Tretjakov, KonstantinSemjonova, AnastassiaTartu Ülikool. Matemaatika-informaatikateaduskondTartu Ülikool. Arvutiteaduse instituut2013-09-092013-09-092011http://hdl.handle.net/10062/32978Käesolevas magistritöös on esitatud automaatse personaliseeritud pleilisti tekitaja probleemi lähenemisviiside uuring. Lisaks teoreetilise tausta lühiülevaatele me dokumenteerisime oma lähenemist: meie poolt tehtud katsed ning nende tulemused. Meie algoritm koosneb kahest põhiosast: pleilisti hindamisfunktsiooni konstrueerimine ning pleilisti genereerimisstrateegia valik. Esimese ülesande lahendamiseks on valitud Naive Bayes klassifitseerija ning 5-elemendiline MIRtoolbox tööristakasti poolt kavandatud audio sisupõhiste attribuutide vektor, mis klassiitseerivad pleilisti heaks või halvaks 82% täpsusega - palju parem kui juhuslik klassifitseerija (50%). Teise probleemi lahendamiseks proovisime kolm genereerimisalgoritmi: lohistus (Shuffle), randomiseeritud otsing (Randomized Search) ning geneetiline algoritm (Genetic Algorithm). Vastavalt katsete tulemustele kõige paremini ja kiiremini töötab randomiseeritud otsingu algoritm. Kõik katsed on tehtud 5 ning 10 elemendilistel pleilistidel. Kokkuvõttes, oleme arendanud automatiseeritud personaliseeritud pleilisti tekitaja algoritmi, mis vastavalt meie hinnangutele vastab ka kasutaja ootustele rohkem, kui juhuslikud lohistajad. Algoritmi võib kasutada keerulisema pleilistide konstrueerimiseks.enmagistritöödinformaatikainfotehnoloogiainformaticsinfotechnologyAutomaatse personaliseeritud esitusloendi generaatorAutomatic Personalized Playlist GenerationThesis