Kangro, Raul, juhendajaNäksi, RaunoTartu Ülikool. Matemaatika-informaatikateaduskondTartu Ülikool. Matemaatilise statistika instituut2013-07-032013-07-032013-06-10http://hdl.handle.net/10062/31703Diferentsiaalvõrrandid on matemaatiliseks keeleks, mille abil on võimalik kirjeldada väga paljude reaalse maailma protsesside käitumist, seda nii füüsikas, keemias, bioloogias kui ka finantsmatemaatikas. Huvitaval kombel on paljusid selliseid võrrandeid võimalik ligikaudselt lahendada nii, et simuleerime nn osakese liikumist, vaatame kuhu see jõuab ning leiame lihtsa aritmeetilise keskmise teatud suurustest, mis on arvutatud selle osakese trajektoori ja selle lõppasukoha abil. Olulist rolli mängivad töös stohhastilised diferentsiaalvõrrandid (SDV). Tavalisel diferentsiaalvõrrandil on lahendi tulevikuväärtused määratud algtingimustega, kuid SDV korral on lahendiks juhuslik protsess, see tähendab, et samadele algtingimustele vastab palju erinevaid võimalikke tulevikukäitumisi. Töö eesmärgiks on uurida, kuidas on omavahel seotud tavaliste diferentsiaalvõrrandite lahendid ja SDV lahendid. Töö on jaotatud neljaks peatükiks. Esimeses peatükis tutvume põhjalikult Browni liikumisega. Teises peatükis vaatame, kuidas kasutada Browni liikumist, et defineerida uusi juhuslikke protsesse stohhastilise diferentsiaalvõrrandi abil. Kolmandas peatükis uurima, kuidas on omavahel seotud tavaliste diferentsiaalvõrrandite lahendid ja SDV lahendid ning peatüki lõpus toome esituse diferentsiaalvõrrandi lahendist kui keskväärtusest. Neljandas peatükis viime läbi eksperimendid, et veenduda teoreetiliste tulemuste kehtivuses ja uurime viga, mis tekib sellest, et juhusliku protsessi simuleerimisel kasutame lõplikku ajasammu. Käesolevas töös esitame illustreerivaid jooniseid tulemustest, toome erinevaid näiteid kirjeldatud meetodi rakendamisest. Töös kasutan simulatsioonide läbiviimiseks programmeerimiskeelt Python versioon 3.2.3 ja tarkvarapaketti Matlab versioon 7.12.0.384.etbakalaureusetöödDiferentsiaalvõrrandite lahendamine simulatsioonide abilThesis