both the negative going band as well as the positive 

band are observed. For the thin-film graphite│EMImBF4 system the negative 

band could not be measured as the electronic energy level of graphite is close to 

zero at fermi level [126]. From the results shown in Fig. 25 it is interpreted that 

even for fully discharged graphite electrode passivated up to 2.5 V, the 

electronic energy is 0.2 eV and increases with passivation potential, up to  

0.26 eV for passivation up to 7.5 V. Similarly, the positive-going band corres-

ponding to the exited electronic states for the fully charged capacitor show 

increase in energy with passivation potential, from 0.29 eV at 2.5 V up to  

0.35 eV at passivation potential of 7.5 V. That considered, the intensity of both 

bands decrease with an increase of passivation potential, suggesting that a lower 

number of electrons within the electronic band of graphite are excited when 

thickness of the dielectric layer increases. Table 5 shows the dependence of the 

ER peaks on passivation potential. 
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Figure 25. In situ IR spectra of the thin-film graphite on epoxy/ZnSe│PDCA interface 

measured with different passivation potentials relative to the reference potential at 0 V. 
 

 

Table 5. Data for the electroreflectance peaks for the thin-film graphite│BMPyrrDCA 

system measured at different passivation potentials relative to reference potential at 0 V. 

Passivation 

potential / V 

 

Edip
1
/ eV 

 

Edip
2
/ eV 

 

ΔEdip / eV 

2.5 0.202 0.290 0.088 

3.4 0.221 0.305 0.084 

5 0.241 0.327 0.087 

7.5 0.264 0.351 0.086 

10 0.323 0.407 0.084 
 

 

It is observed that although both the negative- and positive-going ER peaks shift 

to higher energy levels with increasing passivation potential, the difference 

between the peaks is relatively constant at approximately 0.085 eV. This suggests 

a fundamental limitation of the capacitor energy storage and is likely related to 

the dielectric constant of PDCA, which has been calculated to be between 6 and 

10 for different layer thicknesses [71]. Also, based on the ER polarization slope 

for the graphite│EMImBF4 system (0.233 eV V
−1

) the polarization for the 

graphite│PDCA systems only corresponds to 0.36 V in the ideally polarizable 

potential scale. This, along with the lower number of exited electronic states 

explains the drastic drop in capacitance for the dielectric capacitors. 
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6.3. (VIII) Electrochemical behaviour of  

Bi(hkl)│PMImI interface 

6.3.1. Analysis of CV data 

Cyclic voltammograms for the Bi(hkl)│PMImI system [VIII] are shown in Fig. 

26. It is seen that for the three different bismuth single crystal planes the 

voltammetry response is highly similar: the negative potential limit is in-

distinguishable, as this describes fundamentally the same cation decomposition 

process as that shown for the thin film Bi interface with EMImBF4 ionic liquid 

[142]. It should also be noted that the potential at which this process takes place 

is the same as that for both the thin film Bi and amorphous carbon in EMImBF4 

[56,142], suggesting that the reduction process on these electrodes is funda-

mentally limited by the electron transfer to the imidazolium cation lowest 

unoccupied electronic state with no catalytic effects. In the case of highly 

oriented pyrolytic graphite (HOPG) [54] or thin layer Pb electrodes [110] the 

negative potential limit faradic process can be observed at a significantly less 

negative potential, likely because it corresponds to a different reaction (inter-

calation of cations into graphite structure in case of HOPG) or due to catalytic 

effects regarding the hydrogen evolution process that takes place at the Pb 

interface [110]. 

 

 

 

Figure 26. Cyclic voltammograms for the Bi(hkl)│PMImI systems within the ideal 

polarizability region. 
 

 

At the positive potential limit the three Bi planes also show similar behaviour, 

with a sharp increase of positive current density observed at −0.8 V and a small 

reduction peak (i.e. re-reduction) immediately following for the reverse scan, 

suggesting that an oxidation process that is at least quasi-reversible is taking 
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place. In general, there are two different oxidation processes that can be related 

to either the oxidation of iodide anions into triiodide anions (I3
−
) or the dis-

solution of the bismuth electrode. Both processes are either reversible or quasi-

reversible in nature and are thus difficult to differentiate between with only 

applying the CV method. It is also possible that both processes are taking place 

simultaneously with varying degrees of intensity between them. However, it 

should be mentioned that because the activation potential of this process does 

not significantly vary for the three Bi single crystal planes suggests that this 

process is not, at least primarily, Bi dissolution. Another factor to consider is 

that the dissolution of Bi thin films in non-halogen ionic liquid (EMImBF4) was 

observed at a significantly higher positive potential value [142], leading to a 

wider electrochemical stability range (2.1 V) than the value observed for the 

PMImI ionic liquid (1.55 V). Considering this, it is also possible that the 

interaction of iodide ions can play a significant role in stabilizing the dissolved 

Bi cations (Bi
3+

) and thus play a catalytic role in the corrosion of the Bi 

electrodes. This effect cannot, however, be adequately evaluated by electro-

chemical measurements alone and thus in situ STM measurements would be 

required. 

 

 

6.3.2. Analysis and modelling of EIS data 

EIS along with electrical equivalent circuit analysis was applied within the 

range of −2.28 to −0.83 V for the Bi(hkl)│PMImI systems.  

 

 

 
 

Figure 27. Electrical equivalent circuit used for the fitting of the impedance data. 

 

 

EIS EC fitting process has been applied to the Bi(hkl)│PMImI systems and an 

equivalent circuit has been derived, shown in Fig. 27. It should be noted that not 

all components of the EC can be quantified within the whole frequency and 

potential ranges measured and thus some components have been omitted when 

the role of the process that they correspond to is too small. Overall, the EC is 

described by 6 elements corresponding to 7 free parameters denoting a system 

with two time-constants. RS corresponds to the solution resistance which 

describes the overall electric resistance as well as the solution layer resistance 



52 

between the electrode and Luggin capillary. This parameter should not strongly 
depend on the potential applied if the resistance of the dielectric medium is 
constant. Rads corresponds to the resistance of the specific adsorption process of 
iodide ions on the Bi electrode surface. This parameter should decrease when 
more positive electrode potential is applied. In parallel with the adsorption 
resistance Warburg like semifinite-length diffusion element Wo describes the 
mass-transfer limited movement of adsorbing ionic species in a thin interface 
layer. This element is required because of the high viscosity and low diffusion 
coefficient [62] of the PMImI ionic liquid ions. The mass-transfer limited 
element is used in the classical form with the value of α fixed at 0.5 and is thus 
described by two free parameters: mass-transfer resistance RD and mass-transfer 
time constant Twar that describes the time taken for the diffusing particles to 
move through the thin layer. This means that by knowing the diffusion constant 
of relevant species, the thickness of the thin layer can be evaluated [144]. In 
series with both the mass-transfer and adsorption resistance components is the 
electrical double layer capacitance Cdl. This is the primary component whereby 
the capacitive charge storage of the system can be evaluated. 

Two additional elements in parallel with the previous three components 
describe the low-frequency end of the impedance spectrum, as shown in Fig. 27. 
Charge-transfer resistance, Rct, characterises faradic charge transfer processes 
involving either low-concentration impurities or the ions of the ionic liquid 
themselves. This element can describe many different reactions that take place 
at different potential values, but will always primarily describe the fastest  
process taking place at a selected fixed potential. Thus, at the most negative 
potential region, it will show the reduction of PMIm+ cations and at the positive 
potential region show the oxidation of iodide ions. If the process ascribed by the 
Rct component is either reversible or quasi-reversible, the pseudo-capacitive 
term, Cpseudo, is added in series with Rct to evaluate the energy storage ability of 
the faradic reaction. Again, although this term should be evaluated in terms of  
capacity, the parameter is still shown in capacitance units (thus the name- 
capacitance-like). This element is not used at more negative potentials (E <  
−1.1 V) as the reactions taking place at more negative potentials are not 
reversible. 
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Figure 28. Electrical double layer capacitance Cdl vs. E dependence for the 

Bi(hkl)│PMImI systems (a) and cut-out of the electrostatic double layer potential range 

(inset a); series capacitance CS vs. E dependence for the Bi(hkl)│0.1 M KI aqueous 

electrolyte systems (b). 

 

 

The electrical double layer capacitance for the Bi(hkl)│PMImI systems, 

obtained from EC fitting results, are shown in Fig. 28a. Each of the EC fitting 

parameters carries with it an error value based on the goodness of fit for that 

specific parameter. It is seen that the error values for the Cdl parameter are 

extremely low and thus almost unnoticeable in the figure. The negative-

potential region cut-out of the same graph is shown in the inset of Fig. 28a. It is 

seen that the data can be divided into two distinct areas of more and less 

negative electrode potential. In the more negative electrode potential region 

from −2.3 to approximately −1.4 V the value of capacitance is relatively low 

(between 12 and 25 μF cm
−2

) and the general behaviour of the three electrodes 

is similar. However, one can still easily detect that the capacitance of the most 

metallic Bi(011̅) plane is appreciatively higher than that of the least metallic 

Bi(111) plane (17 vs. 14 μF cm
−2

 in the potential region from −2.3 to −1.7 V) 

while the Bi(001) plane with average metallic character fits between the 

previous two planes. Thus the capacitance follows the same general rule as that 

observed for aqueous electrolytes, whereby higher metallicity of the electrode 

material correlates well with the double layer capacitance response of the dense 

layer [145]. This is of great interest because such general trend, based on the 

available literature, is not followed in case of perceived surface inactive ionic 

liquid EMImBF4, whereby the average double layer capacitance at the 

minimum decreases in the order of Sb(111) [146] > Bi(111) [147] ~ Hg(liquid) 

[148] > Cd(0001) [149]. It is unknown as to how one might explain such 

difference for metal electrodes. However, the same effect does not apply for 

carbon based materials (perceived as least metallic) that show capacitance 
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significantly lower than that of metals [56,143], clearly limited by their charge 
carrier concentration at a given potential. If such an effect is indeed true, it 
would signify that carrier concentration is not the primary limiting factor in the 
screening of the double layer electric field for most metals in an ionic liquid 
media. Clearly, this is not the case for our Bi(hkl) single crystal planes whereby 
metallicity is important to consider even in the electrostatic double layer region. 

Even more interesting is the potential range from −1.3 to −0.8 V, where the 
difference in the double layer capacitance response for the three Bi electrodes is 
more pronounced. Whereas the most semi-metallic Bi(111) plane shows a 
relatively constant increase of capacitance in this region with a maximum of 
about 55 μF cm−2, the more metallic (001) and (011ത) planes show a significantly 
sharper increase of capacitance and maxima of 115 and 87 μF cm−2 have been 
measured, respectively. This effect is perceived to be the result of the inter-
action between the electronic and ionic surface structure, resulting from partial 
charge transfer from the iodide ions of the electrolyte to conduction band of the 
Bi(hkl) electrode. Because each single crystal plane has a distinct surface 
electronic structure, this effect is more pronounced for electrodes with higher 
number of free electronic states (metals) and less pronounced for semi-metals 
with a relatively low concentration of valence electronic states. In the case of 
the three Bi single crystal electrodes that are all semi-metallic in nature with a 
varying degree of metallicity, the measurement of capacitance clearly shows the 
difference between the three different planes and provides information about the 
relative band structure of each electrode. 

In order better understand this effect of electronic capacitance on the overall 
capacitance response, the same three Bi single crystals were measured in a more 
typical, 0.1 M KI aqueous electrolyte solution [69,70]. The series capacitance 
results of the Bi(hkl)│0.1M KI in H2O measured at 210 Hz are shown in Fig. 
28b. It should be noted that although the single frequency series capacitance 
results are less accurate than EC fitting of the Cdl element, they can still well 
represent the EDL capacitance if the frequency value at which they are 
measured is well-chosen. The chosen CS ac frequency is significantly higher for 
the aqueous electrolyte solution because of the differences in viscosity and 
conductivity between the two electrolytes. As observed by comparing the C, E 
curves in Fig. 28 a and b, many similarities are found. The C, E curve for the KI 
system can also be generally divided into two parts of differing capacitance 
behaviour, and the general logic between the three different single crystal planes 
also holds true. The overall values of the capacitance maxima are up to 50% 
larger for the aqueous electrolyte compared to PMImI ionic liquid, but is 
compensated by the narrower electrochemical stability range, meaning that the 
absolute surface charge density values are similar. It is also evident that the C, E 
curves for the least metallic Bi(111) plane are most similar between the PMImI 
and 0.1M KI in H2O electrolytes with only 10% difference between the 
capacitance maxima and comparable linear increase of capacitance in the less 
negative potential range, where the specific adsorption of iodide ions has been 
observed. The most likely explanation for this effect is that the C,E curves are 
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mainly limited by the electronic response of the electrode material and thus 
behave in a similar manner as that observed for HOPG electrodes [54], whereby 
the difference between the capacitance response is very small for both 
electrolyte concentration, solvent or the absence of a solvent. The differences 
between the more metallic Bi planes are more significant for the two electro-
lytes, however, still show general features that are comparable for the PMImI 
and 0.1M KI electrolytes. 

Finally, it is interesting to observe the electrode potential dependence of the 
resistive components of the EC fitting, shown in Fig. 29. The solution resistance 
RS is primarily determined by the distance between the working electrode and 
reference electrode capillary as well as the electrolyte conductivity, both of 
which are inherently constant for our measurements and should thus reveal no 
strong dependence of RS on electrode potential. This, however, ignores the 
possibility of changes in the electrolyte composition under electrochemical 
polarization, which could have a significant contribution on the overall electro-
lyte resistance. It is seen in Fig. 29a that indeed there is no specific dependence 
of RS on the Bi single crystal plane, as the measurements were conducted in 
fundamentally the same fashion and the resistance is relatively constant, 
considering fitting error, within the potential range from −2.3 to −1.2 V. 
Thereafter, however, RS starts to decrease rapidly with potential at E > −1.2 V 
for all Bi electrodes. This effect is again interpreted to stem from the behaviour 
of iodide ions in a solution. Because of the high viscosity, the diffusion 
coefficient of iodide ions in the PMImI ionic liquid is very low, about 1.9·10−12 
m2 s−1 [62]. However, if molecular iodine were added to the solution, as is the 
case when the same ionic liquid is used as an electrolyte in a DSSC, triiodide 
ions would be formed [152]. As is known from literature, in an electrolyte 
composed of both iodide and triiodide ions the conductivity can be significantly 
enhanced because of an alternative conduction path  the hopping of iodide ions 
from one complex to another [72]. This mechanism has been shown to have a 
diffusion coefficient on the order of 10−9 m2 s−1 [62,72], thus 3 orders of magni-
tude higher than that of pure iodide in PMImI. At less negative potential (E > 
−1.2 V) iodide ions can be oxidized into triiodide ions, as shown by the CV 
measurements. This can therefore create a parallel conduction mechanism for 
the electrolyte resistance and it is likely the reason as to why we observe a 
rapid, linear decrease of the RS parameter for our systems. The overall decrease 
is up to 8% for the Bi(111) electrode, suggesting that a considerable amount of 
free triiodide ions have been formed, diffused into the bulk electrolyte and 
reduced at the counter-electrode. 
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Figure 29. Calculated fitting parameters of Nyquist plots for the Bi(hkl)│PMImI 

systems; solution resistance RS (a) and charge-transfer resistance Rct (b) vs. E depen-

dence. 
 

 

The resistance of low frequency charge transfer process (Rct) is shown in Fig. 

29b. The process to which this parameter corresponds to changes with applied 

electrode potential, and from −1.6 V to −1.3 V no significant charge transfer 

processes are taking place at the Bi(hkl) electrode surface, thus contributing to 

the high fitting error in this potential region. For potentials more negative than 

−2.1 V this process corresponds to the reduction of imidazolium cations [56] 

discussed beforehand. Within the potential region from −2.1 to −1.6 V, the 

reduction of trace water impurities is interpreted to be the main cause of Rct 

[147]. At electrode potential values above −1.3 V, Rct characterises the slow 

redox processes, causing also the quasi-reversible peaks in the CV curves and 

increase in the values of Cpseudo. No specific dependence of Rct on the Bi(hkl) 

planes is observed as the faradic resistance of these processes mostly overlap for 

the three Bi single crystal planes suggesting that the chemical nature of Bi is 

more influential on these processes compared to both the surface electronic 

structure and the ionic structure of the EDL, supported by the similarities 

between the Bi planes in CV and EIS resistance parameters. 

 

 

6.4. (I-VIII) Considerations of the EDL 

Theoretical and modelling approaches have been by far the most proactive in 

trying to explain the charge screening properties of ionic liquids. A large 

number of different approaches have been taken, ranging from extensions of the 

diffuse double layer theory [16,17] up to extensive molecular dynamics (MD) 

simulations with different electrolyte geometries, electrodes and temperatures 
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[27–29]. A major drawback to almost all of the MD based studies is the 
complete exclusion of electronic effects of the EDL, such as the work function 
difference between the electrode and the electrolyte [14], electronic structure of 
the electrode, partial charge transfer between ions and the electrode as well as 
the association of the ions. This is exemplified by the way potential is treated 
for polarizable and non-polarizable systems [30]. Thus, the results of these 
theoretical approaches cannot be considered reliable at potentials near the pzc 
where the discrepancy in electrode│electrolyte work function difference is 
highest. Most of these models are in general agreement about the capacitive 
behaviour at high surface charge densities, as they show a slow decrease of 
capacitance at the potential ‘wings’ (extrema). It can be suggested that at high 
surface charge density, the strong electric fields are enough to overcome the 
association between ions within the compact layer and thus a hard spheres 
approach would be sufficient to characterize the essential physics of the inter-
face, however, the limitation of the region of ideal polarizability for EMImBF4 
ionic liquid will not allow us to gauge that. 

It is thus seen that the consideration of specific interactions (both between 
the ions and between the ions and the electrode surface) within an IL is 
extremely important in trying to explain the capacitive behaviour of metal│IL 
interfaces, which has been exemplified in this thesis. By considering the  
association between ions in ILs, we are able to explain the results of this study 
as well as consider many of the discrepancies observed in other experimental 
and theoretical studies. The results are also in good agreement with different 
AFM force-distance measurements [122,154] in ILs, showing pseudo-layering 
at IL interfaces, with layers approximately the thickness of ion pairs. This 
would suggest that dipole, not coulombic interactions are the most important 
part of the overall screening response of the electrolyte at low surface charge 
densities. These pseudo-layers can also be ‘turned around’ in order to screen 
positive or negative surface charge, and a thickening of the structured 
electrolyte layer would be consistent with the increase of capacitance relative to 
the pzc. Nonetheless, as is observed by the SEIRA measurements shown in this 
study, there is a finite range of electrode potential wherein this consideration is 
applicable. Because of the strong electric fields at high surface charge densities, 
the strength of ion association between the ions is seen to decrease considerably 
and thus the capacitance is also seen to decrease at the wings, giving rise to 
coulombic screening response of the electrolyte. It can be suggested that at 
extreme surface charge densities, whereupon all of the ionic association 
between the ions in the dense layer has been overcome, the description of hard-
sphere ILs would be sufficient in explaining the overall capacitance response of 
the interface. 

As it was shown by in situ ER spectroscopy results, the mechanism of 
energy storage for the dielectric graphite│PDCA system significantly differs 
from the purely electrostatic graphite│EMImBF4 supercapacitor system 
[115,143]. Although this is not surprising, the exact mechanism of energy 
storage in dielectric capacitors, particularly from the view-point of conductor 
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electronic states, has not, thus far, been revealed. Such knowledge could help us 
in designing even higher energy density capacitors in the future by careful 
selection of both electrode materials and electrolyte components [139]. 

The measurements of specifically adsorbing iodide ions at Bi single crystal 
planes demonstrate that the capacitance of IL interfaces can be significantly 
increased via careful selection of electrolyte additives. However, it is also 
shown that this increase is highest for more metallic planes of semimetal 
Bi(hkl), thus limiting this effect for carbon based SC materials [155]. It should 
be noted, though, that these results clearly demonstrate that both the specific 
adsorption of iodide ions as well as the oxidation of iodide increase the energy 
storage capabilities of such systems [63]. 

At last, the shape of the C, E curve for the graphite│EMImBF4 system and 
potential dependence of the in situ IRA spectra for the same system do not 
confirm the existence of multiple double layers, suggested by a theoretical 
article about the interface between graphite and an IL [35]. On the contrary, the 
experimental results suggest that more comprehensive models are required for a 
fundamental understanding of the complex processes at the electrode│IL 
interface. 
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7. SUMMARY 

Atomic force microscopy, cyclic voltammetry, electrochemical impedance 
spectroscopy and in situ infrared (IR) absorption spectroscopy methods have 
been employed to study the electrical double layer (EDL) formation and 
charging processes for five different electrode materials of variable metallic 
properties. The electrochemistry measurements reveal the width of the region of 
ideal polarizability for the different materials in 1-ethyl-3-methylimidazolium 
tetrafluoroborate (EMImBF4) ionic liquid (IL). The dependence of EDL  
capacitance on potential is shown to vary greatly between more metallic Au and 
Pb electrodes and semimetallic Bi, graphite and porous carbide derived carbon 
electrode. It is shown that for Pb and Au thin film electrodes, strong IR spectral 
signal enhancement in within the compact layer of the EDL permits us to probe 
the relative ion concentrations as well as orientations in the layer directly 
adjacent to the electrode surface. The semimetallic properties of Bi and graphite 
have a completely different enhancement of the IR spectral signal, showing 
absorption bands primarily originating from the diffuse layer of the EDL. More 
detailed analysis indeed confirms the existence of two distinct potential regions 
for the graphite│EMImBF4 system. It was determined that the in situ IR spectra 
for the thin-film graphite│EMImBF4 system not only allow us to probe the 
electrolyte side of the EDL but also the changes in the electronic structure of 
graphite. The in situ electroreflectance (ER) spectra show how the potential 
induced changes in the electronic structure of graphite. 

A novel dielectric capacitor technology has been developed based on 
electropolymerizable dicyanamide anions. It is shown that flat, thin-film carbon 
electrodes are suitable for passivation up to 10 V in the 1-butyl-1-methyl-
pyrrolidinium dicyanamide IL. It is shown that the formed dielectric polymer is 
a pure carbon-nitrogen compound polydicyanamide (PDCA). In situ ER 
spectroscopy measurements of the passivated graphite│PDCA capacitors show 
that the energy storage mechanism is completely different from the ideally 
polarizable graphite│EMImBF4 system. 

The EDL capacitance and interfacial resistance parameters were measured in 
a pure halide IL 1-propyl-3-methylimidazolium iodide (PMImI) for three Bi 
single crystal planes of variable metallic properties. It was shown that while the 
EDL capacitance is highly dependent on the Bi single crystal plane, particularly 
in the positive polarization range due to the specific adsorption of iodide ions, 
the interfacial resistance parameters do not show a strong dependence on the 
Bi(hkl) planes. More strikingly, it was shown that the EDL capacitance for 
Bi(hkl)│PMImI systems correlate well with that of relatively dilute iodide ion 
containing aqueous solutions of the same planes, explained by the capacitive 
behaviour being dominated by the adsorbed iodide layer and surface electronic 
states of Bi single crystals.  
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9. SUMMARY IN ESTONIAN 

Elektrilise kaksikkihi struktuur ja energia salvestamise 
karakteristikud ioonsetel vedelikel põhinevates 

kondensaatorites 

Elektrokeemilised energia salvestamise ja muundamise seadmed on aluseks 
tuleviku jätkusuutlikule energiamajandusele. Olgu selleks siis elektromagnet 
kiirgust elektrienergiaks muundavad päikesepatareid, autotranspordis kasutata-
vad kütuseelemendid, veest kütust tootvad elektrolüüserid, sekundaar-akumu-
laatorid iga-päeva elektroonika-seadmetes, superkondensaatorid, mis säästavad 
energiat kõrge võimsusega rakendustes või dielektrilised kondensaatorid 
elektroonilistes muundurites, kõrgtehnoloogilised elektrokeemilised seadmed 
on kõikjal meie ümber. Kõikide eelpool nimetatud seadmete puhul on aktiivseks 
osaks kahe erineva materjali vaheline piirpind, kus toimuvad elektrokeemilised 
reaktsioonid ja salvestub elektrienergia. Uute, kõrge effektiivusega elektro-
keemiliste seadmete loomiseks on aga ülimalt oluline arusaam vastavat piir-
pinda mõjutavatest teguritest. Antud doktoritöö keskendub just mahtuvuslikele 
energia salvestamise seadmetele ja erinevustele elektrostaatiliste, dielektriliste 
ja pseudomahtuvuslike kondensaatorite vahel ioonse vedeliku ja elektroodi 
piirpinna vaheliste mõjude karakteriseerimise toel. 

Aatomjõu mikroskoopia, tsüklilise voltamperomeetria, elektrokeemilise 
impedantsspektroskoopia ja in situ infrapuna neelduvus-spektroskoopia meeto-
deid rakendati elektrilise kaksikkihi (EKK) tekke ja laadimise protsesside 
uurimiseks viie erineva metallilisusega elektroodi materjali uurimiseks 1-etüül-
3-metüülimidasoolium tetrafluoroboraadi (EMImBF4) keskkonnas. Elektro-
keemia mõõtmised näitavad, et EKK mahtuvus sõltub oluliselt elektroodimater-
jali metallilistest omadustest. Spektroelektrokeemia mõõtmiste põhjal nähtub, et 
nii Au kui Pb puhul on meetod tundlik EKK kompaktse kihi suhtes, näidates 
ioonide kontsentratsiooni ja orientatsiooni muutuseid elektrokeemilise polari-
satsiooni toimel. Pool-metalliliste omadustega Bi ja grafiidi puhul on meetod 
tundlik peamiselt EKK diffuusse kihi suhtes, näidates selles polarisatsiooni 
mõjul toimuvaid restruktureerumisi. 

Arendati välja uudne kondensaatori tehnoloogia, mis põhineb elektropolü-
meriseeruvatel ditsüaanamiidi anioonidel. Näidati, et õhukesekihilised süsinik-
elektroodid on sobivad passiveerimiseks kuni 10 V-ni ditsüanamiidi sisaldavas 
ioonses vedelikus. Tõestati, et elektroodide pinnale tekkiv ühend on vaid süsiniku 
ja lämmastiku aatomitest koosnev polüditsüaanamiid (PDTA). Elektropeegelduse 
spektroskoopia tulemused näitavad, et energia salvestamise mehhanism vasta-
vates grafiit│PDTA kondansaatorites erineb oluliselt ideaalselt polariseeritavast 
grafiit│EMImBF4 elektrostaatilise kondensaatori puhul näidatud EKK laadi-
mise mehhanismist. 

EKK mahtuvuse ja piirpinna takistuse omadusi vaadeldi vaid jodiid anioone 
sisaldavas ioonses vedelikus kolmel erineva metallilisusega Bi monokristalli 
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piirpinnal. Näidati, et kuigi EKK mahtuvus sõltub oluliselt Bi monokristalli 
tahust, olles kõrgem metallilisemate tahkude korral, siis takistuslike parameet-
rite korral olulist kristallstruktuuri mõju ei täheldatud. Näidati, et EKK mahtu-
vus ioonses vedelikus jodiidiooni adsorptsiooni korral Bi(hkl) elektroodidele on 
äärmiselt sarnane suhteliselt lahja vesilahuse korral jodiidiooni adsorptsioonile 
samadele elektroodidele, mis on põhjustatud tugevast vastastikmõjust adsorbee-
runud jodiidioonide ja metalli pindkihi vahel. 
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