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Introduction

Cancer is currently one of the most widespread and deadly diseases ac-
counting for 13% of all deaths worldwide in 2004 [23]. Despite the extensive
research efforts over the last decades, it still cannot be neither understood
nor cured very effectively. It is known that angiogenesis or the development
of blood vessels plays an import role in tumour growth [22]|. Therefore, better
understanding of this process could potentially help us to find new and more
efficient ways to treat cancer.

In the human genome, there are about 22000 genes out of which approx-
imately 350 are known to be involved in angiogenesis. In addition, biologists
have measured the expression of all human genes in thousands of different
conditions. In this work, our goal is to use these measurements to predict
which other of the 22000 genes could also play a role in blood vessel de-
velopment and prioritise them according to their likelihood. Computational
prioritisation of candidate genes is an important question because conducting
biological experiments with all genes would not be physically nor economi-
cally possible.

Our work is a part of a larger EU FP6 project ENFIN subproject called
“Characterize the Human angiogenic sub-network”. The experimental labs of
Prof. Francesca Sanches in Malaga and Prof. Christine Orego at University
College London (UCL) have provided us with a curated list of 341 known
angiogenesis genes. They have compiled the list based on the information
gathered from Gene Ontology [3], literature and commercial microarrays.
We will use this list to make our predictions and afterwards we will send
the results to our ENFIN collaborators in Spain. There they will combine
our results with predictions from two other labs. Finally, they will conduct



biological experiments to determine which genes are really involved in angio-
genesis.

The first two chapters of this thesis cover the basic biological and ma-
chine learning concepts used throughout this work. In Chapter 3, we compare
various state-of-the-art methods and bioinformatics tools that can be used
to prioritise candidate genes for a specific biologically process. In the next
chapter, we propose a novel machine learning approach that combines re-
sults from many separately trained Support Vector Machines (SVM) into
one prediction. Finally, we show that the new method statistically outper-
forms the existing ones and that the new predicted angiogenesis genes are
indeed biologically relevant.



Chapter 1

Biological Background

1.1 Biology Behind Angiogenesis

Angiogenesis is the growth and development of blood vessels. Normally
it takes place during embryonic development, formation of corpus luteum?!,
regeneration, and wound healing. Additionally, it has been shown to play a
big role in cancer development.

First of all, without angiogenesis tumours would not be able to grow larger
than 1-2 millimeters in diameter because of lack of oxygen and nutrients.
Experiments with mice [17] have shown that if tumour cells are not able
to induce blood vessel development in the neighbouring cells, they cannot
grow bigger and become dangerous to the organism. Secondly, angiogenesis
makes it possible for cancer to spread and reach other parts of the body using
normal blood circulation. This is called metastasis.

A simplified description of the process is following. First, cancer cells
produce and release various molecules that start angiogenesis. Some of the
most well known molecules are Basic Fibroblast Growth Factor (bFGF) and
Vascular Endothelial Growth Factor (VEGF). These molecules in turn acti-
vate endothelial cells (blood vessel cells) which causes them to split and form
new blood vessels. This is illustrated on Figure 1.1. For further information
on mechanism of angiogenesis, please see [7].

LA yellow mass of tissue that forms in the ovary after ovulation. It is involved in the
production of progestogen, which is needed to sustain a healthy pregnancy.
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Figure 1.1: The role of angiogenesis in cancer. Image taken from [14].

1.2 Gene Expression Experiments

Molecular functions of a cell, such as initiating the growth of blood ves-
sels, are carried out by proteins. Proteins are translated from messenger
RNA (mRNA) which in turn is transcribed from the genes on the DNA.
Genes are in essence continuous regions of DNA that are used to encode pro-
teins. While it is very difficult to measure the level of proteins in a cell, it is
much easier to measure the amount of mRNA. This is the main idea behind
gene expression microarray experiments. Although it is an indirect method,
it can still give reasonable estimation of the level of proteins. Microarrays
have become popular in the recent years because they are relatively cheap
and allow to measure the expression of thousands of genes in one experiment.
There are many companies in this field, each having their own slight techno-
logical differences but the main idea is the same. Our data is obtained from
Affymetrix [10] chips, so we give a short overview of this technology.

A gene expression chip is designed as follows. First, a set of specifically



chosen oligonucleotides (25-mers) called probes? are printed to a solid surface
(glass, plastic or silicon chips) in an orderly manner. The resulting chips are
called microarrays. To measure the amount of mRNA, it is first extracted
from the cells of interest. This could be a normal cell, a cancer cell or
a cell infected by some other disease. Next, the mRNA is converted to
complementary DNA (cDNA) using the reverse transcriptase enzyme. This
enzyme works by scanning the mRNA and synthesizing its nucleotides (A, U,
G and C) into their DNA complements (T, A, C and G respectively). When
this is done, a fluorescent dye is added to the cDNA to make it possible to
measure its presence.

Finally, the microarray is hybridized with the cDNA prepared as ex-
plained above. In this process the cDNA binds to its complementary oligonu-
cleotides on the chip. A digital image of the microarray is made with laser
scanners and analyzed with a computer. Because the oligonucleotides were
printed onto the array in a fixed order, it is now possible to measure the
amount of mRNA transcribed from different genes by looking at which places
on the array the cDNA bound the most i.e which locations had the most
colour. Results from different probes are aggregated into probe sets and fi-
nally each probe set gets a numerical value. This number does not show the
absolute amount of mRNA, but rather how much one specific probe set is
over- or under-expressed compared to all other probe sets. The steps of a
typical microarray experiment are illustrated on Figure 1.2.

In the perfect world each probe set would correspond to a single gene.
However, because some genes on DNA can overlap and the microarrays were
often designed before there was much knowledge about the existence and
placement of all of the genes, it sometimes occurs that one probe set actually
measures the expression of many genes.

1.3 Used Data Set

In our study, we used a single very large Affymetrix microarray gene ex-
pression matrix. The data set was combined in European Bioinformatics

2short strings of DNA, that in our case are 25 nucleotides long
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Figure 1.2: The steps of a microarray experiment. Image taken from [10].

Institute (EBI) by Margus Lukk [20]. It consists of 22283 probe sets and
5372 experiments obtained from ArrayExpress gene expression database [4].
From a computer science perspective it is a 22283 by 5372 real valued ma-
trix in which rows correspond to probe sets and columns to experiments.
On the intersection of each row and column is the expression value of one
probe set in one experiment. The expression values for each experiment were
obtained in the manner described in Section 1.2. Because of the reasons al-
ready mentioned in Section 1.2 one probe set can correspond to many genes
and vice versa, one gene might be measured by many probe sets. The data
set is available for download from the ArrayExpress database with the id
E-MTAB-62.

Before conducting any experiments, we normalized the data row-wise.
This means that for each value in each row we subtracted the mean of the
row from it and divided it by the standard deviation of the row.



1.4 Pre-processing of the Curated List

There were three reasons why the curated list of genes provided by the
experimental labs needed to be pre-processed. First, we wanted to exclude
the genes that were added to the curated list based on microarray data. It
was necessary, because we planned to use microarray data in our experiments
and we did not want the predictions of other methods on the same type of
data to influence our results. This left us with 200 genes instead of the initial
341.

Secondly, we wanted to include some additional previously known angio-
genesis genes that are used on a commercially available angiogenesis PCR?
array. PCR array is yet another technology that can be used to measure
the expression of genes. We assumed that if a gene has been put onto a
commercially available angiogenesis PCR array then there should be enough
proof for that gene to be related to angiogenesis.

As a third step, we had to convert the gene names, because in the curated
list the genes were given by their name, but in our data set we had probe
set identifiers. The g:Convert tool, part of the g:Profiler [24] web-tool, was
used to achieve this. During this step we also removed probe sets that were
corresponding to more than one gene, because there was no way to make
sure which gene they were actually measuring.

As a result, we obtained a list of 405 probe set identifiers that we used
as the training set for all the methods that we studied. We ended up with
more probe set identifiers than was the initial number of genes, because some
genes corresponded to multiple probe sets.

3polymerase chain reaction, a method used to amplify a single or few copies of a piece
of DNA across several orders of magnitude
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Chapter 2

Machine Learning Background

One of the aims of machine learning (ML) is to generalise the knowledge
present in examples and make statistically sound predictions based on that.
The examples that we are trying to learn from are usually referred to as
the training set. Mathematically, we can represent the training set in the
following way:

S = {<x17y1>7 ceey (xlmyk)wTi S X: Yi S Y}

where X and Y are some properties of the phenomena under study. Usually
the values of X are known for all data points, but the values of Y are known
for only the samples in the training set. The goal is then to find a function
f X — Y which has low training error (number of training samples for
which f(z;) # ;) and at the same time performs well in predicting the
values of Y for new data points.

For example, X could be a set of vectors each measuring the expression
of a single gene in many different conditions and Y could consist of labels
{—1,+1} indicating which of these genes are involved in angiogenesis (+1)
and which are not (—1). Machine learning algorithm would then try to learn
the relationship between the vectors and their corresponding labels, or more
specifically, predict which genes are related to angiogenesis.

In the first part of this chapter, we will give a short introduction to
Support Vector Machine (SVM), a popular and well-known machine learning
algorithm. In the second part, we will also cover some standard techniques
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that are used to compare different ML algorithms.

2.1 Support Vector Machine Classification

SVM is a machine learning algorithm that based on a training set with
known labels (classes) can learn a classifier and is thereafter able to predict
on new samples to which class they belong. Formally this corresponds to
X =R%and Y = {—1,1}, where R? denotes all real-valued vectors of length
d. In this chapter we will give only a short overview of this algorithm. For
more detailed tutorial please see [5].

2.1.1 The Separable Case

Let us first assume that points in our training set are linearly separable.
This means that it is possible to draw an hyperplane between samples that
belong to the positive class (label is +1) and to the negative class (label is
—1). Now, for any new data points we can just look at which side of the hy-
perplane they are and predict their class membership based on that. Notice
also that there might be many such hyperplanes that separate the positive
class from the negative class. Suppose that one of those hyperplanes is given
by x-w+b = 0, where x € R? is a point lying on the hyperplane and w € R¢
is normal to the hyperplane. Let d. and d_ be the distances from the hyper-
plane to the closest positive and to the closest negative examples respectively.
Let the margin of the hyperplane be d; + d_. The SVM algorithm simply
tries to find the hyperplane with the largest margin.

The idea of finding the maximal margin hyperplane can be formalized
in the following way: suppose that all training data satisfy the following
constraints:

X;-w+b>+1 fory, =+1 (2.1)

X, w+b< —1fory, =-1 (2.2)

which can be combined into

12



Now, let us look at the points for which the equality in Eq. (2.1) holds.
These points lie on the hyperplane H; : x; - w 4+ b = 1 with normal w and
distance from the origin |1 — b|/||w||. Similarly, the points for which the
equality in Eq. (2.2) holds lie on the hyperplane Hj : x; - w + b = —1 with
normal w and distance from the origin | — 1 — b|/||w]||. Hence d, = d_ =
1/||w|| and the margin is simply

2

[wl|

Thus we can find the pair of hyperplanes which gives the maximum margin
by minimizing ||w]|[?, subject to the constraints (2.3). For a typical two
dimensional case, this situation is illustrated in Figure 2.1. Training points
that lie on the hyperplanes H; and H, are called support vectors.

o /Margin

Figure 2.1: Linear separating hyperplanes for the separable case. The sup-
port vectors are circled. An illustration taken from [5].

To summarise, we have the following optimization problem:

rzlinw W, (2.4)
subject to
Yi(xi - w+b) =120 (2.5)

13



2.1.2 The Non-Separable Case

Due to noise or other factors the data in hand is often not linearly sepa-
rable but we would still like to learn the best classifier. One way to solve this
is to introduce slack variables &;, which allow some points to lie on the wrong
side of the hyperplane. This results in the following optimization problem:

bmwlnzw W+CZ§“ (2.6)
subject to

The parameter C is a free parameter chosen by the user and a larger C
corresponds to assigning a higher penalty to errors. In practice, the best C
is usually determined by empirical methods such as k-fold cross-validation or
bootstrapping and choosing the value that minimizes error.

2.1.3 Finding the Optimal Hyperplane

The separable case is a special case of the non-separable case where there
are no slack variables. Therefore, we present the solution only for the latter.
Based on optimisation theory, it is possible to show that the optimisation
problem of the non-separable case is equivalent to

maXW Za, — = Z Vil 0LOX; - X, (2.8)

t,j=1
subject to

!
Zyiai =0, (2.9)
=1

ViC>a; >0 (2.10)
Given the parameters of the optimal hyperplane o and 0%, class of the
point x can be determined by

l
y = sign(d>_yaixi-x+b°)

i=1
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and the SVM decision value used many times throughout this thesis is simply
the value of

l
dv(x) = Zy,;oz;"xi X+ b
i=1

The maximal margin hyperplane can be found using numerical methods
that normally converge to global optimum. Fortunately, there are several
SVM libraries available that do specifically that. In our experiments, we
used e1071 package for R that is based on LIBSVM |§].

Figure 2.2: One-Class SVM Classifier. The origin is initially the only member
of the negative class. An illustration taken from [21].

2.2 One-Class SVM

On of the problems that we had was that the curated list of angiogenesis
genes only contained positive examples and no negative ones. Therefore, we
also looked for methods that did not require negative training set. One-Class
SVM also known as novelty detection SVM was first proposed by Scholkopf
et al in [25]. The main difference from the regular SVM is that instead of
constructing a hyperplane between the two classes it tries to separate the
interesting class from the origin. This idea is illustrated on Figure 2.2.

15



Formally speaking, the familiar optimisation problem now becomes the

following;:
1
b,wm,lg?,pw'w—l—y_l;&_p (2.11)
subject to
Vi (xi-w) 2 p—§,6 20 (2.12)

Here v € {0,1} is a parameter specified by the user regulating how far
from the origin the hyperplane will be constructed. Finding the optimal
solution and the corresponding decision function is analogous to the two-
class case. This algorithm is also implemented in the LIBSVM |[8] package.

2.3 Comparing Machine Learning Methods

Throughout this work we use 10-fold cross-validation to assess and com-
pare the performance of different algorithms. 10-fold cross-validation means
that the training data is divided into ten non-overlapping sets. Depending on
the algorithm, the training genes can either consist of only angiogenesis genes
or also include the negative set. At each iteration, nine of these sets are used
for training and one for testing. The performance measures are computed
from the testing results only. This ensures that our classifier works well not
only on the training data but also on new, previously unseen data points.

2.3.1 Confusion Matrix

In statistics, a confusion matrix (Table 2.1) is often used to illustrate the
performance of a classification algorithm. It shows how many of the actual
data points are predicted correctly and what types of mistakes are made with
the ones that are not assigned to the appropriate class. One of the merits
of the confusion matrix is that it gives very much information about the
classifier.

On the other hand, many classification algorithms let the user to spec-
ify a threshold at which an instance is considered to be in the positive or

16



the negative class. For an example, let us look at the SVM that uses the
decision value to determine the class. By default, the threshold is set to 0
and instances that have higher or lower decision values are classified into
positive and negative classes respectively. Sometimes we might want to raise
(lower) the threshold to make out method more (less) stringent. In that
case, a separate confusion matrix is needed for each threshold value, which
makes it difficult to see how the accuracy of the classifier changes when the
classification threshold is modified. This is especially important in the case
of ranking, where we essentially have as many different thresholds as there
are data points.

Table 2.1: Confusion matrix.

Actual
Positive Negative
Positive | True Positive (TP) | False Positive (FP)
Negative | False Negative (FN) | True Negative (TN)

Predicted

2.3.2 Precision-Recall and ROC Curves

Two most popular ways to compare classifiers and to see how they perform
at different cut-offs are the Receiver Operator Characteristic (ROC) curve
and the Precision-Recall curve.

On the ROC curve the True Positive Rate (Eq. 2.13) is plotted against
the False Positive Rate (Eq. 2.14) calculated at each cut-off. To compare two
different classifiers usually areas under these curves (AUC) are computed. A
random classifier would have an area equal to 0.5 and a perfect classifier
would have an area equal to 1.

TP

True Positive Rate = m—m (213)
FP

False Positi te = ———— 2.14

alse Positive Rate FPLTN (2.14)
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Figure 2.3: Comparing the performance of two algorithms using ROC and
Precision-Recall curves.

On the Precision-Recall curve, as the name indicates, Precision (Eq. 2.15)
is plotted against Recall (Eq. 2.16). Although the ROC curve is more popular
in the Machine Learning community, Precision-Recall curve might be more
suitable [11] in our case, because we have a very small positive set and a very
large unlabeled set. Although, often larger area under the ROC curve also
means a larger area under the Precision-Recall curve, it has been shown that
it is not always so [11]. For an illustration of these curves, see Figure 2.3.

TP
Precision = ———— 2.15
recision = s (2.15)
TP
l=——— 2.1
Reca TPLFN (2.16)
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Chapter 3

Application of Standard Methods

In this chapter, we will give a short overview of some of the existing
methods that we applied to our data. We divide them into two groups based
on whether they are approaching this task as a classification problem or as
a ranking problem.

3.1 Classification Approach

One way to approach the problem of predicting new candidate genes is to
consider it as a classification problem. In that case we have positive examples
and negative examples and the goal is to find a classifier that can separate
them into two classes most accurately. The genes in the curated list are
positive examples. Defining the negative examples, however, is more difficult,
because we only have a large set of genes about which we essentially do not
know anything (unlabeled genes). One option is to use prior knowledge and
try to fix some genes as negative examples. The problem with this approach
is that it is often almost impossible to know, which genes are definitely not
involved in the process of interest. To overcome it, many methods have
been developed that either do not require negative examples at all (One-
Class SVM |21]) or learn negative examples from the data (Roc-SVM [19],
PEBL (30|, PSoL [29]).

19



3.1.1 Binary SVM

The first approach that we tried was a simple binary SVM. As the negative
set we decided to use known housekeeping genes. Housekeeping genes are
genes involved in basic functions needed for the sustenance of the cell and
should therefore be constantly expressed over various conditions. Intuitively,
this property makes them potentially good candidates to be considered as
the negative set. The list of housekeeping genes was obtained from [12]. In
the end, after pre-processing the list similarly as described in Section 1.4,
we had 1232 probe set identifiers. We trained the SVM on angiogenesis and
housekeeping genes and then used it to classify all unlabeled genes. These
steps are illustrated on Figure 3.1. Results are presented in Chapter 6.

hyperplane

A
A
A O . A - negative set O - angiogenes
- negative set - angiogenes
- unknown genes
=
(a) Training the SVM (b) Predicting new genes

Figure 3.1: Training and prediction phases of the SVM.

3.1.2 Omne-Class SVM

The second method we applied was One-Class SVM that did not require
a pre-defined strong negative set which we did not have. In our experiments,
we first determined the best value for v parameter, which controls how far
from the origin the hyperplane will be constructed. This was done by varying
v from 0.05 to 0.95 in 0.05 steps and using 10-fold cross-validation at each

20



step to check the performance. Finally, we used the value for v that had the
lowest cross-validation error and classified all other genes in our data set.
The results are presented in Chapter 6.

3.1.3 Roc-SVM

This section is inspired by a method developed by Li and Liu [19] and
modified for gene expression data. It consists of two steps. In the first step, a
simple and computationally cheap method is used to extract strong negative
samples from the unlabeled data. In the second part, the strong negative
genes and known angiogenesis genes are used to train the SVM, which is
then in turn used to predict new candidates.

The Rocchio’s classifier was used as the initial weak classifier, because
it was shown in [19] to perform well on predicting strong negative examples
without too many false negatives. The main idea is to first create two sep-
arate prototype vectors for positive and unlabeled examples. After that, all
data points are assigned to the class to which prototype vector they are most
similar to. Rocchio’s classifier cannot be used as the final classifier, because
there will be too many false positives. Longer analysis of the suitability of
this approach for this particular task can be found in [19].

The modified algorithm is the following. Strong negative set is denoted
by N.

1. Assign the unlabeled genes (U) to the negative class and the angiogen-
esis genes (A) to the positive class.

ﬁ
2. Find the prototype vector [, for the unlabeled class from
- — — — — .
B, = uw —bda where v and a are the centroids of unlabeled and
positive class and b is the weight of the positive centroid relative to the
unlabeled centroid.

—)
3. Find the prototype vector 3, for the positive class analogically from

ﬁ
G,=7 b,
4. for each vector ¥ in U do

5. If sim(ﬁp, ) < sim(ﬁu, )

21



6. N=NuU{7}

Here sim stands for any reasonable similarity measure. In our work the Pear-
son’s correlation was used. The results obtained are presented in Chapter 6.

3.2 Ranking Approach

Another way to approach candidate gene finding is to see it as a ranking
or prioritisation problem. In this section we will describe one SVM based
algorithm and two publicly available tools that can be used to rank candidate
genes.

3.2.1 Multi Experiment Matrix

Multi Experiment Matrix (MEM) [1] is a web-based gene expression anal-
ysis and visualisation tool that gathers hundreds of publicly available data
sets from ArrayExpress|[4]. Given a gene as an input, MEM first ranks all
other genes according to their similarity in each individual data set. These
different rankings are then combined into one ranked list using BetaMEM [18|
algorithm described in Section 4.4.3.

To predict novel angiogenesis genes, we first used MEM to rank all other
genes according to their similarity to each angiogenesis gene. To obtain one
candidate list for all angiogenesis genes we applied BetaMEM once again to
the ranked lists created in the first step. For results, please see Chapter 6.

3.2.2 Endeavour

Endeavour|2] is a web-based tool for candidate gene prioritisation that
uses a set of training genes (genes known to play a role in the process of
interest). The main idea is the following. First, information about train-
ing genes is collected from various data sources including functional annota-
tions, protein-protein interactions, regulatory information, expression data,
sequence based data and literature mining data. Next, models are built based
on the training genes and all different types of data. Finally, the models are
used to score candidate genes and rank them according to their similarity to
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training genes. In the very last step, all different rankings from distinct data
types are aggregated into one ranking using order statistics. In the tool, it
is possible to either specify a limited set of candidate genes to prioritise or
use the whole genome.

So far it has been successfully used for example to identify genes related
to osteporosis |16], ataxia (the loss of full control of bodily movements) [27]
and bone mineral density variation [9]. For application details and results
with angiogenesis genes, please see Chapter 6.

3.2.3 Binary SVM With Unlabeled Data

Yet another approach is to train a binary SVM using angiogenesis genes
as positive examples and all other genes (which also contain some unknown
angiogenesis genes) as negative examples. From here onward, we refer to
this method as A11 negative. In the article [13], the authors prove that if
the known positive examples are selected randomly from the all true positive
examples that are there in the data set, then the classifier trained in this
manner predicts probabilities that differ by only a constant factor from the
true conditional probabilities of being positive. This means that instead of
using only true negative examples we can also incorporate unlabeled genes
into the negative training set for the SVM. As a result, the absolute values
of predicted decision values for new positive examples do change, but the
ranking of the genes stays the same. By ignoring the absolute decision values
and looking only at their ranking we essentially get a ranking algorithm.
Comparison of this method to the others is presented in Chapter 6.
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Chapter 4

The Comb-SVM Algorithm

After getting poor prediction accuracy from many pre-existing algorithms,
we devised a novel algorithm that we will describe in detail in this chapter.

The Comb-SVM algorithm is based on SVM classification and consists
of four steps. First, we choose 100 random negative sets. Then, we train
100 SVM classifiers using the training sets consisting of angiogenesis genes
and each negative set generated in the previous step. Next, we classify all
genes in our data set using these 100 classifiers. Finally, we aggregate the
classification results into one ranked list. These steps are also illustrated on
Figure 4.1.

STEP 1: Select STEP 2: Train STEP 3: STEP 4:
100 random :> 100 SVM :> Classify |:> Aggregate
negative sets classifiers unlabeled genes results

Figure 4.1: Four steps of the Comb-SVM algorithm.
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4.1 Generating Negative Sets

We used randomly chosen negative sets because it is biologically very
difficult to identify a reliable set of genes that are certainly not related to
specified biological process e.g. angiogenesis. In addition, if one is successful
at finding such a negative set, this set might be “too” negative and as a result
too many genes will be predicted to belong to the positive class. This could
have been the case when we used binary SVM classification and housekeeping
genes as the negative set. In addition, using only one fixed negative set makes
it more difficult to rank the predictions. Finally, it is almost impossible to
identify whether a gene was assigned to the positive class because it was
actually similar to the positive examples or just very dissimilar from the
negative examples that were used to train the model.

We generated the negative sets by randomly selecting genes from the pool
of all genes excluding our list of known angiogenesis genes. The size of each
negative set was the same as the size of the positive training set, i.e. in the
case of angiogenesis it was 405 probe sets. We tried increasing it by up to
6 times but the results did not change significantly, so we decided to keep
the size fixed. We repeated the process 100 times, because our experiments
showed that this was enough for the list of predicted genes to remain stable
J.e. two different selections of random negative sets resulted in essentially
the same predictions. It might well be that a smaller number of randomly
chosen negative sets would have also been sufficient, but exploring this was
out of the scope of this work.

4.2 Training 100 SVM Classifiers

To conduct the experiments, we used LIBSVM |8] and its R interface that
is part of the e1071 package. We trained 100 SVM classifiers using known
angiogenesis genes and each negative set generated in the previous step. We
used linear kernel with parameter C fixed to 1. We also tried Gaussian
kernel and various values for C, put the differences were not significant. This
conforms with the article from Zhang et al [31], were they concluded that
data is usually far from sufficient for reliably estimating nonlinear relations
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for microarray data.

4.3 Classifying Unlabeled Genes

In order to classify all genes in the data set we used SVM classifiers trained
in the previous step. Additionally to noting class assignments (whether a
gene was classified as belonging to angiogenesis or to the negative set) of
each classifier, we also stored the SVM decision values and class probabilities
(probability of a gene belonging to one class or to the other). We used this
information in the next step to aggregate the results and create one ranked
list.

4.4 Aggregating Classification Results

We tried various methods to aggregate the classification results obtained
from 100 randomly chosen negative sets. In this section we give a short
overview of all of these methods and compare their performance. Finally, we
choose the best one to make the final predictions in the Results section.

4.4.1 Naive Approach: Sum of SVM Decision Values

The first approach that we tried was to take the SVM decision values
from all experiments and simply find the sum of those for each gene. In the
end, we would rank all genes according to this sum and the genes having the
highest score would be the strongest candidates. The SVM decision values
usually ranged from -3 to +3. Because many of the training angiogenesis
genes were also support vectors, then most of them had scores around +1.

To take this into account, we made two modifications to this algorithm.
In the first case, we ignored the negative decision values. This meant that
always when a gene got a negative decision value we set it to be equal to 0.
The result of this was that we stopped penalizing if the gene was assigned
to the wrong class. In the second case, we decided to also limit very high
decision values. To do this, we set all decision values that were greater than
1 equal to 1. The intuition behind this step is that when a gene receives a
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decision value of 43, then we do not necessarily want to say that this gene is
3 times more likely to be a good candidate than the one with a decision value
of +1. Especially, because we noticed that most of the training angiogenesis
genes had decision values around +1.

4.4.2 DCDiv Algorithm

The e1071 SVM package for R has the ability to output probabilities of
a gene belonging to one class or the other instead of just decision values. To
make use of this information, we tried a DCDiv [6] algorithm designed to
aggregate probabilities. The idea of the algorithm is the following. For each

gene we calculate
100

P(X = —1)
S:E P(X =1)

where P(X = —1) is the probability that the gene belongs to the negative
class and P(X = 1) is the probability that the gene X belongs to the positive
class. S will converge to 0 when the gene belongs to the positive class and
will diverge to infinity when the gene belongs to the negative class. Finally,
we can identify strongest candidates by ranking all genes according to the
value of S.
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4.4.3 BetaMEM Rank Aggregation

BetaMEM [18] is a rank aggregation method developed by Raivo Kolde
for MEM web-tool [1]. The easiest way to explain it is to look at an example.
Suppose we have decision values for all genes from experiments with 20 differ-
ent negative sets. Ordering the genes according to the decision values gives
us 20 different rankings. By looking at the rankings more closely, we can
determine for each gene all the different positions it got. This is illustrated

on Figure 4.2.

Occurrences of Selected Genes

1 | ]
[ | |
- .
|
@2 . - Gene 1
@ — - Gene 2
g | - [ Genes
a - Gene 4
e | [ | Other
[ | |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Different negative sets

Figure 4.2: Top 20 ranks from 20 different experiments.

To make this information more comprehensible, we can look at how the
ranks of a gene are distributed (Figure 4.3).

Gene 1 Gene 2 Gene 4

p=18x10" p=2.6x10" p=1

i ) Sy = - = |0 ol

0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
Ranks

Figure 4.3: Distribution of ranks for three different genes.
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Finally, we just have to notice that if the ranks were random then they
would be uniformly distributed. Taking this into account, we can at each
rank calculate the probability for that gene to have so many that low or
lower ranks. This is illustrated on Figure 4.4. To get the final ranking,
we just have to find the minimal p-value for each gene and sort the genes
according to that value.

Final score
Relevant ranks

0 200 400 600 800
Rank

P-value for
rank i

Figure 4.4: Calculating p-value for single distribution. Only the lowest one
is taken into account.

The advantage of this method is that it should be more robust towards
outliers than simply summing the decision values.
All images in this section were kindly provided by Raivo Kolde.

4.4.4 Comparison of Different Methods

To rate the goodness of our proposed approach and to compare different
aggregation methods we have performed 10-fold cross-validation and calcu-
lated areas under Receiver Operator Characteristic curve (ROC) and Preci-
sion Recall Curve (PRC) as described in Chapter 2.3.

The results are presented in Table 4.1 and on Figures 4.5 and 4.6. Sum
is the naive approach, ignore negative and limitl are respectively the
modifications where just negative values are ignored or higher decision values
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Table 4.1: Areas under Precison-Recall curve (auPRC) and Receiver Opera-
tor Characteristic curve (auROC) of different aggregation methods.

Sum DCDiv | BetaMEM

sum | ignore negative | limitl
auROC | 0.8436 0.8364 0.8411 | 0.8437 0.8535
auPRC | 0.0235 0.0226 0.0464 | 0.0234 0.0441

are also limited to 1. Other names are the same as used in the text. The
curves of sum and ignore negative are not shown on the ROC plot (Fig-
ure 4.6), because they were not significantly different from the others and
would have therefore made the plot more difficult to understand.

Based on the ROC curve, BetaMEM is the best aggregation method with
the highest area under the curve. The reason for this might be that BetaMEM
is more robust to noise and will not rank highly the genes that had good
decision values only in a few experiments. Looking at the Precision-Recall
plot reveals that overall 1imit1 has a slightly higher AUC than BetaMEM,
but it is caused by a small number of top positions. As can be seen from the
Figure 4.5, after recalling 20% of the angiogenesis genes BetaMEM starts to
outperform 1imitl. Ignoring just the top 6 positions would already cause
BetaMEM to have higher AUC score.

Another interesting result is that according to areas under Precision-
Recall curves, 1imit1 is more successful than other naive approaches. This
indicates that ignoring genes with few very high decision values is a good
idea. This in turn might explain why BetaMEM is performing better than
other methods, because it does this type of outlier elimination inherently
(by not giving low p-values to genes that are ranked highly in only a few
cases). Somewhat surprising was the poor performance of the DCDiv algo-
rithm, because probabilities from different SVM experiments should be more
comparable than decision values, which can have different ranges depending
on the data.
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Chapter 5

Improving the Classifier

We tried a few additional approaches to improve our methods accuracy.
In this chapter, we will give a short overview of two of the methods that were
explored and present the results that we obtained. First, we will start with
feature selection and then we will cover an experiment in which we tried to
give different weights to different randomly generated negative sets.

5.1 SVM-based Feature Selection

“Curse of dimensionality” is a term used in machine learning, when there
are many more features than there are training samples in the data set. It can
cause overfitting! and therefore poorer performance of the classifier. This is
something we have to pay attention in our situation also, because our positive
training set consists of only 405 probe sets and they are measured in 5372
conditions.

One way to overcome this problem is to use feature selection for which
many different methods have been developed over time. In classification
problems, the main idea of all feature selection approaches is to find a small
subset of features that could best help to separate the two classes from each
other. In this section we will compare two methods that try to find the opti-
mal features by recursively removing the least relevant ones at each iteration.

'finding random relations from the data that are specific to the training set, but do
not help to make predictions on new examples.
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These methods are Support Vector Machine Recursive Feature Elimination

(SVM-RFE) [15] and Recursive Support Vector Machine (R-SVM) [31].

5.1.1 Methods

Both of these methods are similar in a sense that they take advantage of
SVM vector of weights of the features

n
w = g QY X,
i=1

and use exactly the same recursive procedure to remove unimportant fea-
tures. The difference lies in how they assess the importance of the features.
For SVM-RFE, the

wj,

RFE _ 2
ST =
measure is used, where w; is the weight of the j-th feature. In the newer
R-SVM method, a slightly modified
R _

Sit = w;(m; —my),
measure is used, where w; is the weight of the j-th feature and mj and m;;
are the means of the values of the positive and negative examples in the
same feature. The authors claim that this makes their method less sensitive
to noise and possible outliers [31].

5.1.2 Results

To compare these two methods and to see if we could use one of them to
improve our Comb-SVM approach we used the R code available from [31].
For the positive training set, we took the 405 known angiogenesis genes and
for the negative examples, we took a list of 405 randomly chosen other genes.
This is the same approach that we used in Comb-SVM to generate negative
sets. We started with 5372 features. At each iteration left out 20 features
with the lowest scores until we had only 12 features left. The results are
presented on Figure 5.1.
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Figure 5.1: Recursive feature elimination with two different methods.

With SVM-RFE we observed no improvement in cross-validation accu-
racy. When the number of features decreased the cross-validation error
started to increase instead. The overall pattern was the same for R-SVM.
Although there was some improvement at around 4400 features, it was hardly
stable. Without feature selection, the cross-validation error was 29.6%. With
R-SVM, the lowest cross-validation error achieved was 28.5% with 4412 fea-
tures. With 4452 it was still 29.5% and at 4392 it was already 29.1%.

Because there were only slight improvements in cross-validation accuracy
on our data and because in our Comb-SVM approach we would have had
to perform separate feature selection for each 100 negative sets increasing
the running time of the algorithm more than 10 fold, we decided not to
incorporate it into our approach. In addition, the slight improvements that
we witnessed in cross-validation accuracy do not necessarily mean improved
ranking for angiogenesis genes among other unlabeled genes. Furthermore,
feature selection with different negative sets could yield different results, but
this requires some further research.
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5.2 Weighted Aggregation

We constructed negative sets randomly, so it is quite natural to assume
that some of these sets could be better than others in helping to separate
angiogenesis genes from the other genes. As a result, we tried to alter our
method so that it would give higher weights to negative sets that better help
to separate angiogenesis genes from all other genes.

First, we identified which of the negative sets were better suited than oth-
ers for finding angiogenesis genes. We did this by taking each negative set and
corresponding training set mentioned above and used 10-fold cross-validation
once again. We divided both the initial training set and the negative set into
10 subsets. Next, we performed conventional 10-fold cross-validation and
finally got an accuracy score from 0 to 1 that indicated, how large part of
the genes left for testing were correctly classified. For different negative sets
these scores varied from 0.68 to 0.77. We assumed that negative sets that
had higher cross-validation accuracy were also better.

We tried three different ways to give more importance to better negative
sets. First, we just multiplied the decision values given by each negative set
with their cross-validation accuracy so that negative sets with higher cross-
validation accuracy would also have higher weight. This approach is repre-
sented under title weight in Table 5.1. Because the differences in the cross-
validation accuracy scores were small, we also tried two other approaches. In
the first case we calculated a modified weight value denoted by weight® in
the following way:

weight® = (weight + 0.30)3 (5.1)

Adding 0.30 to the initial score shifts the mean closer to 1 and taking the
third power amplifies the differences between stronger and weaker negative
sets. The third approach was essentially the same, but instead of third power
we took the fifth power.

weight® = (weight + 0.30)° (5.2)

As can be seen from the table, the auROC scores did not change at all
or maybe even slightly decreased when compared to baseline method of not
giving weights at all (limit1). One of the reasons for this could be that
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Table 5.1: Comparison of areas under ROC curves using different weighting
methods.

limitl | weight | weight3 | weightb
auROC | 0.8411 | 0.8373 | 0.8351 | 0.8364

cross-validation accuracy is not the correct way to assess the goodness of the
negative set. Negative sets with high cross-validation accuracy could be well
separable from the training genes but they might not help to rank unknown
angiogenesis genes more highly than other genes. The problem could be the
same that we had with housekeeping genes. Trying to find strong negative
sets could potentially undermine the strength of our method, because we are
excluding negative sets that are very close to angiogenesis genes and therefore
can help to distinguish them better from all other genes.

37



Chapter 6

Results

In this chapter, we will present the results of all of the experiments. First,
we will compare our method to the existing ones introduced in Chapter 3.
Secondly, we will analyze the predictions made by our algorithm.

6.1 Performance of Different Methods

We compared Comb-SVM to existing methods described in Chapter 3 by
using 10-fold cross-validation and drawing Precision-Recall and ROC curves.
More details on comparison measures can be found in Section 2.3. To make
results more comparable, we used the same division into training and test
sets in all experiments. In Comb-SVM, we used BetaMEM for aggregation,
because it proved to be the best algorithm (see Section 4.4.4).

The results are presented on Figure 6.1 and in Table 6.1. Our proposed
method is denoted by Comb-SVM and A1l negative represents binary SVM
with unlabeled data. Other methods are the same as described in Chapter
3. It can be clearly seen that based on 10-fold cross-validation our algorithm
outperforms all other compared methods except A1l negative, which has
higher area under Precision-Recall curve. The differences based on ROC
curves are not that drastic (2 per cent difference between our method and
A1l negative), because the number of known angiogenesis genes is very
small compared to the number of unlabeled genes. This in turn means that
small changes in the top rankings do not have a strong effect on the overall
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Figure 6.1: Precision-Recall and ROC curves.

score.

Precision-Recall curve does not depend so much on the size of the negative
set and therefore may reflect the differences more accurately. On the other
hand, we are drawing our Precision-Recall plots based on positive and unla-
beled examples and we do not know which of the unlabeled genes are truly
negative and which of them are actually related to angiogenesis. This means
that any method that ranks new strong candidates more highly than training
angiogenesis genes is bound to have lower precision. This might explain why
A11 negative method has so high precision compared to Comb-SVM, but
gives less stable and biologically less valid predictions as will be shown later

in this chapter.

6.1.1 Roc-SVM

We excluded the Roc-SVM from our final comparison, because it per-
formed badly in the first step of trying to find a strong negative set. Namely,
the set of genes classified as negative by the Rocchio’s classifier was too big
(more than 16000 genes) and contained many of the angiogenesis genes that
were used to find this negative set. It was clear that continuing with this list
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Table 6.1: Areas under ROC and Precision-Recall curves obtained with dif-
ferent algorithms.

Comb-SVM | Binary SVM | One-Class SVM | MEM | All negative

auROC 0.8535 0.7921 0.4818 0.6742 0.8302

auPRC 0.0433 0.0096 0.0017 0.0034 0.2179

of genes was not meaningful, because it was too inaccurate and failed to help
us reduce the size of the negative set. The reason why the Rocchio’s classifier
failed may be that angiogenesis genes in total are quite diverse. This means
that the prototype vector created based on these genes might not have been
very different from the prototype vector created from all other genes which
of course resulted in a poor classifier. This coincides with our notions that
on Principal Component Analysis (PCA) and NeRV [28]| plots angiogenesis
genes do not form a clearly distinguishable group.

6.1.2 Endeavour

The problem with the Endeavour is that we are essentially trying to com-
pare the incomparable. Firstly, while all other methods except MEM use ex-
actly the same gene expression data set, Endeavour uses many different types
of data including gene expression, protein-protein interaction and functional
annotation data. In addition, it requires the input genes to be in a different
format. In all other methods we can use Affymetrix probe set identifiers
that are also present int the main data set described in Section 1.3. The
Endevour, on the other hand, requires Ensembl identifiers of the same genes.
There are tools like g:Profiler [24] to convert gene identifiers from one system
to another but the problem is that one Ensembl ID can have many matching
probe set identifiers which in turn could affect cross-validation results.

To take this into account, we created two lists of genes. In the first
case, we used all 274 Ensembl IDs corresponding to our 405 known probe
set identifiers. In the second case, we filtered out only those probe sets and
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Ensembl IDs that had one-to-one matching. Additionally, with these two lists
of genes we conducted two different experiments. In the first experiment, we
used all 24 data sources available in Endeavour. In the second case, we only
took the six different gene expression data sets.
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Figure 6.2: ROC curves.

We found that, based on gene expression data only, the Comb-SVM
clearly outperforms Endeavour. On the other hand, incorporating all other
types of data makes the Endeavour to be better. The results are presented
on Figure 6.2 and in Table 6.2. We must not forget that even the gene ex-
pression data used in Endeavour is different from ours, and therefore it is not
possible to make any strong conclusions based on these results. The strength
of Endeavour seems to be its ability to gather different types of data and use
it to make one prediction. The goal of this research is to predict candidate
genes based on only gene expression data and in this case Endeavour seems
to perform worse than other approaches.
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Table 6.2: Areas under ROC curves obtained with different algorithms.

Comb-SVM | Endeavour (all) | Endeavour (expression)

all probe sets 0.8535 0.8815 0.5950

unique probe sets 0.7690 0.8844 0.5830

6.2 Analyzing the Stability of Predictions

In the previous section, we looked at how well different methods can
bring back known training genes in 10-fold cross-validation experiments. In
this section, we will concentrate more on the predictions made by two best
methods and determine how stable they are to the changes in the training
samples.

6.2.1 Experimental Setup

We decided to compare our best method (Comb-SVM with BetaMEM
rank aggregation) to A1l negative, which was the method that had highest
area under the Precision-Recall curve. Two experiments were conducted to
assess the stability of the predictions. In the first case, the training set of 405
probe sets was randomly split into two sets of equal size and then both of
them were given as input to both of the methods in question. In the second
case, the initial training set was first separated into 3 non-overlapping parts
{A, B,C} and then all pairwise combinations {AU B, AUC, BUC'} of these
parts were used as input. Finally, in both cases we looked at how many of
the predicted candidate genes were overlapping in top 500 positions.

6.2.2 Results

The results are presented on Figure 6.3. In the first case, we looked at
the overlap of predictions after separating the training genes into two random
halves (2 sets). In the second case we observed the overlap of predictions from
the first two of the three intersecting subsets (3 sets). As can be seen from the
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Figure 6.3: Overlap in predictions using different training sets.

plot, Comb-SVM constantly outperforms A1l negative. The most striking
differences are in the biologically most interesting top 100 predictions. With
the first 2 from the 3 intersecting sets, our method results in 24 overlapping
genes while A11 negative gives predictions that do not overlap at all.

The stability of predictions is very important in the biological sense since
there is some uncertainty in the way the curated list of the angiogenesis genes
was composed. It is important to know that if the lists had been compiled
in a slightly different way, then our predictions would not have changed too
much. In addition, biologists have to validate our results experimentally and
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can therefore only look at a relatively small number of top predictions. If
there are very large variations in top 100 predictions, then they cannot trust
our results. For these reasons, we decided to use Comb-SVM instead of A1l
negative to make our final predictions.

6.3 Newly Predicted Angiogenesis Genes

In addition to judging the performance of our method based on training
data only, we also tried to verify our newly predicted genes. At this point
we performed a simple verification based on literature and public databases.
In the future, our collaborators will also conduct biological experiments.

6.3.1 Literature Verification

We performed initial verification by looking at the top 10 predictions of
our algorithm and seeing if we can relate these genes to angiogenesis based
on literature only. The results are presented in Table 6.3.

Table 6.3: 8 out of top 10 newly predicted genes could be easily verified based
on literature.

Pos. | Gene | PubMed ID
1 CXCL2 16207631
2 FMOL1
3 GNG11
4 CCL20 19340288
5 ELTD1 18483404
6 ESM1 11866539
7 MMRN1 19924294
8 CSF2 18691491
9 IER3 19690192
10 | PTPRB 17360632

PubMed ID is the id of the article in PubMed in which we found a connec-
tion between the given gene and angiogenesis. As can be seen from the table,

44



8 out of top 10 predictions could be easily related to angiogenesis. This shows
that the predictions of our method are indeed meaningful. We conducted sim-
ilar analysis with predictions obtained from A11 negative method and found
only 1 gene in top 10 to be related to angiogenesis. This further validates
the strength of our approach.

One could argue that maybe some of these highly ranked genes should
also be in the curated set, but solving this question is out of the scope of this
work. For the time being we trust the biologists from the experimental lab
in their decisions and use their supplied list of genes.

6.3.2 Gene Ontology Annotations

To further validate the biological relevance of the predictions we looked
at the Gene Ontology (GO) annotations of top 50 new candidate genes. GO
is an online curated database that organizes knowledge about the function
and role of genes in many species. The g:Profiler found 71 significant annota-
tions out of which a selection of 15 most related to angiogenesis are presented
in Table 6.4. Some of them, like wound healing, blood vessel development,
vasculature development and regulation of endothelial cell proliferation are
obviously related to angiogenesis. For others, it has been shown that extra-
cellular matrix plays an important role in angiogenesis [26]. Full table with
results containing some additional information is given in the Appendix.

We also performed a similar analysis on the predictions of A11 negative
method. In that case, the top 50 predictions were not significantly enriched
with any GO terms. Looking at the top 100 predictions revealed some sig-
nificant results (e.g. BP cellular process, BP regulation of developmental
process, BP regulation of cell migration) but none of them were directly
related to angiogenesis.

6.3.3 Biological Experiments

Ultimately, we want to discover novel genes involved in angiogenesis. To
this end, we sent 147 top predictions to our ENFIN collaborators in Spain.
There they will combine our results with predictions form two other labs
into one sub-network model. Biological experiments will be conducted in
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Table 6.4: A sample of significant GO annotations found for top 50 newly

predicted genes. (CC - cellular component, MF - molecular function, BP -
biological process, re - REACTOME pathway)

P-value Term ID Name
5.51E-011  GO:0005576 CC extracellular region
9.74E-011  GO:0009611 BP response to wounding
1.27E-010  GO:0044421 CC extracellular region part
5.64E-009  GO:0005615 CC extracellular space
1.46E-007  GO:0008083 MF growth factor activity
1.08E-006  GO:0031012 CC extracellular matrix
1.27E-006  GO:0042060 BP wound healing
1.70E-006  GO:0048513 BP organ development
3.72E-006  GO:0001568 BP blood vessel development
4.29E-006 GO:0001944 BP vasculature development
1.05E-005 GO:0001936  BP regulation of endothelial cell proliferation
1.93E-005 GO:0043062 BP extracellular structure organization
2.51E-005 GO:0048514 BP blood vessel morphogenesis
2.95E-005 GO:0001525 BP angiogenesis
2.97E-005 REAC:109582 re Hemostasis

the following way. First, drugs will be prioritized by their effect on specific
angiogenic targets and by their reported anti-tumour action. Next, proteins
from the sub-network model will be prioritized based on their specific an-
giogenic role and their potential as drug target. Top ranked potential drugs
and targets will be selected for experimental validation using a set of assays.
Unfortunately, we do not have any results to report from this analysis yet.
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Summary

The aim of this thesis was to study the possibility of using gene expres-
sion data and machine learning methods to predict new candidate genes for
angiogenesis based on a list of known genes.

We tested many standard machine learning methods and bioinformatics
tools that could be used to solve this particular task. We compared the
methods by training them with the same data and seeing how successful
they were at retrieving known angiogenesis genes. Afterwards, we proposed
a novel Comb-SVM approach that is based on the idea of training multiple
Support Vector Machines and aggregating their predictions.

The experiments showed that Comb-SVM outperformed most of the other
methods in 10-fold cross-validation experiments when looking areas under
Receiver Operator Characteristic and Precision-Recall curves. We also de-
termined that our method gave significantly more stable results than the
second best approach proposed by Elkan and Noto [13].

Finally, we verified the biological relevance of the predicted genes by
searching the literature and determining the enriched Gene Ontology terms
of top 50 identified genes.
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Tugivektormasinate
kombineerimine angiogeneesiga
seotud geenide ennustamiseks

Bakalaureuset66 (6 EAP)
Kaur Alasoo

Restiimee

Viéhk on tdnapéeval iiks levinumaid ja ohtlikumaid haigusi pohjustades
igal aastal 13% koigist surmajuhtumitest iile maailma [23]. Hoolimata aasta-
tepikkustest joupingutustest ei ole seni ikka veel efektiivset ravi selle haiguse
vastu leitud. Kiill on aga teada, et vihi arengus on olulisel kohal angiogenees,
mille kdigus vihk paneb enda iimber asuvad veresooned hargnema ja kasva-
ma. Parem arusaamine sellest protsessist voimaldaks potentsiaalselt luua uusi
ja efektiivsemaid ravimeetodeid.

Aastate jooksul tehtud eksperimentide kdigus on moodetud enamiku ini-
mese geenide ekpressiooni rohkem kui 5000 tingimuses. Lisaks on meie koos-
toopartnerid koostanud nimekirja 341-st veresoonte loomega seotud geenist.
Kéesoleva t60 eesmérgiks ongi uurida, kuidas geeniekspressiooni andmete ja
véikese hulga tuntud angiogeneesi geenide pohjal on voimalik ennustada uusi
angiogeneesiga seotud geene.

Selleks vorreldakse koigepealt mitmeid olemasolevaid masindppe meeto-
deid ja avalikult kdattesaadavaid bioinformaatika tooriistu, mida saaks kasu-
tada kandidaatgeenide ennustamiseks. K6igi nende meetodite puhul kasuta-
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takse sisendiks voimalikult sarnaseid andmeid ning moodetakse siis 10-kordse
ristvalideerimise abil, kui edukad need on juba tuntud angiogeneesi geenide
iilesleidmisel.

T60 teises osas pakutakse vilja uudne Comb-SVM meetod kandidaat-
geenide ennustamiseks. Selle pohiidee baseerub kolmel sammul. Kaigepealt
kasutatakse juba tuntud angiogeneesi geene ning juhuslikult valitud negatiiv-
seid geene, et treenida paralleelselt mitu tugivektormasinal (ingl k Support
Vector Machine) pohinevat klassifitseerijat. Jargnevalt kasutakse neid klassi-
fitseerijaid uute angiogeneesi geenide ennustamiseks. Viimaks agregeeritakse
koigi klassifitseerijate tulemused kokku iiheks ennustuseks.

T66 1opus naidatakse, et 10-kordse ristvalideerimise pohjal on Comb-SVM
tdpsem kui enamik olemasolevaid meetodeid. Lisaks néidatakse, et Comb-
SVM ennustused on oluliselt stabiilsemad véikeste muudatuste suhtes tree-
ningandmetes kui paremuselt teise algoritmi tulemused. Koige 16puks kasu-
tatakse teaduskirjandust ning Gene Ontology [3] andmebaasi veendumaks,
et uued ennustatud geenid on topoolest seotud angiogeneesiga.
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Appendix

Table 6.5: All significant GO annotations of top 50 newly predicted genes
using Comb-SVM. (CC - cellular component, MF - molecular function, BP -
biological process, re - REACTOME pathway, ke - KEGG pathway)

P-value

Term ID

Name

5.51E-011
9.74E-011
1.27E-010
3.81E-010
1.76E-009
2.66E-009
5.64E-009
7.50E-009
3.14E-008
7.77E-008
1.17E-007
1.46E-007
4.20E-007
4.87E-007
5.83E-007
9.11E-007
9.70E-007
1.08E-006

G0O:0005576
G0O:0009611
G0:0044421
GO:0005125
G0:0005102
G0O:0009605
GO:0005615
G0O:0005126

KEGG:04060

GO:0042127
G0:0006954
GO:0008083
G0:0030334
G0O:0050896
G0:0006950
G0:0051270
G0:0040012
G0:0031012

CC extracellular region

BP response to wounding

CC extracellular region part

MF cytokine activity

MF receptor binding

BP response to external stimulus
CC extracellular space

MF cytokine receptor binding

ke Cytokine-cytokine receptor interaction
BP regulation of cell proliferation
BP inflammatory response

MF growth factor activity

BP regulation of cell migration
BP response to stimulus

BP response to stress

BP regulation of cell motion

BP regulation of locomotion

CC extracellular matrix
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P-value

Term ID

Name

1.14E-006
1.27E-006
1.35E-006
1.70E-006
2.78E-006
3.72E-006
4.13E-006
4.29E-006
4.34E-006
4.74E-006
4.79E-006
5.79E-006
5.81E-006
5.87E-006
6.87E-006
7.20E-006
7.53E-006

8.40E-006
8.52E-006
8.61E-006
1.01E-005
1.05E-005
1.11E-005
1.13E-005

1.22E-005
1.25E-005
1.25E-005
1.26E-005
1.28E-005
1.35E-005

G0O:0032879
G0:0042060
G0:0006952
G0:0048513
REAC:76002
G0O:0001568
G0:0048522
G0:0001944
GO:0008285
G0O:0065007
G0:0005520
G0:0030335
G0:0051239
G0:0048523
REAC:75178
G0O:0005515
GO:0010557

GO:0005578
G0:0030193
GO:0051272
G0:0042325
G0:0001936
GO:0007165
G0O:0031328

G0:0009891
G0:0019220
GO:0051174
G0O:0006955
G0:0048731
GO:0050794

BP regulation of localization

BP wound healing

BP defense response

BP organ development

re Platelet Activation

BP blood vessel development

BP positive regulation of cellular process

BP vasculature development

BP negative regulation of cell proliferation

BP biological regulation

MF insulin-like growth factor binding

BP positive regulation of cell migration

BP regulation of multicellular organismal process
BP negative regulation of cellular process

re Formation of Platelet plug

MF protein binding

BP positive regulation of macromolecule biosyn-
thetic process

CC proteinaceous extracellular matrix

BP regulation of blood coagulation

BP positive regulation of cell motion

BP regulation of phosphorylation

BP regulation of endothelial cell proliferation
BP signal transduction

BP positive regulation of cellular biosynthetic pro-
cess

BP positive regulation of biosynthetic process
BP regulation of phosphate metabolic process
BP regulation of phosphorus metabolic process
BP immune response

BP system development

BP regulation of cellular process
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P-value Term ID Name

1.37E-005 GO:0048518  BP positive regulation of biological process

1.54E-005  GO:0048519  BP negative regulation of biological process

1.93E-005 GO:0043062 BP extracellular structure organization

2.06E-005  GO:0060205 CC cytoplasmic membrane-bounded vesicle lumen

2.28E-005  GO:0005604  CC basement membrane

2.32E-005 GO:0019838 MF growth factor binding

2.42E-005 GO:0051240  BP positive regulation of multicellular organismal
process

2.43E-005 GO:0031983  CC vesicle lumen

2.51E-005 GO:0048514  BP blood vessel morphogenesis

2.78E-005 GO:0030194  BP positive regulation of blood coagulation

2.84E-005 GO:0050818  BP regulation of coagulation

2.89E-005  GO:0050789  BP regulation of biological process

2.94E-005 GO:0048856 BP anatomical structure development

2.95E-005 GO:0001525 BP angiogenesis

2.97E-005 REAC:109582 re Hemostasis

2.97E-005  GO:0002376 BP immune system process

3.54E-005  GO:0010604  BP positive regulation of macromolecule metabolic
process

3.55E-005  GO:0070851 MF growth factor receptor binding

3.79E-005 GO:0031091  CC platelet alpha granule

3.99E-005 GO:0007154  BP cell communication

9.63E-005 REAC:114611 re Exocytosis of Alpha granule

1.10E-004 REAC:114608 re Platelet degranulation
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