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Preface

In the last few decades, interest in the influence of environmental fluc-
tuations on the dynamics of complex systems and in the stochastic
methods for describing them has grown enormously. Econophysics,
new separation techniques for nanoscale objects, a better understand-
ing of Brownian motors active in living cells, stability analysis of eco-
systems in fluctuating environment are but a few examples of relevant
studies. Models based on stochastic processes, belonging to a highly
topical interdisciplinary realm of studies, can be applied for a vari-
ety of purposes, starting from a description of quantum-dot ratchets
and ending with a possible explanation of the catastrophic shifts that
sometimes occur in ecosystems. Such models are now even used out-
side the realm of natural sciences, in economics and sociology. As
for fluctuations-induced phenomena in complex systems, those also
present a fascinating subject of investigation since, contrary to all
intuition, environmental randomness may induce a more structured
behavior of the system. Thus motivated, we have considered two dif-
ferent classes of stochastic model-systems.

One class of the models is concerned with overdamped Brownian
particles in a periodic one-dimensional sawtooth potential landscape
subjected to both thermal noise and a nonequilibrium colored noise.
A major virtue of the proposed models is that an interplay of colored
noise, thermal noise and non-linearity of system can generate a rich
variety of nonequilibrium cooperation effects, such as multiple current
reversals [I, VII], hypersensitive transport [III, VI, VII], absolute nega-
tive mobility, hypersensitive differential response, negative differential
resistance, etc [V, VII].

Another class of models is concerned with N-species Lotka-Volterra
stochastic models of symbiotic ecological systems with the logistic [II]
and the generalized Verhulst [IV] self-regulation mechanism. The ef-
fect of a fluctuating environment on the carrying capacities of subpop-
ulations was taken into account as colored noise. The results of analy-
sis of the models provide some new possible scenarios for catastrophic
shifts of population sizes observed in nature.

The current Thesis consists of two parts. The first is a summary
of the studies and the second one consists of published papers.
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As most of my contributions to Papers [IV, V, VII] have been done
in close collaboration with Ako Sauga, thus for the sake of complete
review of the results a few of them presented in subsections 3.1.3 and
3.2.2 coincide with some results of his dissertation [1].
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1 Introduction

The idea that noise, via its interaction with nonlinearity of the system,
can give counterintuitive results has led to many important discover-
ies: stochastic resonance [2, 3], resonant activation [4], nonequilibrium
phase transitions [5], and stochastic ratchets (Brownian motors) [6]-
[15], to name but a few.

The main subjects of the present Thesis are colored-noise-induced
transport phenomena of Brownian particles and the influence of col-
ored noise on the dynamics of ecosystems.

1.1 Noise-induced transport phenomena

Recently, noise-induced anomalous transport phenomena of Brown-
ian particles in nonlinear periodic structures have been the topic of a
number of physical investigations. Among such phenomena, we can
mention multiple current reversals (CRs), multipeaked current charac-
teristics, hypersensitive response, absolute negative mobility (ANM),
negative differential resistance (NDR), and amplification or suppres-
sion of diffusion [16]-[19].

A ratchet is a device that can induce unidirectional motion of par-
ticles without a net external force or gradient. The recent enthusiasm
for the ratchet effect, i.e., a unidirected motion of Brownian particles
induced by nonequilibrium fluctuations, with no macroscopic driving
applied, in a ratchet-like potential was triggered by Magnasco’s the-
oretical work [7]. Magnasco pointed out that two facts — first, that
a ratchet-like periodic potential has no inversion symmetry and sec-
ond, that symmetric noise is non-white (it is correlated in time) —
bear joint responsibility for transport in one direction. The motiva-
tion in this field has come from cell biology, e.g., from in molecular
motors, which are proteins (e.g., kinesin or dynein) responsible for the
transportation of various chemicals in cells of living organisms. Pow-
ered by hydrolysis of ATP, they move along complementary protein
fibers, which are periodically modulated and asymmetric, e.g., acting
filaments or microtubules [6]-[8]. Beyond that, it has been suggested
that the ratchet mechanism can be used for obtaining efficient sepa-
ration methods of nanoscale objects, e.g., DNA molecules, proteins,
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viruses, etc. [6, 9, 10]. To date, the feasibility of particle transport by
man-made devices has been experimentally demonstrated for several
ratchet types [10]-[13]. Many different forms of ratchet systems are
possible. The classification of different types of ratchets (correlation,
flashing, etc.) can be found in [6].

The dynamics in ratchet structures with its inherent spatial asym-
metry generally exhibits a rich complexity, such as the occurrence of
multiple current reversals (CRs) and multipeaked current character-
istics [6, 20]. Also, the combined influence of several different noise
sources can cause unexpected behavior in the system [7], [21]-[25]. Two
noises acting together can potentially generate a far more organized
motion than either of them alone, even though the noise sources are
statistically independent [21]. The authors of Ref. [23] have analyzed
a correlation ratchet in which directed transport is subjected to both
a thermal equilibrium noise and zero-mean asymmetric dichotomous
fluctuations. They show that the transport direction of Brownian
particles can be controlled by thermal noise, i.e., the presence of an
additional thermal noise can cause CR. Moreover, the dependence of
the current on temperature is nonmonotonic and there are two other
characteristic (optimal) temperatures at which, respectively, the pos-
itive and negative currents are maximized.

The models with CRs are potentially very useful, because CRs
could lead to a more efficient fluctuation-induced separation of parti-
cles [26]-[28]. It has been shown that the effect of CR can be attained
by changing the correlation time of non-equilibrium fluctuations as
well as the flatness parameter (the ratio of the fourth moment to the
square of the second moment) of the noise [27], [29]-[34]. The direction
of the current can also be reversed by modifying either the power spec-
trum of the noise source [35], or the number of interacting Brownian
particles per unit cell [36], mass of the particles [37], the temperature
in multinoise cases [23], etc.

The motivation to study hypersensitive response has come from nu-
merical, analytical and experimental studies of a nonlinear Kramers
oscillator with a multiplicative white noise. Under the effect of intense
multiplicative noise, the system is able to amplify an ultrasmall deter-
ministic ac signal [38, 39]. Afterwards, a related phenomenon such as
noise-induced hypersensitive transport was found in some other sys-
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tems with a multiplicative colored noise. It was shown that in such
a system a macroscopic flux (current) of matter appears under the
influence of an ultrasmall dc driving [40, 41].

A characteristic feature of models with ANM is that upon the
application of an external static force F', these models respond with a
current that always runs in the direction opposite to that of the force
(if the force is small enough) [42, 43]. Notably, for F' = 0, no current
appears due to the spatial symmetry of the system. The effect of
ANM is distinct from the phenomenon of negative differential mobility
(or resistance) which is, for a sufficiently large F', characterized by a
decrease of the current as the driving force I’ increases but the system
does not exhibit ANM [28, 44]. Devices that display both ANM and
negative differential resistance (NDR) exist and they have important
biophysical and technological applications, e.g., semiconductor devices
[45, 46], tunnel junction in superconductor devices [47, 48], biological
ion channels [28, 44, 49], etc.

Thus motivated to study noise-induced transport phenomena of
Brownian particles, such as current reversals, hypersensitive trans-
port, absolute negative mobility, negative differential resistance, we
will consider three types of ratchet models with a 1D sawtoowth poten-
tial subjected to both thermal noise and a nonequilibrium three-level
colored noise: (i) a correlation ratchet, in which directed transport is
subjected to an additive trichotomous noise, (ii) a tilted ratchet sys-
tem driven by a multiplicative trichotomous noise, and (iii) a tilted
ratchet system subjected to a spatially nonhomogeneous three-level
colored noise.

1.2 The influence of noise on the dynamics of eco-
systems

Modeling of the dynamics of interacting species is a central problem
in ecological theory, and there exists a vast literature describing de-
terministic and stochastic models for such interactions (for a reference
survey see, e.g., [50]-[52]). Usually the processes are so complex that
the dynamics of such webs of coevolving species, especially in the case
of a great number of interacting species, can be successfully repre-
sented by means of a dynamical system with stochastic elements [53]-
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[56]. Ecological systems are usually assumed to respond smoothly to
gradual changes of environmental parameters. However, studies have
shown that smooth changes are interrupted by catastrophic shifts lead-
ing to a new state of the ecosystem [57]. Furthermore, recent results
exhibit the existence of alternative stability domains in different nat-
ural ecosystems [57]-[61]. Such catastrophies have also been noticed
in various theoretical models assuming that the effective deterministic
potentials are multistable [50, 51, 52, 57]. Typical examples are the
models in which a prey-predator relationship dominates [62]-[67], and
the models of competing communities [68].

Ecologists have mainly been interested in the dynamical conse-
quences of population interactions, often ignoring environmental vari-
ability altogether. Physical environments, however, are rarely sta-
tic, and variability in important environmental parameters, such as
temperature and rainfall, have widely recognized impacts on natural
populations of plants and animals. The essential role of environmen-
tal fluctuations has recently been recognized in theroretical ecology.
Noise—induced effects on population dynamics have been subject to
intense theoretical investigations [69]-[80]. Some theoretical investiga-
tions suggest that the population dynamics is sensitive to noise color
[82]-[86].

Recently, noise-induced nonequilibrium transitions (as well as
colored-noise-induced transitions) in spatially extended nonlinear sys-
tems with multiplicative noise have been the topic of a number of
physical investigations [5]. The initial motivation in this field has
come from the studies of phase transitions, in particular from the dis-
covery of a noise-induced reentrant second-order phase transition for
an artificial spatially extended model [87]. Afterwards, noise-induced
nonequilibrium transitions (either continuous or discontinuous) were
found in systems of coupled oscillators [88]-[93] and also in some other
systems [94]-[105]. The fact that external multiplicative noise can in-
duce multistability as well as discontinuous transitions in some com-
plex systems (see, e.g., [104, 105]) inspired us to apply an analogous
approach to analyzing ecological models. It is of interest, both from
theoretical and practical viewpoints, whether the catastrophic shifts
sometimes occurring in ecosystems [57]-[61] can be regarded as induced
by multiplicative colored noise.

15



In this study we will consider a broad class of N-species Lotka-
Volterra models of symbiotic ecological systems with the generalized
Verhulst self-regulation mechanism (GVM) and also with the true Ver-
hulst (logistic) self-regulation mechanism. The effect of fluctuating
environment on the carrying capacity of a population is modeled as a
multiplicative colored noise.

1.3

Objectives

The general aim of the study presented in the current Thesis is to
analyze external colored-noise-generated effects in some complex sys-
tems, such as ratchet systems and symbiotic ecosystems: particularly
focusing on the role of noise flatness.

The main objectives of the Thesis are as follows:

(1)

(2)

To find the dependence of the particle current on the system
parameters in the case of an overdamped Brownian particle in
a piecewise linear spatially periodic potential subjected to both
thermal and colored symmetric three-level Markovian noise.

To establish a mechanism of hypersensitive transport, demon-
strating that the flatness of multiplicative noise can generate
hypersensitive response to small external adiabatic force in a
tilted sharp ratchet system.

To generalize the 1D "three-layer” basic model, presented in
Ref. [43], to the case where the transitions between different
potential configurations (different ”layers”) are not localized at
discrete points, i.e., a nonhomogeneous three-level colored noise
induces transitions rather in finite intervals. On the basis of
the developed model-system, to discuss some novel phenomena
where the role of nonhomogeneous noise is crucial, particularly
to establish the conditions allowing hypersensitive differential
response.

On the basis of the N-species stochastic Lotka-Volterra model
of a symbiotic ecological system with generalized Verhulst self-
regulation, to find an answer to the question whether the cata-
strophic shifts sometimes occuring in ecosystems can be regarded
as induced by environmental fluctuations (by multiplicative col-
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ored noise).

To apply the developed theory on some modifications of the ba-
sic model and especially to investigation of the conditions for
colored-noise-induced first-order-like phase transitions over ex-
tended noise parameters and interaction strengths. The colored-
noise-induced transitions in the basic N-species Lotka-Volterra
model can be used to provide a possible scenario for catastrophic
shifts of population sizes observed in nature.

17



2 Models and methods

2.1 Three-level noise

The most productive abstraction of noise-like influence from the envi-
ronment is Gaussian white noise. However, various physical effects are
induced by colored noise, which has a non-zero correlation time, and
in these cases the white noise approximation represents an oversimpli-
fication. In the present study nonequilibrium fluctuations (a colored
noise) is modeled as a symmetric three-level telegraph process Z(t)
that may be called trichotomous noise (see VIII and [106]). Also, we
have modeled spatially nonhomogeneous fluctuations assumed to be a
three-level Markovian stochastic process 2™ (X, ).

The trichotomous Markovian stochastic process Z(t) consists of
jumps among three values z; =1, 29 =0, 23 = —1. The jumps fol-
low in time according to a Poisson process, while the values occur
with the stationary probabilities

ps(z1) = ps(23) = 4, ps(22) =1 —2q. (2.1)

The probabilities W,,(t) that Z(t) is in the state n at the time ¢ evolve
according to the master equation

3

d

—Wy(t) = Ui Wi (1), 2.2

=2 (1 (2:2)

where
q—1 q q
U=v|1—-2¢g —2¢ 1-2q|. (2.3)
q qg q—1

The transition probabilities between the three values z; =1, 2z =
0, z3=—1, can be obtained as follows:

P(+1,t+7]0,t) = P(—=1,t+7|1,t) =
=P(l,t+7|—-1,t)=q(l—e"7),
PO, t+ 7|+ 1,t) = (1—2¢) (1 —e™¥7),
T>0, 0<g<1/2, v>0. (2.4)
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In a stationary state, the mean value and the correlation function are
(Z(t)) =0, (Z(t1)Z(t2)) =2qexp(—v |t1 =12 |).  (2.5)

It can be seen that v is the reciprocal of the noise correlation time:
v=1/T. (2.6)

The trichotomous process is a special case of the kangaroo process [29]
with the flatness parameter ¢

o =(Z')/(Z*(1)* = 1/(20). (2.7)
At large flatnesses the trichotomous noise essentially coincides with
the three-level noise used by Bier [27] and Elston and Doering [30].
It is remarkable that for trichotomous noises the flatness parameter
@, contrary to the cases of the Gaussian colored noise (¢ = 3), and
the symmetric dichotomous noise (¢ = 1), can be anything from 1 to
oo. This extra degree of freedom can prove useful at modelling actual
environmental fluctuations.

We emphasize that the dichotomous noise [107] is as a specific case
of the trichotomous noise, ¢ = 1/2.

In Section 3.1.3, we consider the influence of spatially nonhomo-
geneous fluctuations Z™*(X,t) on a motion of Brownian particles in
a one-dimensional system with a spatially periodic potential V' =
V(x4 L) of a period L. The random function Z™*(X,t) represents a
three-level Markovian stochastic process and is assumed to be spatially
non-homogeneous, so that transitions between the states z; = —1,
z5 = 0 and between the states zo = 0, 23 = 1 can take place only
in the left half-period and in the right half-period of the potential,
respectively. The probabilities W, (t) that Z"(X,t) is in the state n
at time t evolve according to the master equation

p 3
%Wn(t) - mzjl Uanm(t)7 (2'8)
where
L [ —ai(@),  ai(2), 0
U=2| al), -1  wW (2.9)
0, az(w), —as(w)

and ay(z) = O(z — L/2), as(x) = O(L/2 — x); O(x) is the Heaviside

function (for more details see Paper [V]).
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2.2 Ratchet models with a three-level noise

We consider overdamped motion of Brownian particles in a 1D spa-
tially periodic potential of the form V'(x,t) = V(x)[a + 8Z(t)], where
Z(t) is a trichotomous noise (see Sec. 2.1), o and (3 are constants,
and V(z) is a spatially periodic function of a period L and barrier
height Vo = Ve — Vinin. There is an additional force that consists of
thermal fluctuations £(t) of temperature 7', an external static force F,
and a colored three-level spatially nonhomogeneous noise Z™*(X,t)
(see Sec. 2.1). The system is described by the following Langevin
equation

dX
h = o+ BZMIMX) + aoZ(t) + F + FZMM(X ) +£(), (2.10)
where h(z) = d‘g(x) k is the friction coefficient, ¢ is the amplitude

of the trichotomous noise and f is the constant force. The thermal
fluctuations &(t) are modeled by a zero-mean Gaussian white noise
with the correlation function (£(t1),&(t2)) = 2kkgTd(t; — t3), where
kg is the Boltzmann constant. By applying a scaling of the form

t ~ L ~

~ X ~ - L
X=—, V()= t=—, Z=—7 = —
L7 (l’) VE) ) tOJ ‘/b ) 5 ‘/E)g’
- L ~ L L
F=2F f=2f d=— 2.11
‘/0 ) ‘/Ofv Qo ‘/00'07 ( )

we get a dimensionless formulation of the dynamics with V() = V (z—
1). By the choice of ty = kL?/V; the dimensionless friction coefficient
turns to unity, i.e., K = 1. The rescaled noises are given by

~ I{L2I/ ~ k‘T _ 5 B 1 R ~ 1 ~
V= % 7D ‘Jio,a1($)=@<m—§),a2(x):@(§_x),

where 2D is the strength of the rescaled zero-mean Gaussian white
noise £(t). For brevity’s sake, we shall call D temperature. From now
on we shall use only dimensionless dynamics and omit the tildes.

On the basis of the Model (2.10) we study three types of ratchets
with a sawtoowth potential, which are subjected to both thermal
noise and a nonequilibrium three-level colored noise: (i) a correla-
tion ratchet, in which directed transport is subjected to an additive
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trichotomous noise, ie., § = F = f = 0 (Papers [I, VII]); (ii) a
tilted ratchet system driven by a multiplicative trichotomous noise,
ie, a = ay = f = 0 (Papers [III, VI, VII]); (iii) a tilted ratchet
system subjected to a spatially nonhomogeneous three-level colored
noise, i.e., 3 = ag = 0 (Papers [V, VII]).

The two-dimensional process {x(t), z(¢)} is Markovian and its joint
probability density P, (z,t) for the position variable x(t) and the fluc-
tuation variable z(t) of the three-level noise obeys the master equation
of the form

OP,(z,t) 0

ot - _%jn<l’7t) + Xm:Unum(SL’,t), n, m= 172’3’ (2'12)

where
Jnlx,t) = [ah(x) +n(x)z, + F — D(%] P,(x,t) (2.13)

are the current densities in the state (z, z,,). In the case of the tricho-
tomous noise [f = 0 in Eq. (2.10)] the function n(x) = ag + Bh(zx)
and the matrix elements U, are given by Eq. (2.3). In the case of
the spatially nonhomogeneous noise [ = ap = 0 in Eq. (2.10)] the
function 7 is constant, namely n = f, and the matrix elements U,,,
are given by Eq. (2.9).

The stationary current J is evaluated via the current densities

7= 0s), Jae) = |ah() + n(a)z+ F— D Pifa),

(2.14)

where P#(z) is the stationary probability density for the state (x, z,).
It follows from Eq. (2.12) that the current J is constant.

To derive an exact formula for .J, we present an analysis of the

system of Eq. (2.10) for a piecewise linear sawtooth-like potential

V(z,t) = [a+ BZ(t)]V(x), namely,

—(x —d)/d, x € (0,d) mod 1,

Viz) = { (x—d)/(1—d), z€(d1)mod 1, (2.15)

where d € (0,1) determines the asymmetry of the potential, which
is symmetric if d = 1/2. We may confine ourselves to the case d <
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1/2. The "force” h(x) = —dV(x)/dz being periodic, the stationary
distributions P?(z) as solutions of Eqgs. (2.12) are also periodic and
it suffices to consider the problem in the interval [0,1). The "force”
corresponding to the potential of Eq. (2.15) is

dV(z) [ ho:=1/d, z € (0,d),

o) =——3— = { hy:=—1/(1—d), =€ (d1). (2.16)

As the "force” h(x) is a piecewise constant in the open intervals
(0,d)(mod 1) and (d,1)(mod 1) Eq. (2.12) splits up into two linear
differential equations with constant coefficients for two vector func-
tions P?(x) = (P;;, Py, P5;) (i = 0,1) defined on the intervals (0, d)
and (d, 1), respectively.

The exact form of the solution depends on the model of the ratchet
system. For example for the model of a tilted ratchet system driven
by a multiplicative trichotomous noise and an additive white noise,
namely a = ap = f = 0 and § = 1 in Eq. (2.10), the solution of the

master equation reads

i J : Aik®
Pri(z) = ps(zn) A + ; Cig Anipe”™™ ] ; (2.17)
where Cj, are constants of integration, A.u = [Aix(DA\ix — znh; —

F)—v]7! and { )\, k = 1,...,5} is the set of roots of the algebraic
equation
D3X2 — 3D?*F\} + D(3F* — 2Dv — h})\} + F(4Dv
—F2+ W)\ + v(Dv—2F%*+ 2qh?)\;— v*F = 0. (2.18)
Ten independent conditions for the ten constants of integration Cj,
and for the current J can be determined at the points of discon-
tinuities, by requiring continuity and periodicity for the quantities
P?(x) and j3,(x), that is
P (d) - P51(d) ) PSO(O) - Pil(l)
jfbo(d) = j?il(d) ) jflo(()) = jZl(l) ;=123 (2-19)

As it follows from Eq. (2.12) that J = const, the system of linear al-
gebraic equations (2.19) contains only ten linearly independent equa-
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tions. By including the following eleventh (normalization) condition:

Z/Ol Pi(z)dx =1, (2.20)

a complete set conditions is obtained for the ten constants of integra-
tion and for the current J. This procedure leads to an inhomogeneous
set of eleven linear algebraic equations. Now, the current J can be ex-
pressed as a quotient of two determinants of the eleventh degree. The
exact formula, being complex and cumbersome, will be not presented
here (see Paper [VI]).

Following an analogous procedure, the current J can also be de-
termined for the other ratchet systems considered in this study (see

Papers [I, V]).

2.3 Lotka-Volterra stochastic model of a symbi-
otic ecosystem

The models is based on the N-species generalized Lotka-Volterra equa-
tion with generalized Verhulst self-regulation

5 (1 _ (XK“))B> +%2Xj(t)] L (221)

J#i
where X;(t) (i =1,..., N) is the population density of the i-th species
at time t (clearly X;(t) > 0), d is the growth rate parameter of species
and the coupling parameter J > 0, i.e., the i-th species is in a sym-
biotic relationship with the j-th species. The carrying capacity K; is
a limiting factor on the i-th population growth, which is imposed by
environmental factors, basically food and space limitations.

In Paper [II] we analyzed the generalized Lotka-Volterra model
(2.21) with the Verhulst self-regulation mechanism (VM), i.e., we took
the exponent § = 1. In Paper IV we analyzed the Model (2.21) with
the generalized Vehulst self-regulation mechanism (GVM), i.e., the
exponent 3 > 0, focusing mainly on the case 3 > 1.

The effect of fluctuating environment on the growth of a population
is modeled by using colored noise.

d
EXi(t) = X;(¢)
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For VM random interaction with the environment is taken into

account by exploiting a trichotomous noise into the carrying capacity
Kil

) )

— == Zi(t 2.22

== i), (222)
where the colored noise a¢Z;(t) is assumed to be a trichotomous noise
(see Sec. 2.1) with an amplitude ag. The Model (2.21) with VM and
with Eq. (2.22) is biologically meaningful only if ag < /K.

In order to investigate the presence of a possible hysteresis induced

by the noise we modified the above model [Egs. (2.21)-(2.22)] intro-

ducing an adaptation into the carrying capacity K;:

¢ 52

% =§/K + Njf(? > XG(t) + aoZi(t), (2.23)
J#

where the adaptation factor ¢ > 0 is assumed independent of the

species, i.e., the populations adapt themselves with respect to the

total number of individuals of all populations.

The term with the factor € in Eq. (2.23) mimics the decrease of
the carrying capacity caused by adaptive competition of populations
for common resources, such as food or living space [108]. A need
for the consideration of inter-space adaptive competition in models
with Verhulst self-regulation of biological relevance arises from the
following circumstance: In the absence of adaptation (e = 0), for
all J > 0 the corresponding deterministic model (without noise) is
characterized by instability; it means that within a finite time the site
average (1/N) >, ;) X;(t) grows to infinity. For biologically relevant
models any growth of an expanding population must eventually be
stopped by shortage of resources. Addition of adaptation of the model
would regulate the behaviour of the system so that an unstable state
of the system would be replaced by a new stable stationary state.

For GVM we used

K= K1+ aoZi(t)], (2.24)

where the colored noise agZ;(t) is assumed to be a dichotomous noise
(see Sec. 2.1) with an amplitude ag. The Model (2.21) with Eq. (2.24)
is biologically meaningful at the condition ay < 1.
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Since one of the characteristic quantities of an ecosystem, perhaps
the most fundamental one, is its average species density X, we con-
sider average species density as the state parameter of an ecosystem.
We study the model using the mean-field approach, focusing on the
behavior of the explicit self-consistency equation for the stationary
states.

To proceed with analytical examination of the Models (2.21) with
different self-regulation mechanisms [Eqgs. (2.22)-(2.24)] we assume
that N — oo. This means we are interested in the case of infi-
nitely many interacting species. Following Shiino [109], the mean-
field approximation can be obtained by replacing the site average
(L/N) >z X;j(t) by the statistical average (X(t¢)) in Eq. (2.21).
Hence, each stochastic differential equation Eq. (2.21), where Egs.
(2.22)-(2.24) are assumed, can be reduced to an independent and iden-
tical stochastic differential equation of the form

d)c(i—t(t) = X5+ J(X(1)) —vXP)(1 + aZ(t))]. (2.25)
For the Models (2.21) with VM and with Eqs. (2.22)-(2.23), the para-
meter v = §(1/K;) and a is the amplitude of the trichotomous noise
a = ag/v. For the Model (2.21) with GVM and with Eq. (2.24)

J

a1 —a2yre [+ )"+ (1 —ao)’] (2.26)

’y:

and 5 5
1 —(1-
g = LHa0) = (1= a) (2.27)
(14a0)? + (1 — ao)?
may be called the amplitude of the dichotomous noise.
The two-dimensional process {x(t), z(¢)} is Markovian and its joint
probability density P, (z,t) for the position variable x(t) and the fluc-

tuation variable z(t) obeys the master equation of the form

P
W = —(,%{m[r(t) — 2P (1 + a,)] Py (z, 1)} + zm: Upm Pz, 1)
(2.28)
with 7(t) = § + J(X(t)). For the models with trichotomous noise
n,m=1, 2, 3; a1 = a, as =0, a3 = —a and the matrix U is given
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by Eq. (2.3). For the models with dichotomous noise [Eq. (2.21) with
Eq. (2.24)] n, m =1, 2; a1 = a, ay = —a and the matrix U is given

by
v

The behavior of a stationary system can be analytically studied by
means of a standard mean-field theory procedure [5]. For a stationary
state we can solve Eq. (2.28), taking as the boundary condition that
there is no probability current at the boundary. This way we get the
stationary probability distribution in the z space, P(z,7) = > Pi(x),
where P?(x) is the stationary probability density for the state (z, z,)
(see Papers [II, IV]). The self-consistency equation for the Weiss mean-
field approach, whose solution yields the dependence of (X) on the
system parameters, is

_}’ _11) : (2.29)

Y

(X) = / " Pl ). (2.30)

1

For example for the Model (2.21) with VM and with Eq. (2.22) we
obtain the following dimensionless formulation of the self-consistency
equation

1 1
m=1-J" 3F2(1,§,2qm;m,m+§;a), (2.31)

in which the ”order parameter”

v /1 v
=5 x) = e i

and a scaling of the form
§=25/v, J'=J/y, a=a;/y (2.33)

is used; 3F3 is the hypergeometric function.

Analogous self-consistency equations, usable for the other models of
symbiotic ecosystems, have been considered above, obtained in Papers
(11, TV].
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3 Results and discussion

3.1 Colored-noise-induced anomalous transport
3.1.1 Multiple current reversals

In this subsection the results for the model (2.10) with = F = f =0
and a = 1, i.e., the model of a correlation ratchet in which directed
transport is subjected to both a trichotomous noise and a thermal
noise, are given. Here we will briefly review the behavior of the current
J at the different limits. More details are presented in Paper [I].

In the case of a large noise amplitude (ag — oo) with a fixed flat-
ness ¢, the noise correlation time 7., and temperature D, the current
saturates to a finite negative value. This somewhat surprising result
is due to both an effective inhomogeneous diffusion, which becomes
more homogeneous at an increasing ag, and the so-called flashing bar-
rier effect as stated in [27, 32]. The dependence of the current on the
temperature and the switching rate v = 1/7, is illustrated in Fig. 1.
As the temperature grows, the current decreases monotonically to zero
at any values of ¢ = 1/2¢, v and the potential asymmetry parameter

d.

-0.05
0.1l
~ -0.15
~0.2 !
~0.25 |

0 100 200 300

%

Figure 1: The current J vs the switching rate v in the case of the
large-amplitude limit. The curves have been computed for the flatness
parameter ¢ = 1/2¢q = 2, the potential asymmetry parameter d =
0.25, and temperatures: (1)D = 0.2, (2)D = 0.07, (3) D = 0. The
current is negative and its absolute value decreases monotonically as
D increases.
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Figure 2: The current J vs the temperature D at various noise am-
plitudes ag in the case of an adiabatic limit. The flatness parameter
¢ = 1.5 and the potential asymmetry parameter d = 0.25. Note that
for ay < ho = 1/d the current exhibits a bell-shaped extremum; if
ag > hg, then J decreases monotonically. The temperature which
maximizes the current decreases monotonically as aq increases.

In the case of the adiabatic limit ¥ — 0 the current is positive and
changes with temperature as follows: in case the trichotomous fluc-
tuations induce transitions forth and back over the potential barrier,
ie., if ag > ho = 1/d, J decreases monotonically as the temperature
increases. On the other hand, if the trichotomous transitions do not
induce transitions in both directions over the barrier, i.e., if ag < hy,
the net current exhibits a bell-shaped extremum (see Fig. 2). Hence, if
ag < hg, there is an optimal temperature D,, maximizing the current.
As the noise amplitude ag increases, the temperature D,, decreases
monotonically to zero at ag = hy.

In the case of the adiabatic limit ¥ — 0 with small noise ampli-
tudes ag < min{l1/(1 —d), D}, the optimal temperature D,, ~ 0.216.
It is remarkable that in this case the characteristic temperature D,,
depends neither on the shape of the ratchet potential nor on the para-
meters of the trichotomous noise. It seems reasonable to assume that
for overdamped ratchet models with an additive thermal noise and
with an additive low-amplitude nonequilibrium noise the same value
of the optimal temperature in the adiabatic limit occurs.

In the fast noise limit we allow v to become large, holding all other
parameters fixed, and use /2 as a smallness parameter. Thus, if
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the temperature D # 0, in the large v limit the current is positive and
decays algebraically to zero in v~%2. In the case of a dichotomous
noise (¢ = 1/2) such a formula for J has been found in [21]. The
thermal noise has a strong effect on the current in the small correlation
time 7, limit: in the presence of thermal noise fluctuations the current
exhibits exponential growth from J ~ +exp(—C/7.) with a positive
constant C' that depends on ag, ¢, and d, to J ~ o /2. Tt looks like
in this model the two noises acting together are able to generate a
considerably more organized motion than either one of them alone,
even though they are generated by statistically independent sources.
The authors of [21] have reached an analogous conclusion for the case
of a dichotomous noise. It should be noted that although in the case
of ¢ > 2 and D = 0 there can occur one current reversal (CR) caused
by variation of v, in the case of ¢ > 2 and D # 0 there can occur
either two reversals or none.

In the case of a large flatness parameter, ¢ > 1, we expanded the
current as J = gJM) 4+¢?J® + ... Drawing on the asymptotic expres-
sions of J® we can reach the following results: (i) For variations of
the amplitude ag an odd number of CRs occur. At large asymmetries
d << 0.5 we have observed up to three CR-s. Still, in most cases there
is one CR. (ii) At variations of the correlation time 7, the number of
CRs is even or zero. At numerical calculations and at large asymme-
tries, we have even observed four CRs (see Paper [I] and [33]). (iii) As
for changes of the temperature D there is an upper limit 71 (ag) for
the correlation time 7., at greater values of which there is no CR (see
also Fig. 3). For ay > ho|hi|, where hg = 1/d and h; = —1/(1 — d)
are the forces corresponding to the sawtooth potential [see Eq. (2.15)],
another critical value of the correlation time 7 (ag) < 71(ag) occurs.
In case » < 7. < 7 there are two CRs, but at 7. < 7 there is
only one CR. For ay < hglhy| and 7. < 7i(ag) two or no CRs ap-
pear. They can be absent only at the values of the noise amplitude
|h1| < a9 < hg, which is possible only at large asymmetries of the
potential d < 0.01. Then the current exhibits disjunct characteristic
"windows” of the correlation time where the temperature-controlled
CRs take place (see also [34]).

For example Fig. 3 represents the current J vs temperature D in
the case of a large flatness and ag < hg|hy|. If the correlation time
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Figure 3: The current J = ¢J® vs the temperature D in the case
of large flatness at d = 0.25. In the limit of high temperature, J is
positive and decays to zero. Curves (1)-(4) correspond to the following
parameters: (1): ap =15, v=1; (2): ap =35, v=16; (3): ap =
3.5, v=21; (4): ap =45, v=21. If . < 1 (ap), then two current
reversals occur [curves (3) and (4)]. No current reversals occur when
7. > 11(ap) [curve (1)].

7. > 71(ap), then there is no CR [curve (1)]. If 7. < 71(ap), then there
occur two CRs: curves (3), (4). The concrete value 71 (ag) for a given
ao and the asymmetry of the potential can be found by numerical
methods.

Our magor result is that in sawtooth ratchet structures the direction
of the transport of Brownian particles driven by symmetric trichoto-
mous fluctuations can be controlled by thermal noise (see Fig. 3). The
necessary condition is that the flatness parameter exceeds one.

The advantage of this model is that the control parameter is tem-
perature, which can be easily varied in experiments (see also [23]).
Note that the friction coefficient of the particle has been absorbed
into the time scale. Thus, in the original (unscaled) setup particles
with different friction coefficients are controlled by different effective
v-s and can move in either direction in the same ratchet potential and
the same fluctuating environment, which has interesting biological and
technological implications (see [10, 11, 20, 110, 111, 112]).
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3.1.2 Noise-flatness-induced hypersensitive transport

In this subsection the results for the model (2.10) witha = ap = f =0
and § = 1, i.e., the model of the tilted ratchet system driven by
a multiplicative trichotomous noise and additive thermal noise, are
given. We have analyzed the behavior of the current J, which can
be expressed by using Egs. (2.17)-(2.20), and the mobility m = J/F.
More details are presented in Papers [III, VI, VII].

At low temperatures the phenomenon of hypersensitive transport
exists, i.e., the enhancement of current is very sensitive to the applied
small tilting force. For example Fig. 4 shows the induced current
J as a function of the external force F' for four different values of
the temperature D with fixed values of noise flatness ¢ = 1/2¢ = 3,
noise correlation time 7. = 1/v = 3/8, and the asymmetry parameter
d = 0.5. In this figure, one observes the hypersensitive response at very
low forcing, which apparently gets more and more pronounced as the
thermal noise strength D decreases. For the case D — 0, the mobility
m = J/F tends to infinity at F' = 0, i.e., the current J jumps from the
zero level to the macroscopic level with J = 32vq(1 — 2q)/(v + 8)? =
1/12 at the infinitesimally small force F.

To explain the physical mechanism of hypersensitive transport a
schematic representation of the three configurations assumed by the
"net potentials” V,,(x) = 2,V (x) — Fz associated with the right hand

0.08
0.067
™ 0.04
0.02

0 I I [
0 0.003 0.006 0.009
E

Figure 4: The current J vs. the applied force F' in the region of
hypersensitive response at the values of the flatness parameter ¢ = 3,
the switching rate v = 8/3, and the asymmetry parameter d = 1/2.
Solid line: D = 4 -107%. Dotted line: D = 4-10~". Dashed line:
D =4-1075. Dashed-dotted line: D =4-107°.
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Figure 5: The mechanism of hypersensitive transport in tilted sharp
ratchets. The lines represent the three states of the total potential
Vo(x) = 2,V (2)—Fx, where z; = 1, z0 = 0, and 23 = —1. An unforced
particle cannot move along the potentials V; and V3. However, if
one allows switching between the three states of the total potential
V., n = 1,2,3, the particle will move downhill along the trajectory
1:2:3:4:6.

side of Eq. (2.10) is shown in Fig. 5. For F' = 0 the system is effectively
isotropic and no current can occur. In the case of zero temperature
both the noise levels z, = +1 in the Langevin equation Eq. (2.10),
where F' < min{(1/d,1/(1 — d)}, give zero flux. However, if one
allows the switching between three dynamic laws V,,(x), n = 1,2,3,
the resulting motion will have a net flux which can be much greater
that the flux by dynamic Vo = —Fx. If the rate of reaching the
minimal energy in each well considerably exceeds the switching rate
v, the leading part of the net flux is achieved in the following way: a
particle locked in the potential minimum 1 switches to point 2, then
slowly moves to point 3, switches to point 4 (or to 5, with equal
probability), and rapidly slides down to point 6 (or from 5 back to
1), etc. (see Fig. 5). As a result, macroscopic transport appears. In
this case hypersensitive transport is possible and can be intuitively
understood. The described picture is valid only in the absence of
additive noise. Otherwise, the system is able to pass by a thermally
activated escape across potential barriers in both directions, however
moving right predominantly, and hypersensitive transport still occurs
(at least at a sufficient low temperature).

Our major result is that at low temperatures noise flatness can in-
duce hypersensitive transport.
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Figure 6: The mobility m vs the switching rate v at d = 1/2, D =
4-1078, and F' = 10~°. The curves correspond, from top to bottom, to
the following values of the flatness parameter: ¢ = 3, p = 2, ¢ = 10,
¢ = 20, ¢ = 1,1. Note that the maximum of the mobility lies at
v =28/3.

For example Fig. 6 shows a plot of mobility m vs noise correlation
time 7 = 1/v at various noise flatnesses ¢ = 1/2¢. Notably, for
fixed low values of temperature, the optimal system parameters at
which the mobility is maximized are determined as follows: the flatness
parameter ¢ & 3, the correlation time 7. ~ 3/8, and the asymmetry
parameter d = 1/2. For sufficiently low values of temperature, D <
min{1,2qv, 8¢q/v}, the mobility is given by

8(1—2 2qv
m A ((1/+8)q?)” lq) , F<+/2qD . (3.1)
The condition F' < 1/2quvD has a distinct physical meaning: the char-
acteristic distance of thermal diffusion y/ D /v is larger than the typical
distance F'/v for the particle driven by the deterministic force F' in
the state z = 0. It can be seen from Eq. (3.1) that the functional
dependence of the mobility on the flatness ¢ and on the correlation
time 7. is of a bell-shaped form. Let us note that the formula (3.1)
for hypersensitive response is qualitatively valid, i.e., m~1/ VD, also
in case a multiplicative deterministic periodic stimulus replaces the
trichotomous noise.

The phenomenon of hypersensitive transport is robust enough to
survive a modification of the multiplicative noise (or deterministic
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periodic stimulus) as well as the shape of the potential (that is, asym-
metric potentials and potentials with several extrema per period). In
a general case, if the potential is smooth and the flatness of multi-
plicative noise is greater than 1, beside of the mechanism described
above also another mechanism described in [40] plays an important
role and should be taken into account when calculating the mobility.
However, in the adiabatic case, ¥ < 1, the reported mechanism of
generating hypersensitive transport by the flatness of noise induces
hypersensitive transport more effectively than the one proposed by
Ginzburg and Pustovoit in [40]. Let us look at the latter statement
more closely. First, we note that the factor \/v/D in Eq. (3.1) is
generated by thermal diffusion in the state z = 0, while the circum-
stance that the potential is sharp has no effect on this factor. On the
other hand, for adiabatic switching, the mechanism described in [40]
generates, in the case of a smooth potential, the mobility m ~ v/ VD.
Consequently, for sufficiently small switching rates the leading-order
term of the mobility is generated by the mechanism described in the
Thesis.

It is remarkable that the phenomenon of noise-flatness-induced hy-
persensitive transport seems to be applicable for amplifying adiabatic
time-dependent signals F'(t), i.e., signals of much longer periods than
the characteristic time of establishing a stationary distribution, even
in the case of a small input signal-to-noise ratio | F(t) | /v/D < 1 (see
also [38, 40]). The sensitivity of system response to small input signals
can be either enhanced or suppressed by changing the noise parameters
(correlation time, flatness, temperature). Moreover, as the friction co-
efficient x is absorbed into the time scale, so, in the original (unscaled)
set-up, the particles of different friction coefficients are controlled by
different switching rates. According to the suggestions contained in
6,9, 10, 113] this can lead to a mechanism for the separation of differ-
ent types of nanoscale objects (for example, DNA molecules, proteins,
viruses, etc.) by exploiting the sensitive dependence of the mobility
on the switching rate (see also Fig. 6).
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3.1.3 Anomalous mobility: hypersensitive differential re-
sponse, disjunct windows, absolute negative mobility

In this subsection the results for the model (2.10) with § = ag = 0
and a = 1, i.e., the model of the tilted ratchet system subjected
to both spatially nonhomogeneous three-level colored noise Z™ (see
Egs. (2.8), (2.9) and Fig. 7) and unbiased thermal noise, are given. We
have analyzed the behavior of the current J and differential mobility
mgq = dJ/dF in the case of a linear sawtooth-like symmetric potential,
i.e., the asymmetry parameter d = 1/2 in Eq. (2.15). More details are
presented in Papers [V, VII].

A major virtue of the proposed model is that an interplay of three-
level colored and thermal noises in tilted ratchets with simple sym-
metric sawtooth potentials can generate a rich variety of cooperation
effects, namely:

e Absolute negative mobility (ANM): upon the application of an
external static force F', the Model responds with a current of
particles that always runs in the direction opposite to that of
the force. Notably, for F' = 0 no current appers due to a spatial
symmetry of the system.

e Negative differential resistance (NDR), which is, for a sufficiently
large F', characterized by a decrease of the current as the driving
force F' increases, but the system does not exhibit ANM.

e Hypersensitive differential response (HDR): the current is, at
some values of the tilting force F', very sensitive to small varia-
tion of F.

e The phenomenon of “disjunct windows” (DW) for the tilting
force: there is a finite interval of the tilting force where the
current is very small as compared to that in the surroundings.

Our major result is the establishing of the effects of both HDR and
DW at large values of the switching rate v and low values of the tem-
perature D. It seems that the phenomenon of DW is a new transport
effect for Brownian particles.

Figure 8 illustrates the behaviour of the current J as a function
of a tilting force F' in the region of anomalous resistance. It is seen
that the curves are highly nonlinear. For the curves (2) and (3),
the phenomenon of ANM occurs: the particle moves in the direction
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Figure 7: Schematic representation of different states and their tran-
sitions in the model (2.10) with a sawtooth-like symmetric potential
at low temperatures. The lines depict the net potentials V, (z) =
V(z) — Fr — z,fx with 2 = —1, 25 = 0, and 23 = 1. Unbiased
transitions with a switching rate v can take place between the dis-
crete states, but only at specific positions, namely, in the interval
z € (0, %), modulo 1 between V5 and V4, and in the interval z € (3,1),
modulo 1 between V; and V;. (a) The case of F =1, f =4. (b) The
case of ' =1.6, f = 3.

opposite to a small external force . Moreover, all curves exhibit
intervals of F', where the particles’ speed decreases with increasing
applied drive, an effect that is termed negative differential resistance.
The curve (3) demonstrates the effect of hypersensitive response, i.e.,
the jumps of the current at ' = 1 and F' = 2 occur. The effect
appears at large values of the switching rate v and low values of the
temperature D. In case the noise amplitude f is in the interval 2 <
f < 4 and at the low diffusion level Dv < 1, D — 0, the effect
of hypersensitive differential response (HDR) occurs at F' = 2 and at
F = f —2. The formulas for the leading-order term of the differential
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Figure 8: The current J vs an applied force F' in the region of anom-
alous mobility. (1) Dashed line: D = 1072, v = 1072, and f = 1.9.
(2) Dotted line: D = 1072, v = 1072, and f = 3. (3) Solid line:
D =10"" v =10% and f = 3. Note that in the cases of curves (2)
and (3) the phenomenon of absolute negative mobility occurs.

mobility are

v(4 -8+ ) 3v(4 - f)
208-/f) 8f

The appearance of HDR is not confined to the case described above.
If v — o0 and D — 0, the phenomenon can occur, depending on the
particular values of the parameters vD and f, at F' =2+ (f/2), 2, f—
2. For example, in the case of 2 < f < 8, Dv > 1, we have my|p_f_o &
f(f —2)/6D(2f — 1)?. Note that all these values of F correspond to
a change of the net potential configuration. In the case of F' = f — 2
and 2 < f < 4 the corresponding change of the net potential V,,(z) =
V(z) — Fx — z, fx configuration is qualitatively similar to the change
from the configuration in Fig. 7(b) to the configuration in Fig. 7(a).
A comprehensive description of the physical mechanism for HDR is
given in Paper [V].

We emphasize that our mechanism of HDR is of a qualitatively
different nature from the effect described in Sec. 3.1.2, where a noise-
induced enhancement of the current of Brownian particles in a tilted
ratchet system has also been established ([40, 41], and Paper [III]).
In the mechanism reported here the hypersensitivity is achieved by
a combined influence of fast nonequilibrium noise and a tilt-force-

M| =2 = — Ma|p=fo =~ (3.2)
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induced change of the net potentials configuration. It should be
pointed out that in the present model the effect of HDR is pronounced
in the case of a fast switching of the nonequilibrium noise, while in
the models of [40, 41] and Paper [III] the hypersensitive transport is
generated by low or moderate values of the switching rate.

Similarly to the case of hypersensitive transport the results of HDR
seem also to be applicable for amplifying adiabatic time-dependent
signals.

The curve (3) in Fig. 8 also demonstrates the ”disjunct windows”
effect. At a low temperature and a large switching rate v the current
exhibits a characteristic disjunct zone of the tilting force, 2+ (f/2) >
F > max{2, f — 2}, in which the current is exponentially small, J ~
ve~ " with d—a constant. The necessary conditions for the emergence
of the ”disjunct windows” effect are the regime of a small diffusion
Dv < 1 and a large v.

As the diffusion is negligible the physical mechanism for DW is
simple. For the described interval of F’ the net potential V;(z) exhibits
a minimum and the potentials V(x), V3(z) are monotonic functions.
If the correlation time of the noise 7. = 1/v is small enough, a particle
in the state n = 2 cannot, before switching to the state n = 1, move
to the next spatial period and, consequently, in the stationary state
all particles are concentrated at the potential well V;(z) and on the
right-hand side of the potential V5(z). This is because the absolute
value of the deterministic velocity of particles on the right-hand side
of Vi(z) is greater than the velocity on the right-hand side of Va(z).
It is obvious that the total current J tends to zero as v — o0, since
the trapping probability in V;(z) and V3(x) tends to 1.

Figure 9 shows a plot of differential mobility in the case of the small

applied force mg := % as a function of the switching rate v at
F=0

various temperatures. There occur two important asymptotic regimes
in the D # 0 situation: first, the regime of low diffusion levels Dv <« 1,
for which the characteristic distances of thermal diffusion /D, are
much smaller than the typical deterministic distances for the particles
driven during the noise correlation time 7. = 1/v, and second, the
regime Dv > 1 for which thermal diffusion dominates. In the regime
of low diffusion, if the temperature is small enough, D < D, ~ \/f/6,
the phenomenon of ANM appears, contrary to the case of Dv > 1,
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Figure 9: The mobility mg vs the switching rate v at various tempera-
tures D and at the noise amplitude f = 3. Note that at the finite value
v = 18 with the temperature D = 0.01 a resonant-like enhancement
of ANM occurs.

where the mobility is positive. Finally, we note that a most salient
intermediate regime occurs in which the ANM exhibits a resonant-like
enhancement at finite values of v. For example, in Figure 9, the curve
mo(v) with D = 0.01 shows amplification of ANM at v = 18.

It is obvious that the presence and intensity of ANM can be con-
trolled by thermal noise. Notably, the phenomenon of ANM also oc-
curs at high temperatures, if only the noise amplitude f is large enough
(see also [V] and [1]).

3.2 Colored-noise-induced catastrophic shifts in
symbiotic ecosystems

3.2.1 Trichotomous-noise-induced discontinuous transitions
in symbiotic ecosystems

In this subsection the mean-field results for the generalized Lotka-
Volterra model [Eq. (2.21)] with the Verhulst self-regulation mecha-
nism (VM), i.e., the exponent § = 1, and with a fluctuating carrying
capacity [Eq. (2.22)], are given. Also the results for a modified Model
(2.21) with VM and with adaptation [Eq. (2.23)] are considered. More
details are presented in Paper [II].
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Figure 10: Stationary mean field m vs coupling strength J* at dif-
ferent growth rates 0*. The flatness parameter equals ¢ = 2, the
amplitude parameter a = 0.8, and the critical parameters J; = 1/3
and Jy ~ 0.3998. The bold line depicts an unstable phase. The
dashed lines depict the unstable solutions of Eq. (2.31). If m lies on
the upper branch close to the point F', a slight growth of J* induces
a catastrophic transition of the system to an unstable state.

Next we will discuss the Model (2.21) with the VM and Eq. (2.22).

From the self-consistency equation (2.31) the following three char-
acteristic regions can be discerned for the coupling parameter J* (see
also Fig. 10). (i) There is just one solution of Eq. (2.31) —if J* < Ji,
the solution is stable. (ii) There is no solution — if J* > 1, the system
is unstable, as in a finite time the statistical average (X (t)) grows to
infinity. (iii) In the case of J; < J* < 1 there are two possible situa-
tions in the long time limit. There is an upper limit 7 for the growth
rate parameter 6*, at greater values of which there is no solution and
the system is unstable. For 0* < 4 another critical value of the cou-
pling parameter 1 > Jy > J; occurs. In the case J* > J, the system
is unstable, but at J; < J* < J, there are two solutions. The bigger
one (mq) is stable and the smaller one (my < m;) is unstable.

The characteristic coupling parameter J; is expressed as

l—«

R Y

(3.3)

where « is the noise amplitude parameter [see Eq. (2.33)] and the
noise flatness ¢ = 1/2q. The presence of colored noise has a profound
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effect on an ecosystem described by Egs. (2.21)-(2.22) with g = 1,
rearranging its parameter space so that in a certain region the system
can be either in an unstable phase or in a stationary stable one, while
abrupt transitions occur. For example Fig. 10 shows different solutions
of the self-consistency Eq. (2.31) for the mean field m [Eq. (2.32)] as
a function of the coupling constant J* and the growth rate parameter
0*. The existence of an unstable solution (Fig. 10, the lower branch
of the curve §* = 1) indicates that there is a coexistence region, J; <
J* < Jy, where two phases of the system — one stationary stable and
the other unstable — are both possible. Notably, coezistence does not
mean that the two phases are present simultaneously, however, either
is possible depending on the initial distribution. In the case of J* > J;
an unstable phase really exists. The situation described represents a
typical case of first-order phase transitions. If the value of the ”order
parameter” m (describing the stationary state of the system at J* < J,
close to the point Jy corresponding to point F' in Fig. 10) is different
from zero, a slight growth of the coupling parameter may bring it
beyond the bifurcation point J; and induce a discontinuous transition
to the unstable state of the system.

Figure 11 shows a phase diagram in the plane J* — §* at the noise
amplitude parameter a = 0.8 and flatness ¢ = 2. The dashed region in
the figure corresponds to the coexistence region of the two phases. As
0* increases, the multiphase region narrows down and disappers at the
value of the growth rate parameter §; = 2.68852. It should be noted
that the critical coupling parameter J; can be described by an exact
analytical formula Eq. (3.3), but for J; there is no such formula. The
latter can be evaluated from the self-consistency equation by numerical
methods or by using approximate equations. The critical coupling
parameter .Jo depends monotonically on the growth rate parameter
0*: if 6* increases from 0 to J}, then J, decreases from 1 to J;.

The critical growth rate parameter 0¥ can be expressed as

5 2q/a | (14 /a)i-(-20va
= n .
CTI-(1-29)a |(1—Ja)ti-20va

(3.4)

Note that in the case of fixed values of flatness, ¢ = 1/(2q), the critical
parameter ¢* increases monotonically from zero to infinity if the noise
amplitude a € (0, 1) increases.

41



Figure 11: The phase diagram at the flatness parameter ¢ = 2 and the
noise amplitude parameter a = 0.8. The stable phase, the unstable
phase, and the coexistence region of the two phases are marked by S,
U, and SU, respectively.

As the coupling-induced two-phase coexistence region does not ex-
ist in a system without noise, it is a pure colored-noise effect [see also
Eq. (3.4)]. From Eq. (2.33) we can find that there is a coexistence re-
gion if the noise correlation time 7, satisfies the condition 7, < §7/20.
Evidently, if the system is in a stationary stable phase in the coex-
istence region, then a perturbation of the noise parameters can turn
the system to the unstable phase. It is remarkable that variations of
the noise correlation time can induce only abrupt transitions between
the stable and unstable states of the system. In contrast, variations
of the noise amplitude (and flatness) can induce both discontinuous
and continuous transitions.

In ecological contexts unstable states of a system allow for various
interpretations: extinction of populations, presence of additional in-
teraction between species that the model has not taken into account,
etc. Therefore we also consider the modified Model (2.21) with VM
and with adaptation [see Eq. (2.23)]. In case noise is absent the sta-
tionary state is monostable. In the presence of noise, however there is
no unstable state of the system and the mean field is characterized by
one or two stable stationary solutions for every value of the coupling
parameter J* > 0. Moreover, a hysteresis for the mean field and re-
lated discontinuous transitions can sometimes be found as functions
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Figure 12: Stationary mean field m vs the noise amplitude « at ¢ =
2, J*=0.39, 7. = 0.5, ¢ = 10~* with the time scaling 6 = 1. The
solid and dashed lines depict, respectively, the stable and unstable
solutions of the self-consistency equation. Hysteresis of the mean field
appears.

of the noise parameters as well as of the coupling constants. This is
because colored noise can induce bistability of the ecosystem. For ex-
ample in Fig. 12 the hysteresis is exposed for the mean field m vs the
noise amplitude . It can be seen that the jump from a state with a
bigger number of individuals to that with a lesser one occurs at smaller
values of the amplitude than opposite jumps. Therefore a decrease of
the noise amplitude (or the correlation time) can under certain con-
ditions cause a catastrophic fall in the size of the population (more
details are presented in Paper [II]).

Our major result is that, in the case of ecological systems with a
symbiotic interaction between the species, random interaction with the
environment can cause discontinuous transitions in ecosystems, even
if the system is monostable in the absence of noise (modified model).

Discontinuous transitions can appear in two ways. First, abrupt
transitions can be caused by changes of control parameters, for ex-
ample by variations of the coupling constant or the noise amplitude
(see Figs. 10 and 12). Second, some environmental fluctuations can
affect the state directly, for example, by wiping out parts of the pop-
ulations [57]. If there are alternative stable states, rather severe fluc-
tuations may shift the system into the basin of attraction of another
state. Such catastrophies have also been noted in different ecological
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models assuming that in the absence of noise the deterministic po-
tential is multistable (see [57], [62]-[67]). We would like to emphasize
that those models are qualitatively different from the ones considered
in our work. In the latter the deterministic potential is monostable
and bistability is induced by combined effects of multiplicative colored
noise and symbiotic coupling.

3.2.2 Colored-noise-induced bistability

In this subsection we will briefly review the results for the general-
ized Lotka-Volterra model (2.21) with Eq. (2.24). More details are
presented in Paper [IV] (cf. also [1]).

We consider the generalized Verhulst mechanism (GVM) with an
exponent 3 > 1. In this case there is no unstable phase of the system
and the deterministic counterpart of the system is monostable, i.e.,
the present model is qualitatively different from the model with § =
1 considered in Section 3.2.1. In the latter an interaction-strength-
induced transition from stability to instability takes place, even if the
system is deterministic (that is, in the absence of noise), whereas in the
present model such transitions are absent. In [IV] we have shown that
environmental fluctuations can induce bistability in the model with
G > 1, and the system presents abrupt (first-order-like) transitions
between the low and high density phases of populations. Hysteresis
for the mean field value of the population density (X), as function of
the noise parameters as well as of the coupling constant, appears.

The coexistence region, where two stable phases are possible, exists
only at bounded values of the noise correlation time 7, < 7. Fig. 13
shows a phase diagram in the J — 7. plane at the noise amplitude
a = 0.980 and 3 = 2. The shaded region in the figure corresponds
to the coexistence region of the two phases. The boundaries of the
coexistence region, Ji(7.) and J5(7.), can be computed from the self-
consistency equation (see [IV]). As the correlation time 7. increases,
the multiphase region narrows down and disappears at critical value
of the correlation time 7. Hence, there is an upper limit 7(ao, 3)
for the correlation time 77, at greater values of which the system is
monostable. From the self-consistency equation a monotonic depen-
dence of the boundaries of the coexistence region J;(7.), i = 1,2, on
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Figure 13: A plot of the phase diagram in the J — 7, plane at a3 =
0.980, B8 = 2. The shaded region in the figure corresponds to the
coexistence region of two phases. The critical correlation time 7} =
0.655. All quantities are dimensionless with scaling 6 =1 and K = 1.

7. follows: if 7, increases from 0 to 7} then J; decreases from oo to
J*(ap, B). Notably, the coexistence region exists only if the coupling
parameter J is sufficiently large: J > J*.

The important new result, in an ecological context, is the exis-
tence of a critical noise amplitude ag.(3). The value of ag.(3) is the
lowest value of the noise amplitude for the phenomenon of hysteresis
to occur, i.e., discontinuous transitions are possible only if ag > ag..
It should be pointed out that the threshold amplitude ag.(5) depends
only on the exponent 3 describing generalized Verhulst self-regulation.
Fig. 14 demonstrates the dependence of a3.(3) on 3. The critical pa-
rameter a2, increases monotonically from zero to ag.(oco) ~ 0.9248 if
the parameter § € (1,00) increases. As the critical noise amplitude
aoe increases relatively rapidly if 3 increases, it seems reasonable to
assume that in symbiotic ecosystems with generalized Verhulst self-
regulation abrupt transitions appear with a greater probability if the
exponent [3 is lower.

If the noise amplitude ag > ag. increases, the critical coupling pa-
rameter J* decreases monotonically from infinity to the value

12 45



Figure 14: The critical noise amplitude parameter a3, vs the system
parameter (. In the case of large values of  the critical noise ampli-
tude saturates up to the value a3, ~ 0.9248.

T8 =4 (1- %)5‘5‘” [(1 B ); N 1] -1/8

X exp [1—%+<1—%> } (3.5)

at ag = 1. Note that in the case of fixed values of 3 there is a lower
limit for the coupling parameter J*(1,3), below which, J < J*(1, ),
the system is monostable at all values of the noise parameters. It
is remarkable that the critical parameter 77 increases monotonically
from zero to infinity if the noise amplitude ag increases from ag.(() to
one.

The circumstance that there exist certain lower limits for the noise
amplitude ao.(3) and for the coupling parameter J*(1, 3), below which
discontinuous transitions are not possible, demonstrates that both
agents - the symbiotic coupling of species and the colored fluctuations
of carrying capacities - act in unison to generate discontinuous tran-
sitions of the mean population density. Moreover, as in Eq. (3.5) the
growth rate § and the deterministic carrying capacity K of species have
been absorbed into the critical coupling strength J*(1, /3), discontinu-
ous transitions can also occur by a gradual change of the parameters
0 and K.

=

=
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Our major results are:

o [For symbiotic ecological systems (or metapopulations) with gen-
eralized Verhulst self-requlation (8 > 1), colored fluctuations of
the environment can cause bistability of mean population den-
sities. Therefore a variation of system parameters can, under
certain conditions, cause a catastrophic fall in the size of the
populations.

e For 0 > 1, abrupt changes of mean population densities ap-
pear only if the noise amplitude is greater than the threshold
value ao.(B) which increases relatively rapidly if the exponent (3
increases. Therefore, it seems reasonable to assume that symbi-
otic ecosystems with generalized Verhulst self-requlation are more
sensitive to environmental fluctuations if the exponent (3 is lower.

It is worth to emphasize that the deterministic counterpart of most
ecological models exhibiting noise-induced discontinuous transitions is
able to display transitions similar to those induced by noise for a cer-
tain range of parameter values [57], [62]-[67]. In our model, however,
these transitions occur only when colored noise is present.

3.3 Some open problems

Before concluding, we would like to mention some issues for future
research.

1. Study of temperature-controlled multiple (more than two) cur-
rent reversals in the case of intermediate values of noise flatness.
The calculations of multiple current reversals in Paper (I) are
based on the assumption that the flatness parameter of noise
is very large, because the absolute value of the current is very
small. The study of this amazing phenomenon should be con-
tinued in the intermediate regimes of the system parameters,
which is the realm of applications for nano-objects separation.
Note that this problem was partly solved in Paper [VII] and in
Ref. [81], but some more analysis is needed. We believe that
the phenomenon of multiple current reversals will enable us to
design continuous two-step separation schemes with a very high
selectivity.
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. The results of Paper [VII] indicate that variations in the flatness
of nonequilibrium noise can sometimes amplify the efficiency
with which a ratchet converts energy of fluctuations to useful
work. However, how to obtain the best protocol for maximiza-
tion of efficiency in the case of the ratchet models considered,
particularly in the regimes of multiple current reversals, is still
an open question.

. Investigation of hypersensitive transport of Brownian particles in
tilted ratchets in a general case, if the potential is smooth and the
flatness of multiplicative noise is greater than one. In this case
both mechanisms, described in Papers [I1I, VI] and in [40], play
an important role and should be taken into account. Possible
applications of the phenomenon of hypersensitive transport for
concrete physical, biological, and chemical systems should also
be continued.

. It seems that the phenomenon of ”disjunct windows” for an ex-
ternal force, established in Paper [V], is a new anomalous trans-
port phenomenon for Brownian particles. Future work will fur-
ther refine the effect, and strive to establish some possible ap-
plications.

. The mean-field results considered correspond to an infinite num-
ber of globally coupled species. When the number of species is
finite, as is true for more realistic ecosystems, the features of the
model-system can be different. Although the preliminary results
of computer simulations presented in Paper [IV] indicate that the
mean-field scenario is not much different from the case of a finite
number of species (at least in case the number of species is great
enough), further investigations of finite size systems are needed
to test them.

. On the basis of the results of Paper [IV], one may formulate the
conjecture that in symbiotic ecosystems with generalized Ver-
hulst self-regulation abrupt transitions appear with a greater
probability if the exponent 3 is lower. This conjecture, which
may be an important new result in an ecological context, remains
to be verified by further studies. A particularly important prob-
lem is how to link the mathematical models to empirical data.

. Although our models with symbiotic interaction can be use-
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ful in modeling some actual ecological communities (for exam-
ple, in the case of coral reefs, where symbiosis is essential), in
most biologically important ecosystems additional interactions
between species, such as competition and prey-predator relation-
ship, should be taken into account. Note that some new results
of the influence of environmental fluctuations on the dynamics
of predator-prey communities have been recently presented in

[30).
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4 Conclusions

In this Thesis we studied two subjects: (i) colored-noise-induced trans-
port of Brownian particles in a periodic sawtooth potential,
(ii) ecological systems with symbiotic interaction between species in a
fluctuating environment.

In the case of Brownian transport we considered three types of
ratchets with a sawtoowth potential, subjected to both thermal and
nonequilibrium three-level colored noise. The main results and possi-
ble applications are the following:

(a) The correlation ratchet, in which directed transport is subjected

to both an additive trichotomous noise and an additive thermal
noise [I, VII].

1. The direction of the transport of Brownian particles can
be controlled by thermal noise. The necessary condition
is that the flatness parameter exceeds one. The advantage
of this model is that the control parameter is temperature,
which can be easily varied in experiments.

2. The thermal noise has a strong effect on the current in the
case of small correlation times. By the absence of thermal
noise and in the case of the flatness parameter ¢ > 2 there
can occur one current reversal caused by variation of the
correlation time, but in the presence of additional thermal
noise there can occur either an even number of reversals or
none.

The ratchet mechanism with current reversals can be used for
obtaining efficient separation methods of nanoscale objects, e.g.,
DNA molecules, viruses, etc. To date, the feasibility of Brownian
particle transport by man-made devices has been experimentally
demonstrated for several ratchet types [13].

(b) The model of the ratchet system subjected to a static tilting
force and to both a multiplicative trichotomous noise and an
additive thermal noise [III, VI, VII].

1. At low dimensionless temperatures, D < 1, enhancement
of the current is hypersensitive to a small static tilting force.
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2. At low temperatures, the noise flatness can induce the phe-
nomenon of hypersensitive transport.

3. The functional dependence of the mobility on correlation
time and on flatness is of a bell-shaped form. For fixed low
values of the temperature, the optimal parameters of the
system, at which the mobility is maximized, are determined
as follows: the flatness parameter ¢ =~ 3, the correlation
time 7. &~ 3/8, and the asymmetry parameter d = 1/2, i.e.,
the potential is symmetric.

The phenomenon of noise-flatness-induced hypersensitive trans-
port seems to be applicable for amplifying adiabatic time-
dependent signals F'(t), i.e., signals of much longer periods than
the characteristic time of reaching a stationary distribution, even
in the case of a small input-to-noise ratio | F(t) | /v/D < 1. The
sensitivity of the system response to small input signals can be
either enhanced or suppressed by changing the noise parameters
(correlation time, flatness, temperature).

The model of the ratchet system subjected to a static tilting
force and to both a spatially nonhomogeneous three-level colored
noise and an unbiased thermal noise [V, VII].

A major virtue of the proposed model is that an interplay of
three-level colored and thermal noises in tilted ratchets with
simple symmetric sawtooth potentials can generate a rich variety
of cooperation effects, namely:

1. Hypersensitive differential response (HDR): at some values
of the tilting force F', the current is very sensitive to a
small variation of F'. The effect appears at large values of
the switching rate v and low values of the temperature D.

2. The phenomenon of ”disjunct windows” (DW) for the tilt-
ing force where the current is very small as compared to
that in the surroundings. The necessary conditions for the
existence of the DW effect are the regime of a small diffu-
sion Drv < 1 and a large switching rate v.

3. Absolute negative mobility (ANM). In the regime of low
diffusion Dv < 1, as temperature D is small enough, D <
D, =~ \/f/6, the ANM appears. Notably, the phenomenon
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of ANM can also occur at high temperatures, if only the
three-level noise amplitude f is large enough (cf. [1]).

4. Negative differential resistance, i.e., for some intervals of
the tilting force F' the current decreases as F' increases.

In particular we emphasize that the mechanism of HDR reported
here is of a qualitatively different nature from the mechanisms
of hypersensitive response described in the previous model of
(b) and also in the model of [40, 41]. In the model (c) the
hypersensitivity is achieved by a combined influence of a fast
nonequilibrium noise and a tilt-force-induced change of the net
potentials configuration. It should be pointed out that here the
effect of HDR is pronounced in the case of a fast switching of
the nonequilibrium noise, while in the model of (b) the hyper-
sensitive transport is generated by low or moderate values of the
switching rate.

Notably, the results of HDR seem to be applicable for am-
plifying adiabatic time-dependent signals [see also the previous
model (b)]. The phenomenon of ”disjunct windows” is a new
anomalous transport phenomenon for Brownian particles and is,
so far, mainly of theoretical interest, while applications are not
clearly identifiable yet. We believe that the present model (c)
is particulary suitable for an experimental realization along the
lines described in [43], e.g., for particles suspended in a hydro-
dynamic flow.

Another problem we have addressed is the dynamics of interacting
species. We have considered a broad class of N-species Lotka-Volterra
models of symbiotic ecological systems with the generalized Verhulst
self-regulation mechanism [IV] and also with the true Verhulst (lo-
gistic) self-regulation mechanism [II]. The effect of a fluctuating en-
vironment on the carrying capacity of a population is modeled as a
colored noise, namely for the Model with the Verhulst self-regulation
mechanism (VM) a trichotomous noise and for the Model with the
generalized Verhulst mechanism (GVM) a dichotomous noise is used.
In the framework of mean-field approximation we established the fol-
lowing results.

(a) The model with VM (adaptation is absent; Paper [II]).
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1. The presence of colored environmental fluctuations has a

profound effect on the model of a symbiotic ecosystem, re-
arranging its parameter space so that in a certain region
of noise parameters the system can be either in the unsta-
ble phase or in the stationary stable phase, while abrupt
(first-order-like) transitions occur. Since the two-phase co-
existence region does not exist in the system without noise,
it is a pure colored-noise effect.

. The coexistence region of unstable and stable phases ex-

ists only at bounded values of the noise correlation time,
7. < 7;. The critical parameter 7 increases monotoni-
cally from zero to infinity if the noise amplitude increases.
Consequently, a variation of noise parameters can cause
catastrophic shifts of an ecosystem from a stable to an un-
stable phase.

. The variations of the noise correlation time can induce only

abrupt transitions between the stable and unstable states
of the system. In contrast, variations of the noise ampli-
tude and the flatness can induce both discontinuous and
continuous transitions.

In ecological contexts unstable states of a system can variously
be interpreted: extinction of populations, presence of additional
interaction between species that the model has not taken into
account, a catastrophic increase of some population sizes ob-
served in nature, etc. Undoubtedly, an ultimate verification of
the phenomenon of pure colored-noise-induced transitions to an
unstable state in natural ecosystems lies with experimentally-
minded ecologists.

(b) The model with an adaptation and with VM [II].

1. If noise is absent, the stationary state of this model is

monostable. In some cases, the mean field exhibits hys-
teresis as a function of the noise parameters, i.e., environ-
mental fluctuations can induce bistability of the ecosystem
(or metapopulation).

. A variation of the noise amplitude, as well as of the noise

correlation time, can cause a catastrophic fall in the size
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of population under certain condition, i.e., an abrupt jump
from a state with a bigger number of individuals to one
with a much lesser number.

Such catastrophies have also been noted in different ecological
models assuming that the deterministic potential in the absence
of noise is multistable [57], but those models are qualitatively
different from these considered in our work. In the latter the
deterministic model is monostable and bistability is induced by
the combined effects of multiplicative colored noise and symbi-
otic coupling.

The model with GVM (with an exponent 5 > 1; Paper [IV]). The
conditions for the appearance of colored-noise-induced bistabil-
ity and corresponding discontinuous transitions are established.

1. The bistability of mean population densities appear only
if the noise amplitude is greater than the threshold value
aoc(3), which increases relatively rapidly if the exponent /3
increases.

2. In the case of fixed values of 3 > 1 there is a lower limit for
the symbiotic coupling intensity, below which the system is
monostable at all values of the noise parameters.

Perhaps the most important new result, in the ecological sense,
is the existence of the critical noise amplitude ag.(5) > 0. Note
that in the case of logistic self-regulation, 3 = 1, the critical
parameter ag.(1) = 0. This circumstance may, in principle, pro-
vide some vital information for maintaining ecosystem stability
in a technogeneous environment. Moreover, as ag.(/3) increases
relatively rapidly if § increases, it seems reasonable to assume
that in symbiotic ecosystems with the GVM abrupt transitions
appear with a greater probability if the exponent [ is lower.

We believe that the obtained results [II, IV] are of interest also in
other fields where symbiotic interaction and generalized Verhulst self-
regulation are relevant for modeling the system, e.g., in the dynamics
of human world population [114], coupled chemical reactions, some
laser systems [107], and business [115, 116].
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Summary in Estonian:

Varvilise miira tekitatud anomaalne transport ja
faasiiileminekud komplekssiisteemides

Viimase aastakiimne jooksul on palvinud suurt tahelepanu keskkonna
fluktuatsioonide moju kompleksetes ja stohhastilistes siisteemides.
Okonofiiiisika, uued nanoobjektide separatsioonitehnikad, Browni
mootorite mehhanism elusrakkudes, okostlisteemide stabiilsuse analiitis
— on vaid moned selle uurimisvaldkonna naited.

Antud doktoritoo iildeesmérgiks on analiiisida mittetasakaalulise
miira (varvilise miira) poolt genereeritud efekte ja miira tasasuspara-
meetri rolli jargmistes komplekssiisteemides: (i) stohhastiline trans-
port ruumiliselt perioodilises jouviljas (ratchet-stisteemid), (ii) siim-
biootilised okosiisteemid.

Dissertatsiooni pohieesmargid

(1) Leida osakeste voo soltuvus siisteemi parameetritest Browni osa-
keste kontrollitavas transpordis, mis on indutseeritud mitteta-
sakaalulise kolmetasemelise miira ja soojuslike fluktuatsioonide
poolt perioodilise sachambakujulise potentsiaali korral.

(2) Vilja tootada hiipersensitiivse transpordi mehhanism, mis néi-
taks, et multiplikatiivse miira tasasusparameeter voib generee-
rida Browni osakeste iilitundliku transpordi kallutatud hammas-
latt-siisteemis (ratchet siisteemis).

(3) Uldistada "kolmetasandilist” mudelit, mis on vilja téotatud
Cleuren’i ja Van Den Broeck’i poolt (vt [43]), juhule, kus
iileminekud erinevate potentsiaali konfiguratsioonide vahel toi-
muks loplikes vahemikes. Leida tingimused, mille korral esineb
Browni osakeste anomaalne transport, poorates erilist tahelepa-
nu ilitundliku transpordi nahtusele.

(4) Kasutades stimbiootilise ckoloogilise siisteemi uurimiseks N-liigi
stohhastilist Lotka-Volterra mudelit, leida vastus kiisimusele, kas
okostisteemides teadaolevad katastroofilised iileminekud voivad
moningatel tingimustel olla kéasitletavad kui keskkonna fluktuat-
sioonide poolt pohjustatud nahtused.

(5) Uurida stohhastilise Lotka-Volterra mudeli erinevaid modifikat-
sioone ja leida, millistel miira parameetrite ja siimbiootilise vas-
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tastikmoju intensiivsuse vaartustel toimuvad mudelsiisteemides
esimest liiki faasiiileminekud.

T66de esimeses [I, 111, V, VI VII] grupis uuriti Browni osakeste trans-
porti sachambakujulise potentsiaali korral, mis on kaivitatud mitteta-
sakaalulise kolmetasemelise miira ja soojuslike fluktuatsioonide poolt.
Jargnevalt esitame saadud pohitulemused ja voimalikud rakendused.

(a)

Mudel, milles osakeste transport on indutseeritud aditiivse kol-
metasemelise miira ja soojuslike fluktuatsioonide poolt [I, VII].

1. Kontrollparameetrite, sealhulgas temperatuuri, reguleeri-
misega kaasnevad mitmekordsed voolupoorded, kusjuures
tarvilik tingimus on, et mittetasakaalulise miira tasasus-
parameeter ¢ > 1.

2. Juhul kui miira korrelatsiooniaeg on vaike etendab termi-
line miira olulist rolli osakeste transpordil. Termilise miira
lisamine pohjustab tasasusparameetri vaartustel ¢ > 2,
kvalitatiivseid muutusi siisteemi diinaamikas.

Antud ratchet-mehhanismi saab kasutada nanoobjektide (sh
DNA fragmentide) separeerimiseks.

Mudel, milles osakeste transport on indutseeritud konstantse
kaldejou ning multiplikatiivse kolmetasemelise miira ja aditiivse
soojusliku miira poolt [III, VI, VII].

1. Miira tasasusparameeter indutseerib osakeste tlitundliku
transpordi — madalatel temperatuuridel on voolu kasv
hiipersensitiivne lisatava konstantse kaldejou suhtes.

2. Liikuvuse soltuvus miira korrelatsiooniajast ja tasasuspa-
rameetrist on mittelineaarne (Gaussi kovera kujuline).

Kirjeldatud iilitundliku transpordi mehhanism pakub uusi voi-
malusi norga signaali voimendamise juhtimiseks tugeva miira
foonil.

Mudel, milles osakeste transport on indutseeritud konstantse
kaldejou, ruumiliselt mittehomogeense kolmetasemelise miira ja
soojusliku miira poolt [V, VII]. Antud mudelis ilmnevad
jargmised anomaalse transpordi efektid:

1. tulitundlik diferentsiaalne vastuvotlikkus;

o7



2. "isoleeritud akna” fenomen, mille korral osakeste voog on
teatavas loplikus kaldejou vaartuste vahemikus vaga vaike
vorreldes seda vahemikku timbritseva piirkonnaga;

3. absoluutne negatiivne liikuvus, mis voib ilmneda ka suhte-
liselt korgetel temperatuuridel;

4. negatiivne diferentsiaalne liikuvus.

Sarnaselt eelmise mudeliga (b) saab ka antud juhul ilitundliku
transpordi efekti kasutada signaalide voimendamiseks. Siin esi-
neb see efekt siiski vaid korgetel miira sagedustel, kuna aga juhul
(b) ainult véikestel ja méodukatel sagedustel.

Téode teises grupis [II, IV] uuriti siimbiootilist 6koloogilist siisteemi
N-liigi stohhastilise Lotka-Volterra mudeli abil, eeldusel, et keskkonna
mittetasakaalulised fluktuatsioonid pohjustavad keskkonnamahutavu-
se fluktueerumise. Keskmistatud vélja meetodil saadi jargmised tule-
mused.

(a) Logistilise iseregulatsiooniga mudel [II].

1. Mira parameetrite varieerimine voib indutseerida I liiki
faasitileminekud stabiilsest olekust mittestabiilsesse.

2. Siisteem saab olla kas stabiilses voi mittestabiilses faasis —
kahe faasi kooseksisteerimine esineb juhul, kui miira korre-
latsiooniaeg on vaiksem kriitilisest vaartusest, mis kasvab
monotoonselt miira amplituudi kasvades.

Okoloogilises kontekstis saab mittestabiilset olekut interpretee-
rida mitmeti: populatsioonide véaljasuremine, liikide vaheline
lisamoju, mida mudel ei arvesta, katastroofiline populatsiooni
arvukuse suurenemine, jms.

(b) Verhulsti iseregulatsiooniga adaptsiooni arvestav mudel [II].

1. Ilmneb keskmistatud valja hiisterees — keskkonna fluktuat-
sioonid pohjustavad populatsioonide keskmise arvukuse bi-
stabiilsuse.

2. Miira amplituudi ja korrelatsiooniaja muutus voib esile kut-
suda katastroofilisi muutusi suurema isendite arvukusega
seisundist vaiksema arvukusega seisundisse ja vastupidi.
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Vastav deterministlik mudel (ilma miirata) on alati monosta-
biilne. Bistabiilsus on multiplikatiivse varvilise miira ja stim-
biootilise vastastikmoju koostoime tulemus.

(¢) Uldistatud Verhulsti iseregulatsiooniga mudel [IV]. On leitud
tingimused, mille korral ilmneb miira poolt indutseeritud bista-
biilsus ja vastavad I liiki faasiiilleminekud.

e Esinevad miira amplituudi ja stimbiootilise vastastikmoju
intensiivsuse kriitilised vaartused, millest madalamatel
vaartustel on stisteem monostabiilne. Need kriitilised vaar-
tused soltuvad ainult iseregulatsiooni iseloomustavast ast-
menaitajast.

Saadud tulemused [II, IV] pakuvad alternatiivse voimaluse looduslikes
kooslustes esinevate hiippeliste muutuste tekkepohjuste interpreteeri-
miseks ja ka nende valtimiseks, sailitamaks okostlisteemide stabiilsust
tehnogeenses keskkonnas.
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