Ilya KuzovkinBachynskyi, Artem2019-10-152019-10-152018http://hdl.handle.net/10062/66144Emotsionaalsete seisundite tuvastamine on väga tähtis inimese ja arvuti vahelise suhtlemise (Human-Computer Interaction, HCI) jaoks. Tänapäeval leiavad masinõppe meetodid ühe enam rakendust paljudes inimtegevuse valdkondades. Viimased uuringud näitavad, et füsioloogiliste signaalide analüüs masinõppe meetoditega võiks võimaldada inimese emotsionaalse seisundi tuvastamist hea täpsusega. Vaadates emotsionaalse sisuga videosid, või kuulates helisid, tekib inimesel spetsifiline füsiloogiline vastus. Antud uuringus me kasutame masinõpet ja heuristilist lähenemist, et tuvastada emotsionaalseid seisundeid füsioloogiliste signaalide põhjal. Meetodite võrdlus näitas, et kõrgeim täpsus saavutati juhuslike metsade (Random Forest) meetodiga rakendades seda EEG signaalile, mis teisendati sagedusintervallideks. Ka kombineerides EEG-d teiste füsioloogiliste signaalidega oli tuvastamise täpsus suhteliselt kõrge. Samas heuristilised meetodid ja EEG signaali klassifitseerimise rekurrentse närvivõrkude abil ebaõnnestusid. Andmeallikaks oli MAHNOB-HCI mitmemodaalne andmestik, mis koosneb 27 isikult kogutud füsioloogilistest signaalidest, kus igaüks neist vaatas 20 emotsionaalset videolõiku. Ootamatu tulemusena saime teada, et klassikaline Eckman'i emotsionaalsete seisundite nimekiri oli parem emotsioonide kirjeldamiseks ja klassifitseerimiseks kui kaasaegne mudel, mis esitab emotsioone valentsuse ja ärrituse teljestikul. Meie töö näitab, et emotsiooni märgistamise meetod on väga tähtis hea klassifitseerimismudeli loomiseks, ning et kasutatav andmestik peab sobima masinõppe meetodite jaoks. Saadud tulemused võivad aidata valida õigeid füsioloogilisi signaale ja emotsioonide märkimise meetodeid uue andmestiku loomisel ja töötlemisel.Emotional state recognition is a crucial task for achieving a new level of Human-Computer Interaction (HCI). Machine Learning applications penetrate more and more spheres of everyday life. Recent studies are showing promising results in analyzing physiological signals (EEG, ECG, GSR) using Machine Learning for accessing emotional state. Commonly, specific emotion is invoked by playing affective videos or sounds. However, there is no canonical way for emotional state interpretation. In this study, we classified affective physiological signals with labels obtained from two emotional state estimation approaches using machine learning algorithms and heuristic formulas. Comparison of the method has shown that the highest accuracy was achieved using Random Forest classifier on spectral features from the EEG records, a combination of features for the peripheral physiological signal also shown relatively high classification performance. However, heuristic formulas and novel approach for ECG signal classification using recurrent neural network ultimately failed. Data was taken from the MAHNOB-HCI dataset which is a multimodal database collected on 27 subjects by showing 20 emotional movie fragment`s. We obtained an unexpected result, that description of emotional states using discrete Eckman's paradigm provides better classification results comparing to the contemporary dimensional model which represents emotions by matching them onto the Cartesian plane with valence and arousal axis. Our study shows the importance of label selection in emotion recognition task. Moreover, obtained dataset have to be suitable for Machine Learning algorithms. Acquired results may help to select proper physiological signals and emotional labels for further dataset creation and post-processing.enEmotsionaalse seisundi tuvastamine füsioloogiliste signaalide baasilEmotional State Recognition Based on Physiological SignalsThesis