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ABSTRACT 

The influence of bariatric surgery methods on the Firmicutes/Bacteroidetes ratio in obese 

patients 

Obesity is a worldwide health problem that negatively affects the quality of life. Obese 

individuals have a high risk for a number of serious chronic diseases. The development of 

obesity in humans is influenced by proportions of the phyla Firmicutes and Bacteroidetes in 

the intestinal microbiota. Bariatric surgery is an invasive method that has been successfully 

used in obesity treatment. The present study was performed to compare the counts of phyla 

Firmicutes and Bacteroidetes in faecal samples of pre- and post- bariatric surgery (sleeve 

gastrectomy and roux-en-Y gastric bypass) patients. Obtained results indicated that both 

bariatric surgery methods had effect on body mass index (BMI) and the counts of the 

Firmicutes phylum. Patient gender also had an influence on the changes in gut bacterial 

composition after bariatric surgery. 

Keywords: Bacteroidetes; Firmicutes; obesity; bariatric surgery; RT-PCR 

CERCS: B726 Clinical biology; B230 Microbiology, bacteriology, virology, mycology; 

B570 Obstetrics, gynaecology, andrology, reproduction, sexuality 

Bariaatrilise kirurgia meetodite mõju Firmicutes/Bacteroidetes suhtele rasvunud 

patsientidel 

Rasvtõbi on ülemaailmne terviseprobleem, mis mõjutab negatiivselt elukvaliteeti. Rasvtõvega 

kaasneb kõrge risk haigestuda kroonilistesse haigustesse, näiteks diabeet, südamehaigused 

jne. Varasemad tööd on näidanud, et rasvtõve kulgu mõjutab hõimkondade 

Firmicutes/Bacteroidetes suhe seedetraktis. Antud töö eesmärgiks oli võrrelda hõimkondade 

Firmicutes ja Bacteroidetes kvantitatiivseid muutusi ja suhet enne- ja pärast bariaatrilist 

operatsiooni (vertikaalne maoresektsioon ja maost möödajuhtiv operatsioon) patsientide 

roojaproovidest. Saadud tulemused näitasid, et mõlemad kirurgilised meetodid mõjutavad 

kehamassiindeksi (KMI) ja Firmicutes hõimkonna arvukust. Peale bariaatrilist operatsiooni 

oli soolestiku bakterikoosluse koosseis sõltuv patsientidi soost. 

Märksõnad: Bacteroidetes; Firmicutes; rasvtõbi; bariaatriline kirurgia; RT-PCR 

CERCS: B726 Kliiniline bioloogia; B230 Mikrobioloogia, bakterioloogia, viroloogia, 

mükoloogia; B570 Sünnitusabi, günekoloogia, androloogia, paljunemine, seksuaalsus. 
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GENERAL INTRODUCTION 

The human intestine is a natural habitat for billions of archaea and bacteria. The human gut 

microbiota is a complex community, which has a mutualistic relationship with the host 

organism, having an influence on physiological processes. Characterization of the changes in 

microbial composition and diversity may help to understand the role of the gut microbiota in 

health and disease. Although, mechanisms of interactions and changes are not completely 

understood, it is important to know more about them for future diagnosing and treatment of 

different pathologies. 

Overweight and obesity are defined as abnormal or excessive fat accumulation that may 

impair health (World Health Organization). The intestinal microbiota can be viewed as an 

’organ’ that may be involved in the development of obesity through metabolic activity and 

performs functions that host organism cannot perform on its own (Bäckhed et al., 2005). Two 

dominant phyla of bacteria in human gut microbiota are Firmicutes and Bacteroidetes 

(Mahowald et al., 2009). These phyla are shown in association with obesity (Ley et al., 2005). 

Bariatric surgery is one of the modalities that is available today for obesity treatment. It is an 

invasive method used to change the capacity and shape of the stomach. Sleeve gastrectomy 

(SG) and roux-en-Y gastric bypass (RYGB) are most common currently used bariatric 

procedures, exerting different physiological changes in the gastrointestinal tract that possibly 

induce different changes in the gut microbiota and may contribute to different health 

outcomes such as weight loss and decrease of obesity related diseases. Quantitative 

characterization of the intestinal microbiota composition before and after bariatric procedures, 

especially two dominant phyla Firmicutes and Bacteroidetes, provide important information 

regarding potential associations between gut microbiota and obesity. 

The purpose of this study is to expand our knowledge about the counts of the phyla 

Firmicutes and Bacteroidetes and their ratio in faecal samples of obese patients in pre- and 

post-bariatric surgery periods, as well as to assess the influence of sleeve gastrectomy and 

roux-en-Y gastric bypass bariatric surgery methods on these phyla and their ratio. 

This study was performed at the Institute of Biomedicine and Translational Medicine, Chair 

of Medical Microbiology and the Institute of Molecular and Cell Biology, Tartu University. 
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1. LITERATURE OVERVIEW 

1.1 Microbiota of human digestive tract 

Digestive tract or gastrointestinal tract (GI) is an organ system responsible for extracting and 

absorbing energy and nutrients from the food. Human digestive tract (Figure 1) is divided into 

upper and lower tracts. Upper tract consists of oral cavity, esophagus, stomach and 

duodenum. Lower gastrointestinal tract includes the small intestine, which is subdivided into 

duodenum, jejunum and ileum, while the large intestine is subdivided into the cecum, colon, 

rectum and anal canal. (Treuting et al., 2012) 

 

Figure 1. Anatomy of human gastrointestinal tract (Wikimedia Commons). 

The human digestive tract is a natural habitat for different bacterial species. It contains a large 

variety of microorganisms, consisting of over 1000 different species (Huttenhower et al., 

2012) and up to 1012  bacterial cells in the colon (Marteau et al., 2001). The total genome of 

human gut microbiota is 150 times larger than the human gene complement (Qin et al., 2010). 

The diversity of gut microbiota varies according to the location within the digestive tract 
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(Figure 2) and depends on oxygen availability, temperature and pH level. The most dominated 

bacteria are members of the Firmicutes (Gram-positive) and Bacteroidetes (Gram-negative) 

phyla (Stearns et al., 2011). Two major classes found in gastrointestinal tract from phylum 

Firmicutes are: Clostridia and Bacilli, however Erysipelotrichi and Negativicutes have been 

also determined. Within Clostridia class most commonly retrieved families are 

Ruminococcaceae, Clostridiaceae and Lachnospiraceae, within Bacilli class Bacillales and 

Lactobacillales orders were detected, nevertheless, it was not possible to identify bacterial 

families, common between different individuals. Within the Bacteroidetes phylum 

Bacteroidaceae family was most frequently recruited, though, Porphyromonadaceae, 

Prevotellaceae and Rikenellaceae families are also retrieved from almost all individuals. 

(Peris-Bondia et al., 2011) Composition of the microbiota of the gastrointestinal tract 

correlates with host’s function, physiology and metabolism, including energy balance and 

storage (Bäckhed et al., 2005), maturation of the host immune system (Mazmanian et al., 

2005), vulnerability to disease (Vijay-Kumar et al., 2010) and also social behavior (Bercik et 

al., 2011).  

 

Figure 2. Bacterial biogeography in human gastrointestinal tract (GI) (Sekirov et al., 

2010) (bacterial counts are expressed in CFU/g, colony forming units per gram of content). 

Human oral cavity is characterized with the mixed microbiota with predominance of Gram-

positive aerobic and anaerobic cocci. Average abundance is estimated to be 108 CFU (colony 

forming units) per ml of saliva, considering that organisms are derived from host surfaces, 

especially the tongue. (Marsh et al., 2016) Bacterial species are not only found in saliva, they 
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also accumulate on both soft and hard oral tissues to form biofilm. Mouth is mostly colonized 

by members of Streptococcus species (sp.), Velionella sp., Prevotella sp., Lactobacillus sp., 

Corynebacterium sp., Fusobacterium sp. and Staphylococcus sp. that constitutes the major 

population of the upper part of the gastrointestinal tract (Zilberstein et al., 2007).  

The epithelial layer of the esophagus is normally wet and has a similar pH to oral cavity (pH 

= 7) (Pilato et al., 2016). Streptococcus sp. and Staphylococcus sp. are dominant, but also 

Peptococcus sp. have been detected. (Zilberstein et al., 2007) Bacterial diversity of the 

esophagus microbiota is significantly smaller compared to the mouth microbiota (Manson et 

al., 2008). The flora in this segment is mostly transitional, i.e. it consists of microbes living on 

foods or in liquids, which human consumes.  

Stomach and duodenum microbiota differs from esophagus and mouth microbiota. The main 

reasons for that are anaerobic environment and secretory activity, which predetermines low 

pH (pH = 2). There are five major phyla determined in the stomach: Firmicutes, 

Bacteroidetes, Actinobacteria, Fusobacteria and Proteobacteria. (Stearns et al., 2011) 

Duodenal microbiota predominantly consists of Firmicutes and Actinobacteria, whereas 

Bacteroidetes are almost completely absent (Angelakis et al., 2015). The abundance of 

microorganisms here is 101-103 CFU per gram of content (Hakansson et al., 2011) and 

predominant genera are Clostridium sp., Lactobacillus sp., Veillonella sp. and pathogen 

Helicobacter pylori (Zilberstein et al., 2007). 

Microbiota of the lower digestive tract includes bacteria colonizing small (jejunum and ileum) 

and large intestines (colon, rectum, anal canal). Some of the bacterial genera in the small 

intestine are similar to upper tract, however microbiota of the large intestine has bigger 

variety of anaerobic bacteria (Figure 3), and overall diversity is also higher than in the upper 

tract. In the small intestine the abundance of bacteria is 104-107 CFU/g of content, while in the 

large intestine is up to 1012 CFU/g of content. (Marteau et al., 2001)  
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Figure 3. Venn diagram of major bacterial genera of colon, jejunum and mouth (Sundin 

et al., 2017). 

Large surface area of the small intestine absorbs approximately 90% of the overall energy 

from the diet (Sekirov et al., 2010). The predominant species that inhabit the small-intestinal 

tract are facultative anaerobes and aerobes belonging to the genera Lactobacillus, 

Escherichia, Enterobacter, Streptococcus and Klebsiella (Hayashi et al., 2005). However, it 

was also reported that Velionella sp. and genera such as Clostridium and Turicibacter are 

present in varying amounts per individual (El Aidy et al., 2015). 

Microbiota in the large intestine is described by analyzing mucosal and faeces samples 

(Eckburg et al., 2005). In contrast with the small-intestinal microbiota, the large-intestinal 

microbiota is higher in number and predominant species are mainly anaerobic (Hayashi et al., 

2005). Microbiota is presented mainly by members of the genus Bacteroides, Bifidobacterium 

and anaerobic cocci. It has been shown that facultative anaerobes and aerotolerant species 

from Lactobacillus genus also exist here but are less dominant. The dominant genera of 

colonic microbiota are Coprococcus, Peptostreptococcus, Eubacterium and Ruminococcus, 

but proportions usually vary between individuals. In lower numbers are reported the members 

of Fusobacterium, Streptococcus, Lactobacillus, Enterococcus, Veillonella, Megasphaera, 

Propionibacterium and Enterobacteriaceae. (Shigwedha et al., 2013) 
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1.2 The metabolic functions of the intestinal microbiota 

Mammalian genomes lack of the ability to encode a great diversity of degradative enzymes, 

which are crucial for digestion (Flint et al., 2012). The metabolic activity of gut microbiota 

can regulate energy balance via mechanisms that affect energy harvest from the diet as well as 

modulate genes that affect energy storage (Nehra et al., 2016). Gut microbiota is a rich 

microbial community, which has predominantly saccharolytic and proteolytic activity. 

Substrates, which are not utilized in the small intestine move to the large intestine where they 

can be degraded by the microbiota alongside with endogenous polysaccharides. (Cummings et 

al., 1986) For example, carbohydrates, which reach the human colon, mainly consist of 

resistant starch, plant polysaccharides (plant cell wall and reserves) and some 

oligosaccharides as well as sugars such as inulin, gums, mucilages and fructooligosaccharides 

(Table 1) (Cummings et al., 1991). 

Table 1. Fermentable components that reach the human colon (Lewandowska, 2010) 

 

Gut microbiota is also capable of de novo synthesis of vitamins, which are essential for the 

host. B12 vitamin cannot be produced by animals, however, lactic acid bacteria can provide 

B12 to its host through metabolic reactions. (LeBlanc et al., 2013) 

1.2.1 Digestion of polysaccharides 

Carbohydrate fermentation reactions in the large intestine are affected by a variety of 

nutritional, host and dietary factors. The majority of carbohydrate reaching the large intestine 

are in the form of polysaccharides, which must be depolymerized, before they can be 

assimilated by the bacteria (Englyst et al., 1987). In this regard, metabolic activity of 

gastrointestinal tract microbiota is mainly dependent on substrate availability (Cummings et 

al., 1991). The analysis of gut bacterial community metagenome revealed the presence of high 

number and variety of genes involved in carbohydrate breakdown (Tasse et al., 2010). 

Metabolites produced during the fermentation are highly variable in composition and structure 
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- polysaccharides, oligosaccharides, proteins, peptides and glycoprotein precursors - are 

transformed into short-chain fatty acids (SCFAs) and gases. The formation of these products 

is the result of a complex interplay between diet and the gut microbiota within the gut lumen 

environment. Members of bacterial community compete for a given substrates and may also 

catalyze complementary reactions. This confers stability of the whole ecosystem. (Blaut, 

2015) 

The main gaseous byproducts of the fermentation are CO2 and H2, which are used by 

methanogens for CH4 production (Bauchop et al., 1981), by acetogens and sulfate-reducing 

organisms for acetate and H2S production (Gibson et al., 1988). 

1.2.2 Digestion of proteins 

Connective tissue proteins (elastin and collagen), serum albumins, plant proteins and proteins 

secreted by the bacteria or released during cell lysis are commonly digested by the colon 

microbiota (Cummings et al., 1991). It has been shown that the rate of the protein 

fermentations is increased if the concentration of carbohydrates is high (Birkett et al., 1996). 

Сonsequently, the activation of metabolic pathways and then the flow of generated 

metabolites are highly correlated with the dietary carbohydrate/protein ratio. 

In the digestive tract proteins are hydrolyzed by proteases and peptidases, derived from both 

host and bacteria, into small compartments such as peptides and amino acids (Macfarlane et 

al., 1988). Some of these products act as energy substrates for the colonic mucosa or can be 

precursors for metabolic reactions for the synthesis of numerous products (Davila et al., 

2013). For instance, Fusobacteria and Clostridia are able to ferment amino acids to SCFAs 

and gaseous byproducts such as H2, NH3, CO2 in the absence of electron acceptors (Kim et al., 

2004).  

1.2.3 Short-chain fatty acids 

Short-chain fatty acids (SCFAs) are volatile fatty acids with 1 to 6 straight or branched-

chained carbon (С) atoms that are the end products of fermentation of dietary fibers by the 

anaerobic intestinal microbiota, usually absorbed in the colon of the host and regulating 

mammalian metabolism. The main SCFAs, formed during this process are acetic (C2), 

propionic (C3) and butyric (C4) acid in a molar ratio approximately 60:20:20, respectively 

(Cummings et al., 1979). Other fermentation products such as lactate, ethanol and succinate 

are the intermediates in the global fermentation process and, to varying extents, are 

metabolized to SCFA by cross-feeding species in the ecosystem (Bernalier et al., 1999). 
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Different bacterial species use various fermentation mechanisms. For instance, members of 

the Firmicutes phylum are the main producers of butyric acid (Duncan et al., 2002). The 

second most abundant bacterial division in human gut is Bacteroidetes, which mostly 

produces propionic and acetic acid (Rey et al., 2010). One of the studies suggested that faecal 

SCFA concentrations are higher in lean than in obese individuals (Schwiertz et al., 2010). 

Consequently, the Firmicutes/Bacteroidetes ratio has an impact on SCFAs absorption, having 

and influence on energy harvesting in host. 

SCFAs have distinct physiological effects: they contribute to shaping the gut environment, 

stimulating cell-proliferation, affecting mineral balance, regulating the metabolism of lipids 

and glucose (Nowak et al., 2008) and they also can be oxidized and used as energy sources by 

host tissues (Roediger, 1980).  

Acetic acid is one of the main SCFAs that has an effect on host physiology. Acetate is easily 

determined from blood samples and therefore it is applicable for monitoring the health of the 

colon. Acetic acid is metabolized by peripheral tissues and is a substrate for the synthesis of 

cholesterol and long-chain fatty acids (Wolever et al., 1989). Acetate reduces appetite through 

central hypothalamic mechanism (Frost et al., 2014), stimulates proliferation of normal crypt 

cell, enhances ileum motility and increases the colonic blood flow (Scheppach, 1994). One of 

the studies showed that acetate may have a role in adipogenesis, being the ligand for G 

protein-coupled receptor (GPCR) GPCR43 on adipose tissue. GPCRs are transmembrane 

receptors, which activate cellular responses, regulating food intake, energy expenditure and 

body weight. (Hong et al., 2005) 

Propionic acid has a potential role in lipogenesis, being the ligand for GPCR43 and affecting 

adipocyte differentiation (Hong et al., 2005). It has an ability to increase spontaneous 

contractions of the colonic smooth muscle, resulting in formation of faecal pellets (Ono et al., 

2004). Propionate, being the ligand for GPCR41, increases the production of leptine - a 

satiety hormone in human (Xiong et al., 2004).  

Butyric acid is the principal energy compound for intestinal epithelial cells, therefore it is 

believed to maintain a normal colonocyte population. Being the main fuel for these cells, 

butyrate plays a critical role in moderating cell growth and differentiation. (Topping et al., 

2001) Butyrate is able to promote satiety similarly to propionate (Zhou et al., 2006).  

1.2.4 Digestion of dietary fats 

Dietary fats are digested in the form of triglycerides by lipases within the intestinal lumen. As 

the result of this process fatty acids (FA) are released and absorbed in the intestinal epithelium 
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by enterocytes (Karasov et al., 2007). Later they may be oxidized to generate energy, re-

esterified into triglycerides and temporarily stored as cytoplasmic lipid droplets (LD), 

incorporated into chylomicrons (small lipoprotein particles) for secretion into the lymph 

(Hussain, 2000) or released into circulation as free fatty acids (Figure 4) (Iqbal et al., 2009).  

 

Figure 4. Lipid digestion and absorption by host (Chhabra, 2013). 

Microorganisms contribute to lipid absorption by host tissues, influencing LD accumulation 

and FA absorption by enterocytes using four nonexclusive mechanisms. Microbes may 

increase biological availability of FAs, modifying the composition or production of bile salts. 

Bile acids are cholesterol derivatives, which act like detergent molecules, important for 

absorption of dietary fats and liposoluble vitamins in the small intestine and the maintenance 

of cholesterol homeostasis in the liver. Bile acids are also recognized as signaling molecules 

with systemic endocrine functions. (Swann et al., 2011) Furthermore, microbes are able to 

change the absorption of FA, contributing directly to luminal lipolytic activity (Ringø et al., 

1995). Intestinal bacteria are capable of evoking physiologic responses in the intestinal 

epithelium to indirectly enhance its capability to absorb FAs. Microbiota promotes not only 

absorption, but also export of FAs to the liver LDs regardless of diet history. Finally, 

microbes in gut may reduce the oxidation rate of FAs, increasing their storage in LDs, 

affecting LD size regardless of diet history and increasing LD number. (Semova et al., 2012) 

1.3 Human gut microbiota and obesity 

Intestinal microbiota performs chemical reactions, which are important for regulation of 

metabolic activity of the organism. The proper symbiotic relationship between the host and 

bacteria provides appropriate development of the metabolic system. However, disturbances in 

this communication can result in dysregulation of the immune system and also contribute to 

mechanisms, which are important in the development of diseases such as obesity (Turnbaugh 
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et al., 2006). Obesity is a disease, described as an imbalance between energy consumption and 

expenditure, which course is influenced by different genetic (O’Rahilly et al., 2009), cultural, 

behavioral (Ogden et al., 2007), environmental (Mujico et al., 2013) and microbial factors 

(Turnbaugh et al., 2006).  

Microbiological research continues to enrich the knowledge of the relationship between 

metabolic disorders and intestinal microbiota by providing additional ways to treat them. One 

of the most recent researches showed that Lactobacillus plantarum (LP) and Lactobacillus 

fermentum (LF) alone or in combination have weight-lowering effects in rats. The study 

found that food enriched with LP, LF or both has an influence on the size of adipose cells in 

fat tissue. (Li et al., 2018) Hou et al. (2017) observed that the amount of Bifidobacterium and 

Lactobacillus increases among the obese children during the process of weight loss, and 

offered that Bifidobacterium and Lactobacillus might be used as indicators of healthy 

conditions among obese patients, as well as a prebiotic and probiotic supplement in the diet 

for obesity treatment. (Hou et al., 2017) 

The entire human gastrointestinal tract is covered by mucus layer. Its main functions are to 

cover epithelial cells and protect them from pathogens due to the inhibition of host-pathogen 

interaction. (Moal et al., 2006) Mucins are a family of glycoproteins and main organic 

components of mucus layer. Important commensal and probiotic bacteria use mucins as 

substrates for fermentation, degrading these proteins with specific enzymes. (Derrien et al., 

2010) Akkermansia muciniphila is mucin-degrading bacteria, which is abundantly present in 

the human intestinal tract, making up to 1–4% of the bacterial population in the colon 

(Collado et al., 2007). Everald et al. (2013) demonstrated that the abundance of A. 

muciniphila was lower in obese and type II diabetic (T2D) mice than in lean mice gut 

microbiota. It was proposed that the metabolic products of A. muciniphila play an important 

role in maintaining and normalizing gut microbiota. (Everard et al., 2013) 

Despite the fact that microbiota of gastrointestinal tract varies from host to host, Bacteroidetes 

and Firmicutes are two bacterial divisions, which maintain dominance in the human gut 

(Stearns et al., 2011). Changes in the Firmicutes/Bacteroidetes ratio have been associated 

with obesity development (Ley et al., 2005; Ley et al., 2006).  

Human and mouse are quite similar in physiology and anatomical structures, in this regard 

mouse is a biomedical model, which is accepted for research purposes. Ley et al. (2005) 

analyzed 16S rRNA sequences of the distal intestinal (cecal) microbiota in genetically obese, 

lean and wild-type mice. The distal intestinal microbiota of obese mice had a statistically 
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significant 50% reduction in abundance of Bacteroidetes, relative to lean mice, and a 

significantly greater proportion of Firmicutes. These changes were not associated with 

specific bacterial subgroup, which means that they were division-wide. No subgroup was 

amplified or lost due to these divisions. (Ley et al., 2005)  

Turbaugh et al. (2006) studied energy harvesting using cecal microbiota transplantation 

method from obese humans to germ-free mice. Recipients demonstrated a greater increase in 

body fat if their gastrointestinal tract was colonized with ‘obese microbiota’ rather than ’lean 

microbiota’. Researchers also speculated that these changes in microbiota correlate with 

energy harvest from diets and changes of body index within an individual, which in its turn 

contributes to the pathophysiology of obesity. (Turnbaugh et al., 2006) 

1.4 Surgical treatment of obesity 

One of the most effective and successful treatment methods of obesity and type 2 diabetes is 

bariatric or metabolic surgery (Dixon et al., 2011). Bariatric surgery stimulates weight loss by 

restriction (reduces the quantity of food intake) or malabsorption (reduces the absorption) or 

both (Karmali et al., 2010). The two most commonly performed bariatric surgery procedures 

are roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) (Figure 5) (Buchwald et 

al., 2013).  

 

Figure 5. Bariatric surgery procedures. Left - roux-en-Y gastric bypass (RYGB), right - 

sleeve gastrectomy (SG) (Harley Street Bariatrics, 2014). 

RYGB reduces the stomach capacity due to the creation a small gastric pouch while 

absorption is reduced by jejunojejunostomy (dividing the small intestine into two parts, 

creating a bypass). The lower part of the divided jejunum (Figure 5, left) is integrated directly 

into the gastric pouch, while the other is surgically connected to the certain place down the 
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small intestine. (Schauer et al., 2003) As a result, the food ’bypasses’ the upper part of the 

intestine. Therefore, gastric bypass is both restrictive and malabsorptive method. This 

procedure might lead to conditions that increase energy expenditure, nevertheless, it is 

considered to be technically complex and difficult. In addition, RYGB has the potential for 

long-term vitamin and mineral deficiencies. (American Society for Metabolic and Bariatric 

Surgery) 

On the other hand, gastric sleeve is a purely restrictive modality. The stomach is transected, 

leaving a narrow stomach tube (Figure 5, right). All the curvatures, junctions and sizes must 

be calibrated, insuring proper intake and absence of leaks. (Darwish et al., 2017) 

Consequently, the capacity of the stomach is minimized and lesser curvature is preserved as 

the result of this procedure. This method does not require bypass or re-routing the food 

stream, which usually involves a relatively short hospital stay in contrast to RYGB. However, 

this procedure also can lead to long-term vitamin/mineral deficiencies, requiring lifelong 

supplementation and adherence to dietary recommendations. (American Society for Metabolic 

and Bariatric Surgery) 

Gastric bypass surgery remodels gut microbiota, resulting in an increase in the relative 

abundance of Gammaproteobacteria (Escherichia), which has not only pathogenic but also 

nonpathogenic commensal species, and Verrucomicrobia (Akkermansia), which have a certain 

role in regulating host weight and adiposity. Additionally, it was reported that transfer of the 

gut microbiota from RYGB-treated mice to non-treated, germ-free mice promoted weight loss 

and decrease of the fat mass in the recipient animal. (Liou et al., 2013) One of the recent 

studies reported that unlike gastric bypass, gastric sleeve does not increase gut microbiota 

diversity, nevertheless it enhances the abundance of the Bacteroidetes phylum (Murphy et al., 

2017). 

Ghrelin is a hormone responsible for inducing appetite in rodents and humans. It has been 

shown that RYGB and SG are associated with suppressed ghrelin levels, which is believed to 

contribute to the weight-reducing effect of the whole procedure (Cummings et al., 2002; Tsoli 

et al., 2013). Hormones, glucagon-like peptide (GLP)-1 and peptide YY3–36 (PYY), are also 

important in appetite reduction, their levels increase after RYGB (Ochner et al., 2011). 

However, it was noticed that patients subjected to the gastric sleeve method had a greater 

appetite loss than RYGB group (Karamanakos et al., 2008). Bile acids are acknowledged as 

molecules with endocrine functions (Houten et al., 2006) and found to stimulate the release of 

hormones GLP-1 and PYY (Pournaras et al., 2012). It was discovered that bile acid 

concentrations are reduced in obese individuals, while RYGB has been reported to normalize 
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bile acid deviations (Ahmad et al., 2013). Both surgery procedures have an effect on weight 

loss resulting in an increased insulin sensitivity, improved β-cell functions and glucose 

tolerance (Bradley et al., 2014).  

1.5 Real-time PCR in microbiological research 

Real-time polymerase chain reaction (real-time PCR; RT-PCR) is widely used as a molecular 

approach, for quantification of specific bacterial groups in human microbiota. This method 

uses a chemiluminescent reaction to determine the kinetics of product accumulation during 

PCR amplification with specific primers for a specific group or species of bacteria. The 

product accumulation rate curves are usually used for calculation of number of original target 

molecules in a sample. (Espy et al., 2006) 

There are two different approaches for RT-PCR: using DNA binding dyes such as SYBR-

Green I and Taqman assay. Both methods are sensitive and rapid, however, principles of 

detection and optimization of these assays are different.  

SYBR-Green I binds to double stranded PCR product increasing the level of fluorescence. 

The level of fluorescence detected is directly related to the amount of amplified target in each 

PCR cycle. (Wittwer et al., 2001) The primary disadvantage of the SYBR-Green I dye 

chemistry is that it may generate false positive signals; i.e. because the SYBR-Green I dye 

binds to any double-stranded DNA, it can also bind to nonspecific double-stranded DNA 

sequences. However, method is cheaper than Taqman assay because no additional probe is 

required. For additional support, the melting curve can be performed for SYBR-Green I assay, 

giving information about reaction quality. 

Taqman assay is based on Taq polymerase 5’ nuclease activity, which is able to cleave a non-

extendible hybridization probe during the extension phase of PCR. Probes are labeled with 

two different fluorescent dyes: reporter and quenching dye. After denaturation stage Taqman 

probe and primers bind to its specific sequence of the template DNA. During the extension of 

the strand Taq polymerase then adds nucleotides and removes the probe from the template, 

removing quencher from the reporter and allowing the reporter to give off its energy, resulting 

in fluorescence. (Heid et al., 1996) The more denaturing and annealing occurs, the more 

Taqman probe binds and, in its turn, the higher is the level of fluorescence. Contrastingly to 

SYBR-Green I, Taqman assay provides a higher level of specificity and quantitation (Ponchel 

et al., 2003). However, this method still suffers from high sensitivity to contamination and 

requires the synthesis of probes, resulting in higher cost of the assay.  
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16S ribosomal RNA (rRNA) is the component of the 30S small subunit of a prokaryotic 

ribosome that binds to the Shine-Dalgarno sequence. The genes coding this component are 

referred to as 16S rRNA genes and are used in phylogeny, due to the slow evolutionary rate of 

this gene region. (Woese et al., 1977) Using these primers, it is possible to identify and 

quantify 16S rRNA genes, which allows measuring specific microbial population in samples.  

Fluorescence data generated in real-time PCR assays are collected and analyzed with specific 

programs from PCR cycles that occur within the linear amplification portion of the reaction, 

where conditions are optimal and the fluorescence accumulates in proportion to the amplicon 

(Figure 6) (Mackay et al., 2002). Baseline shows early reaction cycles, in which little change 

in fluorescence signal is observed. Cycle threshold (Ct) is the fractional cycle number at 

which the fluorescent signal reaches the early exponential phase (Mackay, 2004). Every 

sample is characterized by its Ct value, which is proportional to the logarithm of the target 

copy numbers (Wilhelm et al., 2000). 

 

Figure 6. Amplification curve of real-time PCR, when plotted as fluorescence intensity 

(Porterfield, 2015). 

It is necessary to arrange controls after the reaction. No template control should be arranged 

in order to verify amplification quality. Endogenous controls are used in order to exclude 

false-negative reactions. Performing this control usually includes amplifying household 

sequences (Niesters, 2001). The common practice for quantification is to use standard curve 

method, which is retrieved from the exogenous control (Mackay, 2004). This control is 

performed using a cloned amplicon, a portion of the target organism’s genome, or simply 
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purified amplicon itself (Borson et al., 1998). Diluted amplicon series are created and used as 

templates in real-time PCR reaction, generating the standard curve. Later, the concentration of 

an unknown sample, amplified in the same reaction, but separate vessel, can be found from 

the curve. (Mackay, 2004)  

Due to the fact that real-time PCR method is sensitive, relatively cheap and cross functional, it 

can be widely used in different microbiological research to quantify bacteria from various 

samples, including faeces (Requena et al., 2002; Malinen et al., 2003; Matsuki et al., 2004), 

dairy products and food (Kao et al., 2007). One of the studies used primers, which were 

specific for 16S rRNA genes of faecal bacteria, in order to estimate the total amount of faecal 

contamination in water (Layton et al., 2006). The use of multiple primer sets to amplify 

multiple templates within a single reaction  has been investigated, but in some cases it has 

been considered to be problematic due to the limited quantity of fluorophores available for 

detection (Wittwer et al., 2001). Real-time PCR assay can also be performed for clinical 

pathogen diagnostics (Klein, 2002). 

Real-time PCR was also used for defining the ratio of Firmicutes and Bacteroidetes in faecal 

samples, which are believed to be related to obesity syndrome. Guo et al. (2008) used specific 

bacterial primers to investigate the relative abundance of these two bacterial divisions. (Guo 

et al., 2008).  

 

 

The current study is a part of the bigger research project, supported by Estonian Research 

Council (grant No. IUT34-19), Estonian Ministry of Education and Research (grant No. 

KOGU-HUMB) and Enterprise Estonia (grant No. EU48695) and was conducted at the 

Institute of Biomedicine and Translational Medicine. The aim of this study is to use the 16S 

rRNA gene specific primer pairs in real-time PCR method to quantify the number of bacteria 

belonging to the phyla Firmicutes and Bacteroidetes (more precisely genera Bacteroides, 

Prevotella and Porphyromonas, because these genera are the most abundant and found 

throughout the human intestine).  
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2. EXPERIMENTAL PART 

2.1. Aims of the study 

The purpose of the study was to compare the counts of the phyla Firmicutes and 

Bacteroidetes (more precisely genera Bacteroides, Prevotella and Porphyromonas) and their 

ratio in faecal samples of pre- and post-bariatric surgery patients as well as to assess the 

influence of bariatric surgery methods. 

The present study set the following specific aims: 

1. to assess the clinical data of pre- and post-bariatric surgery patients;  

2. to quantify the phyla Firmicutes, Bacteroidetes and their ratio in faecal samples before 

and after the bariatric surgery; 

3. to assess the influence of gender on the changes of studied bacterial phyla and their ratio 

after bariatric surgery.  
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2.2. Materials and methods  

2.2.1. Study group  

The study was carried out at Department of Microbiology, Institute of Biomedicine and 

Translational Medicine, University of Tartu in collaboration with Tartu University Hospital. 

The study group comprised 59 pre-bariatric (38 females and 21 males; age: 46.2±9.9 and 

45.5±9.6 years) and 32 post-bariatric (23 females and 9 males; age: 47.5±9.7 and 47.2±9.6 

years) attending the Surgery Clinic, Abdominal surgery department of Tartu University 

Hospital between March 2015 - December 2016. The experimental design applied to these 

cohorts was approved by the Ethics Committee of the Medical Faculty of the University of 

Tartu with approval No. 241T-13. The present study was conducted according to the 

guidelines laid down in the Declaration of Helsinki.  

Subjects were exempted from acute or chronic inflammatory diseases, infectious diseases, 

viral infection, cancer, and/or known alcohol consumption. No antibiotics were taken before 

surgery or during the post-surgery follow-ups.  

Participants’ body weight was measured in light clothing to the nearest 0.1 kg using a 

calibrated scale. Height was measured without shoes to the nearest 0.1 cm using a vertical 

ruler. Body mass index (BMI) was calculated as weight (kg) divided by height squared (m2). 

2.2.2. Sample collection and preparation 

Faecal samples were collected from patients 1 month before and 1-year after bariatric surgery.  

Fresh stool samples were placed into sterile containers. The samples collected at home were 

kept in a domestic refrigerator at 4ºC for no more than 2 hours before transportation to the 

laboratory. Upon arrival, samples were mechanically homogenized with a sterile spatula, 

divided into aliquots and stored at -70ºC until future molecular microbiological isolation. 

2.2.3. Bacterial strains and culture conditions 

Two culture collection strains Bacteroides fragilis ATCC 25285 and Lactobacillus 

acidophilus ATCC 4356 from the American Type Culture Collection (ATCC), were used to 

evaluate the specificity of PCR primer sets. B. fragilis was cultivated in an anaerobic glove 

chamber (Sheldon Manufacturing, Inc., Shel LAB, USA) with a gas mixture of 

CO2/H2/N2:5/5/90% at 37ºC on FAA (Fastidious Anaerobe Agar, LAB, UK) media and de 

Man-Rogosa-Sharpe agar (MRS; Oxoid) was used for cultivation of L. acidophilus in 

microaerophilic atmosphere (10% CO2) at the same temperature. 
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2.2.4. DNA extraction from bacterial cultures and faeces  

Bacterial DNA from faecal samples was extracted using a QIAamp DNA stool mini kit 

(QIAgen, Hilden, Germany) with some modifications. 220 mg of faeces were resuspended in 

200 µl of TE buffer (10 mMTris, 10 mM EDTA pH=8, 20 mg/ml lysozyme, 200 u/ml 

mutanolysin) and incubated for 1 hour at 37ºC (Štšepetova et al., 2011). The protocol was 

continued according to manufacturer instructions. Extracted DNA was quantified using 

NanoDrop™ 1000 Spectrophotometer 1.0 (NanoDrop Technologies, Inc., USA) at 260 nm. 

2.2.5. Real-time PCR  

In order to establish a quantitative assay, the 16S rRNA gene sequences of standard strains L. 

acidophilus and B. fragilis were amplified with specific primers: (Firm934F: 5’-

GGAGYATGTGGTTTAATTCGAAGCA-3’ and Firm1060R: 5’-

AGCTGACGACAACCATGCAC-3’ (126 bp; Guo et al., 2008) and BAC-F: 5’-

GGTGTCGGCTTAAGTGCCAT-3’, BAC-R: 5’-CGGA(C/T)GTAAGGGCCGTGC-3’ 

(140bp; Malinen et al., 2005), respectively. A reaction mixture (50µl) consisted of 25 µl 

Maxima HotStart PCR Master Mix (2X Hot Start PCR buffer, 400µM concentration of each 

deoxynucleoside triphosphate, 4 mM Mg2+), 1µM of each primer, 100 ng of bacterial DNA, 

HotStart Taq DNA polymerase (Fermentas, Lithuania) and water. The amplification program 

consisted of pre-denaturation at 94ºC for 5 min, followed by 35 cycles of 94ºC for 30 s, 

annealing at 60ºC for 30 s, and elongation at 72ºC for 30 s. A cycle of 72ºC for 10 min 

concluded the program. Amplification products were analyzed by agarose gel electrophoresis 

on 1.5% agarose gel in 1x TAE buffer with 100 bp DNA ladder (Fermentas, Lithuania), 

ethidium bromide staining (0.5 µg/ml) and UV transillumination. PCR products were purified 

with the QIAquick PCR purification kit (QIAgen). 

Purified PCR product was then cloned into the pGEM-T Easy vector system and recombinant 

vector were transformed into chemically competent E. coli JM109 cells (Promega, Madison, 

USA). Vectors were purified with NucleoSpin Plasmid QuickPure Kit according to 

manufacture instruction (Macherey-Nagel, Germany) and DNA concentration was quantified 

spectrophotometrically (NanoDrop ND-1000, USA). Obtained plasmids containing 16S 

rRNA gene sequences of B. fragilis or L. acidophilus were used as the standards for 

quantification of Bacteroidetes or Firmicutes assays, respectively. For standard curves serial 

tenfold dilution from 3·105-3·101 plasmid copies per reaction of the previously quantified 

plasmid were used. Standard curves were generated by plotting the number of threshold 

cycles (Ct) of standard solutions against the logarithm of number of plasmid copies in the 
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standard solution. The functions describing the relationship between Ct (threshold number) 

and x (copy number) for both bacterial groups (Figure 7). 

 

Figure 7. Standard curves for the Firmicutes phylum (A) and Bacteroides-Prevotella-

Porphyromonas group (B) (Ct shows threshold number; Log C0 shows copy number; each 

point shows the value of copy number). 

Amplification and detection of DNA by real-time PCR was performed with a 7500 Fast Real-

Time PCR System (Applied Biosystems Europe BV, Zug, Switzerland) using optical-grade 

96-well plates. Triplicate sample analysis was routinely performed in a total volume of 25 µl 

using SYBR Green PCR Master Mix (Applied Biosystems). Each reaction included 5µl of 

template DNA or water (no-template control), 12.5µl of SYBR Green Master mix (Applied 

Biosystems, USA), 4mM MgCl2 and the appropriate primers for the Firmicutes phylum 

(Firm934F and Firm1060R, Guo et al., 2008) and for Bacteroides-Prevotella-Porphyromonas 

group (BAC-F and BAC-R, (Malinen et al., 2005), above mentioned, with concentration 150 

nM and 300 nM, respectively. The real-time PCR conditions were set as follows: 2 min at 

50ºC; 10 min at 95ºC; and 40 cycles of 15 s at 95ºC and 1 min at 60ºC.  

A melting curve analysis was done after each amplification. Standard curves were routinely 

performed for each real-time PCR run using serial dilutions of control plasmid DNA. Data 

were analyzed using the Sequence Detection Software version 1.6.3 (Applied Biosystems, 

USA). 

2.2.6. Statistical analysis  

The statistical analysis was performed using SIGMASTAT 2.0 (Jandel Scientific Corporation, 

San Rafael, CA, USA). Clinical and microbiological data were expressed as mean ± standard 

deviation (SD) (log10 plasmid gene copies per gram of faeces) and compared by t-tests or the 

Mann-Whitney rank-sum test according to the distribution of data.  
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2.3. Results 

2.3.1. Clinical data 

In general, all patients after surgical interventions (32 of 59 patients) showed a significant 

reduction in BMI. The mean preoperative BMI in the study group was 45±5.67 kg/m2 vs 

29.5±3.7 kg/m2 in post-bariatric group (p=0.001). 

2.3.2. Quantitation of the phyla Firmicutes, Bacteroidetes and their ratio in faecal 

samples of pre- and post-bariatric surgery patients 

In order to examine the counts of the Firmicutes phylum in faecal samples of pre- and post-

bariatric surgery patients real-time PCR method was used. The counts of the Firmicutes 

phylum were higher in post-bariatric surgery patients in comparison to pre-bariatric patients 

(log10 plasmid gene copies/g faeces 8.89±0.62 vs 9.29±0.54 (p=0.004) (Figure 8). 

The counts of the Bacteroidetes phylum in faecal samples of pre- and post-bariatric surgery 

patients assessed by real-time PCR method were slightly higher after bariatric surgery 

8.54±1.07 vs 8.96±0.94 (log10 plasmid gene copies/g faeces) (Figure 8), but the difference 

from that of pre-surgery value was not statistically significant (p=0.070). 

The Firmicutes/Bacteroidetes ratio in faecal samples of patients after bariatric surgery was 

not statistically different (1.05±0.1 vs 1.04±0.06, p=0.957). 

The ratio was analyzed as the counts of the Firmicutes phylum of every patient divided by the 

counts of the Bacteroidetes phylum of the same patient and is shown as mean±SD. 

The differences in counts of the phyla Firmicutes, Bacteroidetes and their ratio were also 

assessed in association with gender and surgical method, however, the results were not 

statistically significant (p>0.05, data not shown). 
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Figure 8. The counts of bacteria belonging to Firmicutes and Bacteroidetes phyla in 

faecal samples before (N=59) and after (N=32) the bariatric surgery (Charts indicate 

mean value ± standard deviation (SD)). 

2.3.3. Comparison of BMI, the counts of the phyla Firmicutes, Bacteroidetes and their 

ratio in faecal samples of patients having both pre- and post-surgery samples 

Due to the fact that previously compared groups contained a significantly different number of 

patients (59 before vs 32 after), the analysis of data obtained from the faecal samples of 25 

patients (17 females and 8 males) who gave both pre- and post-surgery samples was done. 

The mean BMI of this group before bariatric surgery was 43.9±5.5 kg/m2 and 29.7±3.9 kg/m2 

in post-operative group (p<0.001). SG method was performed in 14 patients (9 females and 5 

males) and 11 patients (8 females and 3 males) were treated by RYGB method. We 

considered BMI changes in association with gender and surgery method, however, the 

differences were not found. 

The counts of both phyla Firmicutes (8.75±0.55 vs 9.3±0.51, p<0.001) and Bacteroidetes 

(8.3±0.83 vs 9.04±0.91, p=0.004) increased after bariatric surgery (Figure 9). The difference 

in the Firmicutes/Bacteroidetes ratio was not found (1.059±0.07 vs 1.034±0.06, p=0.342) 

(data not shown). 
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Figure 9. The counts of bacteria belonging to the phyla Firmicutes and Bacteroidetes 

before and after the bariatric surgery in faecal samples of the same patients (N=25) 

(Charts indicate mean value ± standard deviation (SD)). 

The counts of bacteria belonging to the Firmicutes phylum decreased (9.25±0.57 vs 

8.77±0.48, p=0.024) after SG method (N=14), contrastingly, it increased (8.7±0.65 vs 

9.4±0.4, p=0.012)  after RYGB surgical intervention (Figure 10). 

The abundance of Bacteroidetes increased after both surgical methods (8.2±0.7 vs 8.89±0.95, 

p=0.041 for SG; 8.4±0.97 vs 9.3±0.86 for RYGB, p=0.053 (borderline of statistical 

significance)) (Figure 10). 

The difference in the Firmicutes/Bacteroidetes ratio in pre- and post-operational period in 

association with surgical method (SG or RYGB) was also studied, but the change in this ratio 

was not found statistically significant (p>0.05, data not shown). 
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Figure 10. The counts of bacteria belonging to the phyla Firmicutes and Bacteroidetes 

before and after SG (N=14) and RYGB (N=11) methods in faecal samples of the same 

patients (Charts indicate mean value ± standard deviation (SD)). 

The change in counts of Firmicutes in faecal samples of patients (N=25, both pre and post-

surgery samples) in association with gender was analyzed. The abundance of this phylum was 

increased for females (8.79±0.5 vs 9.29±0.5, p=0.01) and decreased for males (9.36±0.5 vs 

8.68±0.6, p=0.032) (Figure 11). 

The abundance of the Bacteroidetes phylum was higher in faecal samples of male group 

(7.9±1.13 vs 9.2±0.89, p=0.024)), while it was not statistically different for females 8.5±0.59 

vs 8.9±0.9, p=0.084) (Figure 11). 

The difference in the Firmicutes/Bacteroidetes ratio in association with gender was not 

retrieved (data not shown). 
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Figure 11.The counts of bacteria belonging to the phyla Firmicutes and Bacteroidetes 

before and after surgery in faecal samples of the same patients (N=25) but different 

gender (N females=17; N males=8) (Charts indicate mean value ± standard deviation (SD)). 

Our study also examined the possible influence of gender on the outcome in counts of these 

two bacterial phyla in association with different bariatric methods (SG or RYGB). The study 

found the significant increase in the Firmicutes phylum for females if they were treated with 

RYGB method (8.66±0.59 vs 9.36±0.43, p=0.018). Remarkably, for sleeve gastrectomy 

method the counts of Firmicutes increased (8.5±0.4 vs 9.3±0.59, p=0.044) and the counts of 

Bacteroidetes decreased for male group (8.83±0.65 vs 7.7±0.8, p=0.048) (Figure 12). 

The difference in the Firmicutes/Bacteroidetes ratio was not found (data not shown). 
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Figure 12. The counts of bacteria belonging to the phyla Firmicutes and Bacteroidetes in 

faecal samples before and after SG (N females=9; N males=5) or RYGB (N females=8; N 

males=3) method of the same patients but different gender (Charts indicate mean value ± 

standard deviation (SD)). 

 

2.4. Discussion 

In this study, we compared the impact of two different surgical interventions (sleeve 

gastrectomy and roux-en-Y gastric bypass) on the two most predominant phyla and their ratio 

in the GI tract of obese patients. The influence of the patient’s gender on the changes of 

bacterial composition was also assessed. Our study revealed decreased BMI and changes in 

the counts of the phyla Firmicutes and Bacteroidetes in the case of both bariatric surgery 

methods in obese patients. The difference in Firmicutes/Bacteroidetes ratio was independent 

of the used bariatric surgery method.  

The Firmicutes and Bacteroidetes are the two most predominant phyla in the human colon 

and together comprise around 90% of the total gut microbiota (Guarner, 2015). The phylum 

Firmicutes includes Gram-positive, rod-shaped or circular bacteria that represent the largest 

part of the gut microbiome. Due to their negative influence on glucose and fat metabolism, 

they are commonly referred to as 'bad' gut microbes. Bacterial strains belong to the 
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Bacteroidetes phylum are rod-shaped, Gram-negative bacteria and commonly found in the 

human GI tract. Members of this phylum are among the so-called 'good' bacteria because they 

produce favorable metabolites, including SCFAs, which have been correlated with reducing 

inflammation (Vinolo et al., 2011). Increased ratios of Firmicutes/Bacteroidetes have been 

correlated with obesity and Type II diabetes (T2D) (Remely et al., 2016). 

The first option for obesity treatment is diet. Ley et al. (2006) examined two groups of obese 

people who received a diet with limited fat (FAT-R group) and saccharides (CARB-R group). 

The study demonstrated that the proportion of Bacteroidetes increased and Firmicutes 

decreased with weight loss regardless of the type of a diet. However, the counts of 

Bacteroidetes decreased in patients only when patient lost at least 6% of body weight on the 

FAT-R diet and at least 2% on the CARB-R diet. The study suggested that Firmicutes and 

Bacteroidetes have a dynamic linkage with obesity and may have a minimized competition 

for resources due to their coexistence in the human gut. (Ley et al., 2006) 

However, the bariatric surgery is more effective for the treatment of obesity and 

cardiovascular diseases than common dietary interventions (Santacruz et al., 2009; Aron-

Wisnewsky et al., 2012).  

Surgery methods allow to understand the molecular adaptations underlying the observed 

health benefits and the potential role of calorie restriction in changes in gut microbiota pattern 

(Furet et al., 2010). Both selected bariatric surgery methods induce important changes in the 

gastrointestinal tract and therefore they are expected to change the composition of the gut 

microbiota. The data obtained in the current study indicated that the abundance of the phyla 

Firmicutes and Bacteroidetes increased after RYGB surgical intervention. However, we 

showed decrease in the counts of the Firmicutes phylum and increase in Bacteroidetes for 

patients after SG method, as it was suggested by one of the previous studies (Damms-

Machado et al., 2015). On the contrary, many of the other studies showed the increased counts 

of Bulleidia spp. and Roseburia spp. (both belong to the Firmicutes phylum) (Medina et al., 

2017; Murphy et al., 2017) after SG bariatric surgery. Similarly, increase within the 

Firmicutes phylum was demonstrated for Lactobacillales and Enterococcus after bariatric 

surgery (Guo et al., 2018). However, it should be noted that present study did not examine the 

changes on genus or species level and it may be considered for future projects. 

Correspondingly with our results, Murphy et al. (2017) demonstrated the increased counts of 

Firmicutes and Actinobacteria for RYGB method. Interestingly, the abundance of the 

Bacteroidetes phylum in this study was decreased after RYGB and increased after SG 

(Murphy et al., 2017), that is not in agreement with our study. Evidence suggests that 
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Bacteroidetes communities can shift according to dietary modulation and weight change, 

whereas Firmicutes numbers are more dependent on host’s genetic makeup (Goodrich et al., 

2014; Voreades et al., 2014). Moreover, the results concerning changes in Firmicutes and 

Bacteroidetes in older adults vary due to nationality and age of the subjects (Biagi et al., 

2013).  

The current study implied that gender may have an influence on the counts of the phyla 

Firmicutes and Bacteriodetes after bariatric surgery. We demonstrated that the counts of the 

Bacteroidetes phylum trended to increase in men after surgical intervention but was not 

significantly different in women. Haro et al. (2016) described the association of BMI with the 

differences in gut microbiota of men and women at the bacterial phyla 

(Firmicutes/Bacteriodetes ratio), genus (Bacteroides, Bilophila, Veillonella, and 

Methanobrevibacter), and species (Bacteroides plebeius, Bacteroides caccae, Coprococcus 

catus) levels. According to this study, in women the counts of Bacteroides genus remained 

unchanged in the different ranges of BMI, while it was decreased in man with the increase of 

the BMI. (Haro et al., 2016) Due to the fact that this data is contrary to our results, in future 

studies it would be useful to take gender into consideration for examination the changes in 

bacterial genus and species after bariatric surgery.  

Additionally, we have shown that gender affects the microbiological profiles of SG and 

RYGB, increasing the counts of the Firmicutes phylum in females after RYGB and increasing 

the abundance of Firmicutes but decreasing Bacteroidetes in males after SG method. 

Therefore, it is necessary to consider association between gender, different bariatric surgery 

interventions and the abundance of Firmicutes and Bacteroidetes phyla in further research. 

In the present study the Firmicutes/Bacteroidetes ratio remained the same after both bariatric 

surgery methods. Similarly, one of the previous studies observed no significant differences in 

the Firmicutes to Bacteroides-Prevotella ratio between lean and obese individuals (Fernandes 

et al., 2014). 

It is important to notice that the intestinal microbiota of patients after bariatric surgery may be 

influenced by a number of factors, including genetics, geography of population, 

socioeconomic factors, antibiotics used, age, diet and lifestyle (Zoetanadal et al., 2001; 

Yatsunenko et al., 2012; Ladirat et al., 2013; Carmody et al., 2015; David et al., 2014). The 

metabolic activity of intestinal microbiota and host metabolism figure a tight interplay for 

development of host structure and physiology. 
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Real-time PCR is one of the most important assays in diagnostic microbiology. It is 

commonly used for quantification of the target bacterial divisions. This method has been 

found to be suitable for wide range laboratory research, including determination of the counts 

of Firmicutes and Bacteroidetes. 

Considering that this project continues, it is necessary to intimately examine the changes in 

the proportions of different species, which belong to Firmicutes and Bacteroidetes phyla and 

increase the number of patients in pre- and post-bariatric surgery groups for better 

understanding of the association between these bacterial phyla ratio and obesity.   



 

34 

 

CONCLUSIONS 

The intestinal microbiota has strong impact on host health and it is considered as a metabolic 

organ. The gut microbiota composition of obese people has been associated with a higher 

intestinal Firmicutes/Bacteroidetes ratio. This study was performed to compare the counts of 

the phyla Firmicutes and Bacteroidetes and their ratio in faecal samples of pre- and post- 

bariatric surgery patients and to assess the influence of gender on the changes of studied 

bacterial phyla and their ratio after bariatric surgery (sleeve gastrectomy (SG) or roux-en-Y 

gastric bypass (RYGB)). 

We used faecal samples of pre- and post-bariatric surgery patients collected at the Chair of 

Medical Microbiology. Bacterial DNA was extracted from all faecal samples collected before 

and after surgery. Real-time PCR method with specific primers was applied for quantification 

of target bacterial groups. 

The results of this study can be summarized as follows: 

 the BMI of all patients was significantly decreased after both methods of bariatric surgery; 

 in general, the abundance of the Firmicutes phylum increased in post-operational patients 

in comparison with pre-surgery individuals and the number of bacteria, which belong to 

the Bacteroidetes phylum did not change a year after bariatric surgery; 

 in the specified group of patients both bariatric surgery methods influenced the abundance 

of the phyla Firmicutes and Bacteroidetes. However, there was also found the difference 

between SG and RYGB surgical interventions. After both methods the counts of the 

Bacteroidetes phylum increased, while the abundance of the Firmicutes phylum decreased 

after SG and increased after RYGB. 

 patient gender had an influence on the counts of the phyla Firmicutes and Bacteriodetes 

after bariatric surgery. In particular, the counts of the phylum Firmicutes increased in 

females and decreased in males while the Bacteroidetes phylum increased in male group 

only;  

 patient gender also affected the outcomes of different bariatric surgery methods for the 

counts of Firmicutes and Bacteroidetes phyla increasing the Firmicutes phylum in 

females after RYGB and increasing the abundance of Firmicutes but decreasing 

Bacteroidetes in males after SG method; 

 the Firmicutes/Bacteroidetes ratio remained the same after both bariatric surgery methods. 

In conclusion, our study has found that application of both bariatric surgery methods, SG and 

RYGB, is successful for obesity treatment due to decreasing of BMI. Our results show that 
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both bariatric surgery methods produce an effect on the counts of the Firmicutes phylum. The 

differences in the Firmicutes/Bacteroidetes ratio were not found. This study implies that 

different bariatric modalities may have different microbiological profiles in association with 

gender or by itself. In future studies our results may be used as a marker in surgical treatment 

of obesity and eventually to design microbiome-based bacto-therapies aimed at obesity 

treatment. 
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SUMMARY IN ESTONIAN 

Bariaatrilise kirurgia meetodite mõju Firmicutes/Bacteroidetes suhtele rasvunud 

patsientidel 

Olga Botšarova 

Resümee 

 

Inimese mikrobioota on kompleksne kooslus, mis on oma peremehega mutualistlikes suhetes. 

Mikroobioota mõjutab peremeesorganismis toimuvaid füsioloogilisi protsesse. Koosluse 

mitmekesisuse ja muutuste iseloomustamine aitab aru saada inimese seedetrakti mikrobioota 

rollist haigus- ja terviseseisundites. Kõige suurem osakaal selles koosluses on hõimkondadel 

Bacteroidetes ja Firmicutes. 

Mõnede raskete krooniliste haiguste teke on tingitud inimese rasvumisest. Rasvtõve 

kujunemist seostatakse tasakaalustamata energia tulu ja kuluga. Inimese seedetrakti 

mikrobioota metaboolne aktiivsus on oluline toidu seedimiseks vajalike ensüümide 

tootmiseks ja energia tulu reguleerimiseks. Varasemad uurimistööd on näidanud, et 

hõimkonna Firmicutes esindajad mõjutavad negatiivselt seedetrakti metaboolseid protsesse. 

Samas bakterid, kes kuuluvad hõimkonda Bacteroidetes, mõjutavad nimetatud protsesse 

positiivselt, produtseerides elutegevuse käigus mitmesuguseid kasulikke ühendeid. Seega on 

nende bakterihõimkondade suhte jälgimisega võimalik hinnata üldise mikrobioota tasakaalu ja 

kasutada rasvtõve kujunemise indikaatorina. 

Rasvumise invasiivseks ravimeetodiks on bariaatrilised operatsioonid, mille käigus 

vähendatakse mao mahtu. Käesoleva töö eesmärgiks oli võrrelda hõimkondade Firmicutes ja 

Bacteroidetes arvukust ja suhet rasvtõvega patsientidel enne ja pärast operatsiooni. Kasutati 

kahte bariaatrilise kirurgia meetodit, kas: vertikaalse maoresektsiooni (SG) või maost 

möödajuhtiva operatsiooni (RYGB). Bakteriaalne DNA eraldati patsientide roojaproovidest 

ning analüüsiti RT-PCR meetodil kasutades hõimkonna spetsiifilisi praimereid.  

Käesoleva bakalaureusetöö tulemused võib kokku võtta järgnevalt:  

 kõikide patsientide kehamassindeks (KMI) vähenes märkimisväärselt pärast bariaatrilist 

operatsiooni; 
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 hõimkonda Firmicutes kuuluvate bakterite arvukus oli üldiselt kõrgem pärast operatsiooni 

kui enne operatsiooni võetud roojaproovides. Hõimkonda Bacteroidetes kuuluvate 

bakterite arvukus jäi aga samale tasemele; 

 võrreldes omavahel vaid nende patsientide andmeid, kes andsid proovi nii enne kui pärast 

operatsiooni näidati, et bariaatriline kirurgia mõjutas seedetrakti mikrobiotas 

hõimkondade Firmicutes and Bacteroidetes arvukust. Samuti leiti erinevus kahe meetodi 

vahel (SG ja RYGB). Hõimkonna Bacteroidetes arvukus suurenes roojaproovides pärast 

mõlemat operatsioonilist sekkumist, aga hõimkonna Firmicutes arvukus vähenes pärast 

SG ja suurenes pärast RYGB; 

 patsiendi sugu mõjutas hõimkondade Firmicutes ja Bacteroidetes arvukust - naistel oli 

peale operatsiooni hõimkonda Firmicutes kuuluvate bakterite arvukus kõrgem ja meestel 

madalam, samas hõimkonna Bacteroidetes arvukuse muutus oli oluline vaid 

meespatsientide korral; 

 erinevast soost patsientidel oli sõltuvalt kasutatud kirurgilisest meetodist fekaalne 

mikrobioota erinev. Hõimkonna Firmicutes arvukus oli suurem naistel pärast RYGB 

operatsiooni. Meespatsientidel oli pärast SG opreatsiooni Firmicutes arvukus vähenenud, 

samas Bacteroidetes hõimkonna arvukus aga suurenenud;  

 Firmicutes/Bacteroidetes suhe ei muutunud peale operatsiooni sõltumata patsiendi soost 

või kasutatud kirurgilisest meetodist. 

Kokkuvõttes leiti käesolevas töös, et mõlemad bariaatrilise kirurgia meetodid (SG ja RYGB) 

sobivad kasutamiseks rasvtõve invasiivseks raviks. Nii vertikaalsel maoresektsioonil kui ka 

maost möödajuhtival operatsioonil on mõju KMI-le ja Firmicutes hõimkonna arvukusele. 

Mõju Firmicutes/Bacteroidetes suhtele ei olnud statiliselt oluline. Antud töös näidati, et 

erinevatel bariaatilise kirurgia meetoditel võib olla erinev mõju soolestiku mikrobiootale 

sõltuvalt patsiendi soost. Rasvtõve ja kahe bakterihõimkonna suhte vaheliste seoste täpsemaks 

selgitamiseks on vajalik suurendada patsientide arvu ja pöörata ka tähelepanu perekondade- ja 

liigsisestele muutustele. Käesolev uurimistöö on aluseks ka Firmicutes ja Bacteroidetes 

arvukuste määramise kasutamiseks markerina rasvtõve ravi jälgimiseks ja  

mikrobioomipõhiliste bakteriaalsete teraapiate loomiseks. 
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