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INTRODUCTION 

One of the key challenges of present times is the development of renewable energy carriers to 

replace today’s fossil emissions cycle. Renewable power generated by hydrogen fuel cells is a 

potential alternative solution to fossil fuel consumption [1]. Fuel cells play a significant role in the 

hydrogen energy cycle, offering a way of producing clean-energy, with the main obstacle to 

implement sustainable and efficient low-temperature fuel cell systems based on cathodic oxygen 

reduction reaction (ORR). The main issues currently emerge, however, from the high cost of 

electrocatalysts used for ORR. Historically, high-area carbon materials supported platinum 

nanoparticles (Pt/C) are used as a catalyst for fuel cells with low temperatures [2]. 

Rigorous work was directed at developing cost-effective ORR electrocatalysts. Since Pt-based 

electrocatalysts suffer high costs of Pt and problems of deactivation due to CO and methanol 

poisoning, research has focused on the development of non-noble metal or completely metal-free 

catalysts [3]. The best performance in catalyzing the ORR has been shown by transition-metal and 

nitrogen co-doped carbon materials, obtained through the thermal treatment of metal, nitrogen and 

carbon precursors. Many such approaches even exceed Pt/C benchmark catalysts [4]. 

Aim of the study is to determine the surface composition of electrocatalysts by X-ray 

photoelectron spectroscopy (XPS). 

Objects of study of this thesis are the carbon-based electrocatalysts prepared by Kaido 

Tammeveski’s research group. More precisely, surface states and electronic structure of two series of 

prepared materials are studied. The first series of metal-nitrogen-carbon (MNC) catalysts were 

prepared using 5-methylresorcinol (5MR) and dicyandiamide (DCDA) as the precursors and doped 

with Fe and Co. The same materials were studied with and without acid treatment during production. 

The second series of studied samples were catalysts based on carbide-derived carbon (CDC), samples 

were milled in different conditions. 

XPS had been used for characterization of these samples. This method allows determining the 

chemical and electronic structure of the surface layer of material. In this master’s thesis, XPS has 

been used as an analytical tool to obtain information about the relative concentrations of elements 

and compounds that are present on or near the surface. 
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1. LITERATURE OVERVIEW 

1.1 Photoemission spectroscopy (PES)  

 

The photoelectric effect is a crucial way of understanding PES principles. The photoelectric 

effect shows that electrons can be driven off the solid surface by electromagnetic radiation. The 

electrons that have been expelled are called photoelectrons. 

When the electron in the sample receives a photon incident, the photon is absorbed, and its 

energy is used to free that electron from bound atomic state. The energy needed to detach an electron 

from the atom is called the binding energy of an electron in the atom. Core electrons have higher 

binding energies than valence electrons as they are nearest to the atom nucleus and therefore have a 

higher affinity to the nucleus. Electron will be rejected from the atoms as the energy of the emitted 

photons is greater than the electrons’ binding energy (formula 1.1): 

𝐸𝑘 = ℎ𝑣 − 𝐸𝐵 − 𝑊,     (1.1) 

where 𝐸𝑘 is the kinetic energy, ℎ is the Planck’s constant, 𝑣 is the ionized light frequency, and 

𝐸𝐵 is the electron-binding with energy ionization energy, and 𝑊 is the work function [5].  

Figure 1.1 depicts the photoemission process, where the electron from the K-shell is expelled 

from the atom. 

The photoelectron spectrum closely reproduces the electronic structure of the chemical 

elements, as all electrons that have a lower binding energy than photon energy are present in the 

spectrum. 

.  

Figure 1.1. Schematic diagram of the XPS process, showing photoionization of an atom by 

the ejection of a 1s electron [5]. 
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PES can be categorized into Ultraviolet Photoelectron Spectroscopy (UPS), X-ray 

Photoelectron Spectroscopy (XPS) and Hard X-ray PhotoElectron Spectroscopy (HAXPES) 

according to the energy of ionization source [3].   

 

1.1.1 X-ray photoelectron spectroscopy 

XPS is a technique for the study of surface chemistry in a material, also known as electron 

spectroscopy for chemical analysis (ESCA). The elemental composition, chemical state, and 

electronic state of elements in a substance can be determined by XPS. XPS spectra are obtained when 

a solid surface is irradiated by X-ray radiation, while the kinetic energy and electrons released from 

the top 1-10 nm of the sample being studied are concurrently determined. By counting electron 

expelled through a range of electron kinetic energies, a photoelectron spectrum is registered. Peaks 

occur in the spectrum of atoms, which emit electrons with a specific characteristic energy. The 

frequency and intensity of the photoelectron peaks allow all surface elements to be identified and 

quantified (except hydrogen) [6]. For XPS, X-ray tubes with photon energy 1000-1500 eV are mainly 

used as photon sources. XPS will eject electrons out of the core and valence levels.  

 

1.2 Surface sensitivity 

 

1.2.1 Surface 

Figure 1.2 shows that a surface layer (≈1 nm) depending on the material is defined as up to 

three atomic layers in thickness. The layers until about 10 nm are considered to be ultra-thin films 

and thin films up to around 1 μm. The rest of the solid is considered bulk material. This description 

is not universal, though, and the distinction between the types of layers that vary depending on the 

material and its application. 

 

 

Figure 1.2. Surface characterization [7]. 

The surface reflects a discontinuity between one phase and another, which results in varying 

surface physical and chemical characteristics from that of the bulk substance. These differences have 
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a significant effect on the substance’s top atomic layer. The molecule is continuously surrounded in 

the middle of the substance in all directions by atoms that make up the material. Because the surface 

atom is not surrounded by atoms in both directions, it has a bonding potential that makes the surface 

atom receptive to bulk atoms [5]. 

 

1.2.2. Inelastic mean free path (IMFP)  

When an Ultraviolet photon or X-rays impact the sample, the photoelectrons with 

characteristic energies are generated inside the sample. To be measured, these photoelectrons should 

move to the surface and leave the surface. However, such electrons may collide with atomic electrons 

and by ionizing atoms to lose their characteristic energies before arriving surface derived from atoms, 

travel through matter over a certain distance until reaching the surface. It is important to know the 

distance an electron will go through matter while retaining its kinetic energy. Figure 1.3 demonstrate 

dependence between IMFP and kinetic energy in XPS. The mean distance between two inelastic 

collisions is known as the IMFP λ, and it is defined by formula 1.2 [8]. 

𝐼(𝑑) =  𝐼0𝑒−𝑑/λ(E),    (1.2) 

where 𝐼(𝑑) is the intensity following the primary electron beam passing through the solid to 

a distance 𝑑. Thus the IMFP λ(𝑑)  defines the distance at which the electron beam intensity decreases  

𝑒 (equal approximately 2.73) times in comparison with the initial value. λ is also called as the 

attenuation length. 

 

Figure 1.3. Graph of dependence between of IMFP and kinetic energy in XPS [5]. 
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1.2.3 Surface sensitivity of XPS  

UPS also exhibits a greater surface sensitivity than XPS (shown in Figure 1.4), because of the 

low IMFP within the solid, where more than it is assumed that 95 % of the photoemission signal is 

originating from the layer with a depth of 3 mean free path lengths from the surface [5]. Consequently, 

UPS also exhibits a greater surface sensitivity than XPS (shown in Figure 1.4), because of the low 

IMFP within the solid. For XPS, the thickness on the studied layer is assumed to be below, 10 nm. 

That is the crude average since the IMFP of the electron is determined by the material properties and 

the kinetic energy of the electrons in solid media over which it passes and electrons of lower kinetic 

energy having shorter path lengths [6]. 

 

 

Figure 1.4. Difference in information depth for HAXPES, XPS and UPS [7]. 

 

1.2.4 XPS at different angles  

The knowledge range for XPS is a few nanometers, based on the kinetic energy of the 

electrons and the substance being analyzed. XPS measured at different angles is, however, a method 

that changes the emission angle from which electrons are emitted, making it easier to detect electrons 

from various depths (Figure 1.5). Angle-resolved XPS provides knowledge on the size and structure 

of ultra-thin films. Those tests are non-destructive, as opposed to sputter profiling [5]. 
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Figure 1.5. Spectra with a higher relative intensity of the oxide peak at the close to grazing 

emission angle may be seen from an examination of a thin oxide film on a metal at near-normal and 

non-grazing angles [7]. 

Key useful aspects of XPS with variable angles: 

• Can be extended to films that are too thin to be studied using standard depth profiling 

techniques. 

• Can be extended to films that are irretrievably damaged by sputtering (e.g. polymers). 

• Non-destructive technique and can provide details on the chemical environment, 

unlike sputtering methods. 

The following information is given by the Angle-resolved XPS measurements: 

• Ordering of layers in an ultra-thin film. 

• Thickness of layers 

• Distribution of elements and chemical states within the film (depth profile 

reconstruction) [5]. 

 

1.3 Photoelectron spectrum  

 

A photoelectron spectrum is a record of the photoelectron intensity as a function of the 

photoelectron kinetic energies at fixed photon energy. However, in addition to photoelectron peaks, 

other features are present in the spectrum. Usually, these bands are related to Auger electrons, but 

also to shake-up satellites, shake-off satellites and multiplet splitting can arise.  

Auger effect is based on simultaneous ejection of an electron when core hole is filled at the 

same atom. Auger transition is an inner atomic process, and the Auger electron kinetic energy does 

not depend on photon energy as does the photoelectron kinetic energy.  

Shake-up satellites are formed, when the outgoing photoelectron simultaneously interacts with 

a valence electron and excites it to a higher energy level. This process leads to the decrease of the 
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energy of the ejected core electron and satellites appear in photoelectron spectra. Shake-up satellites 

are few electron volts below the core level position. This process can be accompanied by the 

formation of a shake-off satellite. The shake-off satellite is formed in the way that a valence electron 

is ejected from the ion. 

A multiplet splitting may arise in a compound that has an unpaired electron in the valence 

band. When a core hole is created through photoionization, there can be coupling between the 

unpaired electron in the core-shell with an unpaired electron in the outer shell. This can create a 

number of final states, which arise in the photoelectron spectrum as a multipeak structure [5]. 

 

1.4 Chemical shift 

 

XPS is an excellent tool to identify elements in the surface layer since all elements have their 

core levels at specific energies as compared to each other. Also, XPS is a useful tool to determine the 

chemical state of surface atoms. For example, electrons in metal have specific Coulombic interaction 

between the nucleus and electrons. When oxide is formed, metal transfers its electron to oxygen due 

to its larger electronegativity. This results as a stronger Coulombic interaction between the nucleus 

and electrons. Therefore, the binding energy of an electron is larger in metal oxide than in a pure 

metal, and a “chemical shift” between two compounds is observed [9]. Example of the chemical shifts 

in N1s is shown in Figure 1.6. 

 

Figure 1.6. High-resolution N1s XPS spectrum [10]. 

 

The numerous nitrogen moieties, such as pyridinic-N, pyrrolic-N, graphitic-N, amine/metal-

N, imine and others are one of the main subjects for analysis in this study. One of the important 

concerns is the nitrogen component that contributes to the increased ORR catalytic activity, including 

pyridinic-N, pyrrolic-N and graphitic-N. N dopants change local electronic properties and surface 
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chemistry of carbon materials while improving oxygen adsorption and the ORR kinetics substantially. 

Due to their high abundance in most nitrogen-doped carbon materials, pyridinic-N and graphitic-N 

have attracted great attention among the nitrogen sites [11]. 

 

1.5 Quantification XPS  

 

The intensity 𝐼 of a photoelectron peak from a homogeneous solid is given by formula 1.3 [5]: 

𝐼 = 𝐽𝜌𝜎𝐾𝜆,      (1.3) 

where 𝐽 is the photon flux, 𝜌 is the ion concentration, 𝜎 is a cross-section for the output of 

photoelectron (depending on the element and the energy considered), 𝐾 is the value covering all the 

instrumental variables, and 𝜆 is the attenuation length.  

The referred intensity is usually taken as the integrated region under the peak after linear 

correction. The above equation can be used for direct quantification (the “first principles approach”), 

but experimentally defined sensitivity factors 𝐹 are more widely used. In the typical equation, 

parameter 𝐹 contains 𝜎, 𝐾, and 𝜆 as well as additional photoelectron spectrum components, such as 

characteristic attribute. When a set of peak areas for the elements found has been measured, 𝐼 was 

defined in the mentioned equation. The components 𝜎, 𝐾, and 𝜆 are integrated into or specifically 

included in the formula used to measure a series of sensitivity factors suitable for the used 

spectrometer (formula 1.4). If the X-ray flux remains stable in the experiment, the atomic percentage 

of the elements can be calculated by dividing the peak area by the sensitivity factor and expressing it 

as a fraction of the sum of all normalized intensities; the surface composition measurement for this 

approach assumes that the measured volume of a sample is homogeneous: 

[𝐴] 𝑎𝑡𝑜𝑚𝑖𝑐 % = {

𝐼𝐴
𝐹𝐴

∑(
𝐼𝑖
𝐹𝑖

)
} ∙ 100%,    (1.4) 

This is uncommon, but the above approach provides a valuable way to compare related 

specimens. XPS can be used to maintain lateral homogeneity and elucidate the hierarchy of overlayers 

present for a more comprehensive analysis [5, p. 75-76]. 

 

2. INSTRUMENTATION  

Photoelectron spectrometer contains source (He lamp or X-ray tube), electron energy 

analyzer, manipulator with sample holder and vacuum chamber (Figure 2.1).   
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Figure 2.1. A photoelectron spectrometer design. [based on 7] 

 

The detector counts a number of photoelectrons inside a certain kinetic energy interval.  

The spectrometer should have ultrahigh vacuum (approximately 10-9 mbar) inside the 

chamber to prevent electrons and photons from being scattered by gas molecules. [5].  

The electron lens (Figure 2.2) collects the electrons from the sample and passes them to the 

entrance of the energy analyzer. The lens has a variety of purposes [12]: 

• Physically isolate the sample region from the energy analyzer, allowing better 

accessibility of the sample. 

• Generating a photoelectron image of the sample on the entrance plane of the analyzer, 

such as a focusing lens. 

• Match the initial kinetic energy of the electrons to the output energy of the analyzer. 
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Figure 2.2. A scheme of the electrostatic lens (a), where 1 - ground potential, 2 - element for 

the elimination of the penetration from lens into the space between the sample and the lens 

entrance, 3 - detail for optimization of the lens parameter, 4 - connection to the 

retardation/acceleration voltage and schematic illustration of the hemispherical analyzer (b) [12]. 

 

The hemispherical electron energy analyzer (Figure 2.2) is the part of the device that performs 

the actual energy dispersion. In the radial electrostatic field, the electron trajectories are twisted 

between two concentric hemispheres with a voltage difference between them. The bending radius 

will depend on the electron kinetic energies, and an energy dispersion is achieved. The 180° 

hemisphere analyzer has some advantages compared to other analyzer types, the most prominent of 

which is the existence image plane with unit magnification perpendicular to the trajectories. This 

instrument is equipped with an analyzer with a mean radius of 100 mm. The field is terminated by a 

plate on the center potential of the analyzer, which also serves as the mechanical base for the electrode 

structure. The analyzer is equipped with a deflection electrode close to the entrance slit [12]. 

For measurements in the frame of this thesis Thermo XR3E2 Twin Anode X-ray source was 

used (Figure 2.3). The principle elements of the X-ray Source are supported by the Source Mounting 

Flange. The anode, which sits on an annealed copper gasket, is placed through the Source Mounting 

Flange to project through the Filament Inner Shield. The position of the anode within the Filament 

Inner Shield is centralized by three ceramic bushes. The Filament mounted concentrically with the 

Filament Inner Shield is enclosed by the Filament Outer Shield in which is fitted a very thin aluminum 
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foil window. The electrical connections to the Double Filament are made through three Filament 

Electrodes mounted on the three single-way feedthrough connectors in the Source Mounting Flange. 

The high voltage connection to the anode is made through the pipes, which supply cooling water to 

the anode region of the source, and the connections are made using “Quick-Fit” connectors providing 

a safe and rapid method of removing cables and water lines before go out [13]. 

 

 

Figure 2.3. Scheme of the XR3E2 X-ray source [13]. 

 

3. EXPERIMENTAL 

3.1 Materials 

 

Renewable power generated by hydrogen fuel cells is a potential alternative solution to the 

issue of fossil fuel consumption. Porous carbon is a basic material in polymer electrolyte membrane 

(PEM) fuel cells [2].  

In this work were investigated two sets of electrocatalysts. Kaido Tammeveski’s research 

group synthesized all investigated samples. My part was measurements of photoelectron spectra of 

electrocatalysts and interpretations of these spectra. 

Samples A1-Fe, A2-Co, A3-Fe and A4-Co were synthesized with 5-methylresorcinol (5MR, 

purity 99.9%, VKG Oil AS, Estonia), dicyandiamide (DCDA, Sigma-Aldrich), Co(NO3)2 (98%, 

Sigma-Aldrich) and/or FeCl3 (97% Sigma-Aldrich). The ratio of precursors was varied at the first 

optimization stage. The 5MR-to-DCDA mass ratio of 1:10 was used in most samples, and the 

precursor compounds were dissolved in a mixture of 2-propanol and deionized water (Milli-Q, 

Millipore Inc.) with a volume ratio of 1:4. Then Co(NO3)2 or FeCl3 were added at the metal-to-5MR 

mass ratio of 1:20. The solution has been dried for 48 h at 35 °C, and the dry powder was pyrolyzed 

at 800 °C in the N2 flow for 2 h. The carbon-based catalysts were obtained after cooling down to 

room temperature. In a mixture of 0.5 M HNO3 and 0.5 M H2SO4, the materials A1-Fe and A2-Co 
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were acid-treated at 50 °C for 8 h, washed with Milli-Q water, dried and pyrolyzed at 800 °C for 2 h 

to obtain the final catalysts.  

Samples SiCDC HiB BM1, SiCDC HiB BM3 and SiCDC HiB BM4 based on CDC and were 

milled under different conditions: 

• SiCDC HiB BM1 was prepared using  the milling procedure as follows: 400 rpm, 4x30 

(5 min breaks), ≈ 100 mg CDC, ZrO2 balls (diameter 5 mm), so-called dry-ball-milling 

with larger ZrO2 balls. 

• SiCDC HiB BM3 was prepared using  the milling procedure as follows: 400 rpm, 4x30 

(5 min breaks), ≈ 200 mg CDC, ZrO2 balls (diameter 0.5 mm, mass 20 mg), ca 2.5 mL 

Milli-Q, so-called wet-ball-milling with smaller ZrO2 ball. 

• SiCDC HiB BM4 was prepared using  the milling procedure as follows: 400 rpm, 4x30 

(5 min breaks), ≈ 1200 mg CDC, ca 20 mg PVP, ZrO2 balls (diameter 0.5 mm, mass 

20 mg), ca 3 mL Milli-Q water, so-called wet-ball-milling with small ZrO2 balls in the 

presence of polyvinylpyrrolidone. 

 

3.2 Sample preparation 

 

For XPS experiment, the sample should be with optimal size and geometry for the sample 

holder (approximately 10x10 mm). To keep samples clean during sample preparation, it is necessary 

to use gloves and appropriate precleaned tools.  

The mounted sample is introduced into a load-lock chamber. After pumping the load-lock 

chamber, the sample is transferred to the analysis chamber under vacuum (pressure approximately 

10-9 mbar). The sample is rotated 180° after the transfer into an analysis chamber and positioned 

against an electron energy analyzer. The angle between the sample normal to the incident X-ray beam 

is 45°, and the angle from the analyzer to the incident X-ray beam is 45°. 

 

3.3 Equipment 

 

Experiments were performed to characterize samples for elemental compositions by XPS 

surface science setup (Figure 3.1) with analyzer SCIENTA SES-100 and unmonochromated XR3E2 

twin anode X-ray source. Mg Kα X-rays (energy 1253.6 eV) at 300 W power and electron take-off 

angle 90° were used. During obtaining the XPS spectra, the pressure in the analysis chamber was 

under 10-9 mbar. For collecting survey spectra and high-resolution spectra the step sizes of 1 eV and 

0.1 eV, respectively, were used. 
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Figure 3.1. Surface-science setup, which contains 1 – load-lock chamber, 2 – preparation 

chamber, 3 – X-ray gun, 4 – XPS analysis chamber, 5 –SCIENTA SES-100 electron energy 

analyzer, 6 – LEED optics, 7 –  LEED analysis chamber, 8 –  load-lock/preparation chamber, 9  – 

manipulator. 

 

3.4 XPS data treatment 

 

Data analysis and quantification were performed using CasaXPS software. Sensitivity factors 

provided by the manufacturer were utilized. In the analysis of the XPS spectra we used offset Shirley 

type background (see section 3.4.1-3.4.3). Photoelectron lines were fitted with a 70% Gaussian/30% 

Lorentzian line shape (see section 3.4.4) and Gaussian/Lorentzian product modified by an asymmetric 

form.  

3.4.1 Linear background  

For materials with large band-gaps linear background can be used 𝐿(𝐸):  

𝐿(𝐸) = 𝐼1
(𝐸2−𝐸)

(𝐸2−𝐸1)
+ 𝐼2

(𝐸−𝐸1)

(𝐸2−𝐸1)
 ,    (3.1) 

where 𝐸1 and 𝐸2 are two different energies, and 𝐼1 and 𝐼2 are corresponding intensities [14]. 

3.4.2 Shirley background 

The Shirley algorithm [15] is an attempt to use spectrum information to create a background 

that is sensitive to data adjustment. The main feature of the Shirley algorithm is the iterative 

background calculation using the designated areas 𝐴1 and 𝐴2 in order to compute the 

background 𝑆(𝐸) of energy 𝐸: 
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𝑆(𝐸) = 𝐼2 + 𝑘
𝐴2(𝐸)

(𝐴1(𝐸)−𝐴2(𝐸))
,    (3.2) 

where 𝑘 determines the background phase and typically is the same (𝐼1 − 𝐼2). For each point 

in background 𝐸, the built-in areas 𝐴1(𝐸) and 𝐴2(𝐸) must be determined initially using a 

𝑆(𝐸) approximation and then optimized using the first estimated history computed as a reference to 

boosting the values computed for 𝐴1(𝐸) and 𝐴2(𝐸) [14]. 

3.4.3 Offset Shirley background  

Often the blend of linear and Shirley backgrounds is used, called as Offset Shirley (𝑂𝑆) 

background. It can be written as  

𝑂𝑆(𝐸 ∶  λ, δ) = 𝑆(𝐸 −  δ)(1 − λ) + 𝐿(𝐸)λ,    (3.3) 

the parameters λ and δ a linear variation of the background of the Shirley with the background 

λ=0 with the linear background λ=1, where the Shirley curve is offset by the energy δ eV [14]. 

3.4.4 Line shapes 

Line shape in XPS arises from a combination of the process involved in the event of ionization 

and deviations broadenings arising from the measurement system. The idealization of these factors is 

the interpretation of a measured line as a combination of Gaussian (𝐺), and Lorentzian (𝐿) functions. 

The Gaussian represents the measuring mechanism in general (instrumental function, X-ray line 

shape, Doppler and thermal broadening) [14]: 

 𝐺(𝑥: 𝐸, 𝐹, 𝑚) = exp [−4 ln 2(1 −
𝑚

100
) (

𝑥−𝐸

𝐹
)

2

],   (3.4) 

 

Lorentzian models broadening due to lifetime: 

𝐿(𝑥: 𝐸, 𝐹, 𝑚) =  
1

1+4
𝑚

100
(

𝑥−𝐸

𝐹
)2

 ,   (3.5) 

 

CasaXPS program uses the combination of Gaussian and Lorentzian (𝐺𝐿): 

𝐺𝐿(𝑥: 𝐸, 𝐹, 𝑚) =  
exp [−4 ln 2(1−

𝑚

100
)(

𝑥−𝐸

𝐹
)2]

1+4
𝑚

100
(

𝑥−𝐸

𝐹
)2

,     (3.6) 

 

The explanation for the calculation of peak intensity is that all functions are finite when 

combined from minus infinity to plus infinity. In addition, the strength determined by fitting these 

functions to the data is very localized at the peak for all regular usage of the Gaussian-Lorentzian line 

shapes. This compares with virtually all asymmetrical line shape, in which the incorporation of 

asymmetry into the line shape increases the energy spectrum of the line shape and affects the shape’s 

capacity to quantify pressure without adjustment [14]. 
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3.5 Limit of detection (LOD)  

 

Pulsed intensities measured over a time interval are supposed to follow Poisson statistics and, 

thus if electron energy interval and time intervals counts are recorded, the standard deviation for a 

sequence of identical measurements in theory is √𝐼, intensity. 

In the case of low peak intensity and the background area are roughly the same and thus a 

standard deviation in the measured intensities for low peaks, for a background intensity (B), can be 

approximated by √𝐵.  

Since a spectrum can be measured with a variety of energy steps and times instead of the 

intensity by acquisition bin, the signal intensity is characterized as the intensity falling within a given 

quantifying area over a defined background. 

For an energy interval and acquisition time corresponding to the quantification region with 

the background type limit of detection (LOD) specified one standard deviation is given by √𝐵𝑁, 

where N is the number of data channels within region limits. The corresponding intensity to be 

compared with this standard deviation is the sum of the positive background-subtracted counts falling 

within the 𝐿𝑂𝐷𝑎𝑟𝑒𝑎 limits. 

The test for a peak is the form according to equation 3.7, assuming the behavior of Poisson: 

𝑖𝑓 (𝐿𝑂𝐷𝑎𝑟𝑒𝑎 > 𝑓𝑎𝑐𝑡𝑜𝑟 ∙ √𝐵𝑁) 𝑡ℎ𝑒𝑛 “𝑝𝑒𝑎𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑”,   (3.7) 

 

For a 99% confidence level interval and Poisson statistics 𝑓𝑎𝑐𝑡𝑜𝑟 = 3.0 [14]. 

 

4. RESULTS AND DISCUSSIONS  

4.1 General composition of samples 

 

With XPS it became possible to carry out non-destructive chemical analysis of 

electrocatalysts. XPS survey scans spectra (Figure 4.1 and Figure 4.2) of samples under investigation 

allow to understand the approximate composition of electrocatalysts. The positions of the peaks are 

in agreement with comprehensive reference tables (see Appendix 1). The atomic concentration of all 

series of electrocatalysts, obtained from further analysis using detailed core-level spectra (sections 

4.2-4.7) are shown in Tables 4.1 and 4.2. 

The XPS survey spectra for A1-A4 samples reveal six distinct photoelectron lines attributed 

to the binding energies of C1s (≈284.8 eV), N1s (≈397 eV), O1s (≈531 eV), Fe2p (≈709.6 eV) and 

Co2p (≈778 eV) respectively. 

Overview spectra show also a low content of copper (approximately 933 eV), because of the 

signal of the sample holder, and it is not connected with the catalyst material itself. 



20 

 

 

Figure 4.1. XPS survey spectra for A1 (a), A2 (b), A3 (c) and A4 (d) samples, respectively. 

 

Table 4.1. Atomic concentration of A1-A4 samples by elements. 

Atomic concentration of A1-A4 samples, % 

Sample C1s O1s N1s 
Metal (Fe or 

Co) 

A1- (Fe) 88.0 5.9 5.8 0.3 

A2 - (Co) 86.7 4.4 8.2 0.7 

A3- (Fe) 83.3 7.3 8.9 0.5 

A4 - (Co) 82.7 6.3 9.9 1.1 

 

In the XPS survey spectra for SiCDCHibBM1- SiCDCHibBM4 samples appear five distinct 

peaks attributed to the binding energies of C1s (≈284.8 eV), N1s (≈397 eV), O1s (≈531 eV), Si2p 

(≈103.5 eV) and Zr3d (≈185 eV), respectively. 
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Figure 4.2. XPS survey spectra for SiCDCHibBM3 (a), SiCDCHibBM4 (b) and 

SiCDCHibBM1 (c) samples, respectively. 

 

Table 4.2. Atomic concentration of SiCDCHibBM1- SiCDCHibBM4 samples by elements. 

Atomic concentration of CDC-based samples, % 

Sample C1s O1s N1s Si2p Zr3d 

SiCDCHibBM1 83.7 15.0 0.6 0.5 0.2 

SiCDCHibBM3 84.3 15.0 0.1 0.5 0.1 

SiCDCHibBM4 83.2 15.6 0.6 0.5 0.1 

 

4.2 Measurements of C1s 

 

 Carbon is the most abundant component in both sets of electrocatalyst materials (Figure 4.1 

and Figure 4.2). The following measurements and analyses allow to show different functional groups 

on the surface. 

C1s detailed core-level spectra (Figure 4.3) for A1, A2, A3 and A4 samples show that C1speak 

can be decomposed to the sp2 C (with relative content more than 40%) and other components such as 

C-O-C, C=O, C-O=C, π- π*, and carbide. Note that for sp2 C asymmetric line shape (typical to 

conductive states) was used. 
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Figure 4.3. XPS detailed core-level spectra in the C1s region for A1 (a), A2 (b), A3 (c) and A4 (d) 

samples, respectively. 

 

Table 4.3 shows the content of the different C1s states obtained from C1s core-level spectra.  
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Table 4.3. Concentration of the various C1s states from A1, A2, A3 and A4 samples. 

 

Name 
Position, 

eV 

Relative 

concentration 

of C1s, % 

Atomic 

concentration of 

sample, %  
A1-(Fe)  

sp2 284.3 73.2 64.5  

sp3 285.3 8.5 7.5  

C-O-C, C-

OH 
286.8 5.3 4.7  

O-C=O 289.5 1.2 1.1  

C=O 288.2 3.1 2.8  

π- π* 290.6 7.5 6.6  

carbide 281.3 1.1 1.0  

A2-(Co)  

sp2 284.3 52.3 45.3  

sp3 285.1 24.3 21.1  

C-O-C, C-

OH 
286.7 7.8 6.8  

O-C=O 289.5 2.5 2.2  

C=O 288.2 4.1 3.6  

π- π* 291.0 5.5 4.8  

carbide 282.8 3.5 3.0  

A3-(Fe)  

sp2 284.3 50.1 41.8  

sp3 285.1 27.0 22.5  

C-O-C. C-

OH 
286.6 7.8 6.5  

O-C=O 289.5 1.4 1.2  

C=O 288.2 6.4 5.3  

π- π* 290.9 4.0 3.3  

carbide 282.7 3.3 2.8  

A4-(Co)  

sp2 284.3 43.5 35.9  

sp3 285.1 30.5 25.2  

C-O-C. C-

OH 
286.6 8.7 7.2  

O-C=O 289.5 1.8 1.5  

C=O 288.1 5.9 4.9  

π- π* 290.9 6.7 5.5  

carbide 282.6 3.0 2.5  

 

 



24 

 

In XPS detailed core-level spectra (Figure 4.4) of C1s for SiCDCHibBM1, SiCDCHibBM3 

and SiCDCHibBM4 samples the sp2 C (with relative content above 40%) and other components such 

as sp3, C-O-C, C = O, C-O = C, π- π* and carbide components similarly distributed in the spectrum. 

 

 

Figure 4.4. XPS detailed core-level spectra in the C1s region for SiCDCHibBM3 (a), 

SiCDCHibBM4 (b) and SiCDCHibBM1 (c) samples, respectively. 

 

Table 4.4 demonstrates the content of the different C1s states obtained from C1s core-level 

spectra.  
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Table 4.4. Concentration of the various C1s states from SiCDCHibBM1, SiCDCHibBM3, 

SiCDCHibBM4 samples. 

Name 
Position, 

eV 

Relative 

concentration 

of C1s, % 

Atomic 

concentration 

of sample, % 
 

SiCDCHibBM1  

sp2 284.4 82.0 68.7  

sp3 285.4 0 0  

C-O-C. C-

OH 
286.8 5.0 4.2  

O-C=O 289.5 3.8 3.2  

C=O 288.2 3.9 3.3  

π- π* 291.5 3.9 3.3  

carbide 281.9 1.3 1.1  

SiCDCHibBM3  

sp2 284.5 81.3 68.5  

sp3 285.5 0 0  

C-O-C. C-

OH 
286.9 5.5 4.7  

O-C=O 289.5 5.3 4.5  

C=O 288.2 1.9 1.6  

π- π* 291.5 4.7 4.0  

carbide 282.0 1.2 1.0  

SiCDCHibBM4  

sp2 284.5 80.4 66.9  

sp3 285.5 1.8 1.5  

C-O-C. C-

OH 
286.8 6.8 5.7  

O-C=O 289.5 4.3 3.6  

C=O 288.0 2.3 1.9  

π- π* 291.5 3.1 2.6  

carbide 281.8 1.2 1.0  

 

4.3 Measurements of N1s 

 

Nitrogen species such as graphitic-N and pyridinic-N play significant role in the ORR. The 

deconvolution of the electrocatalysts’ N1 XPS detailed core-level spectra shows seven different 

peaks.  

In N1s detailed core-level spectra (Figure 4.5) for A1, A2, A3 and A4 samples the peak 

attributed to pyridinic-N and pyrrolic-N significantly dominates in spectra, and other components 

such as amines/metal-Nx, imine, graphitic-N, NO and bulk N-H have lower intensities in the spectra. 
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Figure 4.5. XPS detailed core-level spectra in the N1s region for A1 (a), A2 (b), A3 (c) and A4 (d) 

samples, respectively. 

 

Table 4.5 presents the content of the different N1s states obtained from N1s core-level spectra.  
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Table 4.5. Concentration of the various N1s states from A1, A2, A3 and A4 samples. 

Name 
Position, 

eV 

Relative 

concentration 

of N1s, % 

Atomic 

concentration 

of sample, % 
 

A1-(Fe)  

Imine 397.6 11.9 0.7  

Pyridinic-N 398.4 35.6 2.1  

Amines/Metal-

Nx 
399.5 5.2 0.3  

Pyrrolic 400.5 32.0 1.9  

Graphitic 402.0 7.7 0.5  

NO  405.6 2.9 0.2  

bulk N-H 403.4 4.8 0.3  

A2-(Co)  

Imine 397.6 7.1 0.6  

Pyridinic-N 398.4 41.0 3.4  

Amines/Metal-

Nx 
399.2 7.0 0.6  

Pyrrolic 400.5 28.8 2.4  

Graphitic 402.0 8.4 0.7  

NO  405.8 2.7 0.2  

bulk N-H 403.8 5.0 0.4  

A3-(Fe)  

Imine 397.5 2.5 0.2  

Pyridinic-N 398.3 47.5 4.2  

Amines/Metal-

Nx 
399.5 6.3 0.6  

Pyrrolic 400.4 27.9 2.5  

Graphitic 402.0 8.7 0.8  

NO  405,8 3.0 0.3  

bulk N-H 403,8 4.1 0.4  

A4-(Co)  

Imine 397,6 7.5 0.7  

Pyridinic-N 398,4 42.2 4.2  

Amines/Metal-

Nx 
399,2 10.5 1.0  

Pyrrolic 400,5 25.0 2.5  

Graphitic 402,0 6.9 0.7  

NO  405,5 3.2 0.3  

bulk N-H 403,4 4.7 0.5  

 

In N1s detailed core-level XPS spectra (Figure 4.6) for SiCDCHibBM4 and SiCDCHibBM1 

samples, the peaks attributed to moieties such as pyrrolic-N graphitic-N and amines/metal-Nx are 

strongest and other components such as NO and bulk N-H, have rather low intensities. Imine and 

water connected peaks were not observed in SiCDCHibBM4 and SiCDCHibBM1 samples. Presence 
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of pyridinic-N was not found in SiCDCHibBM4; nonetheless, the high intensity of this peak was 

observed in SiCDCHibBM1.  

Results of the XPS measurements for SiCDCHibBM3 shows no significant presence of N1s. 

 

 

Figure 4.6. XPS detailed core-level spectra in the N1s for SiCDCHibBM4 (a), SiCDCHibBM1 (b) 

and SiCDCHibBM3 (c) samples, respectively. 

 

Table 4.6 shows the content of the different N1s states obtained from N1s core-level spectra 

of CDC-based samples.  
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Table 4.6. Concentration of the various N1s states from SiCDCHibBM1, SiCDCHibBM3, 

SiCDCHibBM4 samples. 

Name 
Position, 

eV 

Relative 

concentration 

of N1s, % 

Atomic 

concentration 

of sample, % 
 

SiCDCHibBM1  

Imine 397.9 0 0  

Pyridinic-N 398.7 26.2 0.2  

Amines/Metal-

Nx 
399.6 8.2 0.1  

Pyrrolic 400.8 45.9 0.3  

Graphitic 402.1 0 0  

NO  405.6 3.3 0  

bulk N-H 403.3 16.4 0.1  

SiCDCHibBM3  

Imine 396.0 0 0  

Pyridinic-N 396.8 0 0  

Amines/Metal-

Nx 
399.6 0 0  

Pyrrolic 398.9 0 0  

Graphitic 402.0 0 0  

NO  405.8 0 0  

bulk N-H 403.0 0 0  

SiCDCHibBM4  

Imine 397.7 0 0  

Pyridinic-N 398.5 0 0  

Amines/Metal-

Nx 
399.7 43.1 0.3  

Pyrrolic 400.6 29.3 0.2  

Graphitic 402.0 17.2 0.1  

NO  405.8 1.7 0  

bulk N-H 403.7 8.6 0.1  

 

 

4.4 Measurements of O1s 

 

In XPS spectrum O1s is one of the essential components of both sets of electrocatalysts. 

Measurements and evaluation will reveal various oxygen-containing functional groups on the surface. 

In O1s detailed core-level XPS spectra (Figure 4.7) for A1, A2, A3, and A4, was measured 

showing atomic concentrations of metal oxide, O=C-OH carboxyl, C=O carbonyl and C-O. The XPS 

wide-scan spectrum does not show any observed quinones across all catalysts. The C-OH compound 

was not observed in the A3, and A4 samples, however, low intensity revealed in the A1 and A2 

samples. Water connected peaks have similar low intensities in all samples except A4. 
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Figure 4.7. XPS detailed core-level spectra in the O1s region for A1 (a), A2 (b), A3 (c) and A4 (d) 

samples, respectively.  

 

Data obtained from the deconvolution of O1s XPS spectra are given in Table 4.7.  
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Table 4.7. Concentration of the various O1s states from A1, A2, A3 and A4 samples. 

Name 
Position, 

eV 

Relative 

concentration of 

O1s, % 

Atomic 

concentration 

of sample, %  
A1-(Fe)  

Metal oxide 530.0 30.3 1.8  

Quinones 530.2 0 0  

O=C-OH carboxyl 531.2 31.5 1.8  

C=O carbonyl 531.8 20.0 1.2  

C-O 532.9 14.7 0.9  

C-OH 533.7 1.0 0.1  

Water. Chemisorbed 

O 
535.0 2.6 0.2  

A2-(Co)  

Metal oxide 530.2 24.6 1.1  

Quinones 530.2 0 0  

O=C-OH carboxyl 531.2 41.6 1.8  

C=O carbonyl 531.9 14.5 0.6  

C-O 532.9 17.7 0.8  

C-OH 533.7 0.7 0.0  

Water. Chemisorbed 

O 
536.0 0.9 0.0  

A3-(Fe)  

Metal oxide 530.0 30.3 2.2  

Quinones 530.2 0 0  

O=C-OH carboxyl 531.2 28.2 2.1  

C=O carbonyl 531.7 18.6 1.4  

C-O 532.9 18.3 1.3  

C-OH 533.6 0 0  

Water. Chemisorbed 

O 
535.1 4.5 0.3  

A4-(Co)  

Metal oxide 530.2 22.0 1.4  

Quinones 530.2 0 0  

O=C-OH carboxyl 531.2 29.3 1.8  

C=O carbonyl 532.1 23.2 1.5  

C-O 532.9 25.5 1.6  

C-OH 533.7 0 0  

Water. Chemisorbed 

O 
536.0 0 0  

 

For SiCDCHibBM3, SiCDCHibBM4, and SiCDCHibBM1 samples, detailed core-level XPS 

spectra of O1 (Figure 4.8) show that peaks attributable to O=C-OH carboxyl, C=O carbonyl, C-O 

and water of a significant atomic concentration have been identified. The wide-scan XPS spectra 
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show no detected C-OH and quinones among all electrocatalysts. Metal oxide has been observed with 

low intensity in the entire set of CDC-based catalysts. 

 

 

Figure 4.8. XPS detailed core-level spectra in the O1s region for SiCDCHibBM3 (a), 

SiCDCHibBM4 (b) and SiCDCHibBM1 (c) samples, respectively. 

 

Table 4.8 lists the content of oxygen-containing obtained from O1s core-level spectra states 

in CDC-based electrocatalyst. 

  



33 

 

Table 4.8. Concentration of the various O1s states from SiCDCHibBM1, SiCDCHibBM3, 

SiCDCHibBM4 samples. 

Name 
Position, 

eV 

Relative 

concentration 

of O1s, % 

Atomic 

concentration 

of sample, % 
 

SiCDCHibBM3  

Metal oxide 529.6 0.2 0  

Quinones 530.2 0 0  

O=C-OH 

carboxyl 
531.2 8.7 1.3  

C=O 

carbonyl 
531.5 10.2 1.5  

C-O 532.9 70.5 10.6  

C-OH 533.7 0 0  

Water. 

Chemisorbed 

O 

535.0 10.4 1.6  

SiCDCHibBM4  

Metal oxide 530.0 3.1 0.5  

Quinones 530.2 0 0  

O=C-OH 

carboxyl 
531.2 19.4 3.0  

C=O 

carbonyl 
531.8 22.9 3.6  

C-O 532.9 45.0 7.0  

C-OH 533.7 0 0  

Water. 

Chemisorbed 

O 

535.0 9.6 1.5  

SiCDCHibBM1  

Metal oxide 529.4 2.5 0.4  

Quinones 530.2 0 0  

O=C-OH 

carboxyl 
531.2 25.8 3.9  

C=O 

carbonyl 
531.5 13.2 2.0  

C-O 532.9 48.1 7.2  

C-OH 533.7 0 0  

Water. 

Chemisorbed 

O 

535.0 10.4 1.6  
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4.5 Measurements of Co2p and Fe2p 

 

The XPS core-level spectra in the Co2p (Figure 4.9) and Fe2p (Figure 4.10) regions contain 

multiple peaks that are associated with oxidized metal states, which may be bulk oxides, but also 

metal coordinated to nitrogen. It is, however, impossible to classify these components specifically, 

because there are different metal species with overlapping states. Components in fitting were selected 

to cover the area of photoelectron lines. Due to overlapping with KLL transition (approximately 740 

eV) of oxygen, only the area of Fe2p2/3 was analyzed.  

 

 

Figure 4.9. XPS detailed core-level spectra in the Co2p region for A2 (a) and A4 (b) samples, 

respectively. 

 

 

Figure 4.10. XPS detailed core-level spectra in the Fe2p region for A1 (a) and A3 (b) 

samples, respectively. 
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4.6 Measurements of Si2p 

 

The XPS detailed core-level spectra in the Si2p region (Figure 4.11) demonstrate Si oxide 

peak dominance for SiCDCHibBM3, SiCDCHibBM4 and SiCDCHibBM1 samples. 

 

 

Figure 4.11. XPS detailed core-level spectra in the Si2p region for SiCDCHibBM3 (a), 

SiCDCHibBM4 (b) and SiCDCHibBM1 (c) samples, respectively. 

 

Table 4.9 describes Si content of catalyst materials from the Si2p spectra. 

 

Table 4.9. Concentration of Si as determined from the Si2p XPS peak for SiCDCHibBM1, 

SiCDCHibBM3, and SiCDCHibBM4 samples. 

Name 
Position, 

eV 

Atomic 

concentration of 

sample, %  
SiCDCHibBM3  

Si 2p 103.1 0.5  

SiCDCHibBM4  

Si 2p 103.2 0.5  

SiCDCHibBM1  

Si 2p 103.1 0.5  
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4.7 Measurements of Zr3d 

 

The measured core-level XPS spectra in the Zr3d region were deconvoluted by using two 

pairs of spin-orbit split (Zr3d3/2 and Zr3d5/2) photoelectron peaks, thus giving us two oxidized states. 

However, we suggest that both of these oxidized states are due to ZrO2 because in earlier XPS studies 

ZrO2 has shown very strong local charging effects which may lead to different binding energies in 

different particles [39]. As these ZrO2 particles were introduced into samples during ball-milling 

using ZrO2 balls, the concentration of ZrO2 is very low (below 0.2%, see Table 4.2), but these Zr3d 

peaks are still observable because of their low binding energy lay in the region of the spectrum, where 

the background is low.  

 

 

Figure 4.12. XPS detailed core-level spectra in the Zr3d region for SiCDCHibBM3 (a), 

SiCDCHibBM4 (b) and SiCDCHibBM1 (c) samples, respectively. 
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SUMMARY 

The aim of the study was to determine the surface composition of electrocatalytic materials 

by X-ray photoelectron spectroscopy (XPS). In this master’s thesis, two sets of carbon-based 

electrocatalysts were analyzed. The first set of samples were metal-nitrogen-carbon (MNC) catalysts 

(doped with Fe and Co). The effect of acid treatment during preparations on the composition of these 

catalysts has been studied. The second set of samples consists of carbide-derived carbon (CDC) 

catalysts, which were ball-milled under different conditions.  

XPS was used as an analytical method for the quantification and analysis of material in the 

topmost layers of the sample. According to the XPS, the main elements in samples are carbon, 

nitrogen and oxygen. In the first series (MNC-based) also the presence of iron and cobalt, introduced 

in preparation, was confirmed. In CDC-based electrocatalysts also the presence of silicon and 

zirconium was observed. 

The XPS spectra in the N1s region showed seven different peaks for all investigated samples 

(pyridinic-N, pyrrolic-N, amines/metal-Nx, imine-N, graphitic-N, NO and bulk N-H). In samples A1-

A4, SiCDCHibBM1 and SiCDCHibBM4 nitrogen was mainly in pyridinic-N state.  

The quantitative analysis of C1s XPS spectra shows seven peaks (sp2 C, sp3 C, C-O-C, C=O, 

C-O=C, π-π*, and carbide) with significant dominance of sp2 carbon.  

Measurements and assessment of O1s XPS spectra demonstrate different oxygen-containing 

functional groups on the surface (metal oxide, O=C-OH carboxyl, C=O carbonyl and C-O, C-OH, 

chemisorbed O).  

In the case MNC-based catalysts, the comparison of materials treated and untreated with acid 

during preparation showed that the metal content at the surface was higher for untreated catalysts 

(A3-Fe and A4-Co), due to the presence of transition metal-containing nanoparticles at the  surface. 

The study of different carbon-oxygen functionalities, nitrogen species and metal-Nx sites on 

the catalyst surface was of particular importance. The electrocatalytic properties of catalyst materials 

towards the oxygen reduction reaction are related to the surface concentration of active species as 

determined by XPS. 
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X-Ray Photoelectron Spectroscopy Studies of Carbon-Based Electrocatalytic Materials 

X-ray photoelectron spectroscopy (XPS) was used for investigation of carbon-based 

electrocatalysts. According to the measurements, in a majority of samples, the main components were 

carbon, nitrogen and oxygen, as expected. In metal-nitrogen-carbon catalysts, the presence of iron 

and cobalt, introduced during preparation, was proved and in carbide-derived carbon catalysts 

zirconium and silicon were found. The results of N1s measurements showed 7 different nitrogen 

species in samples such as pyridinic-N, pyrrolic-N, amines/metal-Nx, imine-N, graphitic-N, NO and 

bulk N-H. The quantitative analysis of C1s demonstrated 7 states of carbon (sp2 C, sp3 C, C-O-C, 

C=O, C-O=C, π-π*, and carbide) with significant dominance of sp2 carbon. In O1s spectrum the 

following different oxygen-containing groups were observed: metal oxide, O=C-OH carboxyl, C=O 

carbonyl, C-O, C-OH, and chemisorbed O. The chemical composition of the samples was determined. 

The study of different carbon-oxygen functionalities and nitrogen species on the catalyst 

surface was of particular importance. The electrocatalytic properties of the catalyst material for the 

oxygen reduction reaction are related to the active sites on the catalyst surface. Determined peaks 

agree, in general, well with literature findings in different electrocatalysts. 

Keywords: X-ray photoelectron spectroscopy, Electrocatalyst, Fuel cell. 

CERC code: P352  

Süsinikupõhiste elektrokatalüütiliste materjalide fotoelektronspektroskoopilised 

uuringud 

Süsinikupõhiste elektrokatalüütiliste materjalide uurimiseks kasutati röntgenfotoelektron-

spektroskoopiat. Mõõtmiste kohaselt koosnevad kõik proovid ootuspäraselt peamiselt süsinikust, 

lämmastikust ja hapnikust. Metall-lämmastik-süsinik katalüsaatormaterjalide korral näidati nende 

valmistamise käigus sisse viidud raua ja koobalti olemasolu, karbiidset päritolu süsinikust 

valmistatud proovides leiti tsirkooniumi ja räni olemasolu. Lämmastiku 1s mõõtmiste tulemused 

näitasid kõigis uuritud proovides 7 erineva lämmastikuvormi olemasolu: püridiinne-N, pürroolne-N, 

amiinid/metall-Nx, imiin-N, grafiitne-N, NO ja N-H. Süsiniku 1s fotoelektronspektrid näitasid 

erinevate süsinikuvormide olemasolu: (sp2 C, sp3 C, C-O-C, C=O, C-O=C, π-π * ja karbiid), kusjuures 

sp2 süsinik domineeris. Hapniku korral tuvastati järgmised erinevad funktsionaalsed rühmad: 

metalloksiid, O=C-OH (karboksüül), C=O (karbonüül ja CO), C-OH ja absorbeerunud O. Määrati 

kõigi katalüsaatormaterjalide pinna keemiline koostis. 

Katalüsaatormaterjalide elektrokatalüütilised omadused hapniku redutseerimisel on seotud 

aktiivsete tsentritega materjalide pinnal. Seetõttu on erinevate süsiniku-hapniku ja 

lämmastikurühmade tuvastamine katalüsaatori pinnal eriti oluline. Saadud tulemused on üldiselt heas 

kooskõlas kirjanduses toodud andmetega. 

Märksõnad: Röntgenfotoelektronspektroskoopia, elektrokatalüsaator, kütuseelement. 


