Liiv, Ingrid2014-05-052014-05-052014-05-05978–9949–32–541–2 (print)978–9949–32–542–9 (pdf)1024–395Xhttp://hdl.handle.net/10062/40548Väitekirja elektrooniline versioon ei sisalda publikatsioone.AIRE valk on transkriptsioonifaktor, mis reguleerib koespetsiifiliste autoantigeenide ekspressioone. AIRE geeni mutatsiooni tulemusena tekib autoimmuunne polüendokrinopaatia (APECED), mis on pärilik retsessiivne immuunsüsteemi haigus. Seda haigust iseloomustab immuuntolerantsuse häire organismi enda antigeenide suhtes, kus peamiselt on kahjustunud endokriinorganid autoreaktiivsete T ja B rakkude reaktsioonide tõttu. Monogeense etioloogia tõttu on APECED-i patogenees olnud organ-spetsiifiliste autoimmuunhaiguste uuringute mudeliks. AIRE valku toodetakse peamiselt tüümuses, kuid ka perifeersetes immuunorganites, põrnas, lümfisõlmedes ja loote maksas. Tüümuses toodavad AIRE-t spetsiifilised medulla epiteeli ja monotsüütidest pärinevad dendriitrakud, mis esitlevad autoantigeene T rakkudele negatiivse selektsiooni käigus. Vastav protsess on vajalik autoreaktiivsete T rakkude ellimineerimiseks ning organismi tsentraalse immuuntolerantsuse kujunemiseks. AIRE mutatsioonide korral valgu funktsionaalne aktiivsus kaob, mistõttu ei toimu piisaval määral koespetsiifilist geeniekspressiooni ega vastavate autoantigeenide esitlemist arenevatele T rakkudele. Seetõttu küpsevad tüümuses autoreaktiivsed T rakud, mis viib haiguse tekkele. Käesoleva töö eesmärgiks oli uurida AIRE valgu funktsioone molekulaarsel tasemel. Selleks kasutati valkude biokeemia ja rakukultuuri meetodeid ning rakkude/kudede analüüsiks immuunfluorestsents mikroskoopiat. Me leidsime esmakordselt, et AIRE-ga interakteerub DNA-sõltuv proteiinkinaas (DNA-PK), Ku70 ja Ku80 valkkompleks. Me tuvastasime, et DNA-PK fosforüleerib AIRE-t treoniin 68 ja seriin 156 positsioonidel, mis osutusid olulisteks valgu bioloogiliseks funktsiooniks, transkriptsiooni aktivatsiooniks. Me uurisime haigust põhjustavate AIRE valgu mutantide transkriptsioonilist aktiivsust AIRE-sõltuvate koespetsiifiliste geenide (involukriin, S100A8) promootoritel ning varem mudelina kasutatud interferoon-beeta geeni promootorit. Me leidsime, et enamus, kuid mitte kõik AIRE HSR (homogeneously staining region) domääni mutatsioonid inaktiveerisid valgu transkriptsoonilist aktiivsust. Samuti üldine transkriptsiooni aktivatsiooni valk CBP ei suutnud aktiveerida transkriptsiooniliselt inaktiivseid HSR domääni mutante. Lisaks me leidsime seose HSR domääni mutantide transkriptsioonilise aktiivsuse ja valgu struktuuri vahel. Me avastasime esmakordselt, et AIRE HSR domään omab CARD (caspase recruitment domain) struktuuri, mis on omane programmeeritud rakusurma ehk apoptoosiga ja põletikuga seotud valkudele. Me leidsime, et AIRE HSR/CARD domään põhjustab rakkudes apoptoosi. Me kirjeldasime esmakordselt, et AIRE-ga indutseeritud apotoosi korral translokeerub GAPDH valk tsütoplasmast tuuma. Seda leidu me detekteerisime kahes epiteeli rakuliinis, kuid ka inimese tüümuses, AIRE-positiivsetes medullaarsetes epiteelirakkudes. Kokkuvõttes, meie uuringud avardasid teadmisi AIRE valgu funktsiooni ja struktuuri kohta, mis on olulised autoimmuunhaiguste molekulaarsete mehhanismide mõistmiseks.AIRE is a transcription regulator protein for tissue-specific autoantigens. In humans, the mutations in AIRE gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), a rare autosomal recessive disease, characterized by defective immune tolerance to many self-antigens. Based on its monogenic etiology, APECED can be thought of as a model for organ-specific autoimmune diseases and thus can provide insights into the pathogenesis of autoimmunity. The expression of AIRE is found mostly in the thymus but also in the peripheral immune organs, spleen, fetal liver, and the lymph nodes. In the thymus, AIRE is expressed in medullary epithelial cells as the antigen-presenting cells that are important in the negative selection of self-reactive T cells, which in turn is required for induction of central immune tolerance. In this study we investigated the functions of AIRE protein at molecular level using biochemical methods, cell culture and flourescence microscopy. We found new protein interaction partners of AIRE: the DNA-dependent protein kinase (DNA-PK), Ku70 and Ku80. We showed that the biological importance of the interaction of DNA-PK is to phosphorylate AIRE at threonine 68 and serine 156 positions and that phosphorylation of these residues are important for AIRE transcriptional activity. We also analyzed promoter activations of the AIRE-dependent tissue-specific genes, involucrin and S100A8, and also of an interferon beta promoter, which has previously been used as a model promoter for different APECED-causing AIRE mutants. We found that most but not all of the AIRE homogeneously staining region (HSR) domain mutations inactivated AIRE transcriptional activity. In addition, a general transcriptional activator CBP did not enchance transcriptionally inactive AIRE mutants. We confirmed the correlation between transcriptional inactivity/activity of AIRE mutants and the protein fold. We discovered that HSR domain in AIRE has a caspase recruitment domain (CARD) structure, which is common among apoptotic and inflammation related proteins. We proved that this domain represents also AIRE’s apoptotic function. We described AIRE association with the cell stress and apoptosis indicator, GAPDH protein, and showed that AIRE-induced apoptosis caused GAPDH protein translocation to the nucleus. In conclusion, our studies broaden the knowledge on AIRE protein functions and help to understand the basic mechanisms behind autoimmune diseases.enautoantigeenidtranskriptsioonifaktoridautoimmuunhaigusedDNAproteiinikinaasidgeenidautoantigenstranscription factorsautoimmune diseasesDNAprotein kinasesgenesdissertatsioonidETDdissertationsväitekirjadAutoimmune Regulator protein interaction with DNA-dependent protein kinase and its role in apoptosisAutoimmunregulaator valgu interaktsioon DNA-sõltuva proteiinkinaasiga ja seos apoptoosigaThesis