
���������	
����	
������

��������� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�

�

�����������

	
��
�����������������	�

�����������
�
�
�
�

��������
�������
�
�
�
�

������������������������������ !!�

Computational Finance

Raul Kangro

Fall 2011

Contents

1 Options on one underlying 3

1.1 Definitions and examples . 3

1.2 Strange things about pricing options. 4

1.3 A stock market model, no arbitrage condition 6

1.3.1 Black-Scholes model. 6

1.3.2 Self-financing investment strategies 6

1.3.3 No arbitrage condition. 8

1.4 Itō’s formula and Monte-Carlo method for pricing European options . . 8

1.4.1 Itō’s Formula. 8

1.4.2 Estimating the parameters of BS model 9

1.4.3 Monte-Carlo method for computing the prices of European options. 14

1.5 Partial differential equation for European options 17

1.5.1 Derivation of Black-Scholes PDE. 17

1.5.2 An alternative approach to option pricing 19

1.5.3 Classification and properties of partial differential equations . . 20

1.5.4 Transformation of Black-Scholes equation to the heat equation . 21

1.5.5 Special solutions of Black-Scholes equation 22

1.6 Finite difference methods for Black-Scholes equation 23

1.6.1 The idea of finite difference methods 23

1.6.2 Explicit finite difference method 25

1.7 Basic implicit finite difference method. Crank-Nicolson method 28

1.7.1 Derivation of the basic implicit method 28

1.7.2 The stability of the basic implicit method 29

1.7.3 Derivation of the Crank-Nicolson method 30

1.7.4 Solving untransformed Black-Scholes equation 32

1.7.5 Computing the option prices with a given accuracy 34

1.8 Pricing American options . 35

1.8.1 An inequality for American options 36

1

1.8.2 Using finite difference methods for pricing American options . . 37

1.9 Pricing Asian options . 37

1.9.1 A finite difference method for pricing Asian options depending
on arithmetic average . 41

2 Options depending on two underlying stocks 44

2

Introduction

In the early 1970s, Fisher Black and Myron Scholes [1] made a major breakthrough
by deriving a differential equation that must be satisfied by the price of any derivative
security dependent on a non-dividend-paying stock. They used the equation to obtain
values for European call and put options on the stock. Their work had a huge impact
on how options were viewed in the financial world. Options are now traded on many
different exchanges throughout the world and are very popular instruments for both
speculating and risk management. Because of the popularity of derivative securities
there is a great need for good and reliable ways to compute their prices.

In order to price an option one has to complete several steps:

1. specify a suitable mathematical model describing sufficiently well the behavior of
the stock market;

2. calibrate the model to available market data;

3. derive formula or equation for the price of the option of interest;

4. compute the price of the option.

Very often the last step requires the usage of some numerical methods because usually
the explicit formulas for the price of the option is not available.

In this course we pay very little attention to the first two steps and concentrate our
attention to the last two. More precisely, there are two main approaches to complet-
ing those steps, namely probabilistic approach (where option prices are expressed as
expected values of some random variables) and Partial Differential Equations (PDE)
approach (where option prices are expressed as solutions to certain differential equa-
tions). This course is mainly about the PDE approach, although some aspects of the
probabilistic approach are also considered.

The lecture notes are self-contained and contain (together with the lab materials) all
theoretical knowledge that is required for passing the course. There is a huge number
of books where the aspects of the computational finance are discussed. For additional
reading I recommend [?, WHD]or an alternative introduction to mathematical finance
and finite difference methods, [5] for more extensive discussion of the theory and prac-
tice of computational finance, [2] for extensive treatment of Monte-Carlo methods in
finance and [3] for details of Finite Element methods.

3

Chapter 1

Options on one underlying

1.1 Definitions and examples

We adopt a nonstandard, but quite general definition of financial options

Definitsioon 1 An option is a contract giving it’s holder the right to receive in the
future a payment which amount is determined by the behavior of the stock market up
to the moment of executing the contract.

Option contracts are classified according to several characteristics including

• possible execution times (a fixed date vs a time interval),

• the number of underlying assets,

• how the value of option depends on the asset prices (depending on the price at
the execution time vs a path dependent value of the asset prices).

In order to clarify the meaning of the definition, let us look at some examples.

Example 2 The right to buy 100 Nokia shares for 400 Euros exactly after 3 months (say,
November 30th, 2011) .

This is an European (with fixed execution date) Call (the right to buy) option, which is
equivalent to the right to receive after three months the sum of 100 ·max(S(T)− 4, 0)
Euros, where S(T) denotes the price of a Nokia share at the specified date.

Example 3 The right to sell one Amazon.com share during next 6 months for $200.

This is American (with a free execution time) Put (the right to sell) option.

Example 4 The right to exchange after one year 10000 USD for Euros with the rate that is
the average of the daily exchange rates in the one year period.

The last an Asian option that is an example of path dependent options.

4

1.2 Strange things about pricing options.

If an investor makes a decision about buying or selling a financial instrument, it is
customary to consider the expected return and risk of the investment. Investment
decision is usually made based on those quantities and investor’s risk tolerance, so
there is a different “right price” for each investor. It turns out that usual thinking
models do not help to determine the right price for an option contract. In order to
clarify this point, let us consider some simple toy models for stock price behavior.

First, suppose that the at a future time T there are only two possible stock prices:

S(0) = 100

S(T) = 120

S(T) = 90

p =
0.9

p = 0.1

Assume for simplicity that the risk free interest rate is 0 (meaning that it is not possible
to ear interest by depositing money in bank and it is possible to borrow money so that
you have to pay back exactly the sum you borrowed). Let us consider and option to
buy a at time T 10 shares of stock for 99. Now the value of this option at time T is
210 if S(T) = 120 (since you can buy 10 shares for 99 when the market price is 120)
and it is worthless, if S(T) = 0. So buying the option seems to be a good investment
possibility, if the price is not too high: the expected value of the option at time T is

0.9 · 210 + 0.1 · 0 = 189.

Note also that if the probability of S(T) = 120 is 0.1, then the expected value is only
21, so the expected value of the option depends strongly on the market probabilities.
So it is natural to think that the fair price of the option should also depend on market
probabilities.

But before deciding to buy the option we can consider alternative investment possi-
bilities. It turns out that we can achieve exactly the same outcome by forming an
investment portfolio consisting form a loan of 630 and 7 shares of stock: if ST = 120,
then the value of the portfolio is 7 · 120 − 630 = 210 and if ST = 90, then the value
is 7 · 90 − 630 = 0. The cost of forming the portfolio at t = 0 is 700-630=70 (we
get 630 from the loan and have to add 70 of our own money to buy 7 shares for 100
each). So it is clear that at this market no sensible person pays more than 70 for the
option. Moreover, if there exists any person willing to buy the option for more than 70,
there is a possibility for anyone to earn money at the market without any risk of losing
anything: one should just sell the option for the price and use 70 to set up the portfolio
to cover the liabilities at time T . Such opportunities are called arbitrage opportunities
and usually it is assumed that there are no arbitrage opportunities at the market.

By similar argument we can argue, that the price of the option can not be less than 70,
so the price of the option is completely determined by the market model. Moreover, the

5

arguments we used did not depend on the probabilities of the up and down movements,
so the option price does not depend on expected value and the risk of the option
contract.

Let us consider now a similar market model with three different stock prices at time
T :

S0 = 100

ST = 120

ST = 100

ST = 90

p =
0.4

p = 0.2
p = 0.4

It is easy to check that the price of the same option considered for the previous market
model can not be larger than 70 (since the same portfolio as before requires 70 of initial
investment and is worth at least as much as the option at time T for all possible values
of S(T). It is also possible to show that the price of the option can not be less than 10
(consider setting up the portfolio with one option and -7 shares of stock). Moreover, it
is also possible to show that from the arbitrage principle it follows only that the value
of the option is between 10 and 70.

Homework exercise 1 (Deadline September 13, 2011) Show that in the case of the
last market model, for prices of option between 10 and 70 it is not possible to form
a portfolio from a bank account, stock holding (positive or negative) and by buying or
selling the option such that the initial cost of the portfolio is zero, but the value at time
T is positive for all values of S(T). (Hint: use the inequalities at time T to show that
the value of the corresponding portfolio is strictly greater than 0 at time 0).

Consider now a second option that pays 60, if S(T) = 100 and 0 otherwise. If we
consider this option separately from the first one, then by the arbitrage principle it
follows only that the price of the option is between 0 and 60. But if it is possible to
buy/sell both of those options then from the arbitrage principle it follows that the sum
of the prices of the options considered has to be 70 (try to prove it!). So there are
strong consistency requirements between the prices of different options.

Based on the two simple models we can make the following conclusions:

• Naive pricing approaches (based on the expected return and risk) do not work.

• In the case of some market models the option price is determined completely by
the model (and no arbitrage condition)

• There are market models, for which the option prices are not determined com-
pletely but prices of different options have to be consistent with each other.

6

1.3 A stock market model, no arbitrage condition

In order to use mathematics in option pricing one has to start by specifying a model
for stock price evolution and describing the conditions for trading.

1.3.1 Black-Scholes model.

A relatively simple but useful market model is so called Black-Scholes model, which
assumes that the stock price changes according to the stochastic differential equation

dS(t) = S(t)(µ(t) dt+ σ(S(t), t) dB(t)), (1.1)

where S(t) is the stock price at time t, µ is the average growth rate of the stock price, σ
is the volatility and B is the standard Brownian motion. Technically correct discussion
of the meaning of the equation is out of scope of this course but for intuitively it means
for small noninteracting time periods (ti−1, ti) we have

S(ti) ≈ S(ti−1) + S(ti−1)(µ(ti−1)hi + σ(S(ti−1), ti−1)Xi)

= S(ti−1)(1 + µ(ti−1)h+ σ(S(ti−1), ti−1)Xi),

where hi = ti − ti−1 and Xj ∼ N(0,
√
hi), j = 1, 2, . . . , N and Xi are independent

normally distributed random variables. This relation enables us to simulate sample
trajectories according to the market model. The figure 1.1 shows 5 stock price trajec-
tories illustrating the fact that future stock prices are random, so each time we compute
a trajectory, we get a different one. In addition to the market model we make several
additional simplifying assumptions:

• the risk free interest rate is a known constant r and is the same for lending and
borrowing;

• it is possible to trade continuously and with arbitrarily small fractions of a stock;

• there are no transaction costs;

• it is not possible to make riskless profit by trading on the market.

It is clear, that some of the additional assumptions do not hold in practice and that
the Black-Scholes model, at least with constant parameters µ and σ, is often not in a
very good accordance with real market behavior, but still it is a good starting point
for mathematical modeling of the market behavior.

1.3.2 Self-financing investment strategies

We call an investment strategy a rule for forming t each t in a period [t0, T] a portfolio
consisting of a deposit b(t) to a riskless bank account (if b(t) is negative, then it cor-
responds to borrowing money) and of holding η(t) shares of the stock. Both b(t) and

7

Figure 1.1: Sample trajectories of the stockprice process following Black-Scholes model

η(t) may depend on the history up to time t (including the current value) of the stock
prices but are not allowed to depend on the future values. An investment strategy is
called self-financing if the only changes in the bank account after setting up the initial
portfolio are the results of accumulation of interests of the same account, cash flows
coming from holding the shares of the stock (eg dividend payments), or reflect buying
or selling the shares of the stock required by changes of η, and if all cash flows that
come from the changes of η(t) are reflected in the bank account.

Let X(t) denote the value of a self-financing portfolio at time t. Assume that the stock
pays its holders continuously dividends with the rate D percent (realistic if the ”stock”
is a foreign currency, for usual stocks D = 0). Then in an infinitesimally small time
interval dt the value of a self-financing portfolio changes according to the equation

dX(t) = r · (X(t)− η(t)S(t)) dt+Dη(t)S(t) dt+ η(t) dS(t). (1.2)

The first term on the right hand side corresponds to the condition that all money that is
not invested in the stock, is deposited to (or borrowed from) a bank account and bears
the interest with the risk free rate r, the second term takes into account dividends and
the last term reflects the change in the value of the portfolio coming from the change in

8

the stock price. The value of a self-financing portfolio at any time t > t0 is determined
by the initial value X(t0) = X0 and the process η(t), t ∈ [t0, T].

Since nobody can borrow infinitely large sums of money, only such investment strategies
for which the value of the portfolio is almost surely bounded below by a constant, are
allowed.

1.3.3 No arbitrage condition.

In general, no arbitrage assumption states that it is not possible to make risk free
profits by investing in the market. More precisely, it should not be possible to form a
portfolio such that it does not cost any money today, the value of the portfolio is never
negative during it’s lifetime and has a positive value with nonzero probability at some
future date. We need a corollary of the general no arbitrage condition.

Lemma 5 (No arbitrage condition) If a self-financing portfolio produces exactly the
same cash flows as holding an option, then the initial value of the portfolio and the
option price have to be equal.

Proof. If the price of the option is higher then we sell the option, form the self-financing
portfolio and some money will be left for us to spend without any risk. If the option
price is lower, then we buy the option and use the opposite investment strategy (having
−η(t) shares at time t). Again some money will be left over and we can spend it without
any risk. Since such possibilities should not exist on a real market (at least for long),
the option price and the initial value of the portfolio have to be the same.2

1.4 Itō’s formula and Monte-Carlo method for pric-

ing European options

We have specified a stochastic differential equation for the stock price evolution but it
is not enough. We want also to consider functions of the stock price and differentiate
them with respect to time. It turns out, that in the case of stochastic variables the
usual rules of calculus do not hold and we need new differentiation rules (stochastic
calculus).

1.4.1 Itō’s Formula.

The following result proved by Japanese mathematician Kiyosi Itō in 1942, is of great
importance in the theory of mathematical finance.

Lemma 6 Itō ’s formula Assume that f(y, t) is a twice differentiable function of two
variables and that a stochastic process Y satisfies the stochastic differential equation

dY (t) = α(t) dt+ β(t) dB(t),

9

where α and β are continuous processes and B is the Brownian motion. Then

df(Y (t), t) =

(

∂f

∂t
(Y (t), t) +

β(t)2

2

∂2f

∂y2
(Y (t), t)

)

dt+
∂f

∂y
(Y (t), t) dY (t).

Example 7 Let us show that if µ and σ are constant then the process

S(t) = S(0) · e(µ−σ2

2
)t+σ B(t), t ∈ [0, T] (1.3)

is a solution to the equation (1.1).

Denote

f(y, t) = e(µ−
σ2

2
)t+σ y, Y (t) = B(t),

then S(t) = f(Y (t), t). Since

∂f

∂t
(y, t) = (µ− σ2

2
)f(y, t),

∂f

∂y
(y, t) = σ f(y, t),

∂2f

∂y2
(y, t) = σ2f(y, t),

then, according to Itō’s formula, we have

dS(t) =

(

(µ− σ2

2
)S(t) +

1

2
σ2S(t)) dt+ σ S(t) dB(t)

)

= S(t)(µdt+ σ dB(t)).2

Exercise 1 Compute df(B(t)) for f(y) = y2.

Exercise 2 Let Y (t) = et cos(B(t)). Compute dY (t).

1.4.2 Estimating the parameters of BS model

There are two different approaches for estimating the parameters of the market model.

1. Fitting the market model to historical data.

2. Fitting the option prices derived from a market model to the actual prices of
theoretical options.

Practitioners usually prefer the second approach since, according to the efficient market
hypothesis, the traded options should have correct prices and it is highly desirable for
an option pricing framework to produce correct prices to traded options. One has to
use the first approach if the prices of traded options are not available or if we want to
check the validity of our market model for a concrete stock. Let us discuss briefly both
approaches.

10

Fitting the historical data

For simplicity, we assume that we have available n historical observation Si, i =
1, 2, . . . , n of stock prices at equally spaced timesteps (eg closing prices).

In the case of constant parameters µ and σ we get, using the Black-Scholes model (1.1)
and Itō’s formula, that

d(lnS(t)) = (µ− σ2

2
) dt+ σ dB(t),

hence for any time moments t1 and t2 > t1 we have

ln
S(t2)

S(t1)
= (µ− σ2

2
) (t2 − t1) + σ(B(t2)− B(t1)).

Thus xi = ln Si+1

Si
are (if our assumption about the market model is correct) values of

normally distributed iid random variables, xi ∼ N((µ− σ2

2
)∆t, σ

√
∆t), where ∆t is the

time interval between observations (usually measured in years). Therefore we can find
estimates for µ and σ as follows:

σ̄ =
std(x)√

∆t
, µ̄ =

mean(x)

∆t
+

σ̄2

2
.

Unfortunately, if we test the normality of the logarithms of the quotients of the stock
prices by some well-known statistical test, then it usually turns out that we have to
reject the normality hypothesis.

As an example, let us conside the closing prices of a Cisco share. The price trajectory
is given in the Figure 1.2. From the formulas above we get (assuming 255 working days
per year)

σ̄ = 0.3506234, µ̄ = −0.1887979.

Unfortunately it is not safe to use the Black-Scholes market model with constant pa-
rameters for pricing options on Cisco stock since the statistical test tell us that we
should use the normality assumptions. For example, Shapiro-Wilk normality test (see
Wikipedia!) gives for logarithmic returns the following result:

Shapiro-Wilk normality test

data: returns

W = 0.8232, p-value = 4.712e-11

Hence, the probability to get stock prices similar to the actual ones when Black-
Scholes market model with constant coefficients holds, is extremely small (less than
0.000000000047), so it is not reasonable to believe in the validity of this simple market
model. If we do not want to assume that the parameters are constant, we may start
with approximating the market model:

S(ti)− S(ti−1)

S(ti−1)
≈ µ(ti−1) (ti − ti−1) + σ(S(ti−1), ti−1)(B(ti)− B(ti−1)).

11

time

C
lo

si
ng

 p
ric

e

2011.2 2011.3 2011.4 2011.5 2011.6

14
15

16
17

18

Figure 1.2: Closing prices of Cisco share, March 10-September 9, 2011. Source:
http://finance.yahoo.com

Next, we introduce a finite number of unknown parameters θ = (θ1, θ2, . . . , θk) and
make an assumption how the functions µ = µθ and σ = σθ depend on those parameters.
One way to find those parameters is to maximize the log-likelihood function: if Yi are
random variables with (conditional) probability density functions fi, then the log-
likelihood function of the values yi is

∑

i

ln fi(yi).

Since in our case the random variables Yi = Si−Si−1

Si−1
are according to the approxi-

mate market model normally distributed with mean µθ(ti−1)∆t and standard deviation
σθ(Si−1, ti−1)

√
∆t we have to maximize the function

f(θ) = −
∑

i

(

(Yi − µθ(ti−1)∆t)2

2σθ(Si−1, ti−1)2∆t
+ ln σθ(Si−1, ti−1)

)

.

or minimize the negative of the function. Since f is usually a quite complicated function
of the parameter vector θ, it may have several local extremum points, so one has to
be careful in accepting an output of an optimization procedure as the solution of our
parameter estimation problem.

Fitting the data of traded options

Starting from a market model we derive prices of various options. In the simplest cases
we have explicit formulas, in more complicated cases we have to solve certain equations

12

to get the option prices, but always we may thing that there is a function depending on
market parameters that gives us the option prices. Suppose that we know the current
prices V1, V2, . . . , Vm of m different options and that fi(θ) are the functions that give
the option prices for (unknown) market parameters θ. Then we have m equations:

fi(θ) = Vi, i = 1, . . . ,m.

Usually the number of unknown market parameters is much smaller than the number
of available option prices, so the system of equations is solved in the least squares sense
by minimizing the function

F (θ) =
1

2

m
∑

i=1

(fi(θ)− Vi)
2.

Again there may be several local minima, so one should check carefully a possible
candidate for the optimal solution.

Let us consider again the example of Black-Scholes market model with constant co-
efficients. It is known that in the case of this model the prices of European put and
call options with exercise date T and strike price E at time t can be computed by
Black-Scholes formulas as follows:

C(S, t, T) = Se−D(T−t)Φ(d1)− Ee−r(T−t)Φ(d2),

P (S, t, T) = −Se−D(T−t)Φ(−d1) + Ee−r(T−t)Φ(−d2),

where

d1 =
ln(S

E
) + (r −D + σ2

2
)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t

and Φ is the cumulative distribution function of the standard normal distribution.
Here D is the rate of proportional dividend payments, r is the risk free interest rate
and σ is the volatility of the stock. So if we assume that r,D, t, T are fixed then we
have functions that for any given volatility and exercise price give us the values of
corresponding options. Since options are traded on the market, the prices of standard
call and put options are available for several exercise prices. So we can try to pick the
value of σ so that we get the observed prices from Black-Scholes formula. Moreover, if
the Black-Scholes market model with constant coefficients holds, we should be able to
find a value of σ that gives the observed prices for all strike prices for which we have
data. Usually this is not the case: for each strike price we get a different value of σ (so
called volatility smile effect). If this is the case, then we can be sure that Black-Scholes
market model with constant volatility does not hold.

As a concrete example, let us consider finding the volatility from the market prices of
call options for Cisco shares. Part of the data available for 4 month options expiring on
January 20, 2012 was on September 19, 2011 as follows (source: http:/finance.yahoo.com)

E 11 12.5 14 15 16 17.5 19 20 21 22.5
Price 5.6 3.95 2.76 2.07 1.48 0.75 0.34 0.20 0.12 0.06

13

The share price was at that moment $16.26 and the share does not pay proportional
dividends, so D = 0. Since 4 months corresponds to one third of a year, we take T = 1

3

and t = 0 in the Black-Scholes formula. For the risk free interest rate we use r = 0.02.
Let us consider first the strike price E = 11, the graph of theoretical prices as a function
of the volatility is given at figure 1.3. the horizontal line indicates the observed price

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5.3

5.4

5.5

5.6

5.7

5.8

5.9

6.0

6.1

Figure 1.3: Call option price as a function of volatility for strike price E = $11

$5.6. From the graph we see that there is a single volatility that gives us the observed
price, the approximate value of the volatility is 0.59. By using a numerical solver we
get that the volatility giving us the observed price is 0.58804108.

Similarly we can find the volatilities that correspond to the other observed option
prices for different strike prices. The results obtained are given in the figure 1.4. As
we see, the volatilities that correspond to different strike prices are not equal. Thus
either Black-Scholes market model with constant volatility does not hold, or there are
arbitrage possibilities at the market. It is safer to assume that the model does not
hold, so a better model is needed for pricing real options.

14

10 12 14 16 18 20 22 24
E

0.30

0.35

0.40

0.45

0.50

0.55

0.60

si
g
m
a

Figure 1.4: Implied volatilities for different exercise prices

1.4.3 Monte-Carlo method for computing the prices of Euro-
pean options.

Suppose we know that an European option can be replicated (exactly the same outcome
can be achieved by) a self-financing trading strategy. Let us recall, that the value of a
portfolio corresponding to a self-financing trading strategy, satisfies the equation

dX(t) = r · (X(t)− η(t)S(t)) dt+Dη(t)S(t) dt+ η(t) dS(t).

Note that we can rewrite the equation in the form

d(e−rtX(t)) = η(t)e−rtS(t)((µ(t)− r +D) dt+ σ(S(t), t) dB(t)).

Consider the case µ(t) ≡ r − D. Then we have on the right hand side only the term
with dB(t) and, according to the theory of stochastic processes, the expected value of
e−rtX(t) is the same for any t, ie E(e−rtX(t)) = X(0). Therefore, if an investment
strategy replicates an option with payoff p(S(T)), then X(T) = p(S(T)) and hence the
price of the option at time t = 0 is

X(0) = E(e−rTp(S(T)),

15

hence the option price can be found by computing numerically (or analytically) the
expected value in this case.

On the other hand, we prove later that under the assumptions we made about the
stock market behavior every option can be replicated and the replication strategy does
not depend on µ. Thus we can find the correct price by taking µ = r−D in the market
model 1.1 and evaluating the expected value of the discounted payoff. Moreover, it can
be shown that even when exact replication is not possible, option prices can still be
expressed as expected values of some random variables.

One way to compute an expected value of a stochastic variable numerically is to gen-
erate n values of the variable and compute the average of the result. This is called
Monte-Carlo method.

Lemma 8 (MC error) Assume that Y1, Y2, ... is a sequence of iid random variables

with EYi = a and DYi = σ2 < ∞. Denote Hn =
∑n

i=1 Yi

n
. Then, for sufficiently large

values of n we have

P (|Hn − a| ≥ ε) ≈ 2Φ(−ε
√
n

σ
)

and hence with probability 1− α we have

|Hn − a| ≤ −Φ−1(α
2
)σ√

n
(1.4)

where Φ is the cumulative distribution function of the standard normal distribution.

Exercise 3 Derive the estimates of Lemma 8 from Central Limit Theorem.

As we see, the error behaves like 1√
n
, so the convergence of the method is quite slow.

We saw earlier (see formula (1.3)) that if the Black-Scholes model with a constant
volatility σ holds then the stock price S(T) corresponding to the trend µ = r = D is
given by

S(T) = S(0)e(r−D−σ2

2
)·T+σB(T).

Generating the prices is easy: since B(T) is normally distributed with variance T , we
can just generate values of a random variable distributed according to the standard
normal distribution, multiply those values with

√
T and use the results for B(T) in the

formula above. Thus, in this case we can use MC method to compute the prices of any
European options: we just generate the values of stock prices, compute the average of
the discounted pay-off values and estimate the error of the result by (1.4). If we want
to compute with a given accuracy, then we just have to keep generating the values of
stock prices S(T) until the error estimate is less than the desired accuracy.

Very often it is not possible to generate S(T) values that correspond exactly to the
stochastic differential equation; then it is necessary to use some approximation meth-
ods. One such method is the Euler method, where we divide the interval [0, T] into m

16

equal subintervals and use the approximations (int the case of Black-Scholes market
model)

Si+1 = Si(1 + (r −D)∆t+ σ(Si, ti)
√
∆tXi), i = 0, . . . ,m− 1,

where Si are approximations to S(i∆t), ∆t = T
m

and Xi ∼ N(0, 1). Instead of S(T)

we use Sm, thus we use Monte-Carlo method to compute an approximate value of V̂m,
where

V̂m = E[e−rTp(Sm)].

It is known that if p is continuous and has bounded first derivative (ie it is Lipshitz
continuous), then

|V − V̂m| =
C

m
+ o(

1

m
),

where C is a constant that does not depend on m and m · o(1
m
) → 0 as m → ∞. Thus,

if we use Sm instead of S(T) and use Monte-Carlo method, then the total error is

|V − V̄m,n| ≤ |V − V̂m|+ |V̂m − V̄m,n| ≤
C

m
+ o(

1

m
) + |V̂m − V̄m,n|,

where V̄m,n is computed by generating n different final stock prices Sm. The last term
is the error of the Monte-Carlo method and can be estimated easily. So, in order to
compute the option price V with a given error ε, we should choose large enough m (so
that the term C

m
is small enough, for example less than ε

2
) and then use MC method

with large enough n so that the MC error estimate is also small enough (less than ε
2
).

There is one trouble: we do not know C. There are several methods for determining
approximately it’s value:

1. Fix a value of n and choose several values of m: m1,m2,m3, . . . ,mk (very often
one chooses mi+1 = 2mi). Then if the values of m are large enough (meaning
that we can ignore the o(1

m
) term), we have

Vmi,n ≈ V +
C

mi

+ εi, i = 1, 2, . . . , k,

where εi are independent and approximately correspond to the same normal
distribution. So we have a linear regression model for determining the values of
C and the true option price V . Unfortunately the 95% confidence interval for V
is usually too wide for practical purposes, but we can use the largest absolute
value of the limits of the 95% confidence interval of C as an estimate C̄ for the
true value of |C|.

2. We use a value of m1, define m2 = 2m1 and compute Vm1,n and Vm2,n. Their
difference satisfies

Vm1,n − Vm2,n ≈ C

2m
+ ε1 − ε2,

17

where ε1 and ε2 are Monte-Carlo errors for computing V̂m1 and V̂m2 , respectively.
From here we get (how?) that with probability 1− α the estimate

|C| ≤ C̄ = 2m1(|Vm1,n − Vm2,n|+ e1 + e2),

where ei are the probability 1−α MC error estimates of the corresponding com-
putations.

Exercise 4 Prove the previous error estimate for |C|.

After we have estimated |C|, we can choose m large enough so that the term C
m

is
sufficiently small (for example 1

2
of the desired accuracy) and then choose n large

enough so that the MC error is also sufficiently small.

1.5 Partial differential equation for European op-

tions

One way to price options is to derive a partial differential equation (PDE) for the price
of the options and then solve the equations either explicitly or numerically.

1.5.1 Derivation of Black-Scholes PDE.

Consider an European option with the payoff p(S(T)). Our procedure is as follows:

1. we’ll make an assumption about what variables the option price depends on;

2. assume that the option can be replicated by a self-financing investment strategy
and derive a PDE for the option price;

3. we’ll show that the assumption was justified by using a solution to the PDE for
constructing a self-financing portfolio that replicates the option.

It is clear that the option price depends on time (or on how much is left until the
expiration date) and on the current stock price. So the first thing to try is to assume
that the option price is a function of those two variables, ie the price at time t is
v(S(t), t).

Assume that the function v is sufficiently smooth (meaning differentiable) for using
Itō’s lemma. Assume also that there exists a self-financing investment strategy that
replicates the option, then the price of the option at any time should be equal to the
value of the portfolio at that time, v(S(t), t) = X(t). Let η(t) be the number of shares
at time t that determines (with the initial value X(0)) the self-financing strategy.

We know that (see 1.2)

dX(t) = (r X(t)− (r −D) η(t)S(t)) dt+ η(t) dS(t)

18

and according to Itō’s formula we have

d(v(S(t), t) =

(

∂v

∂t
(S(t), t) + S(t)2

σ(S(t), t)2

2

∂2v

∂s2
(S(t), t)

)

dt+
∂v

∂s
(S(t), t) dS(t).

As, according to our assumptions we have v(S(t), t) = X(t), the expressions for dX(t)
and d(v(S(t), t) should also be equal. Thus, we should have

η(t) =
∂v

∂s
(S(t), t)

and

∂v

∂t
(S(t), t) +

S(t)2σ(S(t), t)

2

∂2v

∂s2
(S(t), t) = r v(S(t), t)− (r −D)S(t)

∂v

∂s
(S(t), t).

The last equality is satisfied for all values of t and S(t), if v is a function of two variables
satisfying the partial differential equation

∂v

∂t
(s, t) +

s2σ2(s, t)

2

∂2v

∂s2
(s, t) + (r −D)s

∂v

∂s
(s, t)− r v(s, t) = 0.

Now we have derived a partial differential equations for the option price. It remains to
show that we can indeed construct a replicating self-financing investment strategy for
European options.

Theorem 9 Let p : (0,∞) → [0,∞) be a locally integrable function, r the risk-free
interest rate, D the rate of continuous dividend payment of the underlying stock and
let v be the solution of the partial differential equation

∂v

∂t
+

s2σ2(s, t)

2

∂2v

∂s2
+ (r −D)s

∂v

∂s
− rv = 0, 0 ≤ t < T, 0 < s < ∞ (1.5)

satisfying the final condition

v(s, T) = p(s), 0 < s < ∞.

Assume that v is twice differentiable in the region (0,∞)× [0, T) and is bounded from
below. Then the price of the European option with the exercise date T and payoff
p(S(T)) at any time 0 ≤ t ≤ T is v(S(t), t) and the option can be replicated with a
self-financing investment strategy with the initial value X(0) = v(S(0), 0) and the stock
holding η(t) = ∂v

∂s
(S(t), t).

Proof. LetX be the value of the portfolio corresponding to the self-financing investment
strategy with the initial value X(0) = v(S(0), 0) and the stock holding of η(t) =
∂v
∂s
(S(t), t). Then, according to Itō’s Lemma we have

d(X(t)− v(S(t), t)) = (rX(t)− rη(t)S(t) +Dη(t)S(t)) dt
(

−∂v

∂t
(S(t), t)− S2(t)σ2(S(t), t)

2

∂2v

∂s2
(S(t), t)

)

dt

= r(X(t)− v(S(t), t)) dt.

19

Thus the difference X(t)− v(S(t), t) satisfies an ordinary linear homogeneous differen-
tial equation with the zero initial condition and hence X(t) = v(S(t), t) ∀t ∈ [0, T]. In
particular, we have X(T) = v(S(T), T) = p(S(T)), so the investment strategy repli-
cates the option. This proves the lemma. 2

The equation (1.5) is called Black-Scholes equation.

1.5.2 An alternative approach to option pricing

There are many market models for which it is not possible to replicate all options by
self-financing portfolios, then the previous procedure for deriving a partial differential
equation for the option pricing function does not work. A popular alternative is as
follows:

1. It is postulated that the option price can be expressed as an expected value, for
example

V = E[e−rTp(S(T))],

where S(T) follows a suitable stochastic differential equation.

2. It is shown that the expected value can be computed as a value of a function that
satisfies certain partial differential (or partial integro-differential) equation.

One result, that enables us to relate expected values with solutions of partial differential
equations is Feynman-Kac theorem.

Theorem 10 (Feynman-Kac) Assume that X(τ) is a process that satisfies

dX(τ) = α(X(τ), τ) dτ + β(X(τ), τ) dB(τ), t ≤ τ ≤ T

together with the initial condition X(t) = x. Let q(t, x) and p(x) be sufficiently well-
behaved functions (so that the the expectations below exist). Then

E[exp(−
∫ T

t

q(X(τ), τ) dτ)p(X(T))] = v(x, t),

where v is the solution of the partial differential equation

∂v

∂t
+ α(x, t)

∂v

∂x
+

β(x, t)2

2

∂2v

∂x2
− q(x, t)v = 0

satisfying the final condition v(x, T) = p(x).

Proof. Exercise for those who have taken the Martingales course. (Hint: show that if
v satisfies the equation, then exp(−

∫ s

t
q(X(τ), τ) dτ)v(X(s), s) is a martingale).2

The previous theorem has generalizations to multidimensional processes X and for
different type of stochastic differential equations for X.

Using this result it is easy to show that if an option price is computed according to
the assumption above in the case dS(t) = S(t)((r −D) dt+ σ(S(t), t) dB(t)), then the
option pricing function satisfies the Black-Scholes equation.

20

1.5.3 Classification and properties of partial differential equa-
tions

Definitsioon 11 A partial differential equation with respect to an unknown function
u is linear, if all it’s terms are products of some function (or constant) not depending
on u, and u or some partial derivative of u.

Black-Scholes equation is a linear PDE.

In the case of linear equations a linear combination of any number of solutions is also
a solution.

Definitsioon 12 The order of a PDE is the highest order of derivative of the unknown
function appearing in PDE.

The order of Black-Scholes equation is 2.

A non-complete classification of second order equations of two variables is as follows:

1. If for each independent variable there is a second order term that contains a
derivatives with respect to that variable and if the highest order terms

a(x, t)
∂2u

∂t2
+ b(x, t)

∂2u

∂x∂t
+ c(x, t)

∂2u

∂x2

are such that at a point (x, t) we have

b2(x, t)− 4a(x, t)c(x, t) > 0,

then the PDE is hyperbolic at that point. An example is the wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0.

An example of a solution of the wave equation is u(x, t) = sin(x − t) or, more
generally, u(x, t) = f(x− t), where f is an arbitrary twice differentiable function.

2. If for each independent variable there is a second order term that contains a
derivatives with respect to that variable and if the highest order terms

a(x, t)
∂2u

∂t2
+ b(x, t)

∂2u

∂x∂t
+ c(x, t)

∂2u

∂x2

are such that at a point (x, t) we have

b2(x, t)− 4a(x, t)c(x, t) < 0,

then the PDE is elliptic at that point. An example is the Laplace equation

∂2u

∂t2
+

∂2u

∂x2
= 0.

21

3. If the equation is of the form

a(x, t)
∂u

∂t
+ b(x, t)

∂2u

∂x2
+ lower order terms,

then at the points where a(x, t) 6= 0, b(x, t) 6= 0 the equation is a parabolic
equation at that point. An example is the heat equation

∂u

∂t
− ∂2u

∂x2
= 0.

An example of a solution of the heat equation is u(x, t) = e−t sin(x).

If an equation is of the same type at every point, then we say that the equation is
hyperbolic, elliptic or parabolic. Black-Scholes equation is a parabolic equation.

Some properties of parabolic equations

1. Parabolic equations are well-posed in one direction of time only: if the value of
solution at t = t0 is given, then the value of corresponding solution can be found
only for t > t0 (in the case when the coefficients of ∂u

∂t
and ∂2u

∂x2 have the same

sign) or for t < t0 (in the case when the coefficients of ∂u
∂t

and ∂2u
∂x2 have different

signs).

2. Parabolic equations are smoothing equation, the smoothness (differentiability) of
solution does not depend on the smoothness of the given initial (or final) condition
but on the smoothness of the coefficients only.

3. Parabolic equations have infinite propagation speed: if the value of the given
initial (or final) condition is changed in a neighborhood of one point only, then
the change has some effect of the solution at all other times at every point.

1.5.4 Transformation of Black-Scholes equation to the heat
equation

Using the change of variables v(s, t) = u(x, t), where x = ln s, we can transform the
equation (1.5) to the form

∂u

∂t
(x, t) + α(x, t)

∂2u

∂x2
(x, t) + β(x, t)

∂u

∂x
(x, t)− r u(x, t) = 0, (1.6)

where

α(x, t) =
σ2(ex, t)

2
, β(x, t) = r −D − σ2(ex, t)

2
.

The corresponding final condition for the function u is

u(x, T) = p(ex), −∞ < x < ∞. (1.7)

22

The equation (1.6) is a backward parabolic partial differential equation. It turns out
that if σ is a constant, then we can further transform the equation to the standard
heat equation. First, note that by defining u(x, t) = e−rτ ũ(x, τ), where τ = T − t we
get a usual parabolic PDE which does not have a term without derivatives:

∂ũ

∂τ
(x, τ) = α

∂2ũ

∂x2
(x, τ) + β

∂ũ

∂x
(x, τ).

Now the change of variables

ũ(x, τ) = w(y, η), η = ατ, y = x+ βτ

gives us the equation
∂w

∂η
(y, η) =

∂2w

∂y2
(y, η).

This is the heat equation. It is known that the solution of the heat equation has a
representation

w(y, η) =
1

2
√
πη

∫ ∞

−∞
e
− (y−ξ)2

4η w(ξ, 0) dξ.

Taking into account that

w(y, 0) = u(y, T) = v(ey, T),

v(s, t) = u(ln s, t) = e−r(T−t)ũ(ln s, T − t) = e−r(T−t)w(ln s+ (r −D − σ2

2
)(T − t),

σ2

2
(T − t))

we can now express the solution of the original black-scholes equation in an integral
form:

v(s, t) =
e−r(T−t)

√

2π(T − t)σ

∫ ∞

−∞
e
−

(ln s+(r−D−

σ2

2)(T−t)−ξ)2

2σ2(T−t) p(eξ) dξ (1.8)

Using this form it is possible to derive explicit formulas for several options.

Exercise 5 The transformations used above are not the only possible ones. Assume
that the volatility σ is constant. Find a, b such that the function w defined by u(x, t) =
eax+bτw(τ, x), where τ = T − t, satisfies the partial differential equation

∂w

∂τ
(τ, x) =

σ2

2

∂2w

∂x2
(τ, x).

1.5.5 Special solutions of Black-Scholes equation

It turns out that for both constant and non-constant volatility case the functions of
the form

v(s, t) = c1e
−r (T−t) + c2e

−D (T−t)s, c1, c2 ∈ R (1.9)

are solutions of the equation 1.5. One consequence of this is so called Put-Call parity.

23

Lemma 13 (Put-Call parity) Let P (S, t, T) and C(S, t, T) denote the values of the
European put and call options with the exercise price E and expiration time T at time
t if the stock price is S(t) = S. Then

C(S, t, T) = P (S, t, T) + e−D (T−t)S − E e−r (T−t).

Exercise 6 Prove the previous lemma by using the uniqueness of the solution of the
final value problem of BS equation.

Remark. If D = 0, then Put-Call parity relation follows directly from an arbitrage
argument even without the assumption of no transaction costs.

The special solutions are important for constructing effective numerical methods.

1.6 Finite difference methods for Black-Scholes equa-

tion

A popular class of numerical methods for solving partial differential equations is finite
difference methods, where approximate values of solutions at certain rectangular mesh
points are found by replacing partial derivatives in the PDE by finite difference approx-
imations (using only the values at the mesh points) and solving the resulting system
of equations.

1.6.1 The idea of finite difference methods

Let u be the solution of the problem (1.6), (1.7). Since in a numerical computation we
can find only finitely many numbers, we may try to compute a table of the approximate
values of u. For this we fix the minimal and maximal values of x we are interested in
(say xmin and xmax), the number m of subintervals of the time period [0, T] (this is the
number of time steps we use to get from 0 to T) and the number of subintervals n we
use in the x direction.

Denote

∆t =
T

m
, ∆x =

xmax − xmin

n

and define
tk = k∆t, k = 0, . . . ,m; xi = xmin + i∆x, i = 0, . . . , n.

Our aim is to find approximately the values uik = u(xi, tk), ie we want to form a
(m + 1)× (n + 1) table of approximate values. Let Uik be the approximate values we
write in the table. The notations are illustrated below.

24

xx0 = xmin x1 xi−1 xi xi+1 xn−1 xn = xmax
t0 = 0

t1

tk−1

tk

tk+1

tm−1

tm = T

t

U0,0 U1,0 Ui−1,0 Ui,0 Ui+1,0 Un−1,0 Un,0

U0,1 U1,1 Ui−1,1 Ui,1 Ui+1,1 Un−1,1 Un,1

U0,k−1 U1,k−1 Ui−1,k−1 Ui,k−1 Ui+1,k−1 Un−1,k−1Un,k−1

U0,k U1,k Ui−1,k Ui,k Ui+1,k Un−1,k Un,k

U0,k+1 U1,k+1 Ui−1,k+1 Ui,k+1 Ui+1,k+1 Un−1,k+1Un,k+1

U0,m−1 U1,m−1 Ui−1,m−1Ui,m−1 Ui+1,m−1 Un−1,m−1Un,m−1

U0,m U1,m Ui−1,m Ui,m Ui+1,m Un−1,m Un,m

The values of u at t = T are given by the final condition (1.7). Therefore we have

Uim = p(exi), i = 0, 1, . . . , n. (1.10)

The values corresponding to x = xmin and x = xmax will be given by some boundary
conditions discussed later.

In order to find the other values, we have to make use of the equation (1.6), where
derivatives are replaced by numerical differentiation formulas.

From the textbooks of numerical methods we can find the following approximate dif-
ferentiation rules for a sufficiently smooth (meaning enough times continuously differ-
entiable) function f :

f ′(z) =
f(z + h)− f(z)

h
+O(h), (1.11)

f ′(z) =
f(z)− f(z − h)

h
+O(h), (1.12)

f ′(z) =
f(z + h)− f(z − h)

2h
+O(h2), (1.13)

f ′′(z) =
f(z − h)− 2f(z) + f(z + h)

h2
+O(h2), (1.14)

where O(hq) denotes some function (which may be different in different formulas) that
may depend on f , z satisfying the inequality |O(hq)| ≤ const.hq for all sufficiently
small values of h. The first formula is called forward difference approximation, the

25

second is backward difference approximation and the third is the central difference
approximation of the derivative. The name of finite difference methods comes from
replacing the derivatives (that are the limit of those formulas when h goes to 0) with
approximations corresponding to some finite (small) values of h.

The same formulas can be used for approximating partial derivatives. For example, if
we want to approximate ∂u

∂x
(x, t), we consider the variable t fixed and use x in the role

of z and ∆x in the role of h in the above formulas, so applying for example (1.13) gives
us

∂u

∂x
(x, t) =

u(x+∆x, t)− u(x−∆x, t)

2∆x
+O(∆x2).

We start by deriving an explicit finite difference method (meaning that the solution of
the system of equations can be written out in an explicit form) for solving Black-Scholes
PDE.

1.6.2 Explicit finite difference method

After taking into account the final condition we still have (n + 1) · m empty spaces
in our table of approximate values. We get the values corresponding to x = xmin

and x = xmax) (or some additional equations corresponding to the values) from the
boundary conditions. This means we have to use the PDE to derive (n−1)·m additional
equations for the unknown values. The procedure for deriving those equations is the
same for all finite difference methods. Namely we write down the equation (1.6) at
(n− 1) ·m points and then approximate the derivatives at the chosen points by finite
difference formulas using the values of the unknown function u only at the points that
correspond to our table. We get different methods by choosing different points for
writing out equations and by using different finite difference approximations for the
derivatives.

In order to get an explicit method for backward parabolic equation we start by writing
out the equation (1.6) at the points (xi, tk), i = 1, . . . , (n− 1), k = 1, . . . ,m:

∂u

∂t
(xi, tk) + α(xi, tk)

∂2u

∂x2
(xi, tk) + β(xi, tk)

∂u

∂x
(xi, tk)− r u(xi, tk) = 0.

To approximate the partial derivatives of u in the previous equation we use its values
at the following grid points (surrounded by a green curve, the red circle denotes the
point where we wrote down the equation).

x

t

tk−1

tk

tk+1

xi−1 xi xi+1

26

Using the approximations (1.12), (1.13) and (1.14) for the time derivative, for the first
derivative with respect to x and for the second derivative with respect to x, respectively,
we get

∂u

∂t
(xi, tk) =

u(xi, tk)− u(xi, tk−1)

∆t
+O(∆t) =

uik − ui,k−1

∆t
+O(∆t),

∂u

∂x
(xi, tk) =

ui+1,k − ui−1,k

2∆x
+O(∆x2),

∂2u

∂x2
(xi, tk) =

ui−1,k − 2uik + ui+1,k

∆x2
+O(∆x2).

Thus the values uki of the exact solution u satisfy the relations

ui,k − ui,k−1

∆t
+ αik

ui−1,k − 2uik + ui+1,k

∆x2
+ βik

ui+1,k − ui−1,k

2∆x
− ruik +O(∆t+∆x2) = 0,

(1.15)
where

αik = α(xi, tk), βik = β(xi, tk).

The idea of the finite difference methods is that throwing away the small error term
O(∆t+∆x2) in (1.15) should cause only small errors in the results. Therefore we find
the approximate values Uik from the equations

Ui,k − Ui,k−1

∆t
+ αik

Ui−1,k − 2Uik + Ui+1,k

∆x2
+ βik

Ui+1,k − Ui−1,k

2∆x
− r Uik = 0. (1.16)

The algorithm of the explicit finite difference method.

Solving the equations (1.16) for Ui,k−1 we get

Ui,k−1 = aikUi−1,k + bikUik + cikUi+1,k, i = 1, 2, . . . , n− 1, k = 1, . . . ,m, (1.17)

where

aik =
∆t

∆x2

(

αik −
βik

2
∆x

)

,

bik = 1− 2
∆t

∆x2
αik − r∆t,

cik =
∆t

∆x2

(

αik +
βik

2
∆x

)

.

The equations (1.17) are in a very convenient form: if we know the values corresponding
to k-th column of the matrix U , then using those equations we can simply compute the
values Ui,k−1, i = 1, . . . , n − 1. In order to be able to compute all values of the table
we should additionally specify how the values of the zeroth and n-th rows should be
computed. One way to do this is to specify some functions φ1(t) and φ2(t) and define
U0k = φ1(tk), Unk = φ2(tk), k = 0, 1, . . . ,m− 1.

27

Unfortunately we do not know what are the right functions φ1 and φ2 (ideally, they
should be the values of the unknowns solution u at those boundaries) but we should
try to specify some functions that are not too far from the right values. If the choice of
the functions is not very good, then our approximate solution may have relatively large
errors close to x = xmin and x = xmax. The simplest reasonable choice is to require
that the values of the approximate solution U remain constant at the boundaries, ie

U0k = p(exmin), Unk = p(exmax), k = 0, 1, . . . ,m− 1. (1.18)

Of cause this choice introduces some errors close to the boundary, therefore we should
choose xmin and xmax so that the region of values of x we are interested in is quite far
from both of those values (but between the values). We’ll come back to the question
of choosing good boundary conditions later.

To summarize, we have derived the following explicit finite difference method for solving
the equation (1.6):

1. Fill according to (1.10) the m-th column of the table.

2. For each time step k = m,m− 1, . . . , 1

(a) Fill according to (1.17) the (k− 1)-th column, except the 0-th and the n-th
value.

(b) Compute according to (1.18) the 0-th and the n-th value of the column.

Stability of the explicit method

It turns out that the error of the approximate solution obtained by the explicit finite
difference method does not always go to zero when m and n tend to infinity. Namely,
if a certain relation between m and n values does not hold the difference between the
exact values and the approximate solutions may grow by a factor that is bigger than
one at each timestep, resulting in huge errors at the final time. If this happens, the
method is called instable.

In order to understand better the phenomenon of instability, let us consider a situation
where we have two different sets of the values Uik, i = 0, . . . , n and Ũik, i = 0, . . . , n of
the approximate solution at the k-th column. Then the values of the (k−1)-th column,
computed according to the explicit finite difference method, satisfy the equations

Ui,k−1−Ũi,k−1 = aik(Ui−1,k−Ũi−1,k)+bik(Uik−Ũik)+cik(Ui+1,k−Ũi+1,k), i = 1, 2, . . . , n−1.

Let ε be the maximal difference of the values of U and Ũ at the k-th column, then

|Ui,k−1 − Ũi,k−1| ≤ (|aik|+ |bik|+ |cik|)ε, i = 1, 2, . . . , n− 1.

If all coefficients aik, bik and cik are non-negative then, taking into account the equality

aik + bik + cik = 1− r∆t,

28

we get that the maximal error in the (k + 1)-th row is bounded by (1 − r∆t)ε. That
means that in this case the errors are not increasing and the mathod is stable. But if any
of the coefficients is negative, then the sum of the absolute values of the coefficients
may be larger than 1 and the errors in one timestep may be multiplied by a factor
that is larger than one in each of the subsequent timesteps, resulting in huge errors
at the final time. There are always some errors in numerical computations (the real
numbers are not computed exactly, the approximate solution is not exactly equal to
the theoretical one). Therefore, when implementing the method, it is important to
choose m and n so that the coefficients are all positive since otherwise the answers may
be totally inaccurate.

1.7 Basic implicit finite difference method. Crank-

Nicolson method

Explicit finite difference method is very convenient for implementation but it turned
out to have a uncomfortable feature of being unstable if one does not choose the values
of the discretization parameters m and n carefully. Next we consider some methods
that are always stable but require the solution of a system of equations at each timestep.

1.7.1 Derivation of the basic implicit method

When deriving the basic implicit finite difference method we use the equation (1.6)
at the points (xi, tk), k = 0, 1, . . . ,m − 1, i = 1, . . . , n − 1 (in comparison with the
explicit method, we use the points with t = 0 instad of t = T) and the forward difference
approximation for the time derivative:

∂u

∂t
(xi, tk) =

u(xi, tk+1)− u(xi, tk)

∆t
+O(∆t).

The derivatives with respect to x are approximated as before. This means that we
use the following points (surrounded by the blue curve) for approsimating the partial
derivatives of the equation at the point (xi, tk).

x

t

tk−1

tk

tk+1

xi−1 xi xi+1

29

After substituting in the the approximations for the derivatives and throwing away the
error terms we get

Ui,k+1 − Ui,k

∆t
+αik

Ui−1,k − 2Uik + Ui+1,k

∆x2
+βik

Ui+1,k − Ui−1,k

2∆x
−r Uik = 0, k = 1, . . . ,m, i = 1, . . . , n−1.

(1.19)
After simplifications we get the following system of equations for finding the values Uik:

aikUi−1,k + bikUik + cikUi+1,k = Ui,k+1, k = 0, 1, . . . ,m− 1, i = 1, . . . , n− 1, (1.20)

where

aik = − ∆t

∆x2

(

αik −
βik

2
∆x

)

,

bik = 1 + 2
∆t

∆x2
αik + r∆τ,

cik = − ∆t

∆x2

(

αik +
βik

2
∆x

)

.

In order to find the values Uik, we have to fix suitable boundary conditions at x = xmin,
x = xmax and solve step-by-step the systems of equations for Ui,m−1, i = 0 . . . , n,
Ui,m−2, i = 0 . . . , n, . . . , Ui0, i = 0 . . . , n. The errors of the finite difference ap-
proximation is O(∆t + ∆x2) (there is an additional error coming from specifying the
boundary conditions).

1.7.2 The stability of the basic implicit method

We show that the basic implicit method is stable under quite general assumptions
about the coefficients.

Lemma 14 If bik ≥ 0, aik ≤ 0 and cik ≤ 0, k = 0, . . . ,m− 1, i = 1, . . . , (n− 1), then
the basic implicit method is stable.

Proof. Suppose Uik and Ũik both satisfy the same boundary conditions and the equation
(1.20)for some k ∈ {0, 1, . . . ,m− 1} and that |Ui,k+1 − Ũi,k+1| ≤ ε ∀i. Denote

Ei = Uik − Ũik, i = 0, . . . , n.

Denote by M the maximal value of |Ei|, i = 0, . . . , n. We want to show that M ≤ ε;
this shows the stability of the system. Since both Uik and Ũik satisfy (1.20), their
difference also satisfies the system. We write the equation for the difference in the
form

bikEi = Ui,k+1 − Ũi,k+1 − aikEi−1 − cikEi+1.

By taking absolute values of both sides and using properties of the absolute value, we
get

bik|Ei| ≤ ε− aik|Ei−1| − cik|Ei+1|.

30

Here we used all of the assumptions of the lemma. We can make the right hand side
larger, by replacing the absolute values of Ei−1 and |Ei+1| with the maximal value M :

bik|Ei| ≤ ε− aikM − cikM.

The last inequality holds for all i = 1, . . . , n− 1. Choose the value of i ∈ {1, . . . , n− 1}
such that |Ei| = M . In the case of that i we have

bikM ≤ ε− aikM − cikM,

hence
(aik + bik + cik)M ≤ ε.

But aik + bik + cik = 1 + r∆t, hence we have shown that

M ≤ ε

1 + r∆t
< ε.

This proves the lemma. 2 From the formulas of the coefficients it is easy to see, that
the validity of the stability conditions does not depend on m and that under quite
general assumptions about α and β the conditions hold for sufficiently large values of
n.

1.7.3 Derivation of the Crank-Nicolson method

One problem with the numerical methods considered so far is that their accuracy with
respect to time (first order accuracy, O(∆t)) is lower than with respect to the x variable
(second order accuracy, O(∆x2)). This means that if we want to reduce the error four
times, we have to increase the value of m four times and the value of n two times,
resulting in 8 times longer computation time. It would be much nice to have second
order accuracy with respect to the t variable, too.

The low accuracy of the explicit and basic implicit methods with respect to time comes
from the fact that both forward and backward difference (used for approximating the
derivative with respect to t) have the first order accuracy at the points (xi, tk) where we
wrote down our partial differential equation. But, taking into account that the central
difference approximates a derivative with the second order accuracy, the finite difference
approximation ∂u

∂t
≈ uk+1,i−uk,i

∆t
is of the order O(∆t2) at the point (xi, tk +

1
2
∆t). This

gives the idea to try to get a better approximation of the partial differential equation
by writing the equation out at those points before approximating the derivatives.

Denote tk+ 1
2
= tk +

∆t
2
. Let us use the following steps for deriving a finite difference

method for our equation:

1. Write the equation (1.6) out at the points

(xi, tk+ 1
2
), k = 0, 1, . . . ,m− 1, i = 1, . . . , n− 1)

31

and use the approximation

∂u

∂t
(xi, tk+ 1

2
) =

uk+1,i − uk,i

∆t
+O(∆t2)

for the time derivative.

2. Approximate u and it’s partial derivatives with respect to x at (xi, tk+ 1
2
) with the

average values of those quantities at the points (xi, tk+1) and (xi, tk), ie use the
approximations

u(xi, tk+ 1
2
) =

1

2
(u(xi, tk+1) + u(xi, tk)) +O(∆t2),

∂u

∂x
(xi, tk+ 1

2
) =

1

2
(
∂u

∂x
(xi, tk+1) +

∂u

∂x
(xi, tk)) +O(∆t2),

∂2u

∂x2
(xi, tk+ 1

2
) =

1

2
(
∂2u

∂x2
(xi, tk+1) +

∂2u

∂x2
(xi, tk)) +O(∆t2)

and after that, replace the derivatives with the usual finite difference approxima-
tions.

3. Throw away the error terms and reorganize the equations so that the terms
corresponding to t = tk are to the left of the equality and the terms corresponding
to t = tk+1 are on the right-hand-side of the equation.

After carrying through those steps we get a finite difference method of the form.

aikUi−1,k + bikUik + cikUi+1,k = dikUi−1,k+1 + eikUi,k+1 + fikUi+1,k+1.

Schematically each equation involves the following grid points (red circle denotes the
point where equation is written down, blue curve is around the grid points used in the
corresponding discretized equation).

x

t

tk−1

tk

tk+1

xi−1 xi xi+1

(xi, tk + ∆t

2
)

The error of the method (called Crank-Nicolson method) is of the order O(∆t2 +∆x2)

Homework exercise 2 (Deadline November 8, 2011) Find the formulas for the coef-
ficients aik, bik, . . . , fik of the Crank-Nicolson method. Present full derivation (starting
from formulating the differential equation and definition of gridpoints).

32

This method is used similarly to the basic implicit method: the values of Uik are found
step-by-step starting from k = m − 1, solving for each k a three-diagonal system of
equations.

Extra reading: solving three-diagonal systems of equations

Although we use in computer labs predefined functions for solving systems of equations, it
is quite easy to implement solvers for three-diagonal systems of equations arising in finite
difference equations for Black-Scholes equation.

Consider a system of equations

B1y1 + C1y2 = F1,

A2y1 +B2y2 + C2y3 = F2,

A3y2 +B3y3 + C3y4 = F3,

.

An−1yn−2 +Bn−1yn−1 = Fn−1,

where Ai, Bi, Ci and Fi are some numbers and y1, . . . , yn−1 are unknowns. The process of
solution of such systems is quite simple: first we eliminate from all equations (starting from
the second one) the terms with coefficients Ai. This gives us a system where in each equation
except the last one are two unknowns; the last one has only one unknown. After that we
can compute the values of yi starting from the last one (from the last equation), then the
one before the last and so on, finishing with the value of y1. More precisely, the equations
after the elimination of the Ai terms are of the form B̄iyi + Ciyi+1 = F̄i, i = 1, . . . , n − 2,
B̄n−1yn−1 = F̄n−1, where

B̄1 = B1, F̄1 = F1,

B̄i = Bi −
Ai

B̄i−1
Ci−1, F̄i = Fi −

Ai

B̄i−1
F̄i−1, i = 2, . . . , n− 1.

The computation of the values of the solution of the system goes then as follows:

yn−1 =
F̄n−1

B̄n−1
,

yi =
F̄i − Ciyi+1

B̄i

, i = n− 2, . . . , 1

In implementation it is useful to notice that if we want to solve the same system of equations

with many different right-hand-side values then we need only the values of B̄i that have to be

computed only once.

1.7.4 Solving untransformed Black-Scholes equation

There are several problems with using the logarithmic transformation x = ln s before
solving the Black-Scholes equation numerically. First, we get the values of the solution
for stock prices that are unevenly spaced (at places Si = exi) and this is not very good

33

if we want to form a table of option prices corresponding to evenly spaced intervals
in the stock price; computing approximations for the derivatives is also more difficult.
Second, this transformation makes our solution region doubly infinite while before the
transformation we had a boundary at S = 0. This means that we have to introduce two
artificial boundaries while for untransformed equation it would be enough to specify
only one artificial boundary s = Smax. Therefore it makes sense to try to solve the
Black-Scholes equation without the logarithmic change of variables.

Recall that the option price satisfies the Black-Scholes partial differential equation

∂v

∂t
+ α(s, t)

∂2v

∂s2
+ β(s)

∂v

∂s
− r u, 0 < t ≤ T, s > 0 (1.21)

together with the final condition

v(s, T) = p(s), s > 0.

Here

α(s, t) =
s2σ2(s, t)

2
,

β(s) = (r −D)s.

Notice that the equation (1.21) is of the same form as (1.6), only instead of x we have
s and the final condition and the values of the coefficients are computed differently.
This means that if we consider finite difference methods for finding the values of the
function v at the points (si, tk), where si = i · Smax

n
), tk = k · T

m
,, we can use the formulas

for the coefficients we derived for (1.6) by changing xi with si and ∆x with ∆s = Smax

n
.

Thus, we can use any of the methods derived so far without any additional effort for
finding formulas for the coefficients.

Notice that if we take s = 0 in the equation (1.21) then we get an ordinary differential
equation ∂v

∂t
(0, t) = r v(0, t) which has the solution

v(0, t) = p(0)e−r(T−t).

Therefore we have an exact boundary condition at s = 0 so we have to specify only a
condition for the artificial boundary s = Smax. The usual boundary conditions are:

• v(Smax, t) = p(Smax), 0 ≤ t < T. This condition can always be used but is rela-
tively crude (meaning it introduces relatively large errors close to the boundary).

• If the payoff function p is linear from some point to infinity, p(s) = k1 + k2s, s ≥
Smax, then the boundary condition

v(Smax, t) = k1e
−r(T−t) + k2e

−D(T−t)Smax

corresponding to the special solution with the same final values gives usually
much better results.

34

1.7.5 Computing the option prices with a given accuracy

In practical situations when one wants to compute option prices numerically, it is not
enough just to get a value of the approximate solution. It is very important to know
how to compute the value with a given accuracy. There are three sources of errors in
using finite difference methods for computing option prices:

• the placement of artificial boundaries;

• the form of artificial boundary conditions used;

• the discretization error controlled by the parameters m and n.

There are known some theoretical estimates for the error caused by the artificial bound-
ary conditions that allow one to choose the placement of the artificial boundary (for a
given boundary condition) so that this component of error is less that a given number
before starting numerical computations. Then one has to estimate only the discretiza-
tion error when computing the option prices. Unfortunately those estimates are quite
complicated, therefore we adopt a simple (although more time-consuming) approach
in this course.

Suppose we want to find a table of the prices of an European option so that the maximal
error for the stock prices in the interval s ∈ [s1, s2] was less that ε. When using a finite
difference method for the untransformed equation, we have to fix only one artificial
boundary; a good starting point is to take smax = 2 · s2 (if σ is large or the time period
is long, it may make sense to take larger value for smax). Our procedure is as follows:

1. Solve the problem with a finite difference method and estimate the error by
Runge’s method, until the (estimated) finite difference discretization error is less
than ε

2
.

2. Increase the value of smax two times (multiply it by 2) and solve the problem
with finite difference method with the same ∆t and ∆s as before. If the solution
changes (in the region of interest) by more than ε

4
then go back to step one.

Otherwise we have obtained the solution with the desired accuracy.

In order to follow the instructions, one has to know how to estimate the discretization
error by Runge’s method.

Runge’s error estimate

Usually a numerical procedure gives us the result with some error that we do not know:

result1 = exact+ error1.

35

Very often we can rerun the numerical procedure with some other input parameters so
that the error is (approximately) reduced by a certain factor q > 1: we get

result2 = exact+ error2 ≈ exact+
error1

q
.

Then, by subtracting the second equation from the first one and reorganizing the terms,
we get an estimate for the error of the second computation:

error2 ≈
result1 − result2

q − 1
.

This is called Runge’s error estimate.

In the case of finite difference methods we have considered so far, the (formal) error
estimate is O(∆t + ∆s2) (for the basic implicit method) or O(∆t2 + ∆s2) in the case
of Crank-Nicolson method. Assuming that the actual error behaves according to the
estimate (the leading, meaning the most slowly decreasing term in the error expansion
is shown in the estimate), the error is reduced four times, if we reduce ∆s two times
and ∆τ either four times (in the case of the basic implicit method) or two times (for
Crank-Nicolson method). So, computing the numerical results first with n = n0, m =
m0 (giving us result1) and then with n = 2n0, m = 4m0 in the case of the basic
implicit method or m = 2m0 for Crank-Nicolson (giving us result2), we can use the
Runge’s estimate with q = 4 to estimate the error at the common points of the two
computation. This means that if the computed option prices corresponding to result1
are Uik, k = 0, . . . ,m0, i = 0, . . . , n0 and the option prices corresponding to result2 are
Wik, k = 0, . . . ,m1, i = 0, . . . , 2n0 (where m1 = 4m0 for basic implicit and m1 = 2m0

for Crank-Nicolson method), we estimate the discretization error as the maximum of
the quantities

|Uik −Wm1
m0

k,2i|
3

.

If we are interested only in option values corresponding to t = 0, then we can estimate
the discretization error by those quantities corresponding to k = 0.

Remark. Actually, the formal error estimates we have been using are correct only
if the payoff function is sufficiently many times (at least two times) continuously dif-
ferentiable. In the case of usual financial payoff functions (which have discontinuous
derivatives) the error is not reduced by four but by a number between 2 and 4. There-
fore, if we want to be more confident that the actual error is smaller than the estimated
error, we should divide the difference of U and W by 2 or by 1 instead of three.

1.8 Pricing American options

American options, which give the holder the right to exercise the option at any time
before the expiration time, are very popular and attractive for both buyers of the

36

options and writers of the options. Buyers like the additional freedom compared to
European options and the writers (sellers) like the possibility to earn extra money if
the owner of the option does not choose the optimal time for exercising it.

1.8.1 An inequality for American options

It is clear that the price of an American option is never less than the price of the
corresponding European option, so we have a lower bound on the option value. The
following lemma allows us to obtain upper bounds.

Lemma 15 If continuous and in the region (s, t) ∈ (0,∞)× [0, T) two times continu-
ously differentiable function w(s, t) satisfies the inequalities

∂w

∂t
+

s2σ2(s, t)

2

∂2w

∂s2
+ (r −D)s

∂w

∂s
− rw ≤ 0, 0 ≤ t < T, 0 < s < ∞

and
w(s, t) ≥ p(s),

then the price v(s, t) of the american option with the expiration date T and payoff
function p satisfies the inequality v(s, t) ≤ w(s, t) ∀(s, t) ∈ 0 ≤ t < T, 0 < s < ∞.

Proof. Fix t0 ∈ [0, T) and let s0 = S(t0). Using the investment strategy η(t) =
∂w
∂s
(S(t), t) with the initial wealth X(t0) = w(s0, t0) we get a portfolio which value

X(t) satisfies the inequality

d(X(t)− w(S(t), t)) =

(

r X(t)− r S(t)
∂w

∂s
(S(t), t) +DS(t)

∂w

∂s
(S(t), t)

−∂w

∂t
(S(t), t)− S(t)2σ2(S(t), t)

2

∂2w

∂s2
(S(t), t)

)

dt

≥ r(X(t)− w(S(t), t)) dt.

Hence
d[e−rt(X(t)− w(S(t), t))] ≥ 0,

therefore also
∫ t

t0

d[e−rτ (X(τ)− w(S(τ), τ))] = e−rt(X(t)− w(S(t), t)) ≥ 0 ∀t ∈ [t0, T].

This means that the value of the portfolio at any time t satisfies the inequality X(t) ≥
w(S(t), t) ≥ p(S(t)). Thus, at any time t0, using the sum w(S(t0), t0) we can form a
self-financing portfolio which at any future time is at least as valuable as the option,
therefore the option price can not be larger than w(S(t0), t0).2

A corollary of the result is that the price of the European call option on a non-dividend
paying stock is equal to the price of the same American option.

It can be shown that the price of an American option at each point is either equal to
the payoff function or satisfies the Black-Scholes differential equation.

37

Lemma 16 The price of an american option with the payoff function p is a function
of two variables t and s satisfying the following complementarity problem

Lv(t, s) :=
∂v

∂t
+

s2σ2

2

∂2v

∂s2
+ (r −D)s

∂v

∂s
− rv ≤ 0 0 ≤ s < T, s ≥ 0, (1.22)

v(s, t) ≥ p(s), 0 ≤ s ≤ T, s ≥ 0, (1.23)

Lv(s, t) (v(s, t)− p(s)) = 0, 0 ≤ s < T, s ≥ 0. (1.24)

1.8.2 Using finite difference methods for pricing American op-
tions

Let us consider american options with payoffs that depend only on the stock price at
the time of exercising the option. Then the simplest possibility to compute the prices
of american options is to modify a finite difference code of computing the values of
European options so that at the end of each timestep we take the maximum of the
computed values of U and the payoff function:

Uik := max(Uik, p(si)), i = 1, . . . , n.

This introduces additional error of the order O(∆t), therefore modified Crank-Nicolson
method does not converge faster than the basic implicit method.

1.9 Pricing Asian options

Asian options are options that depend on the the average stock price. There are
two basic types of averages - arithmetic and geometric average, and the average can
be compounded discretely (eg once a day) or continuously. We consider continuously
compounded averages. Continuously compounded arithmetic average of the stock price
over the period [0, T] is

A =
1

T

∫ T

0

S(t) dt,

the geometric average over the same period is

G = e
1
T

∫ T

0 ln(S(t)) dt.

Both of the averages give a value that is between the minimal and maximal stock prices
over the period and it can be shown that the geometric average is never larger than
the arithmetic average. There are four basic types of Asian options derived from the
european put and call options. If the strike price E of european options is replaced in
the payoff function by an average stock price, we get average strike put/call options. If
the stock price itself is replaced by an average stock price, we get average price put/call
options. Other types of payoff functions depending on the final stock price and the
average stock price can be considered.

38

In order to derive partial differential equations for the prices of Asian options, we need
a more general version of Itō′s lemma.

Lemma 17 Let Y1(t) and Y2(t) be two stochastic processes satisfying stochastic differ-
ential equations

dYi(t) = αi(Y1(t), Y2(t), t) dt+ βi(Y1(t), Y2(t), t) dBi(t), i = 1, 2,

where B1 and B2 are brownian motions with correlation ρ (meaning that (B1(t2) −
B1(t1), B2(t2)− B2(t1)) ∼ N(0, (t2 − t1)

(

1 ρ

ρ 1

)

) for all t1, t2, t1 < t2). Then

df(t, Y1(t), Y2(t)) =
∂f

∂t
dt+

∂f

∂y1
dY1(t) +

∂f

∂y2
dY2(t)+

(

β2
1

2

∂2f

∂y12
+ ρβ1β2

∂2f

∂y1 ∂y2
+

β2
2

2

∂2f

∂y22

)

dt

for all sufficiently smooth (having all needed partial derivatives) functions f .

Since arithmetic average can be expressed in terms of the integral of the stock price,
let us introduce a new variable I(t):

I(t) =

∫ t

0

S(τ) dτ.

Let us derive now the partial differential equation for the price of Asian options in the
cas of arithmetic average. The scheme is as before:

1. Make an assumption about what the option price depends on;

2. Assume that the option can be replicated by a self-financing portfolio;

3. use Ito’s lemma for deriving the partial differential equation by requiring that the
differential of the stock price and the differential of the value of the replicating
portfolio to be equal.

It is clear that in the case of arithmetic average the option price depends on the current
stock price, time and the integral of the stock price (since the average can be expressed
in terms of the integral). Therefore assume that the Asian option price is a function
of t, s and I, v = v(t, s, I). In order to find differential of v(t, S(t), I(t)) we note that
I(t) satisfies

dI(t) = S(t) dt+ 0 dB2(t),

39

so, according to Lemma 17, we have

dv(S(t), I(t), t) =
∂v

∂t
(S(t), I(t), t) dt+

∂v

∂s
(S(t), I(t), t) dS(t) +

∂v

∂I
(S(t), I(t), t) dI(t)

+
S(t)2σ2

2

∂2v

∂s2
(S(t), I(t), t) dt

=

(

∂v

∂t
(S(t), I(t), t) + S(t)

∂v

∂I
(S(t), I(t), t) +

S(t)2σ2

2

∂2v

∂s2
(S(t), I(t), t)

)

dt

∂v

∂s
(S(t), I(t), t) dS(t).

Recall, that the value of the self-financing portfolio corresponding to holding η(t) stocks
at any time t satisfies the equation

dX(t) = r(X(t)− η(t)S(t)) dt+Dη(t)S(t) dt+ η(t) dS(t).

If the asian option can be replicated, then the value of the corresponding self-financing
portfolio is equal to the option price and the differentials of the option price and the
value of the portfolio have to be the same. From the equality of dv(t, S(t), I(t)) and
dX(t) we get that η(t) = ∂v

∂s
(t, S(t), I(t)) and that the optio price has to satisfy the

differential equation

∂v

∂t
+

s2σ2

2

∂2v

∂s2
+ (r −D)s

∂v

∂s
+ s

∂v

∂I
− rv = 0.

It is actually possible to reverse the derivation of the partial differential equation and
to prove the following result.

Theorem 18 Under the assumption of the validity of the Black-Scholes market model
the price v of an Asian option depending on continuously compounded arithmetic av-
erage satisfies the equation

∂v

∂t
+

s2σ2

2

∂2v

∂s2
+ (r −D)s

∂v

∂s
+ s

∂v

∂I
− rv = 0, 0 ≤ t < T, s, I ≥ 0 (1.25)

and the final condition

v(s, I, T) = p(s,
I

T
),

where p is the payoff function (the owner receives at the final time the payoff p(S(T), A),
where A is the arithetical average of the stock price over the period [0,T]). The price
of the option at any time t ∈ [0, T] is given by v(S(t),

∫ t

0
S(τ) dτ, t) and the option is

replicated with the self-financing strategy holding η(t) = ∂v
∂s
(S(t),

∫ t

0
S(τ) dτ, t) stocks at

any time t ∈ [0, T].

Proof. Exercise for the reader.2

40

The derivation of the equation for the Asian option depending on the geometric average
is similar (with I denoting the integral of logarithm of the stock price); the resulting
equation has, as the only difference, the coefficient ln s in front of the term with ∂v

∂I
.

Since the options depending on the geometric average are less common, we do not con-
sider them further in the course. We’ll end our discussion of Asian options depending
on the geometric average with the remark that in the case of constant volatility there
exist exact formulas for several types of options.

Exercise 7 Derive (with explanations) the partial differential equation and the final
condition for pricing Asian options depending on geometric average.

As in the case of European options, it is useful to know some special solutions of the
equation 1.25. Let us look for special solutions that are linear with respect to the
variables s and I. So we look at solutions of the form

v(s, I, t) = φ1(t) + φ2(t) s+ φ3(t)I.

Substituting this guess into the equation (1.25) we get

φ′
1(t) + φ′

2(t)s+ φ′
3(t)I + (r −D)sφ2(t) + sφ3(t)− r(φ1(t) + φ2(t) s+ φ3(t)I) = 0.

Since this equality has to hold for all values of s and I the constant term, the coefficient
of s and the coefficient of I have to be equal to 0. Thus we get a system of ordinary
differential equations:











φ′
1(t) = r φ1(t),

φ′
2(t) = Dφ2(t)− φ3(t),

φ′
3(t) = r φ3(t).

Solving this system of equations we get in the case r 6= D a family of solutions of the
form

v(s, I, t) = C1e
−r(T−t) + e−D(T−t)

(

C2 − C3
e−(r−D)(T−t)

r −D

)

s+ C3 e
−r(T−t)I

and in the case r = D a family of solutions of the form

v(s, I, t) = C1e
−r(T−t) + e−r(T−t) (C2 + C3(T − t)) s+ C3 e

−r(T−t)I.

This special solutions allow us to obtain put-call parities for Asian options.

Recall that there are two kinds of put/call options of Asian type: average strike options
and average price options. Let us derive a put/call relationship for average strike
options.

Since the payoff of the average strike call is max(s−A, 0) and the payoff of the average
strike put is max(A − s, 0), the portfolio corresponding to buying one average strike
call and selling (writing) one average strike put gives the holder at the final time the
income S(T) − A, where A is the continuously computed arithmetic average of the

41

stock price. This means that if C(s, I, t) is the function giving the value of the call
option and P (s, I, t) corresponds to the put option, then

C(s, I, T)− P (s, I, T) = s− I

T
.

Since the equation (1.25) is a linear equation and both C and P are solutions of
this equation, the difference is also a solution of the equation satisfying a linear final
condition. Since linear final conditions correspond to special solutions, the difference of
the call and put value is given by the formula of the special solution with the constants
C1 = 0, C3 = − 1

T
, C2 = 1 − 1

T (r−D)
(if r 6= 0) or C2 = 1, if r = D. Thus, in the case

r 6= D we have

C(s, I, t) = P (s, I, t) + e−D(T−t)

(

1 +
e−(r−D)(T−t) − 1

T (r −D)

)

s− e−r(T−t)

T
I

and in the case r = D we have

C(s, I, t) = P (s, I, t) + e−r(T−t)

(

1− (T − t)

T

)

s− e−r(T−t)

T
I.

1.9.1 A finite difference method for pricing Asian options de-
pending on arithmetic average

In order to solve the equation (1.25) numerically, we introduce artificial boundaries
I = Imax and s = Smax and derive equations for determining approximate values of the
option price at the points (si, Ij, τk), where

τk = k · T
m
, si = i · Smax

ns

and Ij = j · Imax

nI

for some natural numbers m,ns, nI . Here τ denotes the remaining lifetime of the option
and the equation (1.25) is, after the change of the variable τ = T − t, in the following
form:

∂u

∂τ
=

s2σ(s, I, T − τ)2

2

∂2u

∂s2
+ (r −D)s

∂u

∂s
+ s

∂u

∂I
− ru.

Denote by Uk
ij the approximate values of the option price at the point (si, Ij, τk). In

order to derive equations for determining the approximate values, let us use the PDE at
the points si, Ij+ 1

2
, (τk− 1

2
) = (si, Ij +

1
2
∆I, τk−1 +

1
2
∆τ), where ∆τ = T

m
and ∆I = Imax

nI
.

42

Instead of the partial derivatives, we use the following approximations:

∂u

∂τ
(si, Ij+ 1

2
, τk− 1

2
) =

1

2

(

∂u

∂τ
(si, Ij, τk− 1

2
) +

∂u

∂τ
(si, Ij+1, τk− 1

2
)

)

+O(∆I2)

=
uk
i,j − uk−1

i,j

2∆τ
+

uk
i,j+1 − uk−1

i,j+1

2∆τ
+O(∆τ 2 +∆I2),

∂u

∂s
(si, Ij+ 1

2
, τk− 1

2
) =

1

2

(

∂u

∂s
(si, Ij, τk) +

∂u

∂s
(si, Ij+1, τk−1)

)

+O(∆τ 2 +∆I2)

=
uk
i+1,j − uk

i−1,j

4∆s
+

uk−1
i+1,j+1 − uk−1

i−1,j+1

4∆s
+O(∆τ 2 +∆s2 +∆I2),

∂2u

∂s2
(si, Ij+ 1

2
, τk− 1

2
) =

1

2

(

∂2u

∂s2
(si, Ij, τk) +

∂2u

∂s2
(si, Ij+1, τk−1)

)

+O(∆τ 2 +∆I2)

=
uk
i−1,j − 2uk

ij + uk
i+1,j

2∆s2
+

uk−1
i−1,j+1 − 2uk−1

i,j+1 + uk−1
i+1,j+1

2∆s2
,

u(si, Ij+ 1
2
, τk− 1

2
) =

1

2
(uk

ij + uk−1
i,j+1) +O(∆τ 2 +∆I2),

∂u

∂I
(si, Ij+ 1

2
, τk− 1

2
) =

1

2

(

∂u

∂I
(si, Ij+ 1

2
, τk−1) +

∂u

∂I
(si, Ij+ 1

2
, τk)

)

+O(∆τ 2)

=
uk
i,j+1 − uk

i,j

2∆I
+

uk−1
i,j+1 − uk−1

i,j

2∆I
+O(∆τ 2 +∆I2).

After substituting those approximations to the PDE and throwing away the error terms,
we get the following equations for the approximate values of the option prices:

akijU
k
i−1,j + bkijU

k
ij + ckijU

k
i+1,j = dkijU

k−1
i−1,j+1 + ekijU

k−1
i,j+1 + fkijU

k−1
i+1,j+1

+ gkij(U
k
i,j+1 − Uk−1

i,j).

where (using the notation ρ = ∆τ
∆s2

)

akij =
ρ

4
(−s2iσ

2(si, Ij+ 1
2
, T − τk− 1

2
) + (r −D)si∆s),

bkij =
1

2

(

1 + ρs2iσ
2(si, Ij+ 1

2
, T − τk− 1

2
) +

si∆τ

∆I
+ r∆τ

)

,

ckij = −ρ

4
(s2iσ

2(si, Ij+ 1
2
, T − τk− 1

2
) + (r −D)si∆s),

dkij = −akij

ekij =
1

2

(

1− ρs2iσ
2(si, Ij+ 1

2
, T − τk− 1

2
) +

si∆τ

∆I
− r∆τ

)

,

fkij = −ckij

gkij =
1

2

(

−1 +
si∆τ

∆I

)

.

If σ does not depend on t and I, then the coefficients a, b, . . . , g depend only on the
index i.

43

The equations for the approximate values can be viewed as a three-diagonal system
for finding the values of Uk

ij, if the values corresponding to the level τ = τk−1 and the
values Uk

i,j+1, i = 0, . . . , ns have been found earlier.

The values of U0,i,j can be found from the initial condition:

U0
i,j = p(si,

Ij

T
), i = 0, . . . , ns, j = 0, . . . , nI .

At the boundary S = 0 we have the exact boundary condition u(0, I, τ) = p(0, I
T
)e−rτ ,

hence

Uk
0,j = p(0,

Ij

T
)e−rτk , k = 1, . . . ,m.

In order to solve the system of equation for Uk
ij we have to specify boundary condi-

tions at the boundaries I = Imax and S = Smax. There are a few possible boundary
conditions one can specify at those boundaries:

• If the payoff function is piecewise linear, then we may take maximum of the
corresponding special solution and 0 at the boundaries.

• Use the boundary condition that corresponds to S remaining constant at the
boundary; in that case the value at the boundary corresponds to the function
e−rτp(s, I+τs

T
).

In the case of average price call and put options it can be shown that we can choose
Imax = E · T and the exact boundary condition at I = Imax is (assuming r 6= D) 0 in
the case of average price put and is given by

u(τ, s, Imax) =
e−Dτ

(r −D)T
(1− e−(r−D)τ) s

for average price call option.

The procedure for solving the option pricing equation is as follows.

1. Fill in the values for U0
ij, i = 0, . . . , ns, j = 0, . . . , nI , using the payoff function.

2. For each k = 1, . . . ,m

(a) Apply the boundary conditions.

(b) For each j = nI−1, . . . , 0 solve the three-diagonal system for values Uk
ij, i =

1, . . . , ns − 1.

If we need only the option price at t = 0, then it is not necessary to store the full
matrix U of approximate option prices; we need only two levels, Uold corresponding
to τ = τk−1 that is known and Unew corresponding to the current level τ = τk. At the
beginning Uold is computed usng the initial condition and at the end of each timestep
the values of Unew are copied to Uold.

44

Chapter 2

Options depending on two
underlying stocks

Sometimes it is of interest to consider options whose payoff functions depend on more
than one stock prices. A few examples of popular so called rainbow options:

• Dual Put option, where the owner has the right to sell one of the two underlying
stocks at the exercise time T : p(s1, s2) = max(E1 − s1, E2 − s2, 0);

• Dual Strike option, where the owner has the right to buy one of the two underlying
stocks at the exercise time T : p(s1, s2) = max(s1 − E1, s2 − E2, 0).

Let us assume that the two stocks satisfy the system of stochastic differential equations

dS1(t) = S1(t)(µ1 dt+ σ1 dB1(t)),

dS2(t) = S2(t)(µ2 dt+ σ2 dB2(t)),

where µ1, µ2, σ1, σ2 may depend on time and on both stock prices and (B1(t), B2(t))
is a two-dimensional Brownian motion with correlation ρ (the increments of B1 and
B2 over any time interval ∆t are jointly normal with standard deviations

√
∆t and

correlation ρ).

Then, applying Itô’s lemma and the arbitrage principle it is possible to show that the
price v of european option with a payoff function p(s1, s2) satisfies a two-dimensional
Black-Scholes Equation

∂v

∂t
+

σ2
1s

2
1

2

∂2v

∂s21
+ ρσ1σ2s1s2

∂2v

∂s1∂s2
+

σ2
2s

2
2

2

∂2v

∂s22

+ (r −D1)s1
∂v

∂s1
+ (r −D2)s2

∂v

∂s2
− rv = 0, s1, s2 ≥ 0

with the final condition

v(s1, s2, T) = p(s1, s2), s1, s2 ≥ 0.

45

Using the change of variables v(s1, s2, t) = u(ln(s1)
σ1

,−ρ
ln(s1)
σ1

+ ln(s2)
σ2

, T − t) the equation
is transformed to the equation

∂u

∂τ
=

1

2

∂2u

∂x2
1

+
1− ρ2

2

∂2u

∂x2
2

+
r −D1 − 1

2
σ2
1

σ1

∂u

∂x1

+

(

r −D2 − 1
2
σ2
2

σ2

− ρ
r −D1 − 1

2
σ2
1

σ1

)

∂u

∂x2

− ru.

From the final condition for v it follows that u satisfies the initial condition

u(x1, x2, 0) = p(eσ1x1 , eσ2x2−ρσ1x1).

In order to solve the transformed equation numerically we introduce artificial bound-
aries x1,min, x1,max, x2,min, x2,max and look for approximate solution at the points (τk, x1,i, x2,j),
where

τk = k δτ, x1,i = x1,min + i δx1, x2,j = x2,min + j δx2

and

τ =
T

m
, δx1 =

x1,max − x1,min

n1

, δx2 =
x2,max − x2,min

n2

for some natural numbers m,n1, n2.

We use the usual notation Uk,i,j ≈ u(x1,i, x2,j, τk). Replacing the derivatives with the
suitable finite difference approximations we get an explicit finite difference method

Uk+1,i,j = a−1,0Uk,i−1,j + a0,0Uk,i,j + a1,0Uk,i+1,j + a0,1Uk,i,j+1 + a0,−1Uk,i,j−1,

where

a−1,0 =
∆τ

2

(

1

∆x2
1

− r −D1 − 1
2
σ2
1

σ1∆x1

)

,

a1,0 =
∆τ

2

(

1

∆x2
1

+
r −D1 − 1

2
σ2
1

σ1∆x1

)

,

a0,−1 =
∆τ

2

(

1− ρ2

∆x2
2

− r −D2 − 1
2
σ2
2

σ2∆x2

+ ρ
r −D1 − 1

2
σ2
1

σ1∆x2

)

,

a0,1 =
∆τ

2

(

1− ρ2

∆x2
2

+
r −D2 − 1

2
σ2
2

σ2∆x2

− ρ
r −D1 − 1

2
σ2
1

σ1∆x2

)

,

a0,0 = 1− r∆τ − ∆τ

∆x2
1

− ∆τ(1− ρ2)

∆x2
2

.

This method is stable in the case of sufficiently large values of n1 and n2, if the coefficient
δτ (or the number of timesteps m) is chosen so that the coefficient a0,0 is nonnegative.

In order to find the option prices with the explicit method one has to specify also
boundary conditions at the artificial boundaries. The simplest choice is to fix the value
at the boundaries to be equal to the value of the payoff function at the corresponding
points.

46

Bibliography

[1] Black F, Scholes M, “The pricing of options and corporate liabilities,” Journal of
Political Economy 81 (1973), 637-659.

[2] Glassermann, P. Monte Carlo Methods in Financial Engineering. Springer 2004.

[3] Strang G, Fix G. An Analysis of The Finite Element Method. Prentice Hall 1973.

[4] Wilmott P, Howison S, Dewynne. J, The Mathematics of Financial Derivatives. A
Student Introduction. Cambridge, 1995.

[5] Wilmott P. Paul Wilmott on quantitative finance (Volumes 1,2). Jon Wiley and
Sons, 2000.

47

Python essentials for the Computational Finance course

The aim of the document is to discuss a minimal number of Python commands that are needed
for this course. Reading Python and Scipy tutorials is highly encouraged. This document is based
on Python 2.7.

1 Some warnings

NB! if you divide integers in Python 2.x, the result is an integer; ie 1/4 gives 0. If this
is not what you want, then use decimal numbers (1.0/4.0)

In Python, numbering of elements of an
object (array, string, list, sequence)
starts from 0; index of the element is given
in square brackets

Example:

a=(1,2,3); print a[1]

outputs the second element of a, that is 2.
(Remark: in python 3.x the syntax of the
print command changes, the arguments have
to be given in parantheses)

2 Programming constructs

It is important to remember, that Phython groups commands by indentation.

The format of for cycle:

for i in Something:

first command

second command

....

last command of the cycle

next commands (outside for)

”Something” is usually an object that has
many elements; i takes the value of each
element of the object Something

Example:

for x in (1,10,"blue"):

print x

The format of the while cycle is as fol-
lows:

while condition:

first command

second command

...

last command

commands outside while

Example:

i=1

while i<5:

print i,’square is’,i*i

i=i+1

1

The format of the if statement is as
follows:

if condition:

first command

second command

etc

elif condition:

first command

etc

else:

first command

etc

other commands

There may be many elif (else if) parts.

Example:

x=input(’x=’)

if x==0:

print ’zero’

elif x==1:

print ’one’

elif x==2:

print ’two’

else:

print ’a large number’

3 Using modules an packages of Python. Defining new
functions

Using modules and packages. Python functions are orga-
nized in modules or packages (collections of modules). There
are two ways to use those functions. 1) import the module with
the command

import module_name

Then it is possible to use a function func() from the module in
the form module_name.func().
2) import the needed functions from the module using the com-
mand

from module_name import fun1,fun2,etc

or, to import all functions,

from module_name import *

then it is possible to use function names directly. In the case
of a package the command ”from package import *” does not
import all functions from all subpackages of the package; they
should be imported separately.

Examples:

import time

time.ctime()

from scipy import sin

sin(0.5)

from scipy import *

cos(pi)

Defining your own functions: the def command. Example:

def f(x,y=1,z=0):

tmp=x*y+z

return(tmp)

If default value for a variable is given, then it is not necessary to specify it’s value: valid uses of
the function are for example

f(5)

f(2,3)

f(2,3,4)

f(1,z=2)

f(z=2,x=0,y=1)

invalid uses are: f()- x does not have a default value, f(z=2,3) - unnamed arguments have to be
before named arguments.

2

4 Numerical computations in Python: the package SciPy

For numerical computations in Python there is the package scipy (which hast to be installed
together with the package numpy). The functions in the packages can operate on arrays, that
speeds up computations a lot.

4.1 Creating arrays.

arange(start,stop,step=1) - creates array of the elements start, start+step, start+2*step, ...
which are less than stop (stop is not included)

linspace(start,stop, num=50) - divides the interval [start,stop] into num-1 equal subintervals
(ie returns num equally spaced points including start and stop)

zeros(shape) returns an array filled with zeros; the dimensions of the matrix are in the variable
shape Examples:
zeros(10) - one-dimensional array with 10 elements;
zeros(shape=(3,4)) - two-dimensional array with 3*4 elements

ones(shape) - array filled with ones

empty(shape) - an array with given dimension with arbitrary values

array([[1,2],[3,4],[5,6]]) - 3*2 matrix

4.2 Accessing array elements

Elements are numbered starting from 0.
For one-dimensional array A:
A[1] gives the second element of A
A[1:3] gives second and third elements (ie A[1],A[2], but not
A[3])
A[2:] gives all elements starting from the third (ie A[2],A[3]
etc)
A[:3] gives first three elements, ie A[0],A[1],A[2].
A[2:-1] gives all elements except two first and 1 last; negative
index after colon indicates how many elements to leave out from
the end
If b is an array of integers, then A[b] returns the elements of A
which have indeces in the array b in the same order as they are
listed in b

for two-dimensional array:
A[i,j] gives the single element,
A[i] gives the (i+1)th row,
A[:,j] gives the (j+1)th column,
A[A>0] gives all elements that are greater than 0

Examples:

b=arange(1,11)

A=empty(shape=(2,10))

A[0]=b

A[1,0:3]=2

A[1,3:]=5

print(A)

print A[:,3]

A[A<3]=0

print A

z=array([5,1,4,1])

print A[1,z]

WARNING: assignments like B=A or b=A[:,1] DO NOT COPY values of A to new matrices; in
this case B is just another name for the entries of A (ie they use exactly the same values, modifying
one modifies the other, too) and b is just a name to use the second column of A; b[0]=10 sets the
element A[0,1] to be equal to 10. If copying of values is needed, then the commands of the form
B=A.copy() and b=A[:,1].copy() should be used.
Arrays can be added or subtracted elementwise, also multiplication and division works elementwise.
In order to multiply arrays as matrices, one has to use the command dot(A,B)

4.3 Other useful array functions:

sum(A) - the sum of elements of an array;

mean(A) - the average of the elements of A;

3

std(A) - standard deviation of elements of A;

amin(A) - minimal value of elements of A;

amax(A) - maximal value of elements of A;

minimum(A,B) - elementwise minimum of two arrays (or an array and a number)

maximum(A,B) - elementwise maximum of two arrays

log(A) - natural logarithm of elements of A;

5 Graphics and file input

For graphics the package matplotlib should be installed. For
simple plots the following commands work:

from pylab import plot, show

plot(x,y)

show()

The show() command should be the last command in a script,
then all results of previous plot commands are shown together.
Arguments x,y can be 1D arrays or 2d arrays. In the last case
the plots corresponding to the columns of the arrays are created.
If x has only one column or is 1D array, then it is used with every
column of y.

Example:

from scipy import *

from pylab import plot,show

n=101

x=linspace(0,1,num=n)

y=empty(shape=(n,2))

y[:,0]=cos(x)

y[:,1]=exp(-x)

plot(x,y)

show()

Importing data from a csv file (assuming the
decimal separator is . and field separator is ,
and that from the package scipy everything is
imported)

x=loadtxt(filename,delimiter=’,’, \

usecols=seq_of_columns, skiprows=n)

Sequence of columns numbers (starting from
0!) in the sequence usecols is of the form
(a,b,c,etc). If the argument usecols= is not
given, all columns will be read in; otherwise only
columns indicated in the sequence are read. The
parameter skiprows specifies the number of rows
to ignore at the beginning of the file.

Examples: create a file called data.csv with
the content

"january",2.0,-2.0,3

"february",1,0,2

"march",5,1,3

The command

x=loadtxt("data.csv", delimiter=’,’, \

usecols=(3,))

print x

reads in only the 4th column; the command

x=loadtxt("data.csv",separator=’,’, \

usecols=(1,2),skiprows=1)

print x

reads in columns number 1,2 (ie the second
and the third column) and skips the first line
of the file.

6 Functions related to the standard normal distribution

Here it is assumed, that the commands from scipy import * and from scipy import stats

has been entered previously.

randn(d1,d2,...,dn) - creates a n-dimensional array filled with normally distributed random
numbers

Phi=stats.norm.cdf - defines Phi as cumulative distribution function of the standard normal
distribution

invPhi=stats.norm.ppf - defines invPhi to be the inverse of the cumulative distribution func-
tion of the standard normal distribution

4

Computational Finance, Fall 2011

Computer Lab 1

The aim of the Lab is to get acquinted with the Python programming language.
Exercises:

1. Define a function f1(x)=x*sin(x). Plot the graph of the function for 0 ≤ x ≤ 10.

2. Recall that the midpoint rule for computing integrals is as follows:∫ b

a

f(x) dx ≈ h ·
n∑

i=1

f(xi),

where n is a given natural number, h = b−a
n and xi = a+ (i− 1

2) ·h, i = 1, 2, . . . , n. Write a
function midpoint(f, a,b,n), which uses the midpoint rule to compute approximately the
value of the integra of f over the interval [a, b]. Use the function to compute approximately∫ 1

0

x · sin(x) dx,

using n = 100 subintervals. Compare the answer to the exact answer (that you hopefully
can compute by yourself)

3. Write a script, that defines the variables m and n, defines x to be an array with the elements
xi = i

m , i = 0, . . . ,m and then creates a (m+ 1) × n array Y as follows:
The first column is filled acoording to Yi0 = sin(4π xi), i = 0, . . . ,m
For each j = 1, . . . , n− 1 we compute

Y0,j = Ym,j = 0

Yij =
Yi−1,j−1 + Yi,j−1 + Yi+1,j−1

3
, i = 1, . . . ,m− 1.

Plot the graphs of the last column of Y using the array x for x-coordinates.

Computational Finance, Fall 2011

Computer Lab 2

The aim of the Lab is to define some useful functions given by Black-Scholes option pricing formulas
and to learn to simulate the paths of solutions of stochastic differential equations corresponding
to common stock market models.

Two important functions in mathematical finance are Black-Scholes formulas for call and put
option prices under the assumption, that the Black-Scholes market model with constant parameters
holds. The formulas are as follows:

Call(S,E, T, r, σ,D) = Se−DTΦ(d1)− Ee−r TΦ(d2),

Put(S,E, T, r, σ,D) = −Se−DTΦ(−d1) + Ee−r TΦ(−d2),

where

d1 =
ln(SE) + (r −D + σ2

2) · T
σ
√
T

, d2 = d1 − σ
√
T ,

S is the current stock price, T is the time to expiry of the option and Φ is the cumulative
distribution function of the standard normal distribution.

Exercise 1. Define in Python Black-Scholes Call an Put price functions (including a suitable description).
Save them in a file named BSformulas.py. Test the correctness of the functions:

Call(S = 100, E = 100, T = 0.5, sigma = 0.5, r = 0.05, D = 0.01) = 14.830417641356284,

Put(S = 100, E = 100, T = 0.5, sigma = 0.5, r = 0.05, D = 0.01) = 12.86016092492131.

Sometimes (especially for applying Monte-Carlo methods) it is important to know how to simulate
the stock price trajectories corresponding to a market model. A simple and quite universal (but
often not the best) way to generate the trajectories of solutions of stochastic differential equations
is Euler’s method, where differentials are replaced by differences over small time intervals. For
Black-Scholes market model

dS(t) = S(t)
(
µ(t) dt+ σ(S(t), t) dB(t)

)
this leads to an approximation

S(ti)− S(ti−1) ≈ S(ti−1)
(
µ(ti−1)hi + σ(S(ti−1), ti−1) (B(ti)−B(ti−1))

)
,

where 0 = t0 < t1 < . . . < tm = T is a partition of the interval [0, T] into (usually equal)
subintervals and hi = ti − ti−1. Using this approximation, the knowledge that B(ti)−B(ti−1) ∼
N(0,

√
hi) and a given value of S0 = S(0) we can compute approximate values S1, S2, . . . , Sm of

S(t1), S(t2), . . . , S(tm) by

Si = Si−1

(
1 + µ(ti−1)hi + σ(Si−1, ti−1)

√
hiXi

)
, i = 1, . . . ,m,

where Xi are independent random variables with the standard normal distribution.

Exercise 2. Write a function BSgraph(S0,n,m,mu,sigma,T) that plots the graph of n trajectories of
the stock price on the interval [0, T], corresponding to the Black-Scholes market model with
constant parameters µ and σ. For computing the values of the stock prices divide the interval
[0, T] into m equal subintervals (ie. use the time points ti = i·T

m , i = 0, 1, . . . ,m) and use
the Euler’s method.

It is well known that the Black-Scholes model is not perfect and that, if a similar model holds, then
the volatility can not be constant. A possible alternative is to allow the volatility to be stochastic,
too. One such model is the GARCH volatility model:

dS(t) = S(t)((r −D) dt+
√
V (t) dB1(t)),

dV (t) = θ · (ω − V (t)) dt+ ξV (t) dB2(t),

where r,D, θ, ω, ξ are known parameters and B1, B2 are independent Brownian motions.

Homework problem 1. (Deadline September 14, 2011) Write a function GARCH, that for given
m and n and for S(0) = 50, V (0) = 0.3, r = 0.1, D = 0, ω = 0.25, θ = 0.5, ξ = 0.5, T = 0.5 draws
the graph with n trajectories of the stock price S on the interval [0, T], using m equal timesteps
and the Euler’s method.

Computational Finance, Fall 2011

Computer Lab 3

The aim of the Lab is to learn some possibilities for identifying market model parameters from
historical data.

Consider the Black-Scholes market model

dS(t) = S(t)(µ(t) dt+ σ(S(t), t) dB(t).

We have shown in the lecture that in the case of constant parameters µ and σ we have

d(lnS(t)) = (µ− σ2

2
) dt+ σ dB(t)

and hence

ln
S(t2)

S(t1)
= (µ− σ2

2
) (t2 − t1) + σ(B(t2)−B(t1)).

Consequently

ln
S(t+ ∆t)

S(t)
∼ N((µ− σ2

2
)∆t, σ

√
∆t).

So, if Si, i = 0, 1, 2, . . . are closing prices of a stock at consecutive trading days, then xi = ln Si+1

Si

are values of normally distributed iid random variables. Usually time is measured in years, thus
∆t = 1

trading days in a year . By computing the mean and standard deviation of xi we can find
estimates for the constants µ and σ

Exercise 1. Download from http://finance.google.com/ historical prices of the stock of Amazon.com
corporation for one year as a *.csv file. Write a script, that reads the closing prices from the
file and uses them to estimate µ and σ (assuming the BS model with constant parameters
holds). NB! pay attention to the order the data is in the file!

Unfortunately stock prices usually do not behave according to the model with constant coefficients.
In order to see if the model suits for a particular stocks we can use various tests to verify the
hypothesis of xi to have normal distributions. Two such tests are Anderson-Darling test (the
function stats.anderson()) in Python) and Shapiro-Wilk test (the function stats.shapiro()

in Python).

Exercise 2. Read the help information of the normality tests. Check if we can assume that the Ama-
zon.com stock prices follow the Black-Scholes model with constant coefficients.

If we do not want to assume that the parameters are constant, we may start with approximating
the market model:

S(ti+1)− S(ti)

S(ti)
≈ µ(ti) (ti+1 − ti) + σ(S(ti), ti)(B(ti+1)−B(ti)).

Next, we introduce a finite number of unknown parameters θ = (θ1, θ2, . . . , θk) and make an
assumption how the functions µ = µθ and σ = σθ depend on those parameters. One way to
find those parameters is to maximize the log-likelihood function: if Yi are random variables with
probability density functions fi, then the log-likelihood function of the values yi is∑

i

ln fi(yi).

Since in our case the random variables Yi = Si+1−Si

Si
are according to the approximate market

model normally distributed with mean µθ(ti)∆t and standard deviation σθ(Si, ti)
√

∆t we have to
maximize the function

loglike(θ) = −
∑
i

(
(Yi − µθ(ti)∆t)2

2σθ(Si, ti)2∆t
+ lnσθ(Si, ti)

)
.

Often there are no procedures for maximizing a function in software packages but minimization
procedures are available. Fortunately this does not pose any problems, since maximization of a
funciton f(θ) is equivalet to minimization of the function g(θ) = −f(θ). Therefore, in Python, we
are going to minimize the function

f(θ) =
∑
i

(
(Yi − µθ(ti)∆t)2

2σθ(Si, ti)2∆t
+ lnσθ(Si, ti)

)
.

In Python there are various commands for finding the minimum of a function; we try optimize.fmin()

and optimize.fmin_cg().

Exercise 3. Assume that

µθ(ti) = θ0 + θ1 ·
Si − Si−1

∆t

and
σθ(s, t) = θ2.

Use the maximal likelihood method to determine the optimal values of θ.

Exercise 4. We can again test the validity of our assumptions. Namely, if our assumptions are correct,

then Y [i]−µ(ti)
σti

shold be independent random variables from a normal distribution. So we
can again use the tests for normality. Please test the validity of the model fitted in the
previous exercise.

Computational Finance, Fall 2011

Computer Lab 4

The aim of the Lab is to learn to learn to determine market parameters from the prices of traded
options.

If we make assumptions about market behavior or about the methods of option pricing, we get
functions that for a given set of market (or option pricing) parameters gives theoretical values of
every concrete option. Black-Scholes formulas are examples of such functions that for given value
of the volatility σ and for given put or call option parameters (exercise price, duration) give the
price of the option. Whenever we have such functions (which can be explicit formulas or some
computer programs that compute the prices) and there are available prices of some traded options
we can try to determine the unknown parameters from the known option prices. More precisely,
suppose that we know the current prices V1, V2, . . . , Vm of m different options and that fi(θ) are
the functions that give the option prices for (unknown) market parameters θ. Then we have m
equations:

fi(θ) = Vi, i = 1, . . . ,m.

Usually the number of unknown market parameters is much smaller than the number of available
option prices, so the system of equations may be solved in the least squares sense by minimizing
the function

F (θ) =
1

2

m∑
i=1

(fi(θ)− Vi)2.

Let us use the current information about prices of 3-months call options for Cisco stock available
from http://finance.yahoo.com/.

Exercise 1. (Implied volatility) Let us assume that the Black-Scholes market model with constant volatil-
ity holds, then call option prices can be computed by Black-Scholes formula. Assume r = 0.02
and D = 0, then the only unknown parameter is σ. Since we have only one unknown param-
eter, only one equation is needed to determine the value of σ and if the assumption about
the market model is correct, then every known option price should give the same value of
σ. Use the equation solver fsolve of scipy.optimize to find a value of σ for each of 6
actual option price corresponding to 6 strike prices closest to the current share price. Show
the dependence of found σ values on the exercise price on a graph. In order to do this, for
each value or the exercise price define a function of one argument sigma that computes the
difference of the corresponding theoretical call option price and the observed price of the
option and use this function as an input for the command optimize.fsolve together with
a suitable initial guess for the parameter σ.

Exercise 2. Define a function that for a given value of σ computes the sum of squares of differences of
the theoretical and observed option prices and use a minimizer from scipy.optimize to find
the least squares estimate of σ. For this σ, find the largest difference between the theoretical
and observed option prices.

Exercise 3. Consider Black-Scholes market model with the non-constant volatility

σ(s, t) = |θ0 + θ1 arctan(0.3(s− 16))|.

From the course web page you can download a module lab4solver that contains a function
lab4solver(theta,E,S0) that for a given values of E and S0 and for a given parameter
vector θ computes the theoretical price of the corresponding call option, for which we have
the market price. Use the function and the market data to find suitable values of θ0 and θ1.

Homework 2 (deadline Sept. 28, 2011) Consider IBM stock.

1. Assume Black-Scholes market model with constant coefficients. Use historical stock
prices of one year to determine µ and σ. Comment on suitability of the model.

2. Consider Black-Scholes model with constant trend and non-constant volatility

σ(s, t) = |θ0 + θ1 arctan(0.2 · (s− 170))|.

Find maximal likelihood estimates for the trend and volatility parameters.

3. Use observed values of 4 month put options (10 values) to determine implied volatilities
for each observation. Comment on the validity of the BS model with constant volatility.

4. Find least squares estimate of the volatility and compute corresponding theoretical
option prices. Plot the theoretical and observed option prices on a graph.

Computational Finance, Fall 2011

Computer Lab 5

The aim of the Lab is to learn to apply Monte-Carlo method for computing option prices.

Often it can be shown (or it is assumed in the case of certain market model) that the price of an
European option can be expressed as the expected value

V = E[e−rT p(S(T))],

where S(T) is generated according to a certain stochastic differential equation. In such case we can
compute V approximately by generating n values of the random variable S(T): S(T)1, S(T)2, . . . , S(T)n
and computing the arithmetic average of the function under the expectation:

V ≈ V̄n =
e−rT

n

n∑
i=1

p(S(T)i).

From Central Limit Theorem it follows that

P

(
|V − V̄n| ≤

−Φ−1(α2)std(Y)
√
n

)
≈ 1− α

for large values of n. Here Φ is the cumulative distribution function of the standard normal
distribution and Y = e−rT p(S(T))

Exercise 1. If we assume that the Black-Scholes market model with constant volatility holds, then we
have to generate S(T) according to the stochastic differential equation

dS(t) = S(t)((r −D) dt+ σ dB(t).

From the lecture we know that the solution of the equation is

S(t) = S(0)e(r−D−σ2

2)t+σB(t),

so S(T) = S(0)e(r−D−σ2

2)T+σX , where X ∼ N(0,
√
T). Write a function MC1, that for given

values of S(0), r,D, σ, T, α and n and for given payoff function p computes an approximate
option value and its error estimate holding with the probability (1 − α) by Monte-Carlo
method, using n generated stock prices. Verify the correctness of the function by Black-
Scholes formulas for put and call options in the case S(0) = 100, E = 97, σ = 0.4, T = 0.5,
r = 0.02, D = 0.03, α = 0.05. How often the actual error is larger than the error estimate if
you use MC1 100 times?

Very often it is not possible to generate S(T) values that correspond exactly to the stochastic
differential equation; then it is necessary to use some approximation methods. One such method
is the Euler’s method, where we divide the interval [0, T] into m equal subintervals and use the
approximations (int the case of Black-Scholes market model)

Si+1 = Si(1 + (r −D) ∆t+ σ(Si, ti)Xi), i = 0, . . . ,m− 1,

where Si are approximations to S(i∆t), ∆t = T
m and Xi ∼ N(0,

√
∆t). Instead of S(T) we use

Sm, thus we use Monte-Carlo method to compute an approximate value of V̂ , where

V̂m = E[e−rT p(Sm)].

Since Sm for a fixed m does not have exactly the same distribution as S(T), we have in general
V̂m 6= V and therefore Monte-Carlo method converges to a value that is different from the option
price.

Exercise 2. Write a function MC2 that computes approximate option prices so that the stock prices are
generated according to Euler’s method. Determine how large is the difference between V̂m
and the correct option price in the case of European call option, using the same parameters
as in the previous exercise for m = 2, 4, 6, 8. In order to see the difference, large enough
value for n should be used (so that corresponding MC error is at least 5 times smaller than
the computed difference).

It is known that if p is continuous and has bounded first derivative (ie it is Lipshitz continuous),
then

|V − V̂m| =
C

m
+ o(

1

m
),

where C is a constant that does not depend on m and m · o(1
m)→ 0 as m→∞. Thus, if we use

Sm instead of S(T) and use Monte-Carlo method, then the total error is

|V − V̄m,n| ≤ |V − V̂m|+ |V̂m − V̄m,n| ≤
C

m
+ o(

1

m
) + |V̂m − V̄m,n|.

The last term is the error of the Monte-Carlo method and can be estimated easily. So, in order to
compute the option price V with a given error ε, we should choose large enough m (so that the
term C

m is small enough, for example less than ε
2) and then use MC method with large enough n

so that the MC error estimate is also small enough (less than ε
2). There is one trouble: we do not

know C. One possibility to estimate C is as follow:

1. Choose some values for m0, n0 for m and n. They should not be too small, but very large
values take too much computation time.

2. Use MC method twice to compute V̄m0,n0
and V̄2m0,n0

3. Estimate the value of C: if m0 is large enough, then

|C| ≤ C̄ = 2m0 · (|V̄m0,n0
− V̄2m0,n0

|+ |V̂m0
− V̄m0,n0

|+ |V̂2m0
− V̄2m0,n0

|).

The last two terms are errors of the MC method.

4. Choose m1 such that C̄
m1
≤ ε

2 and n1 such that MC error of V̄m1,n1
is less than ε

2 . Then

V̄m1,n1
is an approximation of the true option price which satisfies the desired error estimate.

In order to get reasonable estimates for the right value of m, the value of n0 should be such that the
difference of the values of the two first computations is larger than the sum of the corresponding
MC errors.

Homework 3. (Deadline October 5, 2011). Assume that the Black-Scholes market model with the volatility

σ(s, t) = 0.4 +
et

·(S − 100)2 + 10

holds. Consider an option with duration T = 0.5 and payoff function

p(s) = min(|s− 100|, 20).

Assume that S(0) = 99, r = 0.03 and D = 0. Find the price of the option with accuracy
ε = 0.04 (using α = 0.05 for estimating MC errors). Explain how you got the final answer.

Computational Finance, Fall 2011

Computer Lab 6

The aim of the Lab is to learn to use finite difference approximations of derivatives of a function and
to derive finite difference methods for boundary value problems of ordinary differential equations.

Let us start from the numerical differentiation by finite difference approximations. Well-known
finite difference approximations are as follows:

f ′(x) ≈ f(x + h)− f(x− h)

2h
(error ≤ ch2),

f ′′(x) ≈ f(x− h)− 2f(x) + f(x + h)

h2
(error ≤ ch2).

Exercise 1. Write a function my derivative that takes four arguments: a name of a function, the value
of x, the value of h and the order of the derivative (1 or 2) to compute and computes the
value of the specified derivative at x using the finite difference approximation given above.
Using this function, verify the accuracy of error estimates in the case of several concrete
functions and several values of x: compute the derivatives for h = 1, 1

2 ,
1
4 , . . . ,

1
210 and find

the quotient of the error to h2. The quotients should approach a constant value.

Finite difference approximations of derivatives can be used for deriving numerical methods for
solving differential equations.

Let us consider the following problem: find y such that

y′′(x) = f(x), x ∈ [a, b] (1)

y(a) = 1, y(b) = −1, (2)

where f is a given functions. The procedure for deriving a finite difference approximation for the
problem above consists of the following steps.

1. Choose a set of points at which we want to find approximate values of the unknown function.
Usually this set of points is chosen by dividing the interval [a, b] into n equal subintervals: we
get points xi = a + ih, i = 0, . . . , n where h = b−a

n . In order to determine the approximate
values of the solution y we need n + 1 equations for n + 1 unknown values.

2. In order to determine the values for the n + 1 unknowns, we need n + 1 equations. We
get those equations by using boundary conditions (two equations) and by writing down the
differential equation at n − 1 points x̄i, i = 1, . . . , n − 1 and then replacing the derivatives
by approximations that use only the function values at points xi, i = 0, . . . , n. The points
x̄i, i = 1, . . . , n− 1 do not have to be the same as the points xi, i = 1, . . . , n− 1, but in the
case of the current problem let us use x̄i = xi, i = 1, . . . , n− 1.

If xi, i = 0 . . . , n are equally spaced (with stepsize h = c
n), then we can use the finite difference

approximation discussed above:

y′′(xi) ≈
y(xi−1)− 2y(xi) + y(xi+1)

h2
(error ≤ ch2).

Hence, writing out the differential equation at points xi, i = 1, . . . , n−1 and replacing derivatives
with finite difference approximations we get a system of equations

yi−1 − 2yi + yi+1

h2
= f(xi), i = 1, . . . , n− 1.

We can view the boundary conditions as two additional equations

y0 = 1, yn = −1.

Since i-th equation contains only 3 unknowns yi−1, yi, yi+1 the resulting matrix of the system of
equations has non-zero entries only on three diagonals, so we obtain three diagonal system of
equations.

Exercise 2. One possibility to solve a linear system of equations is to use the Python command linalg.solve(M,z),
which returns the solution y of the system of equations My = z. Use this command to find
the values of the approximate solution in the case n = 10, a = 0, b = 1, f(x) = −24x2. Find
the errors between the approximate solution and the exact solution y(x) = 1− 2x4.

Exercise 3. If the system matrix has only some nonzero diagonals then it is actually a waste of computer
memory to store the full matrix. For solving such system it is actually possible to use
the command linalg.solve_banded((l,u),Dgs,z), where the rows of the matrix Dgs
contain the diagonals of M starting from the highest one, l is the number of diagonals below
the main diagonal and u is the number of diagonals above the main diagonal (in our case
l = u = 1).NB! In the matrix Dgs for the diagonals that are above the main diagonal the
first elements are actually not used (for the diagonal directly above the main diagonal the
first element is not used, for the next diagonal two steps above the main diagonal the first
two elements are not used etc; for diagonals below the main diagonal last elements are not
used. Write a function that for a given n solves the problem of the previous exercise with
the command linalg.solve_banded((l,u),Dgs,z) and returns the maximal error at the
points xi, i = 1, . . . , n − 1. Determine how many times the error is reduced if we increase
the number of points two times.

Exercise 4. Consider the problem

y′′(x) + y′(x)− x y(x) = sin(x), x ∈ [a, b]

y(a) = 1, y′(b) = 0.

Derive a finite difference approximation for the problem and write a function that for given
n returns the values of the approximate solution at xi, i = 0, . . . , n. Use approximation

y′(b) ≈ y(b)−y(b−h)
h for approximating the second boundary condition.

Computational Finance, Fall 2011

Computer Lab 7

The aim of the Lab is to derive an explicit finite difference method for solving an initial value
problem of the heat equation in a bounded domain.

Let us consider the following problem: find u such that

∂u

∂t
(x, t) =

1

4

∂2u

∂x2
(x, t), x ∈ [−1, 1], t ∈ (0, 0.5] (1)

u(−1, t) = 1, u(1, t) = 0, t ∈ (0, 0.5] (2)

u(x, 0) = u0(x), x ∈ [−1, 1] (3)

where u0 is a given function. The procedure for deriving a finite difference approximation for the
problem above consists of the following steps.

1. Choose a set of points at which we want to find approximate values of the unknown function.
We define this set of points by dividing the interval [−1, 1] in x direction into n equal
subintervals and the time interval [0, 0.5] into m subintervals: we get points (xi, tk), where
xi = −1+ i 2n , i = 0, . . . , n, tk = k 0.5

m . Since we know the values of the unknown function for
x = −1, x = 1 and for t = 0, we have to determine approximate values Uik ≈ u(xi, tk), i =
1, . . . , n − 1, k = 1, . . . ,m, thus we have m · (n − 1) unknowns (see the picture below for
n = 3,m = 4).

x

t

t0

t1

t2

t3

t4 = 0.5

x0 = −1 x1 x2 x3 = 1

U00

U01

U02

U03

U04

U20

U21

U22

U23

U24

U30

U31

U32

U33

U34

U10

U11

U13

U14

U12

2. In order to determine the values for m · (n − 1) unknowns, we need m · (n − 1) equations.
We get those equations by writing down the differential equation at m · (n − 1) points and
then replacing the derivatives by approximations that use only the function values at points
(xi, tk), i = 0, . . . , n, k = 0, . . . ,m.

3. In order to get an explicit finite difference method we use the equation at the points
(xi, tk), i = 1, . . . , n− 1, k = 0, . . . ,m− 1 and use the approximations

∂u

∂t
(xi, tk) ≈ Ui,k+1 − Uik

∆t
(error ≤ const.∆t),

∂2u

∂x2
(xi, tk) ≈ Ui−1,k − 2Uik + Ui+1,k

∆x2
(error ≤ const.∆x2).

Using the procedure outlined above, we get a system of equations of the form

Ui,k+1 = aUi−1,k + b Uik + cUi+1,k, k = 0, . . . ,m− 1, i = 1, . . . , n− 1,

where a, b and c are certain coefficients. Fortunately it is very easy to solve the system of equations:
since the values of Ui0, i = 0, . . . , n are known, we can just compute Ui1, i = 1, . . . , n − 1 from
the equations, after that we can compute Ui2 etc. Since we do not have to solve any systems
of equations but can just compute the values of the approximate solutions, the method is called
explicit method.

Exercise 1. Write a function that for given values of m and n and for given function u0 returns the values
Uim, i = 0, . . . , n of the approximate solution obtained by explicit finite difference method.
Test the correctness of your function in the case m = 100, n = 10 and u0(x) = sin(πx)+ 1−x

2 ,

when the exact solution is u(x, t) = e−π
2t/4 sin(πx) + 1−x

2 .

Exercise 2. The total error caused by replacing exact derivatives with finite difference approximations is
O(∆t+∆x2), which usually implies that the error of the approximate solution is of the same
order. This means, that if we increase m four times and n two times, then the total error
should be reduced approximately four times. Verify the convergence rate by computing the
errors in the settings of the previous exercise for m = 4, 16, 64, 256 and n = 2, 4, 8, 16.

Exercise 3. It turns out that explicit methods may be unstable for certain choices of parameters m
and n. This means, that if m and n do not satisfy certain condition, the approximate
solution may have arbitrarily large errors even when we let m and n to go to infinity. The
sufficient condition of stability is that the coefficients a, b and c are all nonnegative. Repeat
the computations of the previous exercise for m = 2, 8, 32, 128 and n = 10, 20, 40, 80 and
compute the errors.

Homework 4. (Deadline October 19, 2011) Write a function that for given values of m and n and for given
function u0 returns the values Uim, i = 0, . . . , n of the approximate solution of the problem

∂u

∂t
(x, t) = (2 + et)

∂2u

∂x2
(x, t) + 3xu(x, t), x ∈ [−1, 2], t ∈ (0, 1.5] (4)

u(−1, t) = 3, u(2, t) = −3t, t ∈ (0, 1.5] (5)

u(x, 0) = x2 − 2x, x ∈ [−1, 2] (6)

obtained by explicit finite difference method and also prints a warning, if the choices of m
and n are such that the method may be unstable (if any of the coefficients aik, bik, cik is
negative).

Computational Finance, Fall 2011

Computer Lab 8

If we consider an European option with exercise time T and payoff function p and assume the
validity of Black-Scholes market model, then the option price at time t is given by v(S(t), t) =
u(ln(S(t)), t), where u is the solution of the problem

∂u

∂t
(x, t) + α(x, t)

∂2u

∂x2
(x, t) + β(x, t)

∂u

∂x
(x, t)− r u(x, t) = 0, x ∈ R, 0 ≤ t < T (1)

satisfying the final condition
u(x, T) = p(ex), x ∈ R.

Here

α(x, t) =
σ2(ex, t)

2
,

β(x, t) = r −D − σ2(ex, t)

2
.

For solving the equation for u numerically, we introduce two boundaries xmin and xmax and
specify boundary conditions u(xmin, t) = φ1(t), u(xmax, t) = φ2(t) at those points. Next, we
introduce the points xi = xmin+ i∆x, i = 0, . . . , n and tk = k∆t, k = 0, . . . ,m and denote by Uik
approximate values of u(xi, tk). Here ∆x = xmax−xmin

n and ∆t = T
m . In the case of the explicit

finite difference method we compute the values Uik as follows:

Uim = p(exi), i = 0, . . . , n

U0,k−1 = φ1(tk−1), Un,k−1 = φ2(tk−1), k = m,m− 1, . . . , 1,

Ui,k−1 = aikUi−1,k + bikUik + cikUi+1,k, i = 1, . . . , n− 1, k = m,m− 1, . . . , 1,

where

aik =
∆t

∆x2

(
αik −

βik
2

∆x

)
,

bik = 1− 2
∆t

∆x2
αik − r∆t,

cik =
∆t

∆x2

(
αik +

βik
2

∆x

)
.

If σ is a constant, then the coefficients a, b and c are also constants and the numerical scheme
simplifies to

Ui,k−1 = aUi−1,k + b Uik + cUi+1,k, i = 1, . . . , n− 1, k = m,m− 1, . . . , 1.

The stability condition is in this case b ≥ 0.

Exercise 1. Write a function that for given values of n, ρ > 1, r, D, S0, T , σ and for given functions
p, φ1 and φ2 takes m to be equal to the smallest number satisfying the stability constraint
and returns the values Ui0, i = 0, . . . , n of the approximate solution (option prices) obtained
by explicit finite difference method and the corresponding stock prices Si = exi in the case
xmin = ln S0

ρ , xmax = ln(ρS0). Test the correctness of your code by comparing the results to
the exact values obtained by Black-Scholes formula in the case r = 0.03, σ = 0.5, D = 0.05,
T = 0.5, E = 97, S0 = 100, p(s) = max(s− E, 0), φ1(t) = p(exmin), φ2(t) = p(exmax).

Practical Homework 5. (Deadline October 26, 2011) Let r = 0.02, σ = 0.6, D = 0.03, T = 0.5, E = 99, S0 = 100,
p(s) = max(s − E, 0). If we use the explicit method of previous exercise, then even if we
let m and n go to infinity there is going to be a finite error between the exact option price

at t = 0, S(0) = S0 and the corresponding approximate value. This error is caused by
introducing artificial boundaries xmin and xmax and the boundary conditions specified at
those boundaries. Use the boundary conditions φ1(t) = p(exmin), φ2(t) = p(exmax) and
determine the value of the resulting error for ρ = 1.5, 2, 2.5. In order to see the resulting
error you should do several computations with fixed ρ and increasing values of n (assuming
m is determined from the stability condition, n should be increased by multiplying it by 2
each time). Use the knowledge that for large enough n the part of the error depending on the
choice of n behaves approximately like const.

n2 (so the difference of the last two computations
divided by 3 is an estimate of this part of the error for the last computation) for determining
how far your last computation is from the limiting value.

Computational Finance, Fall 2011

Computer Lab 9

The aim of the lab is to learn to use the explicit finite difference method in the case of variable
coefficients and to learn to use special solutions of the Black-Scholes equation for constructing
boundary conditions.

When constructing boundary conditions φ1 and φ2 in the case of option pricing it is often a good
idea to use the fact, that the solution of the Black-Scholes equation satisfying the final condition
v(s, T) = c1s+ c2 is

v(s, t) = c1e
−D(T−t)s+ c2e

−r(T−t).

Hence, if the payoff function is a linear function starting from some value s = s1, then for large
values of s the solution is practically equal to the special solution corresponding to this linear
function. And if the payoff function is linear for s < s2, than for small values of s the solution
is practically equal to the special solution corresponding to that linear function. This gives us a
possibility to define boundary values so that they are not very different from actual option prices
at those boundaries and hence to reduce significantly the error caused by introducing xmin and
xmax in option pricing equations. For example, when finding the value of a call option price by
solving untransformed equation, we have that for large values of s the payoff is p(s) = s−E. Since
for transformed equation u(x, t) = v(ex, t), a suitable boundary condition for x = xmax is

φ2(t) = e−D(T−t)exmax − Ee−r(T−t).

In this Lab we price an European option with T = 0.5 and payoff function

p(s) =


90 − s, s < 80,
(s−100)2

40 , 80 ≤ s ≤ 120,

s− 110, s > 120.

Additionally, we assume r = 0.05, D = 0.02, S(0) = 100.

Exercise 1. Derive suitable boundary conditions for both transformed and untransformed equation.

Exercise 2. Implement the explicit finite difference method described in the previous lab so that it
works with nonconstant α and β. Using this implementation, write solver for untransformed
Black-Scholes equation. Test your solver in the case n = 20, ρ = 1.5 and

σ(s, t) = 0.5 + e−t arctan(0.1 s− 10).

Exercise 3. Try to compute the exact option price with as small error as possible. Compare the errors of
the results of the previous exercise with the errors with those obtained by using the simple
(constant) boundary conditions.

Computational Finance, Fall 2011

Computer Lab 10

The aim of the lab is to implement the basic implicit method for computing European option
prices. For this we consider the problem

∂u

∂t
(x, t) + α(x, t)

∂2u

∂x2
(x, t) + β(x, t)

∂u

∂x
(x, t)− r u(x, t) = 0, x ∈ (xmin, xmax), 0 ≤ t < T,

u(xmin, t) = φ1(t), 0 ≤ t < T,

u(xmax, t) = φ2(t), 0 ≤ t < T,

u(x, T) = p(ex), x ∈ (xmin, xmax).

We introduce the points xi = xmin + i∆x, i = 0, . . . , n and tk = k∆t, k = 0, . . . ,m and denote
by Ui,k the approximate values of u(xi, tk). Here ∆x = xmax−xmin

n and ∆t = T
m . In the case of

the basic implicit finite difference method we compute the values Uik as follows:

Uim = p(exi), i = 0, . . . , n

U0k = φ1(tk), Unk = φ2(tk), k = m− 1,m− 2, . . . , 0

and for determining the values of Uik, i = 1, . . . , n− 1, k = m− 1, . . . , 0 we solve for each value
of k (starting with k = m− 1) a three-diagonal system

aikUi−1,k + bikUik + cikUi+1,k = Ui,k+1, i = 1, . . . , n− 1

for the unknown values of Uik, i = 1, . . . , n− 1. Here

aik = −α(xi, τk)∆t

∆x2
+
β(xi, tk)∆t

2∆x
,

bik = 1 +
2α(xi, tk)∆t

∆x2
+ r∆t,

cik = −α(xi, tk)∆t

∆x2
− β(xi, tk)∆t

2∆x
.

Exercise 1. Write a function that for given values of m, n, xmin, xmax, T ,γ and for given functions
u0,α,β, φ1 and φ2 returns the values Ui0, i = 0, . . . , n of the approximate solution (option
prices) obtained by the implicit finite difference method. Use this method for computing
approximate values of the put option price by solving the transformed Black-Scholes equation
in the case r = 0.05, σ = 0.5, D = 0.05, T = 0.5, E = 100, S0 = 98, p(s) = max(E − s, 0),
ρ = 2, xmin = ln S0

ρ , xmax = ln(ρS0), n = 20, m = 100. Use φ1(t) = u0(xmin), φ2(t) =

u0(xmax)

Practical Homework 6. (Deadline 09.11.2011) Find approximate option prices for the option considered in the pre-
vious exercise in the case S0 = 10, 20, . . . , 200 and their errors by solving the untransformed
Black-Scholes equation with the basic implicit method in the case xmin = 0, xmax = 200,
φ1(t) = p(0)e−r(T−t), φ2(t) = 0, n = 40, m = 100.

Computational Finance, Fall 2011

Computer Lab 11

If we want to compute an option price corresponding to the current price S(0) = S0 with a given
accuracy ε, then a possible procedure is as follows:

1. Let ρ = 2, choose the boundaries xmin = 0, xmax = ρ · S0 if you use a solver for the
untransformed equation and xmin = ln(S0ρ), xmax = ln(ρ · S0) if you use a solver of the
transformed equation.

2. Solve the problem with a finite difference method and estimate the error by Runge’s method,
until the (estimated) finite difference discretization error is less than ε

4 .

3. Increase the value of ρ two times (multiply it by 2), define corresponding xmin and xmax
and solve the problem with the same method again until the (estimated) finite difference
discretization error is less than ε

4 . If the answer changes by more than ε
2 then repeat the

step (multiply ρ by two and compare answers etc). Otherwise we have obtained the solution
with the desired accuracy.

It is good idea to choose some starting values m0 and n0 of discretization parameters and to define
a multiplier z of n0 that is 1 for ρ = 2 and when ρ is multiplied by two, the factor is also multiplied
by two if the untrasnformed equation is solver and increased by one, if the transformed equation
is solved. So when starting computations with new value of ρ, the starting value of m should be
taken m0 and the starting value of n should be taken z · n0; this procedure keeps the stepsizes
∆x the same for all values of ρ and makes it easier to compare the results obtained for different
ρ. If this recommendation is followed, then in the procedure above we do not have to solve the
equation for fixed ρ with accuracy ε/4, it is enough to solve it with the accuracy ε/2.

Practical Homework 7. (Deadline November 16, 2011) Find the call option price with maximal error 0.01 for current
stock price S0 = 99 in the case E = 100, r = 0.05, D = 0, T = 0.4 and nonconstant volatility

σ(s, t) = 0.4 +
0.2

1 + 0.04(s− 100)2
.

Use Crank-Nicolson method for untransformed equation to obtain the answer.

Computational Finance, Fall 2011

Computer Lab 12

The aim of the lab is to learn to compute prices of American options.

If we have reduced the Black-Scholes option pricing equation to a problem of the form

∂u

∂t
(x, t) + α(x, t)

∂2u

∂x2
(x, t) + β(x, t)

∂u

∂x
(x, t)− r u(x, t), x ∈ (xmin, xmax), 0 ≤ t < T,

u(xmin, t) = φ1(t), 0 ≤ t < T,

u(xmax, t) = φ2(t), 0 ≤ t < T,

u(x, T) = u0(x), x ∈ (xmin, xmax).

and have derived a finite difference method for computing option prices, then approximate prices
of the corresponding American option can be computed by taking maximum of found approximate
prices Uik and the values of u0(xi) at each timestep. The convergence rate of the resulting method
is O(∆t+ ∆x2) even in the case of Crank-Nicolson method.

Exercise 1. Modify explicit, implicit and Crank-Nicolson methods for computing American options. Use
the methods for computing approximate prices of the American put option in the case
r = 0.1, σ = 0.5, D = 0, T = 0.5, E = 100, S0 = 100, p(s) = max(E − s, 0), n = 20,
m = 100.

Exercise 2. Find the price of the American put option with maximal error 0.01 for current stock price
S0 = 100 for the option considered in the previous exercise.

Exercise 3. Find the value ∂v
∂s (100, 0) of the price v of American put option with maximal error 0.0001

for the option considered in the previous exercise.

Computational Finance, Fall 2011

Computer Lab 13

The aim of the lab is to check how well an American options can be replicated by trading.

If the Black-Sholes market model holds, then by arguments used in the lecture we know that every
European and American option can be replicated by a self-financing tranding strategy that uses
the same sum of money as the option price as starting capital and holds at each time moment
∂v
∂s (S(t), t) shares of the stock. We assume that short selling (holding negative number of stocks)
is possible and that stocks are infinitely divisible, so that any fraction of a stock can be held in a
portfolio.

We shall simulate the trading by using the historical data of cisco stock for one year.

1. Read the data for cisco stock for the last year into python. We’ll assume that the Black-
Scholes market model holds with constant volatility. Estimate the volatility by using the
first half of the data.

2. Consider an American put option with exercise price equal to the last stock price used for
parameter estimation and exercise time half a year. Compute the price of the option (using
r = 0.03) and it’s derivative with respect to the stock price.

3. Let us set up a self-financing portfolio. It consists of an bank account and a stock holding;
the initial stock holding is equal to te derivative found in the previous step and the bank
account is initially option price minus the money under the stock (ie stock holding times the
stock price).

4. For each day until expiry of the option we now simulate the change in the portfolio: we’ll
find the number of stocks we should have on that day (by finding the derivative of the option
price at the current time and stock price) and modify the bank account by the interest earned
and the money coming from the change of the stock holdings.

5. If the theory is good enough the total value of our portfolio should never go (much) below
the value of the payoff function during the lifetime of the option but the minimal difference
of the portfolio and the payoff function should be practically 0.

Practical homework 8 (deadline 30.11.2011) Perform computer simulations to determine how well can American
Put options be replicated by trading once a day. For this each one of you will be given
different stock. Download the historical prices for last 5 years. For each 3 months period
in the last 4.5 years determine the historic volatility (assuming BS model with constant
volatility) by using the data of 6 months prior the current period and then try to replicate 3
months American put option with exercise price equal to the stock price at the beginning of
the period. Record for each period the smallest value of the difference between the portfolio
and the payoff value. Analyze your findings.

Computational Finance, Fall 2011

Computer Lab 14

The aim of the lab is to learn to compute prices of Asian options.

Let us assume that the volatility σ in the Black-Scholes market model depends only on the current
stock price S.

Let v(s, I, t) be the function giving the price of an Asian option (depending on arithmetic average)
with exercise time T and payoff p(s,AT); denote u(s, I, τ) = v(s, I, T−τ). For finding approximate
option prices we introduce artificial boundaries Imax, Smax, choose natural numbers ns, nI ,m and
look for approximate values of u at points (si, Ij , τk), where

si = i∆s = i
Smax
ns

, Ij = j∆I = j
Imax
nI

, τk = k∆τ = k
T

m
.

Denote those approximate values by Ukij . A finite difference approximation gives the following
equations for the unknown values:

aiUk,i−1,j+biUkij+ciUk,i+1,j = diUk−1,i−1,j+1+eiUk−1,i,j+1+fiUk−1,i+1,j+1+gi(Uk,i,j+1−Uk−1,i,j),

where i = 1, 2, . . . , ns − 1, j = 0, 1, . . . , nI − 1, k = 1, . . . ,m and (using the notation ρ = ∆τ
∆s2)

ai =
ρ

4
(−s2

iσ
2(si) + (r −D)si∆s),

bi =
1

2

(
1 + ρs2

iσ
2(si) +

si∆τ

∆I
+ r∆τ

)
,

ci = −ρ
4

(s2
iσ

2(si) + (r −D)si∆s),

di = −ai

ei =
1

2

(
1− ρs2

iσ
2(si) +

si∆τ

∆I
− r∆τ

)
,

fi = −ci

gi =
1

2

(
−1 +

si∆τ

∆I

)
.

The equations for the approximate values can be viewed as a three-diagonal system for finding
the values of Ukij , if the values corresponding to the level τ = τk−1 and the values Uk,i,j+1, i =
0, . . . , ns have been found earlier.

The values of U0,i,j can be found from the initial condition:

U0,i,j = p(si,
Ij
T

), i = 0, . . . , ns, j = 0, . . . , nI .

At the boundary S = 0 we have the exact boundary condition u(0, I, τ) = p(0, IT)e−rτ , hence

Uk,0,j = p(0,
Ij
T

)e−rτk , k = 1, . . . ,m.

In order to determine all values of Ukij uniquely, we have to specify boundary conditions for the
boundary I = Imax and the boundary s = Smax. Denote by φ1(s, τ) and φ2(I, τ) the functions
describing the boundary conditions, then

Uk,i,nI
= φ1(si, τk), Uk,ns,j = φ2(Ij , τk).

Exercise Let us consider an average price put option (payoff function p(s,AT) = max(E − AT , 0),
where E is the exercise price specified in the option contract). Assume r = 0.05, D = 0,
σ = 0.5, T = 0.5, E = 100, S(0) = 95. Define Imax = E T , Smax = 190, φ1(s, τ) = 0,

φ2(I, τ) = max{Ee−rτ +
e−Dτ

(r −D)T
(e−(r−D)τ − 1)Smax −

e−rτ

T
I, 0}.

Write a function, that for given values ns, nI ,m finds an approximate option price at t = 0
using the finite difference method described above.

Let us discuss one possibility to specify suitable artificial boundary conditions φ1 and φ2. Recall
that the functions of the form

v(s, I, t) = C1e
−r(T−t) + e−D(T−t)

(
C2 − C3

e−(r−D)(T−t)

r −D

)
s+ C3 e

−r(T−t)I

are solutions of the Asian option pricing PDE in the case r 6= D; if r = D then corresponding
special solutions are

v(s, I, t) = C1e
−r(T−t) + e−r(T−t) (C2 + C3(T − t)) s+ C3 e

−r(T−t)I.

Consider payoff functions of the form

p(s, a) = max{k1 + k2s+ k3a, 0}.

Let vspec be the special solution satisfying vspec(s, I, T) = k1 + k2s+ k3I/T then we define

φ1(s, τ)) = max{vspec(s, Imax, T − τ), 0}

and
φ2(I, τ)) = max{vspec(Smax, I, T − τ), 0}.

Practical Homework 9 (Deadline December 7, 2011) Let us consider an average price put option, an average price
call option, an average strike put option and an average strike call options. Assume r = 0.06,
D = 0.06, σ = 0.5, T = 0.5, E = 100, S(0) = 100. Define Imax = ET , Smax = 200. Write
functions that for given values ns, nI ,m find approximate option prices at t = 0 using the
finite difference method described in this Lab.

Computational Finance, Fall 2011

Computer Lab 15

The aim of the lab is to start learning finite element methods.

Let us consider the following problem: find y such that

y′′(x) + a(x)y′(x) + b(x)y(x) = f(x), x ∈ [0, 1] (1)

y(0) = y0, y(1) = y1, (2)

where y0, y1 are given numbers and a, b, f are given functions. The procedure for deriving a finite
element approximation for the problem above consists of the following steps.

1. Derive a weak form of the differential equations. For deriving a weak form we multiply
the equation (??) by an arbitrary differentiable function φ such that φ(0) = φ(1) = 0 and
integrate the equation. By integrating the term with the highest derivative by parts we get

−
∫ 1

0

y′(x)φ′(x) dx+

∫ 1

0

a(x)y′(x)φ(x) dx+

∫ 1

0

b(x)y(x)φ(x) dx =

∫ 1

0

f(x)φ(x) dx.

It is quite easy to convince oneself that if the integrated equation holds for every φ and y
satisfies the boundary conditions (??), then y is the solution of the original problem.

2. In order to determine an approximate solution we look for y in the form of a linear combi-
nation of n+ 1 basis functions φj , j = 0, . . . , n:

y(x) ≈
n∑

j=0

ξjφj(x),

and require that the boundary conditions hold and that the weak form holds in the cases
φ = φi, i = 1, . . . , n − 1. This gives us n + 1 equations for n + 1 unknowns; by solving the
system of equations we get an approximate solution.

The method is called a finite element method if the basis functions φi are such that they are
non-zero only on a small subinterval of [0, 1].

In this lab we define a collection of basis functions by introducing a grid 0 = x0 < x1 < x2 <
. . . < xn = 1 and defining hi = xi+1 − xi and

φi(x) =


x−xi−1

hi−1
, x ∈ [xi−1, xi),

xi+1−x
hi

, x ∈ [xi, xi+1],

0 elsewhere.

Exercise Find the values of the approximate solution in the case of uniform grid, n = 10, a(x) = 0,
b(x) = −1, f(x) = 0, y0 = 1, y1 = 0 by the piecewise linear finite element method.
Plot the graph of the error between approximate solution and the exact solution y(x) =

1
1−e2 (ex − e2−x).

Let us now consider the following problem: find u such that

∂u

∂t
= α

∂2u

∂x2
+ β

∂u

∂x
+ γu, x ∈ [xmin, xmax] (3)

u(x, 0) = u0(x), x ∈ [xmin, xmax], (4)

u(xmin, t) = ψ1(t), u(xmax, t) = ψ2(t), t ∈ [0, T]. (5)

where xmin, xmax, T, α, β, γ are given numbers and u0, φ1, φ2 are given functions. The procedure
for deriving a finite element approximation for the problem above consists of the following steps.

1. Derive a weak form of the differential equations. For deriving a weak form we multiply the
equation (??) by an arbitrary differentiable function φ of one variable such that φ(xmin) =
φ(xmax) = 0 and integrate the equation over the x variable. By integrating the term with
the highest derivative by parts we get∫ xmax

xmin

∂u

∂t
(x, t)φ(x) ds = −

∫ xmax

xmin

α
∂u

∂x
(x, t)φ′(x) dx+

∫ xmax

xmin

(β
∂u

∂x
(x, t) + γu(x, t))φ(x) dx

2. In order to determine an approximate solution we look for u in the form of a linear combi-
nation of n+ 1 basis functions φi, i = 0, . . . , n with time-dependent coefficients:

u(x, t) ≈
n∑

i=0

ξi(t)φi(x),

and require that the boundary conditions hold and that the weak form holds in the cases
φ = φi, i = 1, . . . , n−1. This gives us n+1 ordinary differential equations for n+1 unknown
functions; by solving the system of equations we get an approximate solution.

The method is called a finite element method if the basis functions φi are such that they are
non-zero only on a small subinterval of [xmin, xmax].

We consider the same basis functions as before.

For solving the resulting system of ordinary differential equations there are many methods avail-
able. We’ll use Euler’s method by dividing the time interval intom equal subintervals and replacing
the time derivative by approximation

ξ′i(tk) ≈ ξi(tk+1)− ξi(tk)

∆t
.

Homeworks (Deadline December 19, 2011) Derive equations for determining the approximate values of
ξi(tk), k = 1, . . . ,m. Implement the corresponding method (so that it works with any given
grid) and use it to compute approximately the price of the put option in the case T = 0.5,
D = 0, σ = 0.5, r = 0.05, E = 100, S(0) = 95, by solving the transformed Black-Scholes
equation with m = 3500, n = 20, xmin = ln 50, xmax = ln 200 in the case of the grid xi =
xmin+xmax

2 − xmax−xmin

2

(
n−2i
n

)2
, i = 0, 1, . . . , n2 ; xi = xmin+xmax

2 + xmax−xmin

2

(
2i−n
n

)2
, i =

n
2 + 1, . . . , n. Submit both the detailed derivation (This is Theoretical Homework 3, worth
max 4 points) and the Python code (Practical Homework 10, max 3 points).

Computational Finance
Final Examination
January 14, 2010

Problem 1. Consider the partial differential equation for Asian option:

∂v

∂t
(s, I, t) +

σs2

2

∂2v

∂s2
(s, I, t) + (r −D)s

∂v

∂s
(s, I, t) + s

∂v

∂I
(s, I, t)− rv(s, I, t) = 0.

Let us look for a special solution of the form v(s, I, t) = Iw(x, t), where x = s
I . Find the equation

that must be satisfied by the function w(x, t).

Problem 2. Derive an Explicit finite difference method for solving the problem

∂u

∂t
=
∂2u

∂x2
+ (x+ t)

∂2u

∂y2
, 1 < x < 4, 1 < y < 3, 0 < t < 0.5,

u(x, y, 0) = u0(x, y), 1 < x < 4, 1 < y < 3,

u(x, 1, t) = u(x, 3, t) = 1, u(1, y, t) = u(4, y, t) = (y − 2)2,

showing also how the initial and boundary conditions are used.

Problem 3. Consider a barrier option which gives it’s holder at T = 0.5 the payment (S(T) −
100)2/100, if S(t) < 120, 0 ≤ t ≤ T . If the stock price achieves the value 120 first time at t = t0,
then the holder of the option receives at t = t0 the payment 4e−r(T−t0) (where r is the risk free
interest rate). It is known that the price of the option at t = 0 is given by v(S(0), 0), where v(s, t)
satisfies the Black-Scholes equation in the region 0 ≤ s < 120, t ∈ [0, 0.5], the boundary condition

v(120, t) = 4e−r(T−t), 0 < t ≤ T

and the final condition
v(s, T) = (s− 100)2/100, 0 ≤ s ≤ 120.

Assume that S(0) = 94.7237 and that the Black-Scholes market model holds with σ(s, t) = 0.5 +
0.1 sin(s t). Assume also that r = 0.1 and D = 0. Find the price of the option with the maximal
error 0.01 (Hint: if u1 is the price of the option at the t = 0 corresponding to S(0) = s1 and u2 is
the price of the option at the t = 0 corresponding to S(0) = s2, then the the price corresponding
to S(0) = s0 ∈ [s1, s2] is approximately given by s2−s0

s2−s1
u1 +

s0−s1
s2−s1

u2 with the error O((s2 − s1)2)).
Partial credit can be obtained for solving the problem for S(0) = 90.

Problem 4. Consider an option with the exercise date T = 0.5 and the payoff function p(s) =
max(10−|s−100|, 0). Assume that the stock pays at t = 0.3 a proportional dividend 0.05S(0.3) per
share. Assume that the stock does not pay any continuously compounded dividends. Assume also
that the stock price satisfies the Black-Scholes market model with the constant volatility σ = 0.5
for t 6= 0.3 (it can be shown that the stock price is reduced by the amount of 0.05S(0.3) at t = 0.3
. Let v1(s, t) be the pricing function for the corresponding usual European option for t ∈ [0.3, 0.5]
and let v2(s, t) be the pricing function of the European option with the exercise date T2 = 0.3
and the payoff p(s) = v1((1− 0.05)s, 0.3). Then it can be shown that the price v of the European
option is given by

v(s, t) =

{
v1(s, t) for t ∈ (0.3, 0.4],

v2(s, t) for t ∈ [0, 0.3].

Assume r = 0.06 and S(0) = 100. Write a function that computes an approximate price of the
option at t = 0 using the implicit finite difference method.

lab1.py

from scipy import *

#exercise 1

def f1(x):

 result=x*sin(x)

 return(result)

from pylab import plot,show

x=linspace(0,10,100)

plot(x,f1(x))

show()

#exercise 2

def midpoint(f,a,b,n):

 h=(b-a)/float(n) # to avoid wrong answer if a and b are integers, we change n to a

real (floating point) number

 i=arange(1,n+1)

 x=a+(i-1.0/2.0)*h #here again 1/2 would return 0, that gives incorrect answers

 result=h*sum(f(x))

 return(result)

print midpoint(sin,0,1,100)

print midpoint(f1,0,1,100)

#exercise 3

m=100

n=5

Y=zeros(shape=(m+1,n))

i=arange(0,m+1)

x=i/float(m) #again there is a need to avoid dividing integers

Y[:,0]=sin(4*pi*x)

for j in arange(1,n):

 Y[0,j]=Y[m,j]=0 #actually unnecessary, since the matrix Y was filled with zeros at

the time of definition

 i=arange(1,m) #since this vector does not change when j changes, it is more

efficient to define it before the for cycle starts

 Y[i,j]=(Y[i-1,j-1]+Y[i,j-1]+Y[i+1,j-1])/3

plot(x,Y[:,n-1]) #since the column nubers start from 0, the last column corresponds to

n-1

show()

1/1

lab2.py

#---

Name: lab2.py

Purpose:

#

Author: Raul Kangro

#

Created: 07.09.2011

#---

from scipy import *

#Exercise 1

from BSformulas import Put, Call

print Call(r=0.05,D=0.01,sigma=0.5,S=100,E=100,T=0.5)

print Put(r=0.05,D=0.01,sigma=0.5,S=100,E=100,T=0.5)

#Exercise 2

from pylab import plot,show

def BSgraph(S0,m,mu,sigma,T,n):

 S=empty(shape=(m+1,n))

 t=linspace(0,T,m+1)

 h=T/float(m) #step size in time

 S[0]=S0 #one index in a matrix gives a row

 for i in arange(1,m+1):

 S[i]=S[i-1]*(1+mu*h+sigma*sqrt(h)*randn(n))

 plot(t,S)

 show()

BSgraph(S0=100,m=500,mu=0.1,sigma=0.5,T=1,n=5)

1/1

lab3.py

#---

Name: lab3.py

Purpose:

#

Author: Raul Kangro

#

Created: 14.09.2011

#---

from scipy import *

#read in the data that is located in the 5th row

S=loadtxt("h:/finmat/2011sygis/amazon.csv",delimiter=",",skiprows=1,usecols=(4,))

#compute the number of observations

n=size(S)

#the observations are in wrong order (the newest is the first), so we want to reorder

#make the sequence of indeces starting from the largest

i=arange(n-1,-1,-1)

#form a new sequence by takend the values of S in the order given by i

newS=S[i]

#after checking that newS is correct, we can rename it to be S again

S=newS #actually, we could write S=S[i] to achieve the same thing

#want to compute the logarithms of the quotionts of the consequtive closing prices

#to compute all logarithms with one command, let us make a sequence of integers for

which the computation is possible

i=arange(0,n-1) #one less than the number of S values

x=log(S[i+1]/S[i])

dt=1.0/n

#compute the volatility and trend according to formulas derived in class

sigma=std(x)/sqrt(dt)

mu=mean(x)/dt+sigma**2/2

#these are market parameters, if we assume that

#the Black-Scholes model with constant mu and sigma are valid

print "sigma=", sigma, ", mu=", mu

#check if the assumption is satisfied

#if satisfied, then ui are values of normally distributed random variables

#Exercise 2: test the assumptions of BS model

from scipy import stats

#info about the tests

help(stats.shapiro)

help(stats.anderson)

#check the normality of the data

print stats.shapiro(x)

#the result means that the probability to get the value 0.965.. by computations

performed

#by this test in the case of normally distributed data is only 0.0000079..., so very

small

#Thus it is unlikely that the stock prices follow the BS model with constant

coefficients

print stats.anderson(x)

#the conclusions are the same: the computed value was 2.09, but the probability of

getting value larger than 1.075 is 0.01

#if the data corresponds to a normal distribution

hence one should look for more complicated models

#esercise 3

def f1(theta):

 #according to our assumptions we can compute the terms appearing in the likelyhood

function starting from the second

 #observation (for the first one we can not compute the trend since it needs

previous stock price)

1/2

lab3.py

 #and ending by one observation before the last (since Y[i] needs the next stock

price)

 i=arange(1,n-1)

 #compute all Y values

 Y=(S[i+1]-S[i])/S[i]

 #and all mu values

 mu=theta[0]+theta[1]*(S[i]-S[i-1])/dt

 #and all volatilities (but those are the same)

 sigma=theta[2]

 #compute the value of the function

 return(sum((Y-mu*dt)**2/(2*sigma**2*dt)+log(sigma)))

from scipy import optimize

#reasonable starting values correspond to the constant coefficient case

#we get constant coefficients when theta[1]=0; theta[0] corresponds then to the

constant trend and theta[2] is the volatility

theta=optimize.fmin(f1,[mu,0,sigma])

print theta

#exercise 4: is the new model with nonconstant mu better?

#theta is now known vector

#compute the quantities that should be iid and normally distributed

i=arange(1,n-1)

Y=(S[i+1]-S[i])/S[i]

mu=theta[0]+theta[1]*(S[i]-S[i-1])/dt

sigma=theta[2]

u1=(Y-mu)/sigma

#now check the normality

print(stats.shapiro(u1))

print stats.anderson(u1)

#No, the more complicated model is not good enough, so one should continue the search

for a good model ...

2/2

lab4.py

#---

Name: lab4.py

Purpose:

#

Author: Raul Kangro

#

Created: 21.09.2011

#---

from scipy import *

#three month call option prices for Cisco on Sept. 21,2011

E=[14.0,15.0,16.0,17.0,18.0,19.0]

Prices=[2.89,2.14,1.45,0.91,0.52,0.27]

#assume BS model with constant volatility. Then prices can be computed by BS formulas

#load the BS call option pricing function

from BSformulas import Call

#data about the option

r=0.02

D=0

S=16.53

T=1.0/4

n=size(E)

sigmas=empty(n) #here we store the computed volatilities

from scipy import optimize #solving and minimization functions in Python

for i in arange(n):

 #for each strike price define a function that computes the difference

 #between theoretical price and observed price

 def f(sigma):

 return(Call(S=S,E=E[i],T=T,D=0,r=r,sigma=sigma)-Prices[i])

 sigmas[i]=optimize.fsolve(f,0.5) #optimize.fsolve finds value of argument of the

function which makes it equal to 0.

 #the second parameter 0.5 is the starting value for sigma, around which to look

for the solution

#produce the graph of implied volatilities versus exercise prices

from pylab import plot,show

plot(E,sigmas)

show()

#exercise 2

def f2(sigma):

 result=0 #stores the current value of the sum of squared values

 for i in arange(n): #for each value of i we add to the result the squared error

for the strike price E[i]

 result=result+(Call(S=S,E=E[i],T=T,D=0,r=r,sigma=sigma)-Prices[i])**2

 return(1.0/2*result) #1.0/2 is actually not needed. I included it to make the

function equal to the one specified on handout

print optimize.fmin(f2,0.34)

sigma=optimize.fmin(f2,0.34)

#compute the differences for the best value of sigma

differences=empty(n)

for i in arange(n):

 differences[i]=(Call(S=S,E=E[i],T=T,D=0,r=r,sigma=sigma)-Prices[i])

print differences

#the largest one corresponds to E=15

#exercise 3

1/2

lab4.py

#import the pricing function for the more complicated model

from lab4solver import lab4solver

def f3(theta):

 result=0

 for i in arange(n):

 result=result+(lab4solver(theta,E[i],S)-Prices[i])**2

 return(1.0/2*result)

print optimize.fmin(f3,[0.33,0])

differences=empty(n)

for i in arange(n):

 differences[i]=(lab4solver([0.28460728,-0.0718296],E[i],S)-Prices[i])

print(differences)

#the errors are much smaller, so the more complicated market model with stock price

dependent volatility fits

#better the market data.

2/2

lab5.py

#---

Name: lab5.py

Purpose: Sample solutions of lab exercises

#

Author: Raul Kangro

#

Created: 28.09.2011

#---

from scipy import *

from scipy import stats

InvPhi=stats.norm.ppf #computes the values of the inverse function of the

#cumulative distribution functin of the normal distribution

#data for the exercises

S0=100

E=97

sigma=0.4

T=0.5

r=0.02

D=0.03

alpha=0.05

#exercise 1

def MC1(n,p): #n is the number of generated stock prices, p is the name of the payoff

function that should be used for the current option

 S=S0*exp((r-D-sigma**2/2.0)*T+sigma*sqrt(T)*randn(n)) #generate N stock prices

according to the exact formula

 Y=exp(-r*T)*p(S) #compute the discounted payoff values

 price=mean(Y) #appriximate price is the average of the discounted payoff values

 error=-InvPhi(alpha/2.0)*std(Y)/sqrt(n) #MC error estimate, valid with probability

1-alpha

 return([price,error])

def p_call(s): #the payoff funciton of the call option

 return(maximum(s-E,0))

def p_put(s): #the payoff function of the put option

 return(maximum(E-s,0))

from BSformulas import Call #if sigma is a constant, then the exact price of the Call

and Put options are known. We need the exact price of the call option

exact=Call(S=S0,E=E,T=T,r=r,sigma=sigma,D=D)

#try out MC1

n=100000

V=MC1(n,p_call) #V is a pair of numbers, the first one is the approximate price of the

call option (since we use p_call as the payoff function), the second is the error

estimate.

print "exact price=",exact,"MC price =",V[0],"error estimate=",V[1]

#The error estimate of Monte-Carlo estimate is such that with probability 1-alpha we

get an approximate answer with actual error less than the estimate

#so if alpha=0.05 and we use MC method many times, then in average 1 time in 20 the

actual error is larger than the estimate

#Let us test this property: compute the price of the Call option 100 times and find

the actual error

#Check, how many times the actual error is larger than the estimate

for i in arange(100):

 V=MC1(n,p_call)

 actual_error=abs(exact-V[0])

 if(actual_error>V[1]):

 print i,actual_error,V[1]

#by running this code many times, you should see 5 lines of printout in the average

1/2

lab5.py

#exercise 2

#Use Euler's method for computing the approximate values of S(T)

def MC2(n,p,m):

 S=empty(shape=(m+1,n)) #define a matrix to store the trajectories of the stock

prices

 h=T/float(m) #step size in time

 S[0]=S0 #one index in a matrix gives a row

 mu=r-D

 for i in arange(1,m+1):

 S[i]=S[i-1]*(1+mu*h+sigma*sqrt(h)*randn(n))

 Y=exp(-r*T)*p(S[m]) #the final stock prices are in the last row with index m; we

use those values in the payoff function

 price=mean(Y)

 error=-InvPhi(alpha/2.0)*std(Y)/sqrt(n)

 return([price,error])

#we want to see how quickly the discretization error (the error that depends on the

number of time steps) goes to zero

#for this n has to be large enough so that the MC error is significantly smaller than

the discretization error

n=5000000

print MC2(n=n,m=2,p=p_call)

error_m=empty(4)

V=MC2(n=n,m=2,p=p_call)

error_m[0]=exact-V[0]

V=MC2(n=n,m=4,p=p_call)

error_m[1]=exact-V[0]

V=MC2(n=n,m=6,p=p_call)

error_m[2]=exact-V[0]

V=MC2(n=n,m=8,p=p_call)

error_m[3]=exact-V[0]

print error_m

#If the discretization error behaves like c/m, then it should get 2 times smaller

whenever m is increased 2 times. So

#error_m[1] corresponding to m=4 should be approximately half of the error_m[0] that

corresponds to m=2

#and #error_m[3] corresponding to m=8 should be approximately half of the error_m[1]

that corresponds to m=4

#more efficient version of the Euler's method: Since we need just the final values of

the stock prices, we do not store the matrix

#we just keep in the vector S the current values of the stock prices of all

trajectories

def MC2_2(n,p,m):

 h=T/float(m) #step size in time

 S=S0 #all trajectories start from S0

 mu=r-D

 for i in arange(1,m+1):

 S=S*(1+mu*h+sigma*sqrt(h)*randn(n)) #tha values corresponding to t[i] are

computed from the values of the previous time moment; results are stored in the same

vector S

 #now, after the cycle, the vector S contains the final values of the trajectories

 Y=exp(-r*T)*p(S)

 price=mean(Y)

 error=-InvPhi(alpha/2.0)*std(Y)/sqrt(n)

 return([price,error])

2/2

lab6.py

#---

Name: Lab6.py

Purpose:

#

Author: Raul Kangro

#

Created: 05.10.2011

#---

from scipy import *

def my_derivative(f,x,h,order):

 if order==1:

 return((f(x+h)-f(x-h))/(2.0*h))

 elif order==2:

 return((f(x+h)-2*f(x)+f(x-h))/h**2)

 else:

 print("order should be 1 or 2")

print my_derivative(sin,0,0.1,1)

def g(x):

 return(x*exp(2*x))

my_derivative(g,1,0.1,1)

h=2.0**(-arange(10))

x=0

results=my_derivative(sin,x,h,1)

exact=cos(x)

errors=exact-results

errors/h**2

x=0.5

results=my_derivative(sin,x,h,1)

exact=cos(x)

errors=exact-results

errors/h**2

x=0

results=my_derivative(exp,x,h,2)

exact=exp(x)

errors=exact-results

errors/h**2

#exercise 2

def f(x):

 return(-24*x**2)

a=0

b=1

from scipy import linalg

def solve(n,a,b):

 h=(b-a)/float(n)

 M=zeros(shape=(n+1,n+1))

 F=zeros(n+1)

 x=linspace(a,b,n+1)

 M[0,0]=1

 F[0]=1

 for i in arange(1,n):

 M[i,i-1]=1/h**2 #below the main diagonal

 M[i,i]=-2/h**2 #on the main diagonal

 M[i,i+1]=1/h**2 #above the main diagonal

 F[i]=f(x[i])# right hand side

 M[n,n]=1

 F[n]=-1

 y=linalg.solve(M,F)

 return(y)

n=10

1/3

lab6.py

#from pylab import plot,show

#plot(linspace(a,b,n+1),solve(n,a,b))

#show()

def y(x):

 return(1-2*x**4)

approximate=solve(n,a,b)

exact=y(linspace(a,b,n+1))

print exact-approximate

n=100

approximate=solve(n,a,b)

exact=y(linspace(a,b,n+1))

print max(abs(exact-approximate))

#Exercise 3: using special solver

def solve2(n,a,b):

 h=(b-a)/float(n)

 Dgs=zeros(shape=(3,n+1)) #three diagonals

 F=zeros(n+1)

 x=linspace(a,b,n+1)

 #M[0,0]=1

 Dgs[1,0]=1 #the main diagonal

 F[0]=1

 for i in arange(1,n):

 #M[i,i-1]=1/h**2 #below the main diagonal

 Dgs[2,i-1]=1/h**2

 #M[i,i]=-2/h**2 #on the main diagonal

 Dgs[1,i]=-2/h**2

 #M[i,i+1]=1/h**2 #above the main diagonal

 Dgs[0,i+1]=1/h**2

 F[i]=f(x[i])# right hand side

 #M[n,n]=1

 Dgs[1,n]=1

 F[n]=-1

 y=linalg.solve_banded((1,1),Dgs,F)

 return(y)

#exercise 4

def solve4(n,a,b):

 h=(b-a)/float(n)

 Dgs=zeros(shape=(3,n+1)) #three diagonals

 F=zeros(n+1)

 x=linspace(a,b,n+1)

 Dgs[1,0]=1 #the main diagonal

 F[0]=1

 i=arange(1,n) #instead of using for cycle, we can compute the elements in parallel

 Dgs[2,i-1]=1/h**2-1/(2*h)

 #M[i,i]=-2/h**2 #on the main diagonal

 Dgs[1,i]=-2/h**2-x[i]

 #M[i,i+1]=1/h**2 #above the main diagonal

 Dgs[0,i+1]=1/h**2+1/(2*h)

 F[i]=sin(x[i])#The right hand side

 #M[n,n]=1

 Dgs[1,n]=1/h #the boundary condition at x=b is (y[n]-y[n-1])/h=0

 Dgs[2,n-1]=-1/h #the boundary condition at x=b

 F[n]=0

 y=linalg.solve_banded((1,1),Dgs,F)

 return(y)

n=10

print solve4(n,a,b)

##as we see, the code works and gives some reasonably looking answers

but how do we know it works correctly?

2/3

lab6.py

##in order to verify the code it is usually a good idea to try to find a similar

problem for which the

##the exact solution is known

##We can construct a problem starting from the solution:

##pick a function that satisfies boundary conditions, for example y(x)=(x-1)**2

if we substitute the solution to the left hand side of the equation we get

2+2*(x-1)-x*(x-1)**2

So we can test our code so that we change sin(x) to 2-2*(x-1)-x*(x-1)**2 in the code

and compare the results to the exact answer y(x)=(x-1)**2

3/3

lab7.py

#---

Name: lab7.py

Purpose:

#

Author: Raul Kangro

#

Created: 12.10.2011

#---

from scipy import *

def u0(x):

 return(sin(pi*x)+(1-x)/2.0)

def Ex1(m,n,u0):

 xmin=-1.0

 xmax=1.0

 x=linspace(xmin,xmax,n+1)

 T=0.5

 dx=(xmax-xmin)/n

 dt=T/m

 U=zeros(shape=(n+1,m+1))

 #use initial condition

 U[:,0]=u0(x)

 i=arange(1,n)

 a=dt/(4.0*dx**2)

 b=1-dt/(2.0*dx**2)

 c=a

 for k in arange(m):

 #use boundary conditions

 U[0,k+1]=1

 U[n,k+1]=0

 #use the numerical method for other values

 U[i,k+1]=a*U[i-1,k]+b*U[i,k]+c*U[i+1,k]

 return(U[:,m])

m=100

n=10

T=0.5

approximate=Ex1(m=100,n=10,u0=u0)

x=linspace(-1,1,n+1)

exact=exp(-pi**2*T/4)*sin(pi*x)+(1-x)/2.0

print exact-approximate

#exercise 2

for i in arange(4):

 n=2**(i+1)

 m=n**2

 approximate=Ex1(m=m,n=n,u0=u0)

 x=linspace(-1,1,n+1)

 exact=exp(-pi**2*T/4)*sin(pi*x)+(1-x)/2.0

 print "n=",n,"m=",m,"error=",max(abs(exact-approximate))

#we see that the error is reduced approximately 4 times each time we multiply

#n by 2 and m by 4 (except after the first computation). This is consistent with

#the error estimate error<=const.(dt+dx^2)

#exercise 3

m=2

n=10

for i in arange(4):

 approximate=Ex1(m=m,n=n,u0=u0)

 x=linspace(-1,1,n+1)

 exact=exp(-pi**2*T/4)*sin(pi*x)+(1-x)/2.0

 print "n=",n,"m=",m,"error=",max(abs(exact-approximate))

 n=n*2

1/2

lab7.py

 m=m*4

#with different starting values for m and n we see a completely different behaviour:

#the errors are increasing very rapidly when we increase m and n

#the reason is that m and n have to satisfy certain stability relations in order for

#the explicit method to give reasonable answer, and this condition is violated in this

case

2/2

lab8.py

#---

Name: lab8.py

Purpose:

#

Author: Raul Kangro

#

Created: 12.10.2011

#---

from scipy import *

def p_call(s):

 return(maximum(s-E,0))

def phi1_call(t,xmin):

 return(p_call(exp(xmin)))

def phi2_call(t,xmax):

 return(p_call(exp(xmax)))

def explicit(n,rho,r,D,S0,T,sigma,phi1,phi2,p):

 xmin=log(S0/float(rho))

 xmax=log(S0*rho)

 dx=(xmax-xmin)/n

 m=ceil(T*(sigma**2/dx**2+r))

 x=linspace(xmin,xmax,n+1)

 dt=T/float(m)

 U=zeros(shape=(n+1,m+1))

 alpha=sigma**2/2

 beta=r-D-alpha

 a=dt/dx**2*(alpha-beta/2*dx)

 b=1-2*dt/dx**2*alpha-r*dt

 c=dt/dx**2*(alpha+beta/2*dx)

 U[:,m]=p(exp(x)) #final condition

 t=linspace(0,T,m+1)

 i=arange(1,n)

 for k in arange(m,0,-1):

 #boundary conditions

 U[0,k-1]=phi1(t[k-1],xmin)

 U[n,k-1]=phi2(t[k-1],xmax)

 U[i,k-1]=a*U[i-1,k]+b*U[i,k]+c*U[i+1,k]

 return([U[:,0],exp(x)])

#data

E=97

T=0.5

S0=100

r=0.03

D=0.05

rho=3

sigma=0.5

n=100

answer=explicit(n,rho,r,D,S0,T,sigma,phi1_call,phi2_call,p_call)

from BSformulas import Call

approximate=answer[0]

S=answer[1]

exact=Call(S,E,T,r,sigma,D)

print approximate - exact

#price corresponding to S0:

print approximate[n/2]

#error or the approximate price

print "n=", n,"rho=",rho,"error=", approximate[n/2]-exact[n/2]

1/1

lab9.py

from scipy import *

#solvers in the case sigma=sigma(s)

#then alpha and beta are functions of x only

def explicit1(n,xmin,xmax,T,u0,phi1,phi2,alpha,beta,r):

 x=linspace(xmin,xmax,n+1)

 dx=(xmax-xmin)/float(n)

 #compute m from the stability constraint

 m=int(amax(T*(2*alpha(x)/dx**2+r)))+1

 print(m)

 dt=T/float(m)

 t=linspace(0,T,m+1)

 #to save memory use only one row of the matrix U

 U=zeros(n+1)

 #final condition

 U[:]=u0(x)

 #coefficients a, b, c do not depend on k (time index)

 i=arange(1,n)

 a_ki=dt/dx**2*(alpha(x[i])-beta(x[i])/2*dx)

 b_ki=1-2*dt/dx**2*alpha(x[i])-r*dt

 c_ki=dt/dx**2*(alpha(x[i])+beta(x[i])/2*dx)

 for k in arange(m,0,-1):

 U[i]=a_ki*U[i-1]+b_ki*U[i]+c_ki*U[i+1]

 #left boundary

 U[0]=phi1(t[k-1])

 U[n]=phi2(t[k-1])

 return(U)

def transformedBSsolver1(n,r,D,S0,sigma,rho,T):

 def p(s):

 #return((90-s)*(s<80)+(s-100)**2/40.0*((s>=80)&(s<=120))+(s-110)*(s>120))

 return(maximum(s-100,0)) #simple call option

 #boundary conditions depend on payoff!

 xmin=log(S0/float(rho))

 xmax=log(S0*rho)

 def phi1(t):

 #return(-exp(xmin)*exp(-D*t)+90*exp(-r*t))

 return(0) #for call option

 def phi2(t):

 #return(exp(xmax)*exp(-D*t)-110*exp(-r*t))

 return(exp(xmax)*exp(-D*(T-t))-100*exp(-r*(T-t))) #for call option

 def alpha(x):

 return(sigma(exp(x))**2/2.0)

 def beta(x):

 return(r-D-sigma(exp(x))**2/2.0)

 def u0(x):

 return(p(exp(x)))

 #return the value for S0. assume n is even

 return(explicit1(n,xmin,xmax,T,u0,phi1,phi2,alpha,beta,r)[n/2])

try the code in the case of constant volatility

def sigma(s):

 return(0.5*ones(size(s)))

r=0.05

D=0.02

S0=100

rho=2.5

n=40

T=0.5

print(transformedBSsolver1(n,r,D,S0,sigma,rho,T))

1/2

lab9.py

from BSformulas import Call

print Call(S0,100,T,r,0.5,D)

###

#volatility depends on time (and so do alpha, beta)

def explicit2(n,xmin,xmax,T,u0,phi1,phi2,alpha,beta,r):

 x=linspace(xmin,xmax,n+1)

 dx=(xmax-xmin)/float(n)

 #compute m from the stability constraint

 #stability constraint is satisfied if m>T*(2*alpha(x[i],t)/dx**2r) for all i and

0<=t<=T

 #can not compute it for all t, therefore take only some t values

 m0=20

 t=linspace(0,T,m0+1)

 m=0

 for k in arange(m0+1):

 m=max(m,int(amax(T*(2*alpha(x,t[k])/dx**2+r)))+1)

 print(m)

 #to be safe, add something

 m=m+10

 dt=T/float(m)

 t=linspace(0,T,m+1)

 #to save memory use only one row of the matrix U

 U=zeros(n+1)

 #initial condition

 U[:]=u0(x)

 i=arange(1,n)

 for k in arange(m,0,-1):

 a_ki=dt/dx**2*(alpha(x[i],t[k])-beta(x[i],t[k])/2*dx)

 b_ki=1-2*dt/dx**2*alpha(x[i],t[k])-r*dt

 c_ki=dt/dx**2*(alpha(x[i],t[k])+beta(x[i],t[k])/2*dx)

 U[i]=a_ki*U[i-1]+b_ki*U[i]+c_ki*U[i+1]

 #left boundary

 U[0]=phi1(t[k-1])

 U[n]=phi2(t[k-1])

 return(U)

2/2

lab10.py

from scipy import *

from scipy import linalg

def implicit(n,m,xmin,xmax,T,u0,phi1,phi2,alpha,beta,r):

 x=linspace(xmin,xmax,n+1)

 dx=(xmax-xmin)/float(n)

 dt=T/float(m)

 t=linspace(0,T,m+1)

 #to save memory use only one row of the matrix U

 U=zeros(n+1)

 #initial condition

 U[:]=u0(x)

 i=arange(1,n)

 i1=arange(n-1)

 i2=arange(n-2)

 M=zeros(shape=(n-1,n-1))

 F=zeros(n-1)

 for k in arange(1,m+1):

 a_ki=-(dt/dx**2*(alpha(x[i],t[k])-beta(x[i],t[k])/2*dx))

 b_ki=1+2*dt/dx**2*alpha(x[i],t[k])+r*dt

 c_ki=-(dt/dx**2*(alpha(x[i],t[k])+beta(x[i],t[k])/2*dx))

 M[i1,i1]=b_ki

 M[i2,i2+1]=c_ki[i2]

 M[i2+1,i2]=a_ki[i2+1]

 F[i1]=U[i]

 #boundary values

 U[0]=phi1(t[k])

 U[n]=phi2(t[k])

 #modify right hand side

 F[0]=F[0]-a_ki[0]*U[0]

 F[n-2]=F[n-2]-c_ki[n-2]*U[n]

 U[i]=linalg.solve(M,F)

 return(U)

def transformedBSsolver_implicit(n,m,r,D,S0,sigma,rho,T):

 def p(s):

 #return((90-s)*(s<80)+(s-100)**2/40.0*((s>=80)&(s<=120))+(s-110)*(s>120))

 return(maximum(100-s,0)) #simple put option

 #boundary conditions depend on payoff!

 xmin=log(S0/float(rho))

 xmax=log(S0*rho)

 def u0(x):

 return(p(exp(x)))

 def phi1(t):

 #return(-exp(xmin)*exp(-D*(T-t))+90*exp(-r*(T-t))

 return(u0(xmin)) #simple boundary condition

 def phi2(t):

 #return(exp(xmax)*exp(-D*(T-t))-110*exp(-r*(T-t)))

 #return(exp(xmax)*exp(-D*(T-t))-100*exp(-r*(T-t))) #for call option

 return(u0(xmax)) #simple boundary condition

 def alpha(x,t):

 return(sigma(exp(x),t)**2/2.0)

 def beta(x,t):

 return(r-D-sigma(exp(x),t)**2/2.0)

 #return the value for S0. assume n is even

 return(implicit(n,m,xmin,xmax,T,u0,phi1,phi2,alpha,beta,r)[n/2])

1/1

lab11.py

from scipy import *

from scipy import linalg

def implicit(n,m,xmin,xmax,T,u0,phi1,phi2,alpha,beta,r):

 x=linspace(xmin,xmax,n+1)

 dx=(xmax-xmin)/float(n)

 dt=T/float(m)

 t=linspace(0,T,m+1)

 #to save memory use only one row of the matrix U

 U=zeros(n+1)

 #initial condition

 U[:]=u0(x)

 i=arange(1,n)

 i1=arange(n-1)

 i2=arange(n-2)

 M=zeros(shape=(n-1,n-1))

 F=zeros(n-1)

 for k in arange(1,m+1):

 a_ki=-(dt/dx**2*(alpha(x[i],t[k])-beta(x[i],t[k])/2*dx))

 b_ki=1+2*dt/dx**2*alpha(x[i],t[k])+r*dt

 c_ki=-(dt/dx**2*(alpha(x[i],t[k])+beta(x[i],t[k])/2*dx))

 M[i1,i1]=b_ki

 M[i2,i2+1]=c_ki[i2]

 M[i2+1,i2]=a_ki[i2+1]

 F[i1]=U[i]

 #boundary values

 U[0]=phi1(t[k])

 U[n]=phi2(t[k])

 #modify right hand side

 F[0]=F[0]-a_ki[0]*U[0]

 F[n-2]=F[n-2]-c_ki[n-2]*U[n]

 U[i]=linalg.solve(M,F)

 return(U)

def transformedBSsolver_implicit(n,m,r,D,S0,sigma,rho,T):

 def p(s):

 #return((90-s)*(s<80)+(s-100)**2/40.0*((s>=80)&(s<=120))+(s-110)*(s>120))

 return(maximum(s-100,0)) #simple call option

 #boundary conditions depend on payoff!

 xmin=log(S0/float(rho))

 xmax=log(S0*rho)

 def u0(x):

 return(p(exp(x)))

 def phi1(t):

 return(u0(xmin)) #simple boundary condition

 def phi2(t):

 return(u0(xmax)) #simple boundary condition

 def alpha(x,t):

 return(sigma(exp(x),t)**2/2.0)

 def beta(x,t):

 return(r-D-sigma(exp(x),t)**2/2.0)

 #return the value for S0. assume n is even

 return(implicit(n,m,xmin,xmax,T,u0,phi1,phi2,alpha,beta,r)[n/2])

def sigma(s,t):

 return(0.4+0.2/(1+0.04*(s-100)**2))

r=0.05

D=0.00

S0=99

rho=2

1/2

lab11.py

n=20

m=10

T=0.4

epsilon=0.01

#rho=2

V1=transformedBSsolver_implicit(n,m,r,D,S0,sigma,rho,T)

m=m*4

n=n*2

V2=transformedBSsolver_implicit(n,m,r,D,S0,sigma,rho,T)

error=abs(V1-V2)/3

2/2

lab12.py

from scipy import *

from scipy import linalg

def BS_implicit_solver_am(m,n,xmin,xmax,T,r,u0,alpha,beta,phi1,phi2):

 dx=(xmax-xmin)/float(n)

 dt=T/float(m)

 x=linspace(xmin,xmax,n+1)

 t=linspace(0,T,m+1)

 U0=u0(x)

 U=U0.copy()

 diagonals=zeros(shape=(3,n-1))

 for k in range(1,m+1):

 F=U[1:n]

 U[0]=phi1(t[k],xmin)

 U[n]=phi2(t[k],xmax)

 a=-alpha(x[1:n],t[k])*dt/dx**2+beta(x[1:n],t[k])*dt/(2*dx)

 b=1+2*alpha(x[1:n],t[k])*dt/dx**2+r*dt

 c=-alpha(x[1:n],t[k])*dt/dx**2-beta(x[1:n],t[k])*dt/(2*dx)

 diagonals[0,1:]=c[:-1]

 diagonals[1]=b

 diagonals[2,:-1]=a[1:]

 F[0]=F[0]-a[0]*U[0]

 F[n-2]=F[n-2]-c[n-2]*U[n]

 U[1:n]=linalg.solve_banded((1,1),diagonals,F)

 U=maximum(U,U0)

 return U

def BS_CN_solver_am(m,n,xmin,xmax,T,r,u0,alpha,beta,phi1,phi2):

 dx=(xmax-xmin)/float(n)

 dt=T/float(m)

 x=linspace(xmin,xmax,n+1)

 t=linspace(0,T,m+1)

 U0=u0(x)

 U=U0.copy()

 diagonals=zeros(shape=(3,n-1))

 for k in range(1,m+1):

 a=-alpha(x[1:n],t[k])*dt/dx**2/2+beta(x[1:n],t[k])*dt/(4*dx)

 b=1+alpha(x[1:n],t[k])*dt/dx**2+r*dt/2

 c=-alpha(x[1:n],t[k])*dt/dx**2/2-beta(x[1:n],t[k])*dt/(4*dx)

 e=1-alpha(x[1:n],t[k])*dt/dx**2-r*dt/2

 F=-a*U[:-2]+e*U[1:-1]-c*U[2:]

 U[0]=phi1(t[k],xmin)

 U[n]=phi2(t[k],xmax)

 diagonals[0,1:]=c[:-1]

 diagonals[1]=b

 diagonals[2,:-1]=a[1:]

 F[0]=F[0]-a[0]*U[0]

 F[n-2]=F[n-2]-c[n-2]*U[n]

 U[1:n]=linalg.solve_banded((1,1),diagonals,F)

 U=maximum(U,U0)

 return U

r=0.1

sigma=0.5

D=0.0

T=0.5

E=100

S0=100

def p(s):

 return maximum(E-s,0)

def u0(x):

 return p(exp(x))

1/2

lab12.py

gamma=-r

def alpha(x,t):

 return sigma*sigma/2*ones(size(x))

def beta(x,t):

 return (r-D-sigma*sigma/2)*ones(size(x))

def phi1(t,xmin):

 return p(exp(xmin))

def phi2(t,xmax):

 return p(exp(xmax))

rho=2

xmin=log(S0/float(rho))

xmax=log(S0*float(rho))

m0=10

n0=20

m=m0

n=n0

print BS_implicit_solver_am(m,n,xmin,xmax,T,r,u0,alpha,beta,phi1,phi2)[n/2]

xmin=0

xmax=400

def phi1(t,xmin):

 return(p(0))

def phi2(t,xmax):

 return p(xmax)

def alpha(x,t):

 return sigma*sigma/2*x**2

def beta(x,t):

 return (r-D)*x

for i in range(7):

 m=4**i*m0

 n=2**i*n0

 approx=BS_implicit_solver_am(m,n,xmin,xmax,T,r,p,alpha,beta,phi1,phi2)

 print approx[n/4]

 ds=(xmax-xmin)/(float(n))

 print (approx[n/4+1]-approx[n/4-1])/(2*ds)

2/2

lab13.py

#Sample solutions of Lab 13

from scipy import *

S=loadtxt("cisco_lab13.csv",delimiter=",",skiprows=1,usecols=(4,))

n=size(S)

S=S[arange(n-1,-1,-1)]#S=S[::-1]

#i=arange(0,n-1)

#use the first half of closing prices to estimate sigma

i=arange(126)

u=log(S[i+1]/S[i])

dt=1.0/n

sigma1=std(u)/sqrt(dt)

#mu=mean(u)/dt+sigma**2/2

#these are market parameters, if we assume that

#the Black-Scholes model with constant mu and sigma are valid

#check if the assumption is satisfied

#if satisfied, then ui are values of normally distributed random variables

from scipy import linalg

def implicit_am(n,m,xmin,xmax,T,u0,phi1,phi2,alpha,beta,r):

 x=linspace(xmin,xmax,n+1)

 dx=(xmax-xmin)/float(n)

 dt=T/float(m)

 t=linspace(0,T,m+1)

 #to save memory use only one row of the matrix U

 U=zeros(n+1)

 #initial condition

 U0=u0(x)

 U[:]=u0(x)#or U[:]=U0.copy()

 i=arange(1,n)

 i1=arange(n-1)

 i2=arange(n-2)

 M=zeros(shape=(n-1,n-1))

 F=zeros(n-1)

 for k in arange(1,m+1):

 a_ki=-(dt/dx**2*(alpha(x[i],t[k])-beta(x[i],t[k])/2*dx))

 b_ki=1+2*dt/dx**2*alpha(x[i],t[k])+r*dt

 c_ki=-(dt/dx**2*(alpha(x[i],t[k])+beta(x[i],t[k])/2*dx))

 M[i1,i1]=b_ki

 M[i2,i2+1]=c_ki[i2]

 M[i2+1,i2]=a_ki[i2+1]

 F[i1]=U[i]

 #boundary values

 U[0]=phi1(t[k])

 U[n]=phi2(t[k])

 #modify right hand side

 F[0]=F[0]-a_ki[0]*U[0]

 F[n-2]=F[n-2]-c_ki[n-2]*U[n]

 U[i]=linalg.solve(M,F)

 U=maximum(U,U0)

 return(U)

def transformedBSsolver_implicit_am(n,m,r,D,S0,sigma,rho,T):

 def p(s):

 #return((90-s)*(s<80)+(s-100)**2/40.0*((s>=80)&(s<=120))+(s-110)*(s>120))

 return(maximum(23.16-s,0)) #simple put option

 #boundary conditions depend on payoff!

 xmin=log(S0/float(rho))

 xmax=log(S0*rho)

 def u0(x):

 return(p(exp(x)))

1/3

lab13.py

 def phi1(t):

 return(u0(xmin)) #simple boundary condition

 def phi2(t):

 return(u0(xmax)) #simple boundary condition

 def alpha(x,t):

 return(sigma(exp(x),t)**2/2.0)

 def beta(x,t):

 return(r-D-sigma(exp(x),t)**2/2.0)

 #return the value for S0. assume n is even

 return(implicit_am(n,m,xmin,xmax,T,u0,phi1,phi2,alpha,beta,r)[n/2])

try the code in the case of constant volatility

def sigma(s,t):

 return(sigma1*ones(size(s)))

r=0.03

D=0.00

S0=S[125]

rho=2

n=200

m=100

T=0.5

def transformedBSsolver_implicit_am_derivative(n,m,r,D,S0,sigma,rho,T):

 #compute dv/dS at S=S0, t=0

 def p(s):

 #return((90-s)*(s<80)+(s-100)**2/40.0*((s>=80)&(s<=120))+(s-110)*(s>120))

 return(maximum(23.16-s,0)) #simple put option

 #boundary conditions depend on payoff!

 xmin=log(S0/float(rho))

 xmax=log(S0*rho)

 def u0(x):

 return(p(exp(x)))

 def phi1(t):

 return(u0(xmin)) #simple boundary condition

 def phi2(t):

 return(u0(xmax)) #simple boundary condition

 def alpha(x,t):

 return(sigma(exp(x),t)**2/2.0)

 def beta(x,t):

 return(r-D-sigma(exp(x),t)**2/2.0)

 values=implicit_am(n,m,xmin,xmax,T,u0,phi1,phi2,alpha,beta,r)

 dx=(xmax-xmin)/n

 derivative=1.0/S0*(values[n/2+1]-values[n/2-1])/(2*dx)

 #return the value for S0. assume n is even

 return(derivative)

price=transformedBSsolver_implicit_am(n,m,r,D,S0,sigma,rho,T)

derivative=transformedBSsolver_implicit_am_derivative(n,m,r,D,S0,sigma,rho,T)

i=125

bank=price-derivative*S[i]

dt=1/250.0

eta=derivative

print(bank)

print(eta)

results=zeros(shape=(126,4))

results[0,0]=bank

results[0,1]=eta

results[0,2]=price #value of portfolio

results[0,3]=0 #payoff

#trade simulation

for i in arange(126,251):

2/3

lab13.py

 T=T-dt

 S0=S[i]

 derivative=transformedBSsolver_implicit_am_derivative(n,m,r,D,S0,sigma,rho,T)

 bank=bank*(1+r*dt)-(derivative-eta)*S0

 eta=derivative

 value=bank+eta*S0

 payoff=maximum(23.16-S0,0)

 results[i-125,0]=bank

 results[i-125,1]=eta

 results[i-125,2]=value #value of portfolio

 results[i-125,3]=payoff

#next day

3/3

lab14.py

from scipy import *

from scipy import linalg

def Asian(ns,nI,m,Smax,Imax,sigma,r,D,T,p,phi1,phi2):

 s=linspace(0,Smax,ns+1)

 I=linspace(0,Imax,nI+1)

 ds=Smax/float_(ns)

 dI=Imax/float_(nI)

 dtau=T/float_(m)

 Uk=zeros(shape=(ns+1,nI+1))

 Uk_1=zeros(shape=(ns+1,nI+1))

 i=arange(1,ns)

 rho=dtau/ds**2

 a=rho/4*(-s[i]**2*sigma(s[i])**2+(r-D)*s[i]*ds)

 b=0.5*(1+rho*s[i]**2*sigma(s[i])**2+s[i]*dtau/dI+r*dtau)

 c=-rho/4*(s[i]**2*sigma(s[i])**2+(r-D)*s[i]*ds)

 d=-a

 e=0.5*(1-rho*s[i]**2*sigma(s[i])**2+s[i]*dtau/dI-r*dtau)

 f=-c

 g=0.5*(-1+s[i]*dtau/dI)

 #use initial conditions

 for i in arange(ns+1):

 Uk_1[i,:]=p(s[i],I/T)

 #define the matrix of the system to be solved

 i1=arange(ns-1)

 i2=arange(ns-2)

 M=zeros(shape=(ns-1,ns-1))

 M[i1,i1]=b

 M[i2,i2+1]=c[i2]

 M[i2+1,i2]=a[i2+1]

 i=arange(1,ns)

 tau=linspace(0,T,m+1)

 #start time stepping

 for k in arange(1,m+1):

 #use boundary conditions

 #boundary I=Imax

 Uk[:,nI]=phi1(s,tau[k])

 #boundary S=0

 Uk[0,:nI]=p(0,I[:nI]/T)*exp(-r*tau[k])

 #boundary S=Smax

 Uk[ns,:nI]=phi2(I[:nI],tau[k])

 #start backward stepping in j

 for j in arange(nI-1,-1,-1):

 #compute the right hand side

 F=d*Uk_1[i-1,j+1]+e*Uk_1[i,j+1]+f*Uk_1[i+1,j+1]+g*(Uk[i,j+1]-Uk_1[i,j])

 F[0]=F[0]-a[0]*Uk[0,j]

 F[ns-2]=F[ns-2]-c[ns-2]*Uk[ns,j]

 #solve the system

 Uk[i,j]=linalg.solve(M,F)

 #new level is computed, it becomes old one

 Uk_1=Uk.copy()

 #return the solution

 return(Uk)

r=0.05

D=0

def sigma(s):

 return(ones(size(s))*0.5)

T=0.5

1/2

lab14.py

E=100

S0=95

Imax=E*T

Smax=2*S0

def phi1(s,tau):

 return(zeros(size(s)))

def phi2(I,tau):

 return(maximum(E*exp(-r*tau)+exp(-D*tau)/((r-D)*T)*(exp(-(r-D)*tau)-1)*Smax-exp(-

r*tau)/T*I,0))

def p(s,A):

 return(maximum(E-A,0))

m=20

ns=200

nI=100

2/2

lab15.py

#lab 15 sample code

from scipy import *

from scipy import linalg

def solver(x,y0,y1):#x-gridpoints

 n=size(x)-1 #the number of intervals

 c=zeros(n+1)

 c[0]=y0

 c[n]=y1

 h=x[1:]-x[:n] #lengths of intervals

 M=zeros(shape=(n-1,n-1))

 #diagonal of M

 i=arange(n-1)

 M[i,i]=-1/h[i]-1/h[i+1]+(h[i]+h[i+1])/3

 #above diagonal

 i=arange(n-2)

 M[i,i+1]=1/h[i+1]+h[i+1]/6

 #below diagonal

 M[i+1,i]=1/h[i+1]+h[i+1]/6

 F=zeros(n-1)

 #modify first and last elements of F

 F[0]=F[0]-c[0]*(1/h[0]+h[0]/6)

 F[n-2]=F[n-2]-c[n]*(1/h[n-1]+h[n-1]/6)

 c[1:n]=linalg.solve(M,F)

 return(c)

x=linspace(0,1,10)

result=solver(x,1,0)

1/1

Additional resources:

Video: Using Moodle https://moodle.ut.ee/mod/resource/view.php?id=48624

Video: Getting Portable Python https://moodle.ut.ee/mod/resource/view.php?id=45175

Video: Finding mistakes in a code that runs without error messages

https://moodle.ut.ee/mod/resource/view.php?id=46643

