Ahman, Danel, juhendajaSobolev, IljaTartu Ülikool. Loodus- ja täppisteaduste valdkondTartu Ülikool. Arvutiteaduse instituut2025-10-202025-10-202025https://hdl.handle.net/10062/116901Lambda calculus is a model of computation that formally describes the syntax and behaviour of programs. There are many lambda calculi, each describing some aspect of programming languages; one example being æ, which focuses on describing effectful asynchronous programs. In this thesis we demonstrate how to use the method known as logical relations to show that all well-typed one-process programs in æ terminate. Such a property is called strong normalisation. The proof demonstrates that the method of logical relations is well-suited for reasoning about normalisation properties of asynchronous programs. The result shows that termination can be guaranteed for certain well-structured asynchronous programs, which might be useful in systems where reliability and predictability are critical, for instance embedded systems, real-time controllers, Internet of things devices and smart contracts.ethttps://creativecommons.org/licenses/by-nc-nd/4.0/Lambda-arvutusnormaliseeruvusloogilised relatsioonidalgebralised efektidasünkroonsusnormalisationlogical relationsalgebraic effectsasynchronybakalaureusetöödinformaatikainfotehnoloogiainformaticsinfotechnologyAsünkroonsete algebraliste efektidega programmeerimiskeelte normaliseerimisomadusedThesis