Gopinath, ShivasubramanianAnand, Vijayakumar2024-09-202024-09-202024https://doi.org/10.1364/OL.522319https://hdl.handle.net/10062/104849Spatial, temporal, and spectral resolutions and field-of-view are important characteristics of any imaging system. In most, if not all, it is impossible to change the above characteristics after recording a digital picture, video, or hologram. In recent years, there have been investigations on the possibilities to change the above characteristics post-recording. In this Letter, for the first time, to the best of our knowledge, we report novel recording and reconstruction methods built upon the principles of coded aperture imaging that allow changing the axial and spectral resolutions post-recording. We named this method—post-ensemble generation with Airy beams for spatial and spectral switching (PEGASASS). In PEGASASS, light from an object point is converted into Airy beams and recorded such that every recording has a unique Airy pattern. An ensemble of Airy patterns is constructed post-recording and the axial and spectral resolutions are tuned by controlling the chaos in the ensemble. The above tunability is achieved without adversely affecting the lateral resolution. Proof-of-concept experimental results of PEGASASS in 3D in both (x,y,z) and (x,y,λ) and 4D in (x,y,z,λ) are presented. We believe that PEGASASS has the potential to revolutionize the field of imaging and holography.enAttribution-NonCommercial-NoDerivs 3.0 EstoniaPost-ensemble generation with Airy beams for spatial and spectral switching in incoherent imaginginfo:eu-repo/semantics/article