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THE  PERSONAL  MOTIVATION  OF  THE  RESEARCH 

We are measuring the natural air ion mobilities and studying the correlation 

between air pollution and ion mobility spectra. The composition of cluster ions in 

atmospheric air depends on the trace admixtures in the air and on temperature. The 

mobility variation has two factors: 

1) temperature variation of the air ion composition, 

2) temperature variation of the mobility at given composition. 

The first factor is a subject of our research. Unfortunately, only the composite effect 

is available in measurements. Thus the knowledge about the second factor is 

required. 

 

THE  LANGEVIN  RULE 

Traditionally, the measurements of mobility are numerically reduced to the standard 

conditions according to the Langevin rule 
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and presented in publications without any notice about the method of reduction. It 

is well known that the Langevin rule is correct only in the limit of zero-size ions 

and considerable errors are possible when applying the rule to the cluster ions. 

However, the Langevin rule is still used in practice and often considered as an 

conventional operation without claiming the results as real mobilities at standard 

conditions. This approach seems to be problematic and even misleading. An 

example: The variation of the published experimental data about mobilities of some 

simple molecular ions (e.g. O2

– in nitrogen) essentially exceeds the estimated 

measuring errors. The measurements have been made at different temperatures and 

results are published as reduced according to the Langevin rule. 

We will characterize the error of the Langevin rule using an approximation 
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in a narrow range of temperature and pressure, and considering parameters τ and ψ 

as functions of temperature and pressure: 
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According to the Langevin rule, 

FREE  MOLECULE  REGIME  (Chapman, Enskog) 

 τ = ψ = 1  
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                                                elementary charge         mass of gas molecule        mass of ion 
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The polarization limit 
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follows the mobility is inversely proportional to the gas density and the values of 

the variation parameters are             τ = ψ = 1                         (the Langevin rule). 

 

 

LARGE  IONS  (Stokes, Cunningham, Knudsen, Weber, Millikan) 

 
                                                 mean free path                   the slip factor coefficients 
                                               of gas molecules                    (a = 1.2, b = 0.5, c = 1) 
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                                                                    gas viscosity            ion radius   
 
 

The big particle limit:   τ = – 0.8 , ψ = 0. 

 

The fine particle limit: 
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gives τ = 0.5 ,    ψ = 1. 
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FREE  MOLECULE  REGIME 

 
                                                elementary charge         mass of gas molecule        mass of ion 
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Neutral rigid spheres: Ω ( , )1 1 2= πδ                     (δ = the collision distance). 

Charged rigid spheres and (∞–4) potential: 
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Approximation: 
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IMPROVEMENTS  (Tammet, H., J. Aerosol Sci., 26, 459–475, 1995) 

1) δ δ= ( )T    (Chapman, Hainsworth, 1924) 

2) Electrical compression  T
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3) Inelastic collisions   Ω ( , ) ( , )1 1 2
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                           ion mass radius 
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 ,    ρ – density of ionic matter  (the first ill-determined parameter) 
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     for                                                                     

     for   (empirical value,  Millikan,  1923)            

1.393  for full temperature accommodation (Epstein,  1924)
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SYNTHETIC  SEMIEMPIRICAL  MODEL  (modified Millikan equation) 

 

 
                                                 mean free path                   the slip factor coefficients 
                                               of gas molecules                    (a = 1.2, b = 0.5, c = 1) 
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                                                                 gas viscosity            collision distance   
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h – extra distance (the second ill-determined parameter). 
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When  r
m
→ 0   the model approaches the free molecule regime equation with 
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FACTOR  s(ri, Tδ) 

Two assumptions: 

 

1) The melting of internal degrees if freedom of the particle energy is described 

by the Einstein factor: 
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2) the average separation of internal energy levels is inversely proportional       

to the number of atoms          ∆E
r
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 – critical radius (the third ill-determined parameter). 

 

 

FITTING  OF  THE  MODEL  TO  THE  EMPIRICAL  DATA 

Kilpatrick, W.D. (1971) An experimental mass-mobility relation for ions in air at 

atmospheric pressure. Proc. Annu. Conf. Mass Spectrosc. 19th. 320-325. 

(mass interval of 35–2122 u) 

Böhringer, H., Fahey, D.W., Lindinger, W., Howorka, F., Fehsenfeld, F.C., and 

Albritton, D.L. (1987) Mobilities of several mass-identified positive and 

negative ions in air. Int. J. Mass Spectrom. Ion Processes 81, 45-65. 
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(ρsphere = 2.07   ⇒   ρcubic lattice = 1.08) 

 ρ = 2.07 g cm–3 ,     h = 0.115 nm ,     r
cr

 = 1.24 nm  
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EXAMPLE 

The air ion mass-mobility correlation has been measured by Kilpatrick at 200ºC, 

and the mobilities have been published as reduced to standard conditions using the 

Langevin rule. The fitting of these data yields a regression equation (CRC 

Handbook, 1993) 
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When the original 200ºC data were restored and the mobilities at 0ºC were 

recalculated according to the new model, the best fit is achieved at different 

coefficients of the equation 
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The ratio of air ion masses estimated according to different approximations is 
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A  REPLACEMENT  FOR  THE  LANGEVIN  RULE  (???) 

ReducedMobility :=  

  1.602 * Mobility (28.96, 0.00171, 0.3036, 44, 0.8, 1013.25, 273.15, 2.07, 1, 

MassDiameter (millibar, 273.15 + Celsius, 2.07, 1, MeasuredMobility / 1.602)); 

 


