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ABSTRACT 

Cell-penetrating peptides (CPPs) are relatively short cationic and often amphi-
pathic peptides capable of crossing the cell membrane and delivering their asso-
ciated cargo molecules to respective intracellular targets. However, which exact 
pathways are of the most vital importance in this process remains under discus-
sion to date because the comprised routes may depend for example on the CPP 
type, nature of the delivered cargo molecule, cell membrane constituents of a 
given cell line and the target cellular compartment. In this thesis, several com-
monly used CPPs are characterized in terms of their cytoplasmic cargo delivery 
kinetics and mechanisms using two different – quenched fluorescence and 
bioluminescence based – assays.  

Because different uptake routes may compensate each other, as it has been 
hypothesized, the kinetic assays provide more valuable information in shedding 
light on the CPP mechanisms as compared to end-point studies. Indeed, we 
found that in some cases inhibition of an uptake route in serum-devoid envi-
ronment results only in a change in internalization kinetic profile, not the total 
uptake level, or vice versa. Further it was discovered that in complete cell 
growth media different types of CPPs display clearly distinct concentration 
dependent uptake profiles, which in some cases resemble the internalization of a 
membrane permeable positive control. CPP uptake rate kinetic profiles vary 
remarkably and depend strongly on the used endocytosis inhibitors. This sup-
ports the hypothesis of several uptake pathways being active simultaneously. By 
using a cell permeable cytochrome c mimicking apoptosis inducing peptide, it is 
also demonstrated in this thesis that CPPs can be designed to have significant 
inherent biological activities. This strategy would in principle allow imple-
mentation of drug delivery systems in which the delivered cargo and the deli-
very vector can be designed to have synergistic effects – either the desired the-
rapeutic (e.g. apoptosis inducing) or other (e.g. increased endosomal release) 
effects. 
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INTRODUCTION 
An increasing number of novel pharmaceutical molecules require access to the 
cellular interior to exert their dedicated biological effects. However, more than 
often these molecules are incapable of entering their target cells without the aid 
of delivery vectors. One type of these vectors is cell-penetrating peptides 
(CPPs). CPPs were discovered in mid-1990s and have since been used to enable 
cellular entry for many types of cargo molecules. Furthermore, CPPs with 
intrinsic biological activities have been described showing a diverse appli-
cability range of these vectors.  

CPPs differ in their physicochemical properties and, therefore, they might 
not share exactly the same internalization routes into certain cellular compart-
ments. In order to develop the most effective transporters for specific purposes, 
it is therefore essential to study uptake mechanisms, kinetics and biological 
effects of CPPs with different properties. 

Kinetic assays provide many advantages over single-endpoint using methods, 
because different CPPs can have completely different uptake kinetic profiles, 
which might not be reflected in endpoint measurements. For instance properties 
of CPP cargo molecules, concentration and the cell line on which the experi-
ments are conducted can affect their uptake half-life and turnover rate. The 
sometimes arbitrary choice of end point measurement might affect results, which 
in turn could lead to biased understanding on CPP uptake. Therefore, we cha-
racterized cytoplasmic uptake kinetics and mechanisms of several well-known 
CPPs (TP10, TP10(Cys), Tat, penetratin, pVec, MAP, M918 and EB1) using 
two assays, a quenched fluorescence assay and a bioluminescence based assay. 

Because many CPPs are derived from naturally existing proteins, it is not a 
surprising idea that some CPPs can therefore have certain biological effects 
besides their cargo transport capability, and that CPPs with precise intrinsic 
biological activity could be developed. To confer this, we studied human cyto-
chrome c (Cyt c), a mitochondria associated protein which is involved in 
apoptosis initiation. Cell permeable sequences from within Cyt c were predicted 
and their uptake efficiency and propensity to induce apoptosis were studied. In 
nature, pro-apoptotic signals cause small amounts of Cyt c to be released from 
mitochondria to cytoplasm where it can trigger calcium release from endo-
plasmic reticulum (ER), in turn leading to additional Cyt c release. High amount 
of Cyt c activates pro-apoptotic caspases which are directly responsible for the 
programmed cell death. The predicted cell-permeable Cyt c region was 
extended with a nucleoporin ligand, which lead to increased apoptogenicity and 
thus expansion of the Cyt c targets. 

Results presented in this thesis show that kinetic assays can have a significant 
advantage in providing a more detailed view about cellular uptake of CPPs as 
compared to conventional single time point studies. Additionally, the feasibility 
of developing bioactive CPPs with dual functions is demonstrated. These results 
emphasize aspects that must be addressed when designing novel cellular 
transporters for biotechnological applications and for future drug development.  
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1. LITERATURE OVERVIEW 

There are 300 to 6000 unique drug targets that are currently exploited in con-
ventional FDA approved drugs, according to different assessment methods [1]. 
While up to 14000 drug-targeted-proteins have been reported the number of 
primary drug targets is much lower. According to the Therapeutic Target Data-
base (TTD) there are 384 successful, 292 clinical trial and 1254 research targets 
[2]. Although these targets are individually unique, there is one thing that is 
common in most successful drug targets – namely the majority of unique targets 
are extracellular enzymes and membrane proteins such as receptors and ion 
channels. Therefore the active component of most drugs mediates its effect in 
the extracellular environment [3, 4]. 

However, an ever increasing number of drug candidates and biologically 
interesting molecules require intracellular localization to mediate their dedicated 
effect, whether they are oligonucleotides (ONs) for modulating gene expression, 
protein-protein interaction mimicking polypeptides, small-molecule chemo-
therapeutic agents, or contrast agents for different biomedical imaging modali-
ties, to name a few. Due to their physicochemical properties the aforementioned 
bioactive molecules are often incapable of entering cells by themselves and are 
thereto unable to reach their targets. Furthermore, for certain in vivo appli-
cations also delivery across epithelial cell layers including blood-brain-barrier is 
required. This feature severely limits the possibility to exploit the therapeutic 
potential of these compounds.  

Throughout history many different types of delivery vehicles have been 
developed to transport bioactive molecules to their dedicated intracellular tar-
gets. Out of these the most known and thoroughly studied are liposome, micelle 
and polymer based systems. These versatile delivery vectors are however not 
free from disadvantages and for certain applications alternative transport vectors 
are needed.  

This thesis concentrates on characterization of alternative delivery vehicles, 
CPPs, which aim to overcome the drawbacks of contemporary cargo delivery 
systems. CPPs are characterized in terms of their cellular internalization ki-
netics, cytosolic delivery mechanisms and bioactivity. 

 
 

1.1. CPPs – universal cargo delivery vehicles 

In this chapter, a general overview is provided which aims to shed light on dif-
ferent aspects of peptide mediated intracellular cargo delivery for various appli-
cations. Different types of CPPs are described as well as different strategies for 
incorporating cargo molecules. A short overview is also provided on the topic 
how the properties of CPPs can be enhanced by means of targeting specific 
tissues, activating their cellular entry only close to target sites, increasing their 
stability and circulation time in vivo. Further, bioactive CPPs which could pos-
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sess inherent biological effects per se without any conjugated cargos are 
described as well. 
 
 

1.1.1. Introduction to CPPs 

The first cell-penetrating peptide (CPP), penetratin, was reported by Derossi et 
al in 1994 [5] followed by the Tat peptide by the group of Lebleu in 1997 [6]. 
However, it was discovered years earlier (1988) that certain full length proteins 
such as transcription-transactivating (Tat) protein [7] and Drosophila Antenna-
pedia homeodomain [8] are capable of crossing biological membranes. Ever 
since then, the CPP field has been extensively researched and a myriad of 
membrane-translocating sequences have been discovered and developed.  

There are many types of CPPs reported in the literature, which makes it dif-
ficult to classify them concisely and unambiguously. There are no conserved 
amino acid sequences that must be present to maintain the membrane trans-
location property and the secondary structure of CPPs in water can vary to large 
extent. Hence, the most intuitive way to define CPPs is to govern their common 
features, which are (i) they are of peptidic origin, i.e. they have a peptide 
backbone consisting of natural or non-natural amino acids; (ii) they carry a net-
positive charge while being usually less than 30 amino acids long; and (iii) they 
are able to translocate one or more types of molecules over the cell membrane. 

Since CPPs are peptide-based, it is relatively simple to modify their proper-
ties by attaching different chemical functional groups, for example homing/ 
targeting sequences. Alternatively the properties can be altered by changing 
some natural amino acids in CPP sequence with non-natural analogues. These 
modifications can have profound effects on CPPs, ranging from their cell type 
specificity, serum stability, interaction with cell membrane components and 
intracellular localization, to their biological effects, toxicity, cargo complexing 
ability and uptake mechanisms.  

In the following chapters an overview is provided which aims to elucidate 
different aspects of CPPs and CPP-mediated cargo delivery. 

 
 

1.1.2. Primary, secondary and non-amphipathic CPPs 

While it is possible to divide CPPs into families based on their origin, i.e. pro-
tein derived (Figure 1A), chimeric (Figure 1B) and synthetic/designed (Figure 
1C) CPPs [9], this classification does not inherently contain information re-
garding differences in their properties. Therefore, when aspects of CPP uptake 
mechanisms are being studied, this classification does not help to categorize the 
data systematically. It does however reflect the range of sources and evolution 
of CPPs. Shortly, the first CPPs (penetratin and Tat) are derived, as stated 
above, from protein domains [5, 6]. Later chimeric CPPs were introduced which 
were derived, at least partly, from the respective parts of naturally occurring 
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peptides or proteins (e.g. TP10, MPG, Pep-1) [10–12]; after which, purely syn-
thetic peptides such as polyarginine [13, 14], MAP [15], YTA-2 and YTA-4 
[16], and CADY [17] were described. 
 

Functional protein

Cell permeable domain

Protein derived CPPs

Domain from the
second protein

Domain from the
first protein

Chimeric CPPs Designed/synthetic CPPs

CPP domains with
designed properties

A B C

 
 
Figure 1. CPP classification based on their origin. CPPs can be derived from a single 
protein (A), chimeric CPPs can be developed consisting of two functional domains (B), 
and purely synthetic CPPs can be designed as well (C). 
 
 
A more intuitive and perhaps an expressive way would be to divide CPPs into 
subgroups based on their structural properties. This yields in the following clas-
sification: (i) primary amphipathic CPPs (paCPPs), (ii) secondary amphipathic 
CPPs (saCPPs), and (iii) non-amphipathic or polycationic CPPs (naCPPs) [18], 
see Figure 2.  
 

Hydrophobic domainHydrophilic domain

Primary amphipathic CPPs

Hydrophobic face of the
secondary structure

Hydrophilic face of the
secondary structure

Secondary amphipathic CPPs Non-amphipathic CPPs

Cationic amino acids,
no defined secondary
structure

A B C

 
 
Figure 2. CPP classification based on their structural properties. Primary amphi-
pathic CPPs consist of a hydrophilic and a hydrophobic domain (A), the secondary 
structure of secondary amphipathic CPPs has a hydrophobic and hydrophilic face in 3D 
space (B), and cationic/non-amphipathic CPPs do not possess any amphipathicity (C). 
 
 
Primary amphipathic CPPs (paCPPs) 
paCPPs contain hydrophobic and cationic domains within their primary se-
quence (Figure 2A). These peptides are usually more than 20 amino acids long 
which exceeds the length of cell membrane bilayer hydrophobic core [19, 20]. 
paCPPs bind predominantly to membranes via hydrophobic interactions indi-
cated by their affinity both to neutral and anionic lipid membranes [21–26]. 
These peptides insert into model membranes and induce leakage in a concen-
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tration dependent manner and often lyse bacteria without affecting eukaryotic 
membranes [27]. This suggests that paCPP interactions with phospholipids 
depend strongly on the membrane composition. Additionally, the trans-
membrane potential is important factor for interaction between paCPPs and cell 
membrane [28]. However, it should be noted that most of these properties apply 
when naked or small molecule labeled peptides are used and it is reasonable to 
assume that the presence of large bioactive cargoes, e.g. proteins or oligo-
nucleotides (ONs), can affect the binding and membrane interactions con-
siderably. 
 
Secondary amphipathic CPPs (saCPPs) 
The second type of amphipathicity arises from the secondary structure of certain 
peptides. saCPPs, such as penetratin [5], MAP [15] and pVec [29], are often 
structurally unstable in solution (i.e. appear in random coil conformation) but 
these peptides adapt an α-helical or in some cases a β-sheet structure upon in-
teraction with membrane components, such as lipids and glycosaminoglycans 
(GAGs). The projections of their secondary structures reveal the origin of their 
amphipathicity, when hydrophobic and charged residues become separated into 
different regions in space [18] (Figure 2B). Contrary to paCPPs, saCPPs bind 
predominantly to membranes which contain at least 20% of anionic lipids and 
their interaction with neutrally charged membranes remains weak [24, 30] and 
membrane perturbation is generally not induced, [31]. However, there might be 
exceptions, as suggested by the relatively high toxicity of some saCPPs (e.g. 
MAP). 
 
Non-amphipathic CPPs (naCPPs) 
naCPPs, e.g. Tat [6] and polyarginine transporters [13, 32], do not possess any 
amphipathic properties neither in their primary nor secondary structure. Instead 
they have high charge density and in some cases they contain only positively 
charged amino acids (Figure 2C). These polycationic peptides do not seem to 
interact with membrane lipids but require anionic counterparts such as GAGs 
for interaction [18, 24]. Their structure nevertheless remains unordered in any 
environment [33] and it appears that greater structural diversity of these mole-
cules could lead to greater uptake [34]. naCPPs are often shorter than peptides 
from the other groups. For example polyarginine transporters are most effective 
when they consist of 6–9 arginine residues and shorter sequences tend to lose 
their activity while longer sequences can be considerably toxic [34–36]. 
 
 

1.1.3. Cargo conjugation strategies –  
covalent conjugation and non-covalent complexation 

In principle there are two different strategies how to exploit CPPs for cargo 
delivery. One way is to conjugate a cargo covalently to a CPP [37–39] (Figure 
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3A), while the second approach is to form non-covalent CPP/cargo complexes 
simply by mixing these two components [38, 40] (Figure 3B).  
 

Cargo Cell-penetrating peptide

Chemical crosslinking
or fusion protein

A B

Cargo

Cell-penetrating peptides

 
 
Figure 3. Cargo incorporation strategies. CPPs and cargo molecules can be cova-
lently linked to CPPs either by using chemical crosslinking or expressing CPP-cargo 
fusion proteins (A). Alternatively, cargo and CPPs can be complexed non-covalently via 
hydrophobic and electrostatic interactions (B). 
 
 
These strategies have found successful use in numerous pre-clinical and clinical 
delivery-tasks [41–45] but both methods have clear advantages and disad-
vantages. Therefore the delivery strategy must be carefully considered for each 
application. In this thesis covalent CPP-cargo conjugates are used and therefore 
a more thorough introduction is provided for this strategy. 
 
Covalent conjugates 
CPP and cargo covalent conjugates can be achieved by chemically cross-linking 
the two molecules, e.g. via a disulfide bridge, by using suitable linkers, or by 
cloning and expressing of a CPP fusion protein [46], which leads to chemically 
well-defined molecules. Different covalent conjugation strategies have been 
extensively used in studies concentrating on intracellular delivery of small mo-
lecules (e.g. in the delivery of cytotoxic agents doxorubicin, methotrexate and 
taxol) [44], therapeutic peptides/proteins [47–49] and ONs [50–52] to treat 
certain types of tumors. 

Besides in tumor related research, covalently conjugated ONs and their ana-
logs have found use in many other areas. For example, peptide nucleic acid 
(PNA) conjugated to transportan has been used for modifying pain transmission 
in vivo [42], for modulating gene expression and splicing via steric block anti-
sense mechanism [53], and for regulation of microRNA (miRNA) mediated 
gene expression effects [54, 55]. For similar applications many other types of 
ONs, such as phosphorodiamidate morpholino oligiomers (PMO) and 2’-O-
methyl-modified RNAs (2’-OMe ONs) have been exploited [56]. There have 
even been attempts to form covalent conjugates between CPPs and short inter-
fering RNA (siRNA). This strategy has found prosperous use in some studies 
[57–59], but it has not been successful in all performed investigations [60, 61]. 
The divergent results add some controversy to the field but the differences 
might be explained with methodological dissimilarities. In the successful 
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siRNA delivery studies the covalent siRNA-CPP conjugates have not been 
purified after chemically cross-linking these two molecules together, but the 
unsuccessful reports used the purified constructs [56].  

It has been suggested that free unconjugated ONs can aggregate unwillingly 
in the presence of CPPs, and negatively charged ONs can, as a side effect, inac-
tivate cationic CPPs (the negative charge of a siRNA molecule is generally 
much higher than the positive charge of a CPP). In support of this hypothesis, 
high covalent conjugate concentration is usually required to achieve observable 
knockdown [60]. However, both of the aforementioned properties can be 
exploited in other types of cargo transport applications where targeted delivery 
or stable biologically active CPP/cargo non-covalent complexes are required. 
This will be described in chapter 1.2.  
 
Non-covalent complexes 
There are several reports on CPPs, mostly involving paCPPs and saCPPs, which 
are capable of forming non-covalent complexes with cargo molecules [46]. 
Generally non-covalent complexation protocols are simple, as they often require 
mere mixing of the CPP and cargo. The simple method makes it unnecessary to 
fine-tune individual peptide and cargo synthesis schemes. Also, in non-covalent 
settings the CPP might be expected to affect the bioactivity of the cargo mole-
cule less. Despite these advantages with non-covalent conjugation, particle 
aggregation, complexation affinity and other factors may in some cases hamper 
the applicability of this strategy and might lead to physiochemically ambiguous 
and ill-defined systems. 

Originally the non-covalent delivery strategies were developed for ONs [46]. 
Indeed, the most successful reports using this strategy are on gene delivery and 
delivery of splice correcting oligonucleotides (SCOs) and siRNA [62–68] 
although some attempts have also been made to deliver proteins by means of 
this method [12].  

Because only covalent CPP-cargo conjugates are used in this thesis, to get a 
detailed overview of the non-covalent complexation method, the reader is re-
ferred to one of the following reviews [39, 46, 56, 69, 70]. 

 
 
1.2. Enhancing the biological properties of CPPs 

1.2.1. Targeting strategies 

It seems that traditional CPPs are capable of delivering their cargos into almost 
any type of cells with only minimal differences in efficacy. Of course, there are 
some cell lines, e.g. primary cells and suspension cells, which are considered to 
be “difficult-to-transfect” by conventional means and CPPs may face diffi-
culties here, but nevertheless there are successful reports about cargo delivery 
even in these settings [66, 71]. This indiscriminate property can be advan-
tageous for some applications such as in vitro screening/assessment of delivery 
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systems and comparison of therapeutic leads but it can be a major drawback 
when targeted delivery is required e.g. when delivery into specific organs or 
enhanced tumor retention is needed, especially in the case of drug resistance 
[45].  

Since CPP technology is based on solid phase synthesis, it is relatively 
simple to modify these delivery vehicles by adding specific functional units or 
targeting ligands into their sequence (Figure 4A). This might help to overcome 
the mentioned specificity problem, which indeed has been demonstrated in 
numerous studies. For example, several tumor homing sequences have been 
identified from phage display experiments [72–78] or chosen based on their 
known interaction partners on cell membranes such as certain angiogenesis 
related cell adhesion integrins [79–82] or cell surface gangliosides [83]. Other 
commonly exploited strategies involve using ligands for membrane bound 
receptors, such as transferrin and growth-factor receptors, which are highly 
expressed in some tumor cells [84]. These ligands have been used both for the 
CPP-mediated delivery of radioactive markers and magnetic resonance imaging 
(MRI) contrast agents into tumors for imaging purposes as well as for targeted 
and increased transport of doxorubicin, paclitaxel and other anticancer agents 
[84].  

 

Cargo

Cell-penetrating peptide Homing peptide/
address sequence

Cargo

Cell-penetrating peptide Targeting antibody

A

B

Cargo

Cell-penetrating peptide Cleavage site for tumor
specific protease

Inactivating sequence

Cargo

Cargo

C

D

pH drop

Cell-penetrating peptide

Inactivating polymer

Polymer shielding is lost
and cell-penetrating
peptide is activated  

 
Figure 4. CPP targeting and activation strategies. CPPs can be extended with 
homing/address sequences (A) or linked to targeting antibodies (B). CPPs might be 
activated through enzymatic cleavage of inactivating sequences (C) or by low pH using 
pH sensitive polymers or linkers (D). 
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Targeted CPP mediated cargo delivery can often be achieved by using CPP-
conjugated specific monoclonal antibodies (mAb) (Figure 4B). When a mAb 
has some therapeutic effects per se, then by adding a delivery vector to it allows 
to design interesting dual therapeutic effect strategies which can be enhanced by 
additional functional entities such as cytotoxic molecules. CPP-antibody con-
jugates and targeting moieties have also found successful use in polymer-based 
delivery systems and as components of liposomes [84–86]. In the latter systems 
the CPP can be deactivated until the nanoparticles reach their dedicated desti-
nation, e.g. a tumor. Similar activatable concept can be incorporated into other 
CPP technologies too, which are described in the following paragraph. 
 
 

1.2.2. Activatable CPPs (ACPPs) 

Matrix metalloproteinases (MMPs) are expressed in upregulated levels in many 
types of tumors and are mediators of tissue invasion and metastasis [87]. There 
are several reports showing these proteases could be exploited to activate the 
cell-penetrating property of certain peptides [88]. The idea behind ACPP 
strategy is based on the prodrug concept – a specific protease cleaves the CPP 
sequence from a negatively charged shielding domain which then allows CPP-
conjugated bioactive molecules to enter cells [89–91] (Figure 4C). In addition 
to tumor specific MMPs, other enzymes can be exploited as well. However, 
choosing exactly which enzymes to use is often not a trivial task. Thus, in order 
to find specific cleavage sites from a wider range of possible targets, phage 
display selections have been carried out to identify unique sequences for effi-
cient labeling of tumors and their metastases [92]. As an advantage of phage 
display method, ACCPs with cleavage sites for unknown proteases can be 
found [93]. 

Other activation strategies take advantage of changes in the microenviron-
ment of dedicated target sites, thus avoiding the need for cell specific proteins. 
It is well known that rapidly dividing advanced solid tumors have higher need 
for oxygen. This results in an imbalance between oxygen supply and consump-
tion caused by abnormal physiology of blood microvessels and their increased 
diffusion distance from tumor cells [94]. While tumor hypoxia and hypoxia-
related low pH of tumor microenvironment can seriously hamper the effects of 
radiotherapy and oxygen dependent cytotoxic agents as well as the outcome of 
photodynamic therapy [94], it can be effectively exploited in CPP based deli-
very systems. In these systems drug particles are layered with CPPs which are 
inactivated by anionic polymers containing e.g. pH sensitive sulfonamide (PSD) 
group. Due to the aforementioned lower pH at tumor sites, the shielding poly-
mers become protonated and disassociate from CPPs, allowing the liberation of 
their cargos [95, 96] (Figure 4D). Further use of pH dependence is to employ 
CPP-modified liposomes that are covered with long polyethylene glycol (PEG) 
chains. The PEG chains exceed the length of the CPPs and sterically shield 
them from interacting with cell membranes. However, when reaching tumor 
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sites, the PEG chains, attached to the liposome via a pH sensitive hydrazone 
linker, are cleaved and cell penetration properties are activated [97].  

 
 

1.2.3. Inherently bioactive CPPs 

Protein-protein interactions play a key role in cellular signaling pathways and it 
is known that peptide ligands can mimic these interactions. Thus it is not coun-
terintuitive that intracellularly delivered CPPs by themselves could possess 
intrinsic biological activities, at least when designed accordingly. However, the 
border between inherently bioactive CPPs, CPPs fused with small peptide 
cargos, and chimeric CPPs can be ill-defined and a gray area in terminology 
exists in the literature.  

Usually the bioactive CPPs have been derived from proteins of interest by 
choosing their cell-permeable domains which would still retain the parent pro-
tein related biological effect (Figure 5). For example, N-terminal part of 
p14ARF protein (ARF1–22) is internalized efficiently into cells and once inter-
nalized, it increases p53 activity by inhibition of HMD2 protein and decreases 
proliferation of tumor cells [98]. Initiation of apoptotic machinery is also 
demonstrated in another, principally different but elegant study, where the 
apoptotic BH3 domain of a Bcl-2 family protein was used. This domain induces 
apoptosis similarly to the protein that it is derived from but it cannot cross cell 
membranes. However, by a certain technique called stapling its structure could 
be confined into α-helical conformation which converts the BH3 apoptotic 
domain into a bioactive CPP [99] (Figure 5).  

 

Functional protein

Choosing a cell-permeable domain
of a functional protein which retains
its native biological activity

Choosing a functional domain of a
protein and stabilizing its structure
to render it cell-permeable

 
 
Figure 5. CPPs with intrinsic biological activity. Cell-permeable sequences from 
within a functional protein could be searched which retain the biological effect of the 
parent protein (upper), alternatively a functional domain of a protein can be chosen and 
converted into a cell-penetrating peptide by stabilizing its structure via stapling method 
(lower). 
 
 
Human Cyt c, a key player in regulated cell death mechanisms, seems an in-
teresting target in the search for tumor cell apoptosis inducing peptides. There 
are methods available that can be used for predicting cell-penetrating sequences 
from within proteins [100, 101] and by applying one of them to Cyt c an effi-
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cient cell-penetrating region which retained the original apoptotic activity was 
discovered (Paper III) [102]. An interesting dual targeting strategy was intro-
duced when the peptide was extended by a nuclear pore complex targeting 
ligand, which led to an even more potent apoptosis inducer. A problem with 
apoptosis induction is its specificity (an often occurring problem when working 
with CPPs). Hence, to render this system cancer specific, an additional tumor 
homing ligand could be conjugated to the construct, however, this strategy re-
mains so far untested [102]. 

Dual properties of cellular entry and receptor activation have been shown for 
a number of other peptides, e.g. a scorpion venom derived peptide modulates 
intracellular Ca2+ levels [103], a peptide derived from GPRC intracellular  
G-protein binding domain internalizes and activates its related G-protein 
signaling pathway which results in blood vessel contraction [104], and toll-like 
receptor 4 (TLR-4) adaptor protein mimicking peptide efficiently reduces the 
cellular response to inflammatory stimuli [105]. Interestingly, CPPs derived 
from prions reduce pathogenic prion isoforms upon internalization [106].  

It appears that certain CPPs can have effects on endocytic trafficking. For 
example, vasostatin 1 seems to stimulate caveolae-dependent endocytosis via 
the phosphatidylinositol-3 kinase (PI3K) dependent pathway [107] and CPPs 
have been shown to induce F-actin network remodeling/reorganization and 
activation of macropinocytosis [108–110]. This is suggested to be mediated at 
least partially by CPP interactions with cell membrane heparan sulfates (HS) 
linked with specific membrane core proteins (syndecans or glypicans). The 
latter molecules can activate numerous signaling pathways including ligand 
internalization events, and their expression can be tissue type dependent [111] 
which might explain why CPPs can behave differently in seemingly similar 
conditions. However, these effects are still relatively poorly studied in relation 
with CPPs. 

 
 

1.2.4. Increasing the bioavailability of CPPs 

As stated in the introductory section of this chapter, the requirement for cargo 
delivery vehicles arises from low bioavailability of certain drugs. However, 
while CPPs aim to increase it, they often do not reach their full potential due to 
roughly three factors: (i) CPPs are relatively vulnerable to the degrading ca-
pacity of serum due to their peptidic origin; (ii) CPPs seem to exploit endocytic 
routes to gain access to cells and thus their entrapment in endosomes remains an 
issue; and (iii) for in vivo use CPPs together with their respective cargos are 
cleared too fast from the blood circulation through renal clearance. 

Several strategies have been used to successfully tackle the aforementioned 
drawbacks. The peptidic carriers are often N-terminally modified by fatty acids, 
such as stearic acid, or cholesterol [52, 60, 64] (Figure 6A). Also C-terminal 
cysteamidation appears to be essential for the stability and penetration me-
chanism of certain CPPs (Figure 6B), such as MPG, Pep and CADY peptides 
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[112]. As another example, peptides can be fused together with histidine con-
taining domains. These amino acids are not protonated at physiological pH but 
become charged at low pH of endosomes. This in turn leads to the endosome 
destabilization and subsequent cargo release. For example this strategy is used 
in EB1 peptide for the delivery of siRNA [113]. Alternatively short fusogenic 
peptides can be exploited to promote endosomal release [113–115] (Figure 6C). 

The stability of arginine-rich peptides can be enhanced considerably by 
using D-amino acids as their building blocks [34, 45, 56] or synthesizing their 
retro-inverso analogs [116–118]. The latter can however at least in some cases 
lead to considerable toxicity, contrary to their parent L-peptides [119]. As 
another strategy, non-natural amino acids could be introduced into peptide 
sequences (Figure 6D). 

Arginine residues can be modified so that their side chains are moved form 
α-carbon atoms (native peptides) to nitrogen atoms (guanidinium containing 
peptoids), thereby improving both the stability and activity of the peptide [34]. 
Additionally, branched and dendrimeric peptides have also been shown to 
increase uptake [34].  
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Figure 6. Means to increase bioavailability of CPPs. N-terminal modification with a 
fatty acid makes CPPs more stable against serum proteins and enhances their non-
covalent cargo complexation (A), C-terminal cysteamidation is required for the activity 
of certain peptides (B), endosomal escape promoting peptides or other moieties might 
increase biological activity of CPPs (C), D-isomer of peptides as well as retro-inverso 
analogs and exploitment of non-natural amino acids has been shown to increase CPP 
stability both in vitro and in vivo (D), and peptide PEGylation has been shown to 
increase blood circulation half-life (E). 
 
 
While incorporation of non-natural amino acids into CPPs increases their serum 
stability, the fast in vivo renal clearance remains still an issue that must be 
addressed. As already discussed above, this could be partially solved by using 
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non-covalently complexed large enough CPP nanoparticles. Another strategy to 
overcome this issue is functionalizing peptide nanoparticles with polyethylene 
glycol (PEG) chains [120, 121] (Figure 6E).  

The abovementioned strategies to improve CPP based cargo delivery sys-
tems could make these peptides promising therapeutic vectors. A handful of 
CPP-based drug delivery vehicles that have successfully entered clinical trials 
indicate that the chosen path can indeed be fruitful [45, 122]. 

 
 

1.3. Internalization mechanisms of CPPs 

The previous chapters contain numerous demonstrations how different types of 
cargos can be delivered to their required intracellular targets and mediate their 
dedicated biological effect. Further, these examples are crowned by a handful of 
ongoing clinical trials in which peptide-mediated drug delivery strategies are 
exploited. Although being extensively studied since their discovery, there is still 
no clear consensus in the literature regarding which uptake mechanisms CPPs 
use when gaining access to cells. 

There are numerous methods to study CPP membrane interactions and 
involvement of endocytosis in the uptake. Internalization mechanisms studies 
mainly concentrate on registration of cellular entry after inhibiting certain endo-
cytosis routes either by low temperature, by chemical inhibitors, or by knocking 
down certain pathway related genes. Alternatively co-incubation with specific 
endocytosis tracer molecules has been used as well.  
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Figure 7. CPP uptake routes. Each fluid phase endocytosis pathway (CME, macro-
pinocytosis, caveolae-mediated endocytosis, and clathrin/caveolae independent endo-
cytosis) have been shown to be involved in CPP uptake. Some CPPs have been shown 
to directly translocate through biological membranes 
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Generally it is agreed though, that the main entry mechanism of larger CPP-
cargo complexes/conjugates is endocytosis and that several endocytic pathways 
may be involved in parallel (Figure 7). Prior being endocytosed, CPPs interact 
commonly with cell membranes and these interaction can be multifaceted, 
depending largely on the type of a CPP (e.g. paCPP, saCPP or naCPP), the cell 
membrane composition (e.g. amount of cell surface GAGs, and the ratio of 
negatively and neutrally charged phospholipids) and the properties of the 
attached cargo molecule. Additionally, the interactions with receptors, cytoske-
leton and specific kinases cannot be overruled either. Importantly, it can clearly 
be concluded when analyzing different CPP uptake mechanisms studies that the 
obtained results must be interpreted in the context of the CPP and cargo 
together. In the following paragraphs an overview is given regarding the aspects 
of CPP uptake mechanisms. 
 
 

1.3.1. Different types of endocytosis 

Endocytosis is a regulated process of internalizing molecules from extracellular 
environment to intracellular milieu and because it is heavily involved in CPP 
uptake then before talking about uptake routes involved in CPP internalization a 
short background of different types of endocytosis is provided. Coarsely, fluid-
phase endocytosis can be subdivided into four different separate groups: clath-
rin-mediated endocytosis (CME), lipid raft/caveolae-dependent endocytosis, 
clathrin- and caveolin independent endocytosis, and macropinocytosis. 
 
Clathrin-mediated endocytosis (CME) 
CME is the most studied endocytosis pathway which is involved in many 
important cellular processes, such as controlling the number of signaling 
receptors on the cell membrane [123], recycling of synaptic vesicle membrane 
proteins in neurotransmission [124], and uptake of essential nutrients, for 
example cholesterol and iron [125, 126], to name a few. CME starts when a 
specific motif binds to its receptor after which the receptors are relocated on the 
plasma membrane into certain “hot-spots” where the clathrin coated pits start to 
form [127]. This is mediated by the assembly of cytosolic proteins, the most 
important of which is clathrin that forms a certain cage-like scaffold around the 
newly formed invagination. Clathrin is a three legged triskelion structure con-
sisting of three clathrin heavy chains which are tightly bound to clathrin light 
chains [126]. Certain adaptor protein complexes such as AP2 and AP180 are 
required in the process, which together with clathrin are essential for vesicle 
formation in CME.  

In order to internalize the receptor bound material, the clathrin coated 
pits/invaginations must be pinched off from the plasma membrane. This is 
thought to be mediated by a GTPase dynamin, which self-assembles around the 
neck of the invagination and pinches the vesicle off the cell membrane; how-
ever other GTPases may be involved in the maturation process as well [127]. 

7
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The endocytosed clathrin coated vesicles are uncoated and delivered to early 
endosomes which undergo acidification by ATP-dependent proton pumps. 
During the acidification receptors disassociate from their ligands and some are 
transported back to the cell membrane. Early endosomes traffic from cell peri-
phery to the perinuclear area and fuse with late endosomes or multivesicular 
bodies. Later on, these vesicles are matured to lysosomes in which the inter-
nalized constituents are enzymatically degraded into nutrients [128] (Figure 7). 

To inhibit CME in the experiments included in this thesis, we used hyper-
tonic sucrose solution which is shown to dismantle clathrin structures, and 
chlorpromazine which is used to deplete clathrin and AP2 adaptor protein 
complex from the plasma membrane to the endosomal membranes (see Metho-
dological considerations chapter for more details).  
 
Macropinocytosis 
Macropinocytosis is regarded as a rather nonspecific internalization route 
because it does not generally involve specific receptors. Macropinocytosis 
accompanies membrane ruffling which is usually induced by growth-factors in 
all types of cells (only in macrophages and dendritic cells can macropinocytosis 
be constitutively active) and during membrane ruffling, lamellopodia are 
formed. These structures are cell membrane protrusions which collapse and 
subsequently form macropinosomes and engulf large amount of extracellular 
material (Figure 7). The process is dynamin-independent [127]. Interestingly, 
growth-factor induced macropinosomes seem not to go through degradation 
pathway but are instead involved in recycling pathways [129]. 

Membrane ruffling, lamellopodia formation and macropinosome processing 
require extensive actin remodeling at the cell membrane. Hence it is not 
surprising that many actin binding proteins, such as Rho-family of GTPases like 
Rac1 and Cdc42, are involved in this [130]. Additionally, PI3K is required for 
macropinosome closure in macrophages [131] and for insulin-induced 
membrane ruffling [132], suggesting that events involved in macropinocytosis 
can be cell type dependent.  

Since PI3K is required for macropinocytosis, we used PI3K inhibitor wort-
mannin to interfere with this endocytosis pathway. We also used cytochalasin D 
to inhibit macropinocytosis by using its property to block actin polymerization. 
More details are provided in the Methodological considerations chapter. 
 
Lipid raft/caveolae-mediated endocytosis 
Flask-shaped caveolae, invaginations in the plasma membrane, are abundant in 
many types of cells. They colocalize with cholesterol and sphingolipid-rich 
membrane domains which contain many types of signaling molecules and 
membrane transporters [133]. Caveolae are defined by caveolin, a dimeric 
cholesterol binding protein, which inserts into the inner leaflet of cell membrane 
and coats the inner surface of the membrane invaginations [127] (Figure 7). The 
role of caveolin in lipid raft endocytosis is complex. In one hand, the lack of 
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caveolin leads to inability of cells to bind and take up serum albumin, but on the 
other hand caveolin-null mice have normal albumin levels in serum and inters-
titial space [127].  

Also, it seems that caveolae are rather static structures on cell membranes 
and their internalization is initiated via signaling events. The signaling may 
involve crosslinking of caveolae-bound surface receptors which triggers uptake 
of their ligands, somewhat similarly to CME. It is even hypothesized that 
caveolin is not required for uptake, instead it inhibits it, and that internalization 
is triggered only after the inhibition is eliminated [134]. After activation, most 
cell types internalize caveolae slowly with a half-time of more than 20 min, and 
the overall volume of fluid-phase constituents remains small, except in endo-
thelial cells where caveolae can accommodate 10–20% of the cell membrane 
[127] . 

To inhibit this pathway, we used nystatin, an antifungal cholesterol depleting 
drug. Upon depleting cholesterol the membrane composition of lipid rafts is 
changed, which prevents their incorporation for endocytosis (see Metho-
dological considerations chapter). 
 
Clathrin- and caveolin independent endocytosis 
This type of endocytosis is less studied, and compared to the other endocytic 
routes this pathway remains poorly defined. Clathrin- and caveolin independent 
endocytosis are further subdivided into dynamin-dependent and dynamin-inde-
pendent routes (Figure 7). However, similarly to caveolae-dependent endo-
cytosis, lipid rich structures are required for internalization in this route. Clath-
rin- and caveolin independent pathway is for example required for 
internalization of interleukin-2 receptor, for high and sustained synaptic 
activity, and for rapid endocytosis by neuroendocrine cells [127]. 
 
 

1.3.2. CPP interactions with cell membrane –  
the role of negatively charged proteoglycans 

As described above, the first step in the internalization of polycationic CPPs is 
their binding to anionic cell membrane components. This happens via electros-
tatic interactions and hydrogen bonding with cell membrane carboxylates, 
phosphates and sulfates. These functional groups are present in membrane 
phospholipids, fatty acids and GAG-containing heparan sulfate proteoglycans 
(HSPGs) [34]. Hydrogen bond donation depends of course on the amino acid 
composition of a CPP. For example, arginine has a guanidinium group in its 
side chain which allows formation of bidentate bonds, while lysine and orni-
thine with their single ammonium group can donate only one hydrogen bond.  

In polar solutions both guanidinium and ammonium groups have negligible 
hydration shells and hence are weakly associated with counter ions [135]. How-
ever, when being close to cell membrane, i.e. in a locally less polar environ-
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ment, the association with phosphate or sulfate counter ions increases [136]. 
This process is partially driven by the entropy increase which originates from 
the release of weakly associated counter ions in water solution when the amino 
acids bind to cell membrane counter ions [137]. Theoretically the strength of 
this association is stronger when the amino acids insert deeper into the non-
polar lipid bilayer, which should be easier for slightly more hydrophobic argi-
nine than lysine [138].  

The binding of positively charged amino acids to cell membrane anionic 
proteoglycans is not merely a biophysical phenomenon. Proteoglycans are 
involved in many cellular processes, such as growth factor signaling, proli-
feration, cell adhesion, endocytosis etc. [139], and their expression on the cell 
surface is precisely controlled. For example, expression of glypicans and synde-
cans depends strongly on tissue type, developmental stage and pathological 
state, and they take part in the activation of signal transduction pathways and 
ligand internalization events [140]. Proteoglycan containing cell membrane 
microdomains are directly involved in reorganization of cytoskeleton and F-
actin polymerization by activation of protein kinase C and Rho/Rac GTPases 
[127, 141–144] which increases membrane fluidity and can lead to induction 
macropinocytosis or other endocytosis pathways [108]. Since different CPPs 
feature different charge densities, arginine content and other properties, it is 
thus not surprising that depending on the particular expression of GAGs on the 
cell surface the first binding event of CPPs can differ largely between even 
seemingly similar experimental setups. 

Polycationic naCPPs do not interact with membrane lipids, unlike paCPPs 
and saCPPs, but require anionic counterparts such as GAGs for interaction [24]. 
Contrary to paCPPs which bind to both neutral and anionic lipids in a 
membrane [21–26], saCPPs bind predominantly to membranes which contain at 
least 20% of anionic lipids [24, 30]. Hence, paCPPs can induce membrane 
perturbation while saCPPs generally do not when the anionic lipid content in a 
membrane is low (with some exceptions, e.g. MAP peptide) [31]. In the 
presence of membrane potential these peptides might induce transient pore for-
mation which can lead to endocytosis independent internalization when no or 
small cargos are used [145–148]. This occurs often without cytotoxicity; how-
ever membrane repair response might mask it [149].  

Both for endocytosis induction and pore formation it is necessary that the 
peptide could induce negative Gaussian curvature within the cell membrane 
[137]. Lysine residues can induce curvature only in one dimension as opposed 
to two-dimensional induction by arginines. This probably explains partly why 
arginines are more important for cellular penetration than lysines in purely 
cationic CPPs. However, hydrophobic amino acids can support curvature for-
mation as well, suggesting that in case of amphipathic CPPs the overall dif-
ferences between arginine and lysine containing CPPs could be somewhat 
reduced [137]. 
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1.3.3. Endocytosis as a key contributor to CPP internalization 

All the evidence indicates that endocytosis is involved almost exclusively in the 
uptake of these peptides when conjugated with larger cargos or when CPP/cargo 
nano-sized complexes are used. In this process all endocytosis subtypes – 
macropinocytosis, clathrin-mediated, and caveolin/lipid raft dependent endo-
cytosis – have been shown to be involved [150], however, the conclusions about 
which CPPs use which endocytic routes in which extent are not always con-
verging [151–158].  

However, the lack of consensus is not surprising when the importance of the 
initial binding event is considered, as discussed in the previous paragraph. Also, 
somewhat contradicting results can be explained by differences in experimental 
setups – in some cases only fluorescently labeled CPPs are studied whereas in 
other cases some biological effect is considered [45]. Even further, in different 
biological assays the readout could be produced in different cellular 
compartments, e.g. splice correction assay [159] reflects whether the CPP 
delivers its cargo effectively into the nucleolus while siRNA delivery studies 
reflect only access to cytoplasm [160]. Despite diverging results, generally the 
naCPPs seem more prone to be taken up by cells via macropinocytosis [108] 
while paCPPs and saCPPs rather tend to prefer CME [158]. 

The involvement of endocytic routes has been assessed using genetic and 
pharmacological tools [70]. Both of these methods have advantages and dis-
advantages. While pharmacological endocytosis inhibitors can in certain cases 
be unspecific and possess toxicity, their effects are transient and believably 
short enough so that a cell does not activate compensatory pathways during an 
experiment. Genetic tools on the other hand can be very specific in knocking 
down a certain endocytosis pathway, but the complete shut-down of a route 
raises a question about switching on certain compensatory mechanisms and a 
concern regarding long term effects on normal physiological state of cells. 

 
 

1.3.4. Endosomal escape is required for increased bioactivity 

CPPs tend more than often to remain entrapped into endocytic vesicles, regard-
less which endocytic routes are exploited, and hence their biological potential is 
not fully met [44]. Indeed several groups have observed that quantitative uptake 
of fluorescently labelled CPP-cargo constructs does not always correlate with 
the biological effect of the attached cargo molecule. Often co-treatment of cells 
with known endosomolytic agents such as chloroquine is needed for bio-
logically significant effects [64–66, 114, 161, 162]. Therefore, it is important to 
develop methods to increase the rate of endosomal escape of CPPs and their 
cargos.  

One possible way to do that is to fuse CPPs with fusogenic peptides, e.g. to 
HA2 [155, 163], or with histidines that become protonated at endosomal pH and 
thereby increase destabilization of endosome membranes [113, 164]. By 
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attaching a fatty acid molecule to a CPP, its endosomal escape can be enhanced 
even further [56]. For example attachment of stearyl groups to arginine-rich 
peptides and TP10 has resulted in increased biological activity of the delivered 
steric block ONs, siRNA and plasmids [32, 64–66, 154, 165, 166]. Other fatty 
acids have been tested as well but with varying efficacy [167–169]. In addition 
to the attached stearyl group, covalent attachment of chloroquine analogs to 
TP10 have increased its endosomal release even further, proved by the observed 
strong RNA interference (RNAi) effects upon non-covalent delivery of siRNAs 
[66]. 

Other methods have been tested as well, such as conjugating photosensiti-
zers to CPPs [170, 171] or using excess Ca2+ ions in the extracellular medium 
[172], but these methods are less explored and are more difficult to implement 
in biologically relevant systems. 

 
 

1.3.5. Direct translocation 

Most CPPs do not seem to translocate directly over cell membrane and endo-
cytic routes are required, as discussed above. Nevertheless, direct translocation 
has been shown to be involved in uptake according to some reports studying 
unconjugated CPPs. For example, translocation of free Tat peptide has been 
reported to be independent of endocytosis, since the peptide frequently inter-
nalizes at low temperature and into genetically modified cells lacking certain 
endocytic pathways [173]. MPG and Pep are two other peptides that also seem 
to translocate cells via direct penetration mechanisms, even when conjugated to 
cargos [17, 62], although the evidence of this is inconclusive according to some 
other investigations [174]. Additionally, based on microscopy observations and 
flow cytometry experiments, there seems to be a certain concentration threshold 
above which the direct translocation of cationic CPPs could be favored [108, 
144].  

However, according to studies on CPP structural polymorphisms, purely 
cationic CPPs do not seem to interact with lipid bilayers which in that case 
should exclude their direct translocation [33]. According to the latter study only 
amphipathic peptides possess membrane-active properties and, at least hypo-
thetically, could be translocated in an endocytosis independent manner. This is 
supported for example by an observation that under certain circumstances TP10 
forms transient pores in large unilamellar vesicles (LUVs) and promotes calcein 
leakage from these vesicles [175]. However, to induce that large membrane 
disturbance, high peptide concentrations are needed that are generally toxic to 
cells. 
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1.4. Internalization kinetics of CPPs 

The rate of CPP uptake is an important parameter when evaluating CPPs for 
drug delivery purposes because it provides more information on different 
aspects of CPP uptake as compared to simple end-point studies. As discussed 
above, CPP uptake mechanisms depend heavily on concentration and cargo type 
and before drawing conclusions, origin of the readout must be carefully ana-
lyzed. End-point studies using labeled peptides, for example, often fail to dis-
tinguish the biologically available fraction of the internalized peptide from the 
endosome-bound material. In addition to benefits for CPP mechanistic studies, 
measuring kinetics can provide us with valuable comparative information about 
how different cargoes and chemical modifications affect CPP uptake. 

Despite the above presented advantages, not many studies have concentrated 
on measuring uptake kinetics of CPPs. The few studies performed include 125I-
biotinyl-transportan kinetics in Bowes' melanoma cells [10], NBD penetratin 
kinetics in K562 cells [176, 177], [99mTc]Tat [178] and fluoresceinyl-Tat 
kinetics in Jurkat cells [179]. Internalization kinetics of rhodamine-labeled Tat, 
polyarginine [180, 181], transportan and penetratin [181] have been measured. 
More recently, the uptake kinetics of modified fluorescein-labeled polyarginine 
[182], fluorescein-labeled programmed cell death inducing cyclic hexapeptide 
conjugated to an arginine rich CPP [183], and fluorescein or TAMRA labeled 
L- or D-isomer of polyarginine [184] has been reported. We have measured, as 
presented in this thesis, the cytosolic delivery kinetics of CPPs using a 
quenched fluorescence assay (Paper I) and a bioluminescence based assay 
(Paper II and IV). 

The kinetic studies have shown that CPP uptake via endocytic routes can be, 
in some cases, very fast (Paper II), with uptake half-times as low as 2–12 min 
[178, 180, 185]. In most cases, however, the uptake is slower, with half-times 
between 20–60 min [177, 185–187]. It should be noted that by comparing only 
uptake half-times it is difficult to draw conclusions on the uptake mechanisms 
because endocytosis, especially CME, can be very fast too [127]. To thoroughly 
analyze CPP internalization mechanisms, different endocytic routes should be 
systematically inhibited and uptake kinetics measured, preferably using assays 
with biological readouts. 



32 

2. AIMS OF THE STUDY 

The general aim of this thesis was to characterize CPPs in terms of their cellular 
internalization kinetics, mechanisms, and bioactivity. The objective included the 
assessment of kinetic assays’ advantages over conventional single end-point 
studies and categorizing CPPs based on their uptake kinetics profiles. The goal 
also included testing the applicability of predicted CPPs with intrinsic bio-
logical effects. The precise goals of each paper are described below. 
 
Paper I To determine kinetic parameters of CPP cytosolic internalization 

using a quenched fluorescence assay and to study the effects of 
endocytosis inhibitors on these parameters. 

Paper II To determine CPP cytosolic cargo delivery kinetics profiles in com-
plete cell growth media using a bioluminescence assay and to cate-
gorize CPPs based on these data.  

Paper III To test applicability of developing CPPs with intrinsic biological 
properties by predicting cell permeable sequences from apoptosis 
inducing human cytochrome c protein and to test and improve the 
predicted peptide’s bioactivity to promote apoptosis.  

Paper IV To determine the effects of endocytosis inhibitors on CPP cytosolic 
cargo delivery kinetics profiles in complete cell growth media using 
a bioluminescence assay in order to assess CPP uptake mechanisms. 
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3. METHODOLOGICAL CONSIDERATIONS 

The methods and materials used in the current thesis are presented in detail in 
each publication. This chapter describes some theoretical and practical aspects 
of the used protocols together with brief explanation and background of the 
selected methods.  
 
 

3.1. Selection of CPPs 

In this thesis several well-characterized CPPs were used to compare their uptake 
kinetics, profiles and mechanisms (Paper I, II and IV); additionally novel CPPs 
with inherent biological activities predicted from proteins with known functions 
(Paper III) were used as well (Table 1). 
 
Table 1. CPPs used in this thesis. 

CPP Assay Paper Ref. 
pVec Uptake kinetics (quenched fluorescence,  

bioluminescence) 
I, II, IV [29] 

M918 Uptake kinetics (quenched fluorescence,  
bioluminescence)

I, II, IV [188] 

TP10 Uptake kinetics (quenched fluorescence,  
bioluminescence)

I, II, IV [189] 

Penetratin Uptake kinetics (bioluminescence) II, IV [5] 
EB1 Uptake kinetics (bioluminescence) II, IV [113] 
MAP Uptake kinetics (bioluminescence) II, IV [15] 
Tat Uptake kinetics (bioluminescence) II, IV [6] 
TP10(Cys) Uptake kinetics (bioluminescence) II, IV [189] 
Nup153–Cyt c Apoptosis induction III [102] 

 
 
In Paper I, three CPPs were studied to assess their uptake kinetics and me-
chanisms in a quenched fluorescence assay – pVec, derived from murine vas-
cular endothelial cadherin, M918, derived from p14ARF; and a designed chi-
meric peptide TP10, derived from galanin and mastoparan.  

In Paper II and IV, more thorough comparison of uptake profiles and effects 
of endocytosis inhibitors of eight CPPs was carried out using a bioluminescence 
assay. In addition to previously mentioned pVec, M918 and TP10, also pene-
tratin, derived from Antennapedia homeodomain; EB1, secondary amphipathic 
peptide developed from penetratin; MAP, model amphipathic peptide; Tat, 
HIV-1 TAT transactivator derived peptide; and TP10(Cys), a TP10 version 
where the Cys residue was attached to Lys7, were used. 

In Paper III, the applicability of a predicted CPP for protein mimicry was 
studied by using a cell-permeable apoptotic cytochrome c analogue.  

 

9
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3.2. Peptide synthesis 

All the used peptides were prepared by solid phase peptide synthesis (SPPS), a 
robust and effective method for production of peptides, introduced by Bruce 
Merrifield in 1963 [190]. According to this method, amino acids are sub-
sequently anchored to small porous insoluble beads, resin. The resin is of poly-
meric origin and can be functionalized by different reactive groups, linkers, in 
order to facilitate coupling of amino acids and growth of peptide chain. The 
linkers are designed to be stable in chemical conditions required for SPPS, so 
that the growing peptide chain could remain covalently attached to the resin 
during the synthesis, but sensitive to specific conditions such as strong acids 
(e.g. trifluoroacetic acid (TFA) or anhydrous hydrofluoric acid (HF), depending 
on the SPPS chemistry) so that the final peptide chain could be cleaved from the 
resin after being driven the reaction to completion. The use of a solid support 
allows having excess of reagents in each synthesis step which can be easily 
washed away when using appropriate filter-equipped reaction vessels. We used 
4-methylbenzhydrylamine (MBHA) and Rink-amide MBHA resins which 
creates C-terminally amidated peptides, meaning that the final peptides contain 
one less negative charge and are biologically more stable than their carboxyl 
group containing analogues. 

Chemically reactive functional groups of the coupled amino acids must be 
protected with certain protecting groups to suppress unwanted side reactions. 
Nα-atoms of amino acids are reactive as well and must be temporarily protected 
during synthesis. The used temporary protecting group can be either a 9-fluo-
renylmethyloxycarbonyl (Fmoc) or a tert-butyloxycarbonyl (t-Boc) group, 
defining the chemistry of SPPS. 

In each synthesis cycle of SPPS, the alpha-carboxyl group of a Nα-protected 
amino acid is activated, then the activated amino acid is coupled to the growing 
peptide chain on the solid support via formation of a peptide bond, and the tem-
porary protecting group Fmoc or t-Boc is subsequently removed by base or 
acid, respectively. Every step is followed by appropriate washing steps to 
remove excess reagents. 

The peptide is finally cleaved from the resin and permanent protection 
groups are removed from chemically reactive amino acid side chains by TFA 
(Fmoc chemistry) or HF (t-Boc chemistry) in the presence of scavenger mole-
cules. These molecules are used to neutralize the removed chemically reactive 
species from the protection groups which may otherways give rise to side reac-
tions and change the structure of the final peptide. Then the peptide is purified 
by reversed phase HPLC and molecular mass is determined by mass spectro-
metry.  
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3.3. Choice of cargo molecules 

The cargo molecules that were conjugated to the synthesized CPPs were chosen 
based on characteristics of the used assays. CPPs were conjugated to a fluo-
rescently labeled cargo peptide in the quenched fluorescence assay (Figure 8A) 
for the estimation of cytoplasmic cargo delivery kinetics using a fluorometer 
(Paper I) and for visualizing the cellular distribution of internalized peptides by 
confocal microscopy (Paper III).  

To improve the cellular internalization kinetics studies, in Paper II and IV 
luciferin-linker was used as a cargo molecule attached to CPPs via a disulfide 
bridge. In the cytoplasm the luciferin-linker is cleaved from the transporter and 
the linker goes through a conformational change and is spontaneously released 
from the luciferin molecule (Figure 8B). Therefore, this semi-biological readout 
system is suitable for measuring CPP internalization kinetics, making the assay 
more biologically relevant.  

In Paper III, an intrinsically bioactive CPP was predicted and chosen, 
meaning that the cargo and transporter could not be formally separated (i.e. the 
CPP is its own cargo). This approach was used to demonstrate the applicability 
of protein mimicry with intracellular targets without the need for an additional 
transporter system.  

 
 

3.4. CPP and cargo conjugation  
through a disulfide bond 

In each paper, CPP-cargo constructs conjugated via a disulfide bridge have been 
utilized. We chose this strategy due to a common observation that disulfide 
bonds are readily cleaved in cytoplasmic environment due to its high gluta-
thione concentration. This strategy has been extensively used in the literature 
[158, 191–193], because it allows registration of cytoplasmic portion of the 
internalized conjugates, while not taking into account endosomally entrapped 
material. This eliminates an often occurring drawback of many other CPP inter-
nalization studies where fluorescently labeled CPPs that are trapped in endo-
somes lead to overestimation of biologically available constructs [45]. 

There are, however, some concerns found in the literature regarding this 
strategy. Namely, it has been reported that disulfide bonds can be partially 
reduced on cell membranes of some cells and in vesicles by protein disulfide 
isomerase or gamma-interferon-inducible lysosomal thiol reductase [194]. The 
reduction might depend even on the peptide sequence itself [195]. These results 
indicate that it might be necessary to determine the reduction capability sepa-
rately for each peptide and cell type combination. Nevertheless, it has been 
suggested that despite these concerns the vast majority of reduction takes place 
in cytoplasm [196] and in accordance with the latter we have not seen any 
change in extracellular sulfhydryl content in our assays.  
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3.5. Cell cultures 

Two different cell types were used in this thesis. In Paper I HeLa cells were 
used. HeLa cells are immortalized cervical cancer cells taken from Henrietta 
Lacks in 1951. These cells grow rapidly and are relatively robust making their 
handling easy which is the main reason why HeLa cells have been the cell line 
of choice in many research areas including in CPP field. In Paper II and IV a 
modified HeLa cell line was used, HeLa pLuc 705 cells. The latter cell line is 
stably transfected with a luciferase gene which is interrupted by intron 2 of  
β-globin pre-mRNA carrying a cryptic splice site. These cells have been exten-
sively used by our and other groups for estimating delivery efficacy of splice 
correcting oligonucleotides and for assessing uptake routes of different CPPs. 
Therefore, we chose this cell line for our follow-up CPP uptake kinetic studies 
in order to be able to compare the data presented in this thesis (Paper II and IV) 
with earlier results obtained with the splice correction assay by our group. 

U373MG human astrocytoma cells were used in paper III to study CPPs 
with native apoptotic characteristics. This cell line was chosen because it is well 
characterized and has previously been used by the group of Prof. J. Howl with 
whom we collaborate for studying apoptotic events.  

 
 

3.6. Measuring uptake kinetics of CPPs 

The efficacy of CPPs and their uptake mechanisms are usually assessed using 
static end-point assays. However, these experiments do not necessarily reflect 
all aspects of CPP internalization and the kinetic uptake studies can shed addi-
tional light on the matter.  

We therefore chose to assess the uptake kinetics and internalization me-
chanisms of selected CPPs using a quenched fluorescence assay (Paper I). In 
this assay we labeled a short peptide cargo with a fluorophore while the used 
CPPs carried a corresponding fluorescence quencher. To conjugate the cargo 
with CPPs we decided to use a disulfide bridge as stated above because this will 
be readily cleaved in cell’s cytoplasm leading to spatial separation of the fluo-
rophore and the quencher, which leads to increased fluorescence (Figure 8A). 
Using this assay it is possible to quantitatively measure the total CPP uptake 
directly in cell suspension using a fluorometer. 
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Figure 8. Assays to measure uptake kinetics of CPPs used in this thesis. (A) In the 
quenched fluorescence assay the fluorophore and its quencher are physically separated 
from each other and fluorescence is produced when the conjugate is reduced in the 
cytoplasm. (B) In the bioluminescence based assay luciferin is conjugated to CPPs. 
When the conjugate reaches cytoplasm, the luciferin is released and luciferase enzyme 
converts luciferin into oxyluciferin and a photon of light is emitted. 
 
 
To further improve the performance of uptake kinetic assays in the follow up 
studies (Paper II and IV), we changed the setup and used luciferin as a cargo. 
Again, we conjugated it to CPPs over a disulfide bridge. When the conjugate 
reaches cytoplasm, the linker is reduced and free luciferin is released which is 
oxidized by luciferase enzyme, emitting a photon of light (Figure 8B). The 
luminescence can be read by luminometer and total uptake estimated at any 
time point. This assay has two important advantages over the previously used 
quenched fluorescence assay – firstly the assay is semi-biological, and secondly 
adherent cells can be measured. Furthermore, any cell line that is stably or tran-
siently transfected with luciferase gene can be used to characterize the delivery 
using this assay. 
 

10
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3.7. Interfering with uptake pathways by using 
endocytosis inhibitors 

Because various endocytic routes are involved in CPP uptake, as discussed 
above, we aimed to interfere with these pathways using different endocytosis 
inhibitors to elucidate the uptake mechanisms of CPPs. In Paper I, four different 
inhibitors were used – chlorpromazine (10 µM), wortmannin (50 nM), sucrose 
(0.4 M) and cytochalasin D (4 µM) whereas in Paper IV chlorpromazine (10 
µM), cytochalasin D (4 µM), nystatin (50 µM) and chloroquine (100 µM) was 
used (Table 2).  
 
Table 2. Endocytosis inhibitors used in this thesis. 

Inhibitor Inhibition mechanism Inhibition effect 
CME* MP* C/LR* 

Chlorpromazine Clathrin/AP2 depletion from plasma 
membrane to endosomal membranes

+++ + – 

Sucrose Dispersion of clathrin from plasma 
membrane +++ + + 

Wortmannin Phosphatidylinositol 3-kinase (PI3K) 
inhibitor + +++ + 

Cytochalasin D Blocking of actin polymerization,  
disassembly of actin cytoskeleton

+ +++ + 

Nystatin Cholesterol depletion from plasma 
membrane – – +++ 

Chloroquine Slows down acidification of endosomal 
vesicles, promotes endosomal escape

+ + + 

* CME – clathrin mediated endocytosis; MP – macropinocytosis; C/LR – caveolae/lipid raft 
mediated endocytosis 
 
 
Both chlorpromazine and sucrose were used to inhibit clathrin mediated endo-
cytosis (CME), also referred to as receptor mediated endocytosis. In CME a 
specific coat protein clathrin, containing light and heavy chains, is required to 
self-assemble on the intracellular face of cell membrane after which clathrin 
coated pits could be formed. Using hypertonic sucrose solution has been a 
popular method to disperse clathrin structures on the plasma membrane and thus 
to inhibit CME [197]. However, because it has been shown to affect all major 
endocytic routes to some extent [198] its lack of specificity should be con-
sidered.  

Therefore we used hypertonic sucrose solution only in Paper I and in con-
junction with a more specific CME inhibitor chlorpromazine. Chlorpromazine, 
a cationic amphipathic drug, triggers the depletion of clathrin and AP2 adaptor 
protein complex from the plasma membrane and leads to their artificial 
assembly on endosomal membranes [198]. However, it should be considered 
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that because chlorpromazine is amphipathic, it can insert into plasma membrane 
and change its fluidity. It can also inhibit phospholipase C which is important 
for actin dynamics and macropinocytosis, both factors which could give rise to 
some misinterpretations [198]. 

Wortmannin is an inhibitor of PI3K. PI3K-generated lipid mediators are 
highly needed in the reorganization of the actin cytoskeleton because these 
molecules regulate nucleation, elongation and bundling of actin filaments [199, 
200]. These processes are important for macropinocytosis, which is why wort-
mannin has been used to inhibit this endocytosis route [198]. However, side 
effects can occur when using wortmannin because phosphatidylinositides link 
scaffold and signaling proteins to cell membrane, including certain clathrin 
adaptors and dynamin GTPase [200, 201]. As a side effect, CME and caveolae-
mediated endocytosis might therefore be inhibited to some extent [198]. 

As mentioned above, rearrangement of actin cytoskeleton is required for 
macropinocytosis and macropinosomes are coated with F-actin [202]. Cyto-
chalasin D blocks actin polymerization and disassembles the existing actin 
cytoskeleton thereby inhibiting membrane ruffling and macropinocytosis [198]. 
However, in addition to being extensively involved in the latter pathway, actin 
cytoskeleton is required partly in CME and caveolae-mediated endocytosis as 
well and, therefore, unspecific events can take place when using cytochalasin D 
[198]. 

Nystatin, in essence an antifungal drug, has been used to inhibit lipid 
raft/caveolae-mediated endocytosis due to its property to form large aggregates 
upon binding to cholesterol [198]. This leads to changes in caveolar shape and 
inhibition of lipid-raft ligands’ binding and subsequent internalization, which 
makes nystatin quite specific endocytosis inhibitor that does not affect CME or 
macropinocytosis. 

Chloroquine, a weak base, is cell membrane permeable if deprotonated (10% 
at physiological pH), but when protonated, it cannot cross the membrane. 
Therefore, chloroquine accumulates in acidic vesicles such as early endosomes, 
slows down their acidification and induces their swelling and promotes rupture 
via a proton sponge effect [203]. Hence chloroquine treatment is traditionally 
aimed to enhance endosomal escape of the internalized material to increase its 
bioavailability. However, chloroquine might also possess other effects – it inhi-
bits ligand uptake, receptor recycling, and vesicle recycling which can slow 
down the overall endocytosis pathway [204]. We measured uptake kinetics of 
luciferin-conjugated CPPs in presence of chloroquine to observe which of these 
effects prevail in early incubation times (Paper IV). 
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3.8. Toxicity studies 

Several assays were used in this thesis to assess possible cytotoxic effects of 
CPP conjugates. To monitor whether there is an increase in extracellular thiol 
concentration, e.g. due to disulfide bridge cleavage of CPP-cargo conjugates 
prior cellular entry or because of membranolytic effects and outflow of a cyto-
solic small molecule glutathione into extracellular media, we incubated cells 
with Ellman’s reagent (5, 5’-dithiobis-(2-nitrobenzoic acid) or DTNB) at 
various time points (Paper I, II). DTNB reacts with free thiols, upon which 2-
nitro-5-thiobenzoate (TNB–) is released which in turn ionizes to quantifiable 
yellow TNB2–. 

The integrity of plasma membrane was also analyzed by an assay which 
measures leakage of lactate dehydrogenase (LDH) from damaged cells (Paper I, 
II and IV). LDH is an enzyme required to convert lactate to pyruvate, with 
accompanying conversion of NAD+ to NADH. In the commercially available 
CytoTox-ONETM assay used in this thesis, NADH is used in turn to convert 
resazurin to resofurin, the fluorescent end product of the assay, which is pro-
portional to the released LDH and therefore proportional to membrane leakage.  

In Paper III the cell viability was measured using the 3-(4,5-dimethylthazol-
2-yl)-2,5-diphenyl tetrazolium bromide (MTT) conversion assay. MTT is 
reduced to purple formazan by mitochondrial dehydrogenases of living meta-
bolically active cells. Formazan, and hence mitochondrial dehydrogenase 
activity and activity of living cells, is quantifiable by spectrophotometry.  

For assessing apoptosis in Paper III, a terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) assay was performed. In this method frag-
mented DNA, resulting from apoptotic signaling events, is labeled and detected. 
The enzyme terminal deoxynucleotidyl transferase is used to add labeled dUTPs 
to the DNA nicks, and the label is visualized by confocal microscopy. 

The apoptotic events in Paper III were also described by measuring caspase-
3 activity in intact cells. Caspase-3 is a cysteine-aspartic acid protease which is 
activated in apoptotic cells. Caspase-3 in turn activates caspases 6, 7 and 9, 
which are essential for apoptosis progression. Caspase-3 activity was measured 
by cell permeable NucViewTM 488 Caspase-3 substrate. The substrate is a fluo-
rogenic DNA dye coupled to a caspase-3 specific DEVD substrate moiety. 
When activated caspase-3 has cleaved the DEVD moiety, the DNA dye mi-
grates to the cell nucleus, binds to DNA and becomes fluorescent, which can be 
visualized by confocal microscopy.  



41 

4. RESULTS AND DISCUSSION 

In the four papers included in this thesis (three published articles and one manu-
script) selected CPPs are characterized in terms of their cellular internalization 
kinetics, uptake mechanisms and bioactivity. The kinetic assays used in Paper I, 
II and IV were designed to provide data on how efficiently, fast, and according 
to which kinetic profile cargos are transported into cytoplasm by different 
CPPs. Because the readout of the kinetic assays depends on whether the con-
jugates have reached the cytosol or not, conclusions regarding biological 
availability of these cargo-CPP constructs can also be made. In Paper III, cellu-
lar translocation capability and bioactivity of apoptosis inducing peptides, 
which mimic the cytochrome c protein, was studied and a novel cell-penetrating 
peptide with intrinsic biological activity was discovered. In this chapter, the 
results of each paper will be summarized and discussed. 
 
 

4.1. Endocytosis inhibitors affect kinetic constants  
of CPP uptake, as assessed by a quenched 

fluorescence assay (Paper I) 

So far only few studies have concentrated on measuring real-time CPP uptake 
kinetics to compare the efficacy or uptake mechanisms of CPPs. Studies have 
often relied on end-point measurements, but in some cases this strategy may 
provide biased results. This is because in end-point investigations efficient 
CPPs with high turnover and less efficient CPPs with low turnover might not be 
distinguished. Furthermore, the endosomally entrapped portion of CPPs is often 
not accounted for, leading to overestimation of CPP bioavailability to required 
cellular compartments [205]. This led us to measure CPP uptake kinetics in 
conditions where the registered signal would arise only, or as much as possible, 
from the cytoplasm. 

We labeled three CPPs (M918, TP10 and pVec) with a fluorescence 
quencher dinitrophenol (DNP) and conjugated the peptides over a disulfide 
bridge to a pentapeptide cargo molecule, labeled with a fluorophore 2-amino 
benzoic acid (Abz). We used the conjugates to compare these three CPPs in 
terms of their cargo delivery kinetics and efficacy into HeLa cells. The cells 
were suspended in HKRg buffer and the uptake was measured in the presence 
and absence of endocytosis inhibitors chlorpromazine, wortmannin, sucrose and 
cytochalasin D (see Methodological considerations chapter). First order uptake 
kinetics equation described the uptake kinetics profile well, according to the 
formula 

 Y = Ymax · [1–exp(–K·x)] (Eq. 1), 

where Y is the uptake level (picomoles of internalized peptide), Ymax is the 
maximal uptake level, K is the first-order rate constant in s–1, and x is time in s. 

11
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In general terms of total uptake, M918 peptide outperforms pVec which is in 
turn superior to TP10 in this assay. Interestingly, while the uptake rate of M918 
peptide increases with concentration, the rate constant of pVec and TP10 is 
higher at lower concentration. When CPP concentration was increased 5 times 
(from 1 μM to 5 μM) the total uptake of M918 increased by a factor of 3.7, 
while uptake of pVec and TP10 increased by 6.3 and 10 times, respectively.  

Endocytosis inhibitors affect both the first-order rate constant and the total 
uptake level of CPP conjugates. Interestingly, the inhibitors affect the M918 
peptide most while pVec is least influenced by them. While all the used inhi-
bitors lowered the total uptake of M918, sucrose and wortmannin increased the 
rate constant. For TP10, the uptake is lowered and rate constant increased by 
chlorpromazine, wortmannin and sucrose, while cytochalasin D slightly in-
creases the overall uptake but has no effect on the uptake rate. For pVec, only 
sucrose is capable of lowering its total uptake and increasing its rate constant. 
These data suggest that different competing uptake mechanisms with different 
efficacies may be involved simultaneously in uptake of different CPPs. While 
uptake of pVec and M918 seem to be dependent on both macropinocytosis and 
CME, the predominant cellular entry route for TP10 is consistent with CME. 
These findings are in line with the previously published results using different 
assays [158, 206, 207]. 

These data reveal that when CPPs are compared in terms of their uptake effi-
ciency, kinetic data provide a more thorough picture of it than end-point assays, 
because CPP concentration affects both the kinetics and the total uptake of 
CPPs and importantly this relationship is not necessarily linear or similar for 
different CPPs. These points should be taken into serious consideration when 
designing end-point studies. 

 
 

4.2. Based on CPP uptake kinetic profiles in complete 
media, there are two distinct groups of CPPs, as 
assessed by a bioluminescence assay (Paper II) 

The previously used quenched fluorescence assay has certain drawbacks (such 
as the presence of background signal and limitation to measure pre-suspended 
cells) that we aimed to overcome in next studies. Therefore, a bioluminescence 
based assay was used to assess uptake kinetics of CPPs in adherent cells and in 
complete cell growth media. This assay has two important advantages. Firstly, 
the readout is biological which lowers the probability of measuring artifacts, 
and secondly, the assay has near-zero background signal which aids in the data 
interpretation process.  

We measured uptake kinetics of eight different CPPs (Tat, TP10, TP10(Cys), 
MAP, pVec, penetratin, EB1 and M918) and our results show that in complete 
media the CPPs display either a fast exponential profile or slower sigmoidal 
profile. The profile depends on the specific CPP and to some extent also on its 
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concentration. At all concentrations, Tat peptide displayed a fast cytosolic entry 
with a decaying exponential profile. The uptake is similarly to membrane per-
meable free luciferin used as a positive control. On the other hand, EB1, 
TP10(Cys), M918, penetratin and pVec displayed a slower sigmoidal profile. 
Interestingly, TP10 and MAP fall into the both categories, depending on their 
concentration. 10 μM TP10 and 5–10 μM MAP peptide fall into the fast inter-
nalizing group, whereas at lower concentrations they behave according to the 
sigmoidal slow uptake profile.  

EB1 peptide was the only peptide from the sigmoidal group which displayed 
a certain phase change in its behavior, more precisely, at 10 μM concentration 
its maximal uptake rate occurred 30 min earlier than at its lower concentration 
and earlier than for any other peptide in the sigmoidal group. This is in accor-
dance with the endosomolytic design of this peptide. 

TP10 and TP10(Cys) differ only in the position where luciferin was coupled. 
In the case of TP10, luciferin was conjugated to the peptide’s N-terminus, in 
case of TP10(Cys) cysteine was coupled to the side chain Lys7 and the cargo 
was attached to that position. This rather small modification led interestingly to 
two completely different uptake profiles. While TP10 fell into the fast inter-
nalization group at higher concentrations, TP10(Cys) always followed the sig-
moidal profile. 

For the sigmoidal uptake profile peptides, we also estimated the time at 
which the maximal uptake rate occurred. In most cases the maximal uptake rate 
occurred approximately after 30–60 min incubation except for 2.5 μM MAP, 
5 μM TP10, and 10 μM EB1. At the mentioned concentrations, these peptides 
displayed the fastest cytosolic internalization well before 10 min. It should be 
noted that when the concentration was raised above this threshold, TP10 and 
MAP peptide moved from the sigmoidal uptake group to the fast, free luciferin-
like group. EB1 was not tested at higher concentrations. 

These data collectively support the idea that kinetic studies indeed provide 
more data on the differences between CPPs compared to simple end-point stu-
dies.  

 
 

4.3. Apoptosis can be induced by inherently bioactive 
cell-permeable cytochrome c analogues (Paper III) 

In addition to CPP uptake mechanism studies where a reporter/cargo molecule 
is covalently attached to these carrier molecules, it was also examined how 
inherently bioactive cell-penetrating peptides could be exploited to mediate 
their dedicated biological effects. Induction of apoptosis by cytochrome c  
(Cyt c) analogues was selected as a model system and cell-permeable sequences 
from within human Cyt c were predicted by QSAR analysis.  

Cyt c77–101 was found to have cellular internalization properties. It localized 
to endoplasmic reticulum (ER) and was capable of inducing apoptosis with 
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LD50 at 81 μM. However, when the Cyt c77–101 was N-terminally extended with 
a sequence derived from the nucleoporin 153 (Nup153) protein, Nup153980–987, 
in order to target nuclear pore complex (NPC), the resulting chimeric peptide 
Nup153-Cyt c changed its localization from ER to perinuclear region. At longer 
incubation times Nup153-Cyt c induced considerable redistribution of the NPC 
protein Nup153 from the perinuclear area to the cytosol and nucleus. Most 
importantly, apoptogenicity of the resulting chimera was at the same time 
increased remarkably (LD50 0.7 μM).  

Taken together, this demonstrates that CPPs with intrinsic biological activi-
ties could be developed via rather simple steps, which eases biotechnological 
development and could sometimes eliminate problematic cargo conjugation 
problems. Furthermore, in protein mimicry by chimeric cell-permeable Cyt c 
analogues, the nuclear pore complex poses as a novel target for apoptosis 
induction for therapeutic purposes. In future studies, cell type specificity might 
be added to the system by incorporating specific peptidic address motifs into the 
molecule thereby increasing the potential applicability of this strategy. 

 
 

4.4. Endocytosis inhibitors affect the CPP  
uptake kinetic profiles, as assessed by a 

bioluminescence assay (Paper IV) 

The compelling results of Paper II regarding the clearly distinct uptake kinetic 
profiles of the fast and slow internalizing group peptides lead to the question 
whether the fast profile might reflect the endocytosis independent inter-
nalization route. To assess this we used the same bioluminescence based assay 
as in Paper II to measure the cytosolic entry kinetics of eight different CPPs 
(Tat, TP10, TP10(Cys), MAP, pVec, penetratin, EB1 and M918) in the presence 
of certain endocytosis inhibitors.  

In order to interfere with different types of endocytosis we used chlorpro-
mazine (Cpz) to inhibit clathrin mediated endocytosis (CME), cytochalasin D 
(CyD) to inhibit macropinocytosis (MP), and nystatin (Nys) to inhibit caveo-
lae/lipid raft dependent endocytosis (C/LR) (Table 2). It is known that in some 
cases endocytosis inhibitors might not be exclusively specific but nevertheless 
useful because by using chemical inhibitors long term activation of compen-
satory transport pathways could be minimized [198, 208]. We chose the men-
tioned inhibitors to have minimized cross-inhibition effects [198]. In addition, 
chloroquine (CQ) was used (Table 2), which is conventionally exploited to 
inhibit acidification rate of early endosomes and to promote the long term 
release of the endosomally entrapped material; however the decelerated acidi-
fication is accompanied by slowing down the vesicle recycling which could in 
turn slow down the overall endocytosis rate [203, 204]. By using CQ we aimed 
to test which of these mechanisms prevail in early uptake kinetics. 
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First we studied effects of the used endocytosis inhibitors on the overall 
cytosolic entry of luciferin-CPP conjugates in various time points (15, 30, 60 
and 120 min). This analysis revealed that mostly macropinocytosis seems to be 
involved in the uptake of these conjugates, except for the Tat peptide conjugate. 
However, the overall uptake inhibition level depends both on the incubation 
time and luciferin-CPP concentration. This is in line with some previously pub-
lished studies [46, 69]; even the nuclear delivery of M918, penetratin and Tat 
has been found to be strongly dependent on macropinocytosis [158]. However, 
CME seems to be involved much less in the cytoplasmic entry of luciferin-TP10 
conjugate as opposed to its nuclear delivery [158], reflecting the differences 
between the results obtained by different readouts and cargos.  

In addition to the previously mentioned analysis of the overall uptake in 
selected time points we also studied and characterized the uptake rate kinetics 
curves. This showed that co-incubation with endocytosis inhibitors can 
significantly change the kinetic behavior of CPPs, suggesting thereby more 
clearly the involvment of CME and caveolae/lipid raft mediated endocytosis in 
the cytosolic entry of luciferin-CPP conjugates. Interestingly we found that 
caveolae/lipid raft mediated endocytosis is more involved at higher conjugate 
concentration of all the slow uptake group peptides whereas CME is involved at 
lower concentration of penetratin and EB1 contrary to M918 and pVec. 

In conclusion, in Paper IV we demonstrated that in the cytosolic delivery of 
luciferin-CPP conjugates the prevailing uptake route is macropinocytosis, even 
for the fast internalizing group peptides. To a smaller extent CME and 
caveolae/lipid-raft dependent endocytosis are used too but their involvement 
depends on the peptide concentration in case of certain CPPs. The employment 
of these pathways is more clearly revealed when analyzing the kinetic 
parameters or shapes of the uptake rate kinetics curves than when comparing 
the overall uptake in selected time points. This reflects the importance of kinetic 
studies when analyzing CPP uptake mechanisms and this information might be 
essential for designing peptide-based delivery vectors. The used endocytosis 
sub-type might be important for defining the intracellular fate and targets of the 
internalized material, similarly to some internalized receptors and their ligands 
[198, 208]. 

12
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SUMMARY 
Cell-penetrating peptides appear attractive candidates for delivering many types 
of cargoes to the intracellular milieu of cells in vitro and in vivo. Which path-
ways exactly CPPs use to gain access to the required cellular compartments, e.g. 
the cytoplasm or nucleus, has nevertheless remained a question to be answered 
so far, despite the numerous published studies to address this issue. It seems to 
be agreed, however, that mostly a combination of different endocytosis sub-
types is exploited while in some settings direct membrane translocation cannot 
be excluded. 

Most of the studies of the CPP uptake mechanisms rely on measurement of 
overall peptide uptake in a single time point. This is often done using fluo-
rescently labeled peptides, which generally cannot fully reflect the delivery of 
biologically available material. To overcome this issue biological readout sys-
tems have been developed but they also have certain drawbacks. For example, 
these assays are mainly end-point studies and are often carried out as side-
investigations, thus the potential concentration dependent phenomena are often 
left unregistered. 

We measured CPP uptake kinetics with an aim to avoid the aforementioned 
drawbacks. We implemented a quenched fluorescence and a bioluminescence 
based assay to assess the CPP uptake mechanisms which are involved in the 
cytoplasmic cargo delivery.  

In addition to CPP uptake mechanism studies where a reporter/cargo mole-
cule is covalently attached to these carrier molecules, it was also examined how 
inherently bioactive cell-penetrating peptides could be exploited to mediate 
their dedicated biological effects. 

The results of Paper I, II, III and IV collectively suggest that: 
1. when CPPs are compared in terms of their uptake efficiency kinetic data 

provides a more thorough picture of it than end-point assays; 
2. in some cases the endocytosis inhibitors affect only the CPP cytoplasmic 

entry rate but not the overall uptake if incubation time is long enough while 
in other cases the trend is reversed; 

3. CPPs with comparable overall uptake can have very different uptake rate 
kinetic profiles. The peptides cluster into two groups: the fast and slow cyto-
sol-entering peptides while the fast group resembles closely the behavior of 
membrane permeable positive control; 

4. endocytosis, mostly macropinocytosis, is highly involved in the cytosolic 
entry of CPPs, including in the case of the fast uptake group peptides; 

5. the involvement of other endocytosis sub-types, CME and caveolae/lipid raft 
mediated endocytosis, depends on the particular CPP and its concentration; 

6. CPPs with intrinsic biological effects, such as apoptosis inducing Cyt c pep-
tide, could be developed using CPP prediction tools; 

7. the parent protein apoptosis inducing properties can be retained in the cell-
permeable sub domain and these properties could be enhanced and directed 
towards novel intracellular targets by specific targeting ligands. 
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SUMMARY IN ESTONIAN 

Rakkusisenevate peptiidide sisenemiskineetika,  
mehhanismid ja vahetu bioloogiline aktiivsus 

Üha enam uusi farmakoloogiliselt huvipakkuvaid molekule või ravimikandi-
daate, näiteks oligonukleotiidid ja terapeutilised valgud, omavad toimet raku-
siseses keskkonnas. Paraku enamik neid molekule ei suuda ilma vastavate trans-
portvektorite abita rakumembraani ületada ega jõua seega oma sihtmärkideni. 
Erinevaid võimalikke transportsüsteeme, millega nende molekulide rakkudesse 
jõudmist parandada, on mitmeid. Nendest üheks on rakkusisenevad peptiidid 
(RSP-d). Alates RSP-de avastatamisest 1990-ndatel aastate keskel, on neid 
peptiide ulatuslikult kasutatud erinevate lastmolekulide rakkudesse viimiseks ja 
paljude bioloogiliste protesside uurimiseks. Veelgi enam, välja on töötatud ka 
sellised RSP-d, mis omavad ise vahetut bioloogilist efekti. Seega RSP-de või-
malikud rakendusalad on laiad. 

RSP-d erinevad teineteisest oma füsikokeemiliste omaduste poolest ja see-
tõttu ei pruugi nad jagada täpselt samu rakkudesse sisenemise mehhanisme. 
Samas mõnesse kindlasse rakupiirkonda kohalejõudmine võib sõltuda just  
RSP-de sisenemisteest, mistõttu on oluline uurida RSP-de internalisatsiooni 
mehhanisme, kineetikat ja vahetuid bioloogilisi efekte. 

Sisenemismehhanismide uurimisel tuleks silmas pidada mitmeid asjaolusid. 
Näiteks mõõtes RSP-de rakkudesse jõudmise kineetikat, saab nende transport-
molekulide kohta detailsemat informatsiooni kui konventsionaalsetest lõpp-
punktmõõtmistest, kuna näiliselt sarnase efektiivsusega peptiidid võivad omada 
täiesti erinevaid kineetilisi profiile. Lisaks sellele võivad RSP-de lastmolekulid, 
kontsentratsioon ja eksperimendis kasutatav rakuliin mõjutada kogu transport-
süsteemi omadusi ning muuta katsete tulemusi. Samuti võib eksperimenditule-
muste interpreteerimist mõjutada see, milline oli mõõtmiseks valitud ajapunkt. 
Seetõttu me kitsendasime uuritavat probleemi ja analüüsisime neid mehha-
nisme, mis on seotud RSP-de jõudmisega HeLa rakkude tsütoplasmasse. Me 
mõõtsime kaheksa tuntud RSP (TP10, TP10(Cys), Tat, penetratin, pVec, MAP, 
M918 and EB1) rakkudesse sisenemise kineetikat kahel erineval meetodil – 
fluorestsentsi kustutamisel ja bioluminestsentsil põhineval meetodil.  

Kineetikakatsete põhjal järeldasime, et teatud juhtudel mõjutavad endotsü-
toosi inhibiitorid ainult RSP-de rakkude tsütoplasmasse sisenemise kineetika-
konstanti, kuid mitte absoluutset rakkudesse toimetatava materjali hulka (või 
vastupidi). Samuti leidsime, et sarnase efektiivsusega RSP-d võivad rakkudesse 
sisenemisel omada oluliselt erinevat kineetilist profiili. Mõnede RSP-de (näiteks 
Tat, MAP ja TP10) rakkudesse sisenemise kineetiline profiil võib olulisel mää-
ral sarnaneda teatud juhtudel rakumembraani vabalt ületava positiivse kontrolli 
profiiliga ning kogu protsess võib toimuda mõne minuti jooksul. Enamiku testi-
tud RSP-de sisenemiskineetika oli aga märgatavalt aeglasem ja toimus ajalise 
viivitusega. Sellest hoolimata sisenesid kõik testitud RSP-d, k.a. kiire kineetilise 
profiili kohaselt sisenevad peptiidid, kasutades endotsütootilisi mehhanisme, 
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eelkõige makropinotsütoosi. Leidsime, et teiste vesikulaarsete transportteede 
(klatriini-vahendatud endotsütoos ja kaveoolide / lipiidparvede poolt vahen-
datud endotsütoos) hõlmamine sõltub konkreetsest RSP-st ja selle kontsentrat-
sioonist. Näiteks penetratin’i ja EB1 sisenemine tsütoplasmasse sõltus 
kaveoolide vahendatud endotsütoosist eelkõige kõrgematel peptiidikontsentrat-
sioonidel, kuid pVec ja M918 kasutasid nimetatud endotsütoosi mehhanismi 
eelkõige madalamatel kontsentratsioonidel. 

Kuna paljud RSP-d on tuletatud looduslikult eksisteerivatest valkudest, on 
mõistlik eeldada, et lisaks lastmolekulide rakkudesse toimetamisele võib nii 
mõnigi RSP omada ise teatud vahetuid bioloogilisi efekte. Selle uurimiseks me 
valisime inimese tsütokroom c (Cyt c) valgu, mis normaaloludes paikneb mito-
kondrites ja osaleb muuhulgas raku apoptoosi esilekutsumisprotsessis. Pro-
apoptootiliste signaalide ilmnemisel vabaneb mitokonditest tsütoplasmasse 
väike kogus Cyt c proteiini, mis tingib kaltsiumi vabanemise endoplasmaati-
lisest retiikulumist, mis omakorda suurendab postiivse tagasiside mehhanismi 
teel mitokondrites sisalduva Cyt c täiendavat vabanemist. Suur Cyt c hulk 
aktiveerib pro-apoptootilised kaspaasid, mis juhivad programmeeritud raku-
surma protsessi. 

Me hindasime vastavate ennustusalgoritmide abil, millised Cyt c lõigud 
võiksid suure tõenäosusega rakkudesse siseneda, ja testisime ennustatud järjes-
tuste rakkudesse sisenemise määra ning apoptoosi esilekutsumise võimet. Leid-
sime, et ennustatud Cyt c analoog (Cyt c77–101) siseneb rakkudesse efektiivselt, 
kolokaliseerub endoplasmaatilise retiikulumiga ja osaleb apoptoosi indutseeri-
mises, nagu oodatud. Kui täiendasime seda Cyt c analoogi teatud nukleoporiini 
(Nup153) ligandiga, mis seondub tuuma poori kompleksiga, lokaliseerus Cyt c 
analoog perinukleaarsesse piirkonda. Lisaks sellele suurenes selle kimäärse 
peptiidi apoptoosi esile kutsumise võime märgatavalt. Rakkude peptiidiga tööt-
lemise tulemusel lokaliseerus tuuma poori kompleksi Nup153 valk perinuk-
leaarsest alast tsütoplasmasse ning rakutuuma. Seega kinnitasime uudse 
apoptoosis osaleva sihtmärgi olulisust nimetatud bioloogilise efekti esile-
kutsumises. 

Võttes kokku käesolevas doktoritöös esitatud tulemused, võib väita, et kinee-
tikal põhinevad mõõtmised on RSP-de rakkudesse sisenemise mehhanismide 
hindamisel võrreldes lõpp-punktmõõtmistega oluliselt informatiivsemad. 
Samuti me näitasime, et duaalsete omadustega RSP-de ennustuspõhine arenda-
mine võib olla efektiivne viis uudsete ravimmolekulide transportsüsteemide 
väljatöötamiseks. Leitud tulemused võivad olla olulised biotehnoloogia- ja 
meditsiinialaste rakenduste juurutamisel.  
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