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“… I signed onto a sailing ship 
My very first day at sea 
I seen the Mermaid in the waves, 
Reaching out to me 
Come live with me in the sea said she, 
Down on the ocean floor 
And I’ll show you a million wonderous things 
You’ve never seen before…” 
 

Excerpt from the poem “The Mermaid”  
by Shel Silverstein 
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1. INTRODUCTION 

Our planet is changing fast, which is primarily caused by human activity. Since 
the 18th century and particularly after the industrial breakthrough in the 1850s 
the variety and speed of changes in the environment have grown exponentially 
in parallel with the growth of economy and human population. Oceans and seas 
cover over 70% of the Earth’s surface and host an extraordinarily rich bio-
diversity (Gjerde, 2006). Nearshore areas in particular are among the most 
valuable biomes and responsible for 90% of the world’s marine primary pro-
duction (Kaiser et al., 2011). At the same time it is estimated that 90% of the 
oceans are unexplored (Gjerde, 2006). Vastness, opacity and stratification are 
the main reasons why scientific knowledge on the marine environment is sparse 
compared to the terrestrial environment, given also that the marine environment 
is harsh to access, observe and collect samples from (Norse and Crowder, 2005; 
Robinson et al., 2011). The gradual increase and diversification in the use of 
coastal natural resources jeopardize the stability of the marine environment and 
have resulted in a necessity for stock-taking and protective measures for a variety 
of marine species (Halpern et al., 2008). Obtaining information on the distribution 
of coastal marine species has become an important goal. 

Coastal habitats (e.g. seagrass beds, kelp beds, saltmarshes, coral reefs, mussel 
beds, macroalgal beds, rocky bottom, and mariculture beds) have high ecological 
value (Moberg and Folke, 1999; Seitz et al., 2014). Among these seagrasses 
form a diverse ecological group of phanerogams that inhabit about 10% of the 
intertidal and shallow sublittoral areas along temperate and tropical coastlines 
(den Hartog, 1970; Larkum et al., 2006). They form extensive meadows in 
sheltered and semiexposed near-coastal zones (Reusch et al., 2005; Larkum et 
al., 2006), which are among the most productive habitats worldwide (Duarte, 
2002). Furthermore, these meadows provide a range of ecological functions such 
as coastline protection, sediment stabilization, wave attenuation, land-derived 
nutrient filtration and carbon fixation, just to name a few; thereby providing 
some of the most valuable ecosystem services on the Earth (Costanza et al., 
1997; Short et al., 2011; Nordlund et al., 2016). Seagrasses are also regarded as 
ecosystem engineering species because they are important as food, shelter and 
space for a large number of invertebrates and fishes, many of which are socio-
economically important (Hemminga and Duarte, 2000; Seitz et al., 2014).  

This thesis gives a basic overview of main methods applied in marine benthic 
communities research and investigates the distribution of a soft-bottom habitat-
forming seagrass species in relation to abiotic and biotic forcings in the NE 
Baltic Sea. The Baltic Sea is among the largest semi-enclosed brackish inland 
seas in the world, it is a vulnerable ecosystem and the predicted increase in the 
diversity and intensity of anthropogenic pressures together with climate change 
will challenge all the aquatic species (Elmgren, 1989; Elmgren, 2001; Koch et 
al., 2013). Prior to this thesis, the published background information on the 
seagrass communities in the Baltic Sea was very scattered (e.g. Boström et al., 
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2003; Möller and Martin, 2007) and owing to differences in methodologies 
there was no way to systematize such knowledge.  
 
 

1.1. Direct observation, optical remote sensing and spatial 
modelling methods for mapping marine benthic habitats 

To date a number of quantitative methods have been developed to collect infor-
mation on marine benthic species and map benthic macrophyte communities 
(for more detailed overview, see e.g. Eleftheriou, 2014). The current methods 
span from local small-scale mapping to regional remote sensing and modelling 
exercises. In situ methods allow investigating marine benthic communities with 
very high precision. These methods are currently considered the only techniques 
to provide true data on the actual taxonomic composition of the seafloor. The 
main methods include diving to survey and sample the underwater environment 
and/or sampling the benthic habitat remotely using benthic grabs. These basic 
sampling methods have remained fairly unchanged since they came into use. 
When compared with other indirect methods, the cost of diving and grab 
sampling is the highest as it is time consuming, requires special equipment and 
skills and the explored area per time unit is small. Moreover, the laboratory 
work associated to sample analyses is also time consuming and expensive. Due 
to this, the studies usually result in a low number of observations within an 
investigated region and may fail to give accurate estimates at the seascape/ 
regional level. With the introduction of digital video cameras with greatly 
improved durability and video quality, filming and assessing benthic communities 
along transects has become an increasingly practical and popular method 
(Murdoch and Aronson, 1999; Riegl et al., 2001; Houk and Van Woesik, 2006; 
Bucas et al., 2007; Mallet and Pelletier, 2014). Videos are most useful when the 
absolute accuracy is not needed, e.g. for mapping the distribution of key species 
or habitats.  

However, as direct benthic habitat mapping is very expensive and time 
consuming, it is still impossible to get maps covering large seascapes by relying 
solely on ground-based data. Here remote sensing from aircraft and space-based 
platforms offers unique large-scale mapping possibilities. Remote sensing is 
widely used in the terrestrial environment (Townshend and Justice, 2002). Its 
use in aquatic ecosystems remains challenging due to a strong absorbance of the 
water medium, but the availability of environmental data gathered via remote 
sensing has significantly increased also in the marine environment (Brown et 
al., 2011). High concentrations of optically active substances in the water column 
complicate the mapping of benthic substrates and communities in eutrophied 
coastal areas. Nevertheless, the main macroalgal groups (green, brown and red 
algae) are distinguishable from one another in shallow areas (Vahtmäe et al., 
2006). As multispectral instruments have limited usability (e.g. Kutser et al. 
2006), airborne hyperspectral instruments have been widely tested and offer 
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new possibilities of mapping large seascapes with reasonable taxonomic 
resolution also in the Baltic Sea coastal area. 

Due to difficulties faced in studying the marine environment, the knowledge 
on the distribution of different habitats in the sea is still comparatively frag-
mented. In order to promote sustainable coastal zone management the knowledge 
on the spatio-temporal distribution of marine habitats, communities and species 
needs to be increased. This in turn demands harmonized large-scale benthic 
habitat mapping. Large-scale analysis of spatial patterns of coastal marine 
habitats makes it possible to adequately estimate the status of coastal marine 
habitats, provide better evidence for environmental changes and describe 
processes that are behind the changes. To identify the most important governing 
factors one needs to determine also the scales at which communities have the 
largest variability and where the links between environmental and biotic patterns 
are the strongest (Platt and Denman, 1975; Steele and Henderson, 1994). 
Benthic communities have high structural variability at a multitude of scales 
and this variability is closely linked with physical setting. Therefore the mapping 
studies should incorporate the relevant scales of variability to understand factors 
and processes generating patterns in biotic and abiotic components of eco-
systems (Menge and Olson, 1990; Levin, 1992; Karlson and Cornell, 1998).  

Most of our knowledge on marine species and habitats is based on small-
scale studies, which is not bad, as for the effective management and conservation 
of coastal ecosystems as well as for assessing the impacts of human activities 
the understanding of the spatial distribution of biota at local scales (10s or 100s 
of metres) is especially required (Kotta et al., 2008c). Yet, even if extensive 
distribution mapping has been conducted, such campaigns are often constrained 
to country case studies. Up-to-date regional overviews on the distribution and 
ecology of marine species are still rare, but their compilation is an emerging 
trend. Marine ecosystems have been deteriorating in status over the last 
decades, which points to the need for regional management efforts that carefully 
consider local and regional stressors when trying to offset human-caused impacts. 
Much of effective management, however, involves regional databases on the 
environment and human uses. 

The urgent need for large-scale spatial data on benthic species and com-
munities has intensified the evolving of different distribution modelling 
techniques that are able to describe ecological systems and predict their future 
behaviour (e.g. Müller et al., 2009; Reiss et al., 2014). In the spatial modelling 
field, point data are first collected by e.g. a diver or a video device. These data 
are used to build ecologically meaningful functional form relationships between 
the environment and biota and then these relationships are used to predict 
species patterns at large seascapes. However, many of these models perform 
poorly because very little is known about how organisms might interactively 
respond to multiple pressures, e.g. of natural and anthropogenic origin (Hoffman 
et al., 2003; Reynaud et al., 2003) and it is difficult to deal with complex and 
non-linear systems, such as those seen in the marine environment (see Byrne 
and Przeslaswki (2013) for an overview). Novel machine learning methods 
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mainly use an algorithm to discover the relationship between the response and 
its predictors (Hastie et al., 2009) and automatically handle interaction effects 
between predictors. Due to their strong predictive performance, such machine 
learning methods are increasingly used in ecological studies (Elith et al., 2008; 
Reiss et al., 2014).  

 
 

1.2. Seagrasses in the changing environment 

The key environmental variables affecting the distribution of seagrasses are light 
climate (Peralta et al., 2002; Krause-Jensen et al., 2008), temperature (Perez-
Llorens and Niell, 1993; Marba et al., 1996; Glemarec et al., 1997) and nutrient 
concentrations in the water column (Orth, 1977) and/or in the sediment (Viaroli 
et al., 1997). Also hydrodynamic conditions (Schanz and Asmus, 2003), nature 
of the substrate (Viaroli et al., 1997; De Boer, 2007) and salinity (Wortmann et 
al., 1997) are important factors. In addition to these, ice conditions are also 
significant in high-latitude regions (Robertson and Mann, 1984).  

In recent decades seagrasses have gone through an unusually fast transition 
in terms of areal decline in habitat and loss of species richness (Orth et al., 
2006; Waycott et al., 2009; Short et al., 2011). The composition of communities 
was formerly seen as the outcome of local-scale processes, in recent decades 
this view has been challenged by emphasizing the importance of large-scale 
processes, including climate change, which may result in dramatic shifts in 
species distribution patterns and thereby affect community species composition, 
diversity, structure and productivity (Hawkins et al., 2013). Overviewed also in 
Paper V, according to most climate change scenarios, mean global surface 
temperatures will rise by 1.44.0 °C in the next 100 years and northern high-
latitude regions are expected to experience more severe warming compared to 
low-latitude regions (IPCC, 2013). On average the prognoses for the Baltic Sea 
area predict a 5 °C rise in temperature in winter and a 4 °C rise in summer by 
the end of the century. The increase in temperature would significantly reduce 
the ice extent (>50%) and therefore indirectly amplifying the effects of wind 
stress. Furthermore, it is also expected that the mean daily wind speed over sea 
areas would increase by up to 18% in winter. Also the average salinity of the 
Baltic Sea is projected to decrease by 25% of the recent level (BACC, 2008). 
Such shifts plausibly result in the doubling of phytoplankton biomass (Hense et 
al., 2013). In addition, water transparency is expected to be reduced as a 
function of water salinity (Stramska and Swirgon, 2014). 

Future water temperature likely dictates the distribution change of seagrasses 
as increasing temperature causes steady decrease of the photosynthesis to 
respiration ratio in most seagrass species (Marsh et al., 1986; Zimmerman et al., 
1989; Glemarec et al., 1997). In addition, physical disturbance by intensifying 
heavy storms reduces seagrass cover and increases fragmentation within seagrass 
beds (Fonseca and Bell, 1998; Fonseca et al., 2000). At northern latitudes, also 
ice-scouring destroys submerged aquatic vegetation (Robertson and Mann, 1984; 
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Schneider and Mann, 1991), but contemporary climate change may release 
vegetation from such a disturbance. Also discussed in Paper V, due to non-linear 
responses of biota to the environment, even gradual changes in future anthropo-
genic pressures and/or climate may provoke sudden and perhaps unpredictable 
shifts in seagrass communities that grow at their physiological tolerance limit. 
Present worldwide estimates suggest already a 30% reduction of areal cover of 
seagrasses over the past 30 years (Waycott et al., 2009).  

Out of the 72 known seagrasses (Short et al., 2011), only four species are 
found in the Baltic Sea. Due to diluted salinity conditions only three, the eel-
grass Zostera marina Linnaeus, 1753, the widgeongrass Ruppia maritima 
Linnaeus, 1753 and the ditchgrass Ruppia cirrhosa (Petagna) Grande, prevail in 
the northeastern part of the Baltic Sea. Eelgrass is the only higher plant species 
of marine origin within the region as species of Ruppia are best described as 
salt-tolerant freshwater species. Eelgrass is the most wide-ranging marine 
flowering plant in the Northern Hemisphere (den Hartog, 1970) and it is 
restricted to the cooler waters in the North Atlantic, North Pacific and is also 
present in the Arctic region. In the Baltic Sea the species grows mainly in sandy 
sediments in moderately exposed bays and is totally submerged. The plant is 
rhizomatous with long, green, ribbon-like leaves and a rhizome growing 
horizontally through the substrate. Eelgrass is a perennial plant, but some 
populations may be annual. In the inner Baltic Sea eelgrass reproduces vege-
tatively, flowering is rare (den Hartog, 1970).  

Presently the distribution area of eelgrass in the Baltic Sea is estimated at 
1200 km2 as a minimum (Boström et al., 2014). In Scandinavia, large-scale 
losses of eelgrass have been documented in Denmark since the 1900s and at 
smaller scales in the Swedish West coast and in Poland since the mid-1980s 
(Baden et al., 2003; Boström et al., 2003, overview in Boström et al., 2014). 
The shoot density of eelgrass has significantly declined in time with more 
severe effects recorded at deeper areas. Such losses were generally recorded in 
nutrient-rich areas and indicates the importance of the interactive effect of light 
climate and eutrophication on seagrass (Boström et al., 2014 and references 
therein). The disappearance of seagrass is very dramatic for the Baltic Sea 
ecosystem as here eelgrass is largely the only phanerogam on moderately 
exposed sandy habitats. Eelgrass meadows are one of the most diverse coastal 
habitats in the Baltic Sea – on otherwise species-poor sandy substrates, eelgrass 
promotes floral and faunal richness within its canopy (see also overview in 
Boström et al., 2014; Baden and Boström, 2001; Fredriksen et al., 2005; Jephson 
et al., 2008, II), which, in turn, supports diverse fish communities (Pihl et al., 
2006). In addition, the complex root systems facilitate the existence of diverse 
infaunal communities (Boström et al., 2002; Fredriksen et al., 2010). Moreover, 
when the detached eelgrass is washed on the coast, numerous insects and other 
invertebrates inhabit the wrack (Jedrzejczak, 2002). Thus, any significant loss 
transfers to the reduced functioning of the coastal ecosystems of the Baltic Sea. 
The failure of eelgrass to re-establish despite reduction in background nutrient 
levels signals complex recovery trajectories and calls for much greater 
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conservation effort to protect existing eelgrass meadows. To prevent further loss 
of eelgrass, region-specific management and monitoring actions are also needed 
to identify and control the local loss drivers (Boström et al., 2014). Although 
eelgrass is listed as ‘Least concernedʼ in the IUCN Red List (Short et al., 2010), 
considering the alarming current and predicted trends, it is not unlikely that the 
marginal habitats (i.e. habitats supporting only a few species or individuals 
because of the limiting environmental conditions) of the Baltic Sea will 
ultimately lose important functions performed by eelgrass (Waycott et al., 2009; 
Short et al., 2011).  

 
 

Aims of the thesis 

The current thesis is based on a detailed inventory of the eelgrass habitats 
performed within the whole Estonian coastal range covering the most important 
environmental gradients in its marginal habitats. This inventory allowed us for 
the first time to characterize the eelgrass habitats in terms of benthic bio-
diversity, species composition and dominance structure; to provide a knowledge 
base for follow-up biological and ecological studies; and thus, to provide 
important information for managing our marine resources. 
 
The aims of the thesis are:  
(1)  to provide a basic overview of the main methods applied in marine benthos 

mapping in Estonian coastal waters (I–V); to more specifically test and 
determine the most suitable video observation method in assessing the cover 
of benthic macroalgal species (III); 

(2)  to compile a large-scale up-to-date distribution map of eelgrass (I, V);  
(3)  to give an overview of eelgrass community characteristics in the coastal 

waters of Estonia (II);  
(4)  to evaluate the use of optical remote sensing in mapping eelgrass habitats in 

the optically complex waters of the NE Baltic Sea (IV); 
(5)  to identify the most important environmental variables defining the cover of 

eelgrass, to specify the spatial scales where such relationships are the 
strongest and to predict changes in the distributional pattern of eelgrass 
from the current to plausible future climate (V). 
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2. MATERIAL AND METHODS 

2.1. Study area 

The study area is located in North Europe, in the north-eastern part of the Baltic 
Sea. Papers I and V cover the whole Estonian coastal sea area, whereas the other 
studies were carried out in different Baltic Sea sub-basins: in the West Estonian 
Archipelago Sea (II), the Baltic Proper (III, IV) and the Gulf of Finland (II, 
III) (Figure 1).  

 
Figure 1. Map of sampling stations in the study area. The sampling effort was carried 
out in the depth range 0–10 m in 2005–2015. (Redrawn from Paper V.) 
 
The Baltic Sea is a geologically young semi-enclosed sea and one of the largest 
brackish water basins in the world. Due to the short evolutionary history, low 
salinity and strong seasonality in temperature and light conditions of this sea, 
the species richness is small, characterized by a mixture of marine, brackish or 
freshwater origin species (Hällfors et al., 1981). In the study area there is a 
strong permanent salinity gradient from west (higher values) to east. In coastal 
areas the dynamics of seawater temperatures is directly coupled with air tem-
peratures. The average sea surface temperature is around 2 C in winter and may 
rise up to 20 C in August. The study area has a wide coastal zone with diverse 
bottom topography and underwater habitats. Soft sediments such as sand, silt 
and clay prevail with hard substrata usually found in shallow and exposed 
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coastal areas. Due to the prevalence of clay substrate and strong wave action, 
the water transparency is often very low, especially in the West Estonian 
Archipelago Sea and the Gulf of Riga (Kotta et al., 2008a; 2008b) (see also 
Table 1 in Section 2.3.). 
 
 

2.2. Field sampling 

Prior to fieldwork activities a regularly spaced grid of sampling points was 
generated using ArcGIS software (ESRI, 2011); the distance between the 
sampling points varied from 10 m to 1 km (I, IV, V). Denser sampling grids 
were applied in the shallow (mainly <5 m) marine areas due to their higher 
heterogeneity. The sampling stations and areas were selected so as to cover the 
full diversity of the benthic habitats and the range of environmental gradients (I, 
IV, V). Information from previous underwater investigations and the available 
geological maps and nautical charts were also considered (I–V).  

In this thesis traditional on-site methods such as diving and collecting bio-
mass samples with grab or frame samplers were the most commonly used 
techniques (samples were analysed according to HELCOM (2015) guidelines; 
for details see Papers I, II, IV, V). In addition, qualitative sampling was mostly 
performed with hand-held drop cameras (I, III–V). Paper III focuses solely on 
remote underwater video observations and tests different approaches to 
analysing video material. A hyperspectral imager was used to obtain airborne 
imagery for larger seascape areas (IV) and a spatial modelling method 
incorporating machine learning techniques was applied to predict current and 
future patterns along the whole Estonian coastal sea (V). 
 
 

2.3. Environmental data used 

The following environmental information was used when assessing species 
patterns under current environmental conditions (see more detailed information 
in the referred Papers): sediment character (I, V), depth (I–V), slope (I, II, V), 
exposure to waves (I, II, V), water temperature (I, II, V), salinity (I, II, V), 
current velocity (I, II, V), ice cover (I, II, V), water transparency (V) and 
chlorophyll a content (I, V). The ESRI Spatial Analyst tool was used to 
calculate the average of all abiotic and biotic variables (those obtained from 
field sampling as well as from modelling) for local (i.e. sampling), 1 km and 
10 km spatial scales (V). These values were used to link environmental and 
biotic patterns at larger spatial scales. The abiotic environmental variables with 
means, minima and maxima used in Paper V are presented in Table 1. In Paper 
V predictions of the same variables were used to analyse how global climate 
change will potentially affect species distribution patterns (Table 1).  
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Table 1. List of environmental variables with their means, minima and maxima in 
different water bodies around the Estonian coastal sea under current and projected 
climate conditions. Water basins are denoted as follows: GOF – Gulf of Finland, 
WEAS – West Estonian Archipelago Sea, GOR – Gulf of Riga, BP – Baltic Proper. 
Environmental variables are as follows: Temp – average water temperature, Salinity – 
average water salinity, Velocity – average current velocity, Kd – average water 
attenuation coefficient, Chl a – average chlorophyll a content in water, Slope – 
inclination of coastal slope, Soft sediment – percentage cover of soft sediment fractions, 
Ice cover – average ice cover over the study site. (Table modified from Paper V in 
which more information on the studied variables can be found.) 

Variable 

De-
scriptive 
statistics 

 
GOF 

Current
WEAS 

 
GOR

 
BP 

 
GOF

Projected
WEAS GOR BP 

Temp, Mean 12.9 14.2 13.4 12.8 16.9 18.2 17.4 16.8 

° C Min 10.3 11.4 10.2 11.0 14.3 15.4 14.2 14.9 

  Max 17.3 19.1 18.5 18.1 21.3 23.1 22.5 22.1 

Salinity  Mean 5.3 7.0 5.5 7.3 3.9 5.2 4.1 5.5 

  Min 3.3 6.0 3.4 6.4 2.5 4.5 2.6 4.8 

  Max 7.5 7.3 6.8 7.8 5.6 5.5 5.1 5.9 

Velocity, Mean 1.9 5.5 2.8 4.0 1.9 5.5 2.8 4.0 

cm s–1 Min 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 

  Max 5.2 11.7 7.4 9.7 5.2 11.7 7.4 9.7 

Kd Mean 1.4 1.3 1.2 1.1 1.7 1.5 1.5 1.3 

  Min 0.8 0.6 0.7 0.4 1.0 0.7 0.9 0.5 

  Max 2.7 2.7 2.9 2.9 3.3 3.2 3.5 3.5 

Chl a, Mean 25.4 17.9 20.3 12.1 38.2 26.9 30.5 18.2 

mg m–3 Min 6.8 7.6 8.5 3.8 10.2 11.4 12.8 5.7 

  Max 45.0 47.7 47.2 45.8 67.5 71.6 70.8 68.7 

Slope, Mean 0.5 0.1 0.1 0.2 0.5 0.1 0.1 0.2 

º Min 0.0 0.0 0.0 0.0 0 0 0 0 

  Max 22.9 5.1 5.9 11.1 22.9 5.1 5.9 11.1 

Soft Mean 66.9 86.6 68.7 48.7 66.9 86.6 68.7 48.7 

sediment, Min 3.1 12.2 12.0 1.1 3.1 12.2 12.0 1.1 

 % Max 98.8 99.2 96.0 95.4 98.8 99.2 96.0 95.4 

Ice cover, Mean  30.1 32.6 33.5 15.9 15.1 16.3 16.7 8.0 

 % Min 19.4 23.4 19.4 4.7 9.7 11.7 9.7 2.3 

  Max 38.1 36.3 41.9 32.7 19.0 18.1 20.9 16.4 

Depth, Mean  38.0 4.9 26.0 55.0 38.0 4.9 26.0 55.0 

m  Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

  Max 115.0 24.0 67.0 459.0 115.0 24.0 67.0 459.0 
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2.4. Statistics and modelling 

Spearman’s rank correlations between different environmental variables, eel-
grass parameters and associated flora and fauna were found (II). When analysing 
effects of study methods on the perception of benthic community structure, 
factorial analysis of variance (ANOVA, Statistica version 7.1 and 8.0) was used 
(III). The repeated measures analysis of variance (RM ANOVA) was applied to 
test differences in sediment organic matter and eelgrass community parameters 
between depths, sites and months (II). ANOSIM (Primer version 6.1; Clarke et 
al., 2014) analyses were used to examine differences in the patterns of variation 
in species composition (I, III) and between time, depth and site (II). Taxa 
responsible for the observed differences were identified by SIMPER analysis 
(Primer version 6.1; Clarke, 1993), where the cut-off percentage was set at 90% 
(I, II). Canonical correspondence analysis (CCA) was used to visualize variability 
of different habitats along a multitude of abiotic environmental gradients (I). 
The analyses in Paper I were done in the statistical software R version 2.15.1 
(RDC Team, 2013) using the vegan package (Oksanen et al., 2017). The 
relationship between different eelgrass community parameters and environmental 
variables was examined using the BIOENV procedure (Primer version 6.1; 
Clarke and Ainsworth, 1993) (II).  

In Paper IV a supervised classification procedure was performed, which 
allows automatic categorization of all image pixels into previously defined 
classes. Field data from groundtruth stations, as well as spectrally similar areas 
close to the field control points and experts knowledge on the area, were used 
for image classification. Two different supervised classification algorithms were 
tested using ENVI software: Maximum Likelihood (ML) and Spectral Angle 
Mapper (SAM). The quality of benthic habitat information derived from the 
airborne CASI data was determined by the quantitative process of accuracy 
assessment. 

The niche breadth of eelgrass and other higher plants was assessed using 
analysis of outlying mean index (OMI) (V). This index measures the distance 
between the mean habitat conditions used by the species (niche centre) and the 
mean habitat conditions of the sampling area (Doledec et al., 2000). The higher 
the value of OMI of a species, the higher is its habitat specialization. The 
package ‘ade4’ (Dray and Dufour, 2007) was used for running OMI analysis in 
the statistical software R (RDC Team, 2013). The environmental niche space of 
submerged aquatic vegetation was visualized by drawing a convex hull over the 
points of OMI ordination where the species was present. When drawing the 
border of the niche space, 5% of the most distant observations of species 
occurrences were considered as outliers and excluded from the analysis. 

In Paper V the predictive modelling technique called Boosted Regression 
Trees (BRT) was used. The method combines the strength of machine learning 
and statistical modelling and due to its strong predictive performance is 
increasingly used in ecology (Elith et al., 2008). The BRT models quantified the 
contribution of different environmental variables to the coverage of eelgrass and 
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these models were also used to predict the species coverage for the whole study 
area given ambient and projected climate conditions (V). Both present and 
future predictions were modelled over a 200  200 m grid covering water 
depths of 0–10 m. The BRT modelling was done in the statistical software R 
using the gbm package (RDC Team, 2013). 
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3. RESULTS AND DISCUSSION 

3.1. In situ mapping of benthic shallow water  
communities in the NE Baltic Sea and  

the spatial spread of the eelgrass habitats 

Submersible video systems that consist of a hand-held submersible camera and 
recorder were first introduced in Estonia in 2005 (I). That year also marks the 
beginning of large-scale mapping of marine benthic habitats in the Estonian 
coastal sea as this technique allowed researchers to significantly increase the 
number of samples to be collected. Systematic marine inventories in Estonia 
started in 1959 and were based mostly on grab sampling for several decades. By 
the end of 2016 the marine benthos database of the Estonian Marine Institute 
stored in total over 16 000 observations and over 22 000 samples (Figure 2). As 
of 13.12.2016 the total numbers were as follows: 16 451 visual observations 
(11 927 video observations and 4524 estimations by diver) and 22 857 biomass 
samples (14 835 grab samples and 8022 frame samples).  
 

 
Figure 2. The use of different in situ methods in the marine benthos surveys in the 
Estonian coastal sea in 19592016 (the database of Estonian Marine Institute).  
 
The first detailed marine benthos inventory project for the Estonian sea area was 
carried out in 2005–2009; prior to this inventory no detailed benthic habitat 
maps had been produced for this region (I). Although large sea areas were 
mapped, we are still very data-limited as only a minor fraction of the studied 
seascapes were actually sampled and vast areas between sampling stations 
remained unstudied. Nevertheless, this huge data set enabled establishing a 
marine benthic habitat classification system of 18 habitat classes to meet the 
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local conservation purposes (EBHAB – Eastern Baltic marine benthic HABitats, 
I). As the EBHAB classification scheme had substrate, wave exposure, light and 
key species as classifiers (see Paper I for details) it was also easy to link this 
initiative to the EU level EUNIS (the European Nature Information System) 
habitat system (http://eunis.eea.europa.eu/). Overall, eelgrass was found within 
eight different habitats with one being recognized as a true eelgrass habitat 
(namely ‘Moderately exposed soft bottoms with Z. marina’) (I). 

Figure 3. The distribution of eelgrass in the Estonian coastal waters in 20052015 in 
relation to marine protected areas. The spatial distribution of the eelgrass habitat follows 
the EBHAB classification scheme. 
 
According to Paper I, the eelgrass habitat (eelgrass coverage ≥ 10%) was found 
on substrates ranging from fine to coarse sands. The habitat was found in a 
depth range of 1–9 m (see also Section 3.3 for specific comments) at salinities 
down to 4. The habitat was largely dominated by the higher plant eelgrass and 
filamentous brown algae with other higher plants occurring occasionally. This 
habitat type hosted high numbers of plant and invertebrate species (for more 
details on the eelgrass community composition see Section 3.3). The total area 
of eelgrass habitat was estimated at minimum at 155 km2 (Figure 3). The 
distribution of the eelgrass habitat was linked to sediment characteristics and 
salinity, whereas the distribution of higher plants communities excluding 
eelgrass was mostly related to ice cover, water velocity and temperature (I). 
This resembles the findings in V and is discussed in more detail in Section 3.5 
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(future conditions). In terms of benthic species dominances the habitat class 
‘Moderately exposed soft bottoms with higher plants excluding Z. marina’ 
highly resembled the eelgrass habitat. Both habitats were found in the same 
depth and salinity range and hosted similar numbers of macrophyte and 
invertebrate species (I, see also Papers II and V and Section 3.3 for more details), 
but the habitats differed in species composition (I).  

In order to fulfil the needs of an efficient protection strategy, the manage-
ment focus should be broader than just the valuable habitats where eelgrass is 
currently found. Thus, in order to have positive effects on biodiversity on a 
larger spatial scale, the action of designating protected areas has to involve 
analyses of species distribution on different levels (e.g. species, habitat, eco-
system). Specifically, some areas may not host the habitat-forming species due 
to natural succession and/or anthropogenic disturbances (Kendrick et al., 2000; 
Kotta et al., 2012). Therefore, it is rewarding to perform a supplementary habitat 
suitability modelling (see Paper V for the current ranges of the eelgrass habitat) 
in order to predict the potential of the environment for the species distribution 
of high conservation value (Araújo and New, 2007) and use these modelled 
layers together with the actual mapping results when creating the boundaries of 
a protected area (Rioja-Nieto and Sheppard, 2008). It has to be also taken into 
consideration that in low salinity areas such as the NE Baltic Sea, eelgrass 
reproduces asexually (e.g. Reusch et al., 1999) and the pattern seen in its 
distribution is rather a function of a colonization history that reflects the con-
ditions from decades to centuries (e.g. Kendrick et al., 2000). As such the 
eelgrass habitat is very fragile and valuable and all efforts should be made to 
ensure that its further deterioration is avoided. 
 
 

3.2. Linking spatial scale, observation method and  
community perception 

The study on video methodology reported in Paper III showed that (1) there were 
no clear local spatial scales in which the variability of benthic communities was 
maximized; (2) the eelgrass community was only poorly predicted by the spatial 
arrangement of sediment characteristics; (3) the selection of method had no 
effect on the estimates of macrophyte cover, but the method had independently 
of habitat type an impact on error estimates of macrophyte cover.  

As discussed in Paper III, it is plausible that the weak effects of the choice 
of the methods (continuous video, different sets (5, 10, 20, 35) of uniform or 
random picture samples from video) can be attributed to the homogeneous 
distribution of benthic macrophyte communities in the study area and to the 
small range of scales investigated. The spatial pattern of the eelgrass community 
varied much along transects but it was weakly related to sediment patterns (III). 
Some transects had the largest variability at 20 or 50 m scales (i.e. the patch size 
of macrophyte communities was on average 20 or 50 m) (III), which suggests 
that exposure to waves rather than sediment characteristics determines the 
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spatial patterns of the eelgrass community (see also Paper V). As also discussed 
in Paper III, large waves may cause considerable resuspension of sediments and 
result in prolonged periods of poor light conditions (Madsen et al., 2001) but, 
similarly, they may cause mechanical disturbance of the benthic communities 
(Dernie et al., 2003; Kotta et al., 2007; Schiel and Lilley, 2007). Nevertheless, 
in the Baltic Sea the bottom substrate is often very heterogeneous. Substrate types 
either form fine-grained mosaics (e.g. patches of sand or stones that do not 
exceed 50–200 cm in diameter) or, alternatively, different sediments are mixed 
at the same location (e.g. mixture of clay, sand and pebbles) (Kotta et al., 2008a; 
2008b). In otherwise favourable conditions (exposure, depth etc.) but mixed 
substrates, the occurrence of suitable sandy patches is crucial for eelgrass 
presence (e.g. Küdema Bay, where eelgrass and Fucus vesiculosus Linnaeus, 
1753 (key species on hard substrate) grow side by side; personal observations).  

The video-observations caught in total eight species of macrophytes and one 
species of invertebrates in eelgrass stands (III). The small number of species is 
related to both the small number of samples (5 transects) and the ability of the 
method to detect mainly macrophytes, species that are either large enough (e.g. 
Chorda filum (Linnaeus) Stackhouse, 1797) or with unique appearance/traits 
(e.g. Cladosiphon zosterae (J. Agardh) Kylin, 1940). Taken that the maximum 
number of benthic species (both macrophytes and invertebrates) found in one 
eelgrass meadow in the NE Baltic Sea is 36 (II, Sõru), the video method 
captures at least 20% of the total species richness within an eelgrass habitat. 
Both video and still picture mode captured precisely the coverage of key species 
and cover patterns of annual and perennial algae (III). Thus, considering the 
generally low diversity of macrophyte communities in the study area (Kotta et 
al., 2008a, 2008b), already a few observations (or pictures) may capture the 
pattern of macrophyte communities and provide accurate estimates of their 
parameters. In a long-term monitoring programme high precision (ability to 
detect differences) is more important than high accuracy (ability to detect true 
value) (Andrew and Mapstone, 1987). Altogether, our estimates in a continuous 
video mode and in a still picture mode based on 35 and 20 photographs 
produced less variable results compared to other methods (III). The continuous 
video method is precise enough for monitoring the changes in key species 
coverage and now it has been included into e.g. benthic habitat mapping (e.g. I), 
national monitoring programmes of the marine benthic environment and water 
quality assessment in Estonia. 
 
 

3.3. Eelgrass community characteristics  

In 2005–2015 eelgrass was found in more than 300 locations (Figure 3) on soft 
substrates with standalone specimens growing even on mixed sediments of 
pebbles, gravel and coarse sand (westernmost area of Hiiumaa) (I, V) with the 
total estimated area about 400 km2 (Herkül et al., unpublished). Plants were 
recorded up to 8 km from the shore (V). Recent findings suggest that eelgrass is 
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more common than it was previously expected and that the species can inhabit 
areas with salinity below 5 (V). The observed values indicate that eelgrass beds 
grow down to 7 m depth with the main distribution depth at 25 m in the Estonian 
coastal waters (II, V). A few specimens of eelgrass have been found down to 9 m 
(I), but according to the present knowledge, they do not form a distinguishable 
stand (Möller and Martin, 2007; II, V). The main distribution range is similar to 
Danish and Swedish waters where eelgrass grows mainly at 25 m depth and 
the total depth range of eelgrass is 110 m (Boström et al., 2003). In our study 
sites (II) the depth distribution of eelgrass follows the same pattern as observed 
in Øresund, Denmark (Krause-Jensen et al., 2003), i.e. eelgrass creates many 
small shoots in dense patches in exposed shallow waters with high light intensity 
and in deeper areas larger but fewer shoots are found in sparse coverage. This 
growth pattern can be regarded as a photoadaptive response along the water 
depth gradient (Dennison and Alberte, 1986), and also the upper depth limit is 
mainly controlled by wave action and ice-scouring (Middelboe et al., 2003).  

In the West-Estonian Archipelago Sea eelgrass was found only in shallow 
areas (II), the species grows at depths > 4 m rarely and sparsely (Estonian 
Marine Institute database). In this area clay sediments prevail at depths > 5 m 
and fluctuations in water transparency (and in light climate) due to wind-
induced water movement are very common (Suursaar et al., 1998). In areas 
where sand prevails and light conditions are more stable (e.g. Gulf of Finland), 
dense eelgrass stands were also observed deeper down (I, II, V). As discussed 
in Paper II, substrate availability and light conditions with the light climate 
along the depth gradient controlling photosynthetic activity determine the 
eelgrass depth distribution (Moore and Short, 2006). Both light intensity and the 
duration of the daily light period at which light equals or exceeds the photo-
synthetic light saturation point are important in seagrass growth and survival, 
especially for plants at or near their maximum depth distribution (Touchette and 
Burkholder, 2000 and references therein).  

The presence of eelgrass significantly contributes to sediment trapping and 
erosion (II). On average the content of organic matter in the sediment varied 
between 0.38% and 1.47% for the eelgrass bed and between 0.29% and 1.1% 
for the bare sand (II).Our study showed that the organic content in the sediment 
was higher in the eelgrass stands compared to unvegetated areas only in areas 
where the movement of soft sediments is higher due to the combination of 
slope, exposure and area-specific water regime. In moderately exposed habitats 
the content of sediment organic matter between the eelgrass stands and the 
adjacent unvegetated areas did not differ (II). The measured sediment organic 
contents within eelgrass stands are in good accordance with the values 
determined for the Finnish Archipelago Sea (0.5–1.5%) (Boström et al., 2003).  

In the eelgrass habitats the formation of new leaves was observed throughout 
the study period (May–September), but the growth in shoot biomass varied 
among depth strata and months (II). Different eelgrass parameters such as shoot 
biomass, shoot density, number of leaves per shoot and shoot length were best 
explained by depth and temperature (mean temperature of 2 preceding months) 
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with an increasing depth reducing and an elevating temperature raising the 
shoot density and biomass of the eelgrass community (II). As discussed in 
Paper II, here temperature should be regarded as a proxy of seasonality in e.g. 
temperature, light climate and their interaction. The highest densities often 
coincided with a low biomass (II). Also shown by Sand-Jensen and Borum 
(1983), such decrease in the biomass of eelgrass shoots may be a result of self-
shading at high densities. For the Baltic Sea area the maximum biomass of 
eelgrass has been observed in July and August (Duarte, 1989; Olesen and Sand-
Jensen, 1994; Boström et al., 2004), but our findings suggest an increase of 
shoot biomass and length also in September (II). Such later termination of the 
growing season in colder areas was also suggested by Clausen et al. (2014). 

The average biomass of eelgrass was 7–70 g dw per m2 (II). As discussed in 
Paper II, apart from the seasonal maximum of shoot biomass, comparison of 
our results with the existing data on eelgrass populations in the Baltic Sea in 
terms of density, aboveground biomass and length (Boström et al., 2003, 2004, 
2014) does not show any major differences. The biomass values are similar to 
those estimated also by Trei (1973) for some eelgrass communities in the West-
Estonian Archipelago Sea in earlier decades (128–300 g ww m–2). The values 
below 100 g dw m–2 are typical for the Baltic Sea (Boström et al., 2014; Röhr et 
al., 2016). Thus, in spite of different environmental conditions compared to 
northern shores of the Baltic Sea, the response of eelgrass to the abiotic environ-
ment is similar. 

The average density of eelgrass in all our study sites varied between (50)133 
and 1300 shoots per m2 with the maximum of 1725 shoots per m2 (II). As 
discussed in Paper II, these densities are somewhat higher compared to the 
values reported in Finland where the shoot density ranges from 50 to 800 per m2 
(Boström et al., 2003, 2004, 2006). However, the Estonian values were lower 
compared to the Swedish and Danish observations (the maxima 3600 and 3500 
shoots per m2, respectively) (Sand-Jensen, 1975; Wium-Andersen and Borum, 
1984; Krause-Jensen et al., 2000; Boström et al., 2003). As compared to the 
values reported for the whole Baltic range, the density of eelgrass in the 
Estonian coastal sea is surprisingly high. This agrees with results by Boström et 
al. (2014) according to which salinity defines the distribution range of eelgrass 
but does not largely affect eelgrass growth and density at the salinity minima. 
Nevertheless, low salinity areas compared to e.g. the Danish straits seem to 
have greater variability in shoot numbers (II; Röhr et al., 2016). 

The growth of associated algae also follows the general seasonal pattern (II; 
Wallentinus, 1984; Lotze et al., 1999). Owing to the spring-time bloom of 
ephemeral algae, the coverage of drifting macroalgae was greater in May 
compared to the following months (II). Macroalgal mats refer to eutrophication 
and are common in all coastal regions of the Baltic Sea (e.g. Kiirikki and 
Blomster, 1996; Bäck et al., 2000; Vahteri et al., 2000; Paalme et al., 2004). 
Also discussed in Paper II, macroalgal blooms can reduce eelgrass shoot 
density (Nelson and Lee, 2001), shoot size and biomass and also the distribution 
area (Bintz et al., 2003; overview in McGlathery, 2001). Also the presence of 
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loose algae can be one of the factors triggering a high abundance of herbivores 
(Philippart, 1995; Drury, 2004; Gil et al., 2006) and other epibenthic fauna (Pihl 
et al., 1995). Although our eelgrass stands were often covered by loose-lying 
algae we did not observe any sign of stress related to these ephemeral algae (I, 
II). The dense macroalgal mats that cause heavy light limitation have lethal 
effects on northern Baltic eelgrass populations after 4 weeks of suffocation 
(Salo et al., 2015). In natural conditions the suffocative effect for a month is not 
often met and as suggested by Rasmussen et al. (2013), the highly dynamic 
nature of loose algae in small scale may reduce suffocation stress in eelgrass 
communities. Besides, the Estonian coastal sea is characterized by a good water 
exchange (coastal–offshore and surface–bottom) and the sediment–water 
interface is usually well oxygenated (Kotta et al., 2008a).  

Figure 4. Niche breadth analysis of the studied species. The borders of niche space and 
separation of habitat niche between the studied submerged aquatic species are shown by 
coloured lines. The OMI identifies ordination axes that optimize separation between 
species and the observations are positioned in the multidimensional space as a function 
of environmental variables. Coloured dots on the plot indicate the centres of niche space 
of the species. Grey dots represent sampling sites. The value of outlying mean index 
(OMI) is shown in brackets. OMI measures the distance between the mean habitat 
conditions used by species (niche centre) and the mean habitat conditions of the 
sampling area. The higher the value of the OMI index of a species, the higher is its 
habitat specialization. (Redrawn from Paper V.)  
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A total of 33 macrophytobenthic taxa were found in samples from eelgrass 
stands (I), in the four studied communities in Paper II the species number was 
19. Taken separately, the eelgrass meadows inhabited 9–15 species of macro-
phytes (II). All these macrophytes are common in the coastal waters of Estonia, 
only the the distribution of Cladosiphon zosterae (J.Agardh) Kylin, 1940 
(epiphyte on eelgrass) is restricted to eelgrass habitats. Filamentous brown algae 
Pylaiella littoralis (Linnaeus) Kjellman, 1872, which is one of the most com-
mon species found in loose algal mats, was recorded in all four studied sites (II) 
and contributed most to the overall similarity within the eelgrass habitat (I). The 
vascular plants occurring together with eelgrass are all common on soft 
substrates in the Estonian coastal waters and can be also found as single-species 
stands in the depth range of 17 m (Trei, 1991). The most common species co-
occurring with eelgrass are sago pondweed Stuckenia pectinata (L.) Börner, 
1912 and clasping-leaf pondweed Potamogeton perfoliatus Linnaeus, 1753 (I, 
II, V). In addition, horned pondweed Zannichellia palustris Linnaeus, 1753, 
bird’s-nest stonewort Tolypella nidifica (O.F.Müller) Leonhardi, 1864 and in 
some occasions R. maritima and charophytes Chara spp. are common (I, II, V). 
Similarly, the niche modelling indicated that there was a large overlap in niche 
space among eelgrass and other submerged plant species (V). Although eelgrass 
and P. perfoliatus inhabited somewhat opposing niche space (V, Figure 4), 
otherwise there was a large overlap in niche space of studied submerged plants. 
However, eelgrass is the only species forming continuous meadows outside 
sheltered bays and inhabiting depths > 3 m in the moderately exposed coastal 
sea of Estonia (I, V; Herkül et al., unpublished). Both interspecific competition 
and genetics has an important role in niche differentiation among brackish and 
marine seagrass populations.  

The eelgrass stands in Estonian coastal sea areas support high biodiversity of 
invertebrates: overall 35 species have been found in the eelgrass stands (I) with 
about 23 faunal species being more common (II). This corresponds to about a 
quarter of the invertebrate richness found in shallow waters of the Estonian 
coastal sea (about 130 species). The study also showed that a higher biomass of 
eelgrass supported an elevated density of invertebrates (II). Taken separately, 
the eelgrass meadows inhabited 8–21 species of invertebrates (II). Our findings 
are similar to those reported for north-eastern Baltic Sea (Homziak et al., 1982; 
Boström and Bonsdorff, 2000; Moore and Short, 2006). Also discussed in Paper 
II, the abundance of benthic invertebrates was about 100 times lower than 
recorded for nearby eelgrass communities in Finland but was within the range of 
values estimated from e.g. the coastal sea of Great Britain. Variant sampling 
methodology with likely over- and underestimations of abundance may explain 
these large differences (Boström et al., 2006 and references therein). However, 
some disparity can be attributed to true habitat differences. Often low faunal 
diversity and density are related to neighbourhood habitats. If the belt of eelgrass 
is narrow and is surrounded by defaunated coarse unvegetated sand, a poor 
representation of benthic invertebrates in adjacent habitats may be one of the 
most plausible reasons for the observed low faunal diversity in such habitat (II).  
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Also discussed in Paper II, the species composition of plants has a strong 
effect on the abundance and biomass of benthic invertebrates. For example, 
mixed eelgrass stands, especially with the presence of P. perfoliatus, are expected 
to favour gammarid amphipods (Gustafsson and Boström, 2009). Similarly in 
our study area the sites that lacked P. perfoliatus were devoid of gammarids. 
However, it has been also suggested that the three-dimensional structure of the 
macrophyte habitat is more important for the richness of associated fauna than 
the macrophyte identity, i.e. species belonging to the community (Heck et al., 
2003). Anyhow, the species that contributed most to the overall similarity of 
eelgrass stands were burrowing filter-feeding clams Limecola balthica (Linnaeus, 
1758) (formerly Macoma balthica) and Cerastoderma glaucum (Bruguière, 
1789) (I). These species are most common in shallow sandy sediments and 
eelgrass is not vital for their presence; moreover, lower densities of clams have 
been reported in continuous vegetation compared to patches of plants and bare 
sand (Boström et al., 2010). Thus the common (and numerous) presence of 
burrowing clams in eelgrass stands also suggests the patchy distribution of 
eelgrass within its habitat in the Estonian coastal sea (II).  
 
 

3.4. Mapping eelgrass communities using  
remote sensing techniques 

In remote sensing habitat mapping it is important to define an appropriate habitat 
mapping scheme that is also meaningful from the ecological point of view. In 
Paper IV two different classification schemes were developed and used in the 
classification of the CASI hyperspectral image. With this combined method we 
were able to classify nine benthic habitat classes with three of them referring to 
the possible presence of eelgrass. These habitats were as follows: (1) dense 
higher order vegetation at depths < 2 m with total macrophyte coverage more 
than 50%, prevailing species higher plants; (2) higher order vegetation on bright 
bottom at depths < 2 m with sand or silt coverage, total macrophyte coverage 
less than 50%, prevailing species higher plants and finally (3) vegetated com-
munities at 26 m depth. A coarse classification scheme of six habitat classes 
returned two classes that possibly host eelgrass. These habitats are (1) green 
algae and higher vegetation at depths < 2 m (green macroalgae and higher plants 
vegetation with coverage more than 10%) and (2) vegetated area at 26 m depth 
containing either vegetation or bare substrate.  
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Figure 5. Benthic habitat map of the Vilsandi National Park area produced from the 
CASI airborne imagery describing six benthic communities. Within search for eelgrass 
it is rewarding to focus the search effort on areas classified as ‘vegetated area 2–6m 
depth’. White dots indicate real findings of eelgrass during earlier in situ surveys. 
(Modified from Paper IV.) 
 
In Paper IV it was not possible to distinguish different species but instead we 
assessed broader habitat classes. However, even such broad habitat classes may 
be useful when planning future habitat mapping of eelgrass. Specifically, 
habitat features that potentially contain eelgrass can be validated by a targeted 
mapping of these sea areas (Figure 5). Consequently, the method allows saving 
time and money as well as covering much broader areas of interest and thereby 
offers unique large-scale synoptic data to address the complex nature of coastal 
waters. More recently, the used hyperspectral remote sensing was combined 
with spatial modelling techniques involving machine learning algorithms (Kotta 
et al., 2013). Such ensemble models succeeded in identifying and assessing the 
coverage of eelgrass in the optically complex seawater of the Baltic Sea. Thus, 
it would be rewarding to seek a generic standardized procedure for mapping 
multiple species in multiple areas. Such maps would greatly expand our 
capacity to understand biotic patterns, their changes and causes and thereby 
improve ecological theory and potentially preserve endangered seascapes for 
future generations. 
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3.5. Modelling current patterns and possible futures of eelgrass 

In Paper V Boosted Regression Trees (BRT) modelling was used to relate the 
cover of eelgrass to the abiotic environment in the brackish Baltic Sea. The 
established functional relationships were then used to predict current and future 
patterns of eelgrass in the whole Estonian coastal sea. Paper V covered a large 
gradient of water temperature, salinity, wave exposure etc. and the modelled 
ranges of environmental variability did not exceed those observed in the field. 
The analyses in Paper V showed eelgrass to be the most sensitive to changes in 
water temperature, current velocity and bottom topography. Water salinity and 
eutrophication have little impact on the distributional pattern of the species. 
Eelgrass spreads all over the Estonian coastal sea, except the easternmost parts 
of the Gulf of Finland and the turbid and diluted Pärnu Bay area (V, Figure 6). 
All submerged plant species (of both marine and freshwater origin) in the 
coastal waters of Estonia seem to benefit from climate change, and eelgrass 
coverage is expected to increase under the projected climate change (V, Figure 6).  

The local-scale environmental variability explained 45% of the eelgrass 
distribution; for 10 km scale (seascape-scale) the variance explained was 29% 
(BRT, V). The results of Paper V suggest that both local- and seascape-scale 
environmental variability affect the cover patterns of eelgrass with local 
variability exceeding seascape-scale variability and that species distributional 
patterns seem to have scale invariance in the Baltic Sea (sensu Halley, 1996; 
Gisiger, 2001). Our results in Paper V support the current understanding that the 
response of macrophyte species to environmental forcing is highly variable 
through a wide range of spatial scales (e.g. Kendrick et al., 2008). 

As discussed in Paper V, it is likely that the high variability in submerged 
plant species at small scales is related to the mosaic of sediment and bottom 
topography at this scale in the study area (Kotta et al., 2008a, 2008b). Firstly, 
the availability of soft substrate is a pre-requisite for the establishment of the 
submerged plant species. Secondly, sediment modulates the flow above the 
seabed (e.g. Prasad et al., 2000; Hokinson and Eckhell, 2005) and the intensity 
of flows is directly related to the cover pattern of macrophytes (van Katwijk and 
Hermus, 2000; Madsen et al., 2001). In soft sediments, water flow also 
determines the light climate; i.e. large waves may cause considerable re-sus-
pension of sediments and prolonged periods of poor light conditions (Madsen et 
al., 2001). Thirdly, small-scale topographic heterogeneity may provide the 
species refuge from physical disturbances including ice-scouring and mechanical 
stress due to waves (Kautsky, 1988; Heine, 1989). High variability in macro-
phyte communities at seascape scales is related to broad patterns of seawater 
warming, exposure to waves and winter ice scour, and an interaction of all these 
variables defines the suitability of a seascape for the growth of submerged 
aquatic vegetation (Kautsky and van der Maarel, 1990). 
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Figure 6. Modelled distribution of eelgrass for current climate conditions (left) and for 
projected future climate (end of this century) (right). Diagram shows the species 
coverage in percentage. The Booster Regression Tree technique was used for modelling. 
(Modified from Paper V.) 
 
According to Short et al. (2010) there has been a global decline of area covered 
by eelgrass by 1.4% per year (based on researches conducted in 1990-2000). 
There are regions with significant large-scale decline of eelgrass cover (e.g. due 
to wasting disease or major pollution), areas where there has been no decline or 
the species distribution area has widened and areas where species has completely 
disappeared. Declines are mostly reported for developed and populated areas in 
Europe and North America (Short et al., 2010). The modelling exercise in Paper 
V suggests that elevated coverages of eelgrass associated to the future climate 
in the NE Baltic Sea are largely triggered by elevated temperatures. Water 
temperature affects plant physiological processes, growth rates and reproduction 
patterns and determines the geographic distribution of species based on their 
temperature tolerances (Short and Neckles, 1999). Higher temperatures generally 
alter the growth rates of the submerged plants (Short and Neckles, 1999) up to 
an optimum value and further temperature increase results in a dramatic plant 
net photosynthesis decrease and mortality (Díaz-Almela et al., 2009; Oviatt, 
2004; Reusch et al., 2005). Temperature stresses are most obvious at the edges of 
species ranges, e.g. low salinity areas. Optimum salinity and temperature values 
for eelgrass growth are 10–30 and 10–20 °C, respectively (Nejrup and Pedersen, 
2008; Salo and Pedersen, 2014). In a 5-week experiment the combination of 
low salinity (5) and high temperatures (25 °C) was shown to significantly 
increase the mortality of eelgrass adult shoots (Salo and Pedersen, 2014). At 
salinity 5 the plant is stressed but if other environmental conditions are suitable, 
eelgrass can survive at salinity as low as 2 (den Hartog, 1970; Salo et al., 2014). 
Eelgrass is also sensitive to a short-term rapid temperature increase in summer 
and the heat stress can lead to serious diebacks, declines in net primary 
production have been reported already above 23 °C (Moore et al., 2014). As 
discussed in Paper V, presently the Baltic Sea is a rather cold environment with 
a short vegetation season and in general here the mean temperature increase of 
25% (i.e. summer maximum temperatures from the present 19 °C to 23 °C) will 

Zostera marina Zostera marina
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likely not exceed the optimum growth values for submerged species. Elevated 
temperatures are expected to prolong the vegetation season, i.e. increase the 
growth of the submerged aquatic vegetation and shoot to root ratio (Zimmerman 
et al., 1989). However, more frequent heat waves affect seagrass communities 
all over the world, both positive and negative impacts have been reported (e.g. 
Díaz-Almela et al., 2007; Lefcheck et al., 2017; see overview in Short et al., 
2016). Not considered in our modelling exercise in Paper V, but in shallow 
coastal areas of the Baltic Sea unforeseen heat waves combined with other 
stressors may cause a total collapse of eelgrass populations as the recovery of 
meadows is complicated both due to altered environmental conditions and slow 
clonal growth of the plant. 

As discussed in Paper V, water motion is known to affect the plant structure 
of submerged aquatic vegetation (Fonseca et al., 1983; Worcester, 1995) and 
elevating current velocity will increase leaf biomass and width as well as 
canopy height (Fonseca and Kenworthy, 1987; Short, 1987). However, our study 
shows opposite results: eelgrass was disfavoured by elevated current velocities 
(V). A probable reason behind this pattern is specific light conditions in our 
study area – already wind speeds higher than 5 m s–1 cause considerable resus-
pension of prevailing clayey sediments and reduction of water transparency in 
the coastal water (discussed also in Section 3.3). A combination of high tem-
peratures and low water transparency is considered lethal for eelgrass popu-
lations (Lefcheck et al., 2017).  

Salinity plays a great role in the species distribution in the brackish Baltic 
Sea; however, the impact of salinity in local models of benthic vegetation is 
marginal (V; Rosqvist et al., 2010). In the Baltic Sea range low salinity values 
do not significantly decrease the growth rates of eelgrass (II; Boström et al. 
2014; Salo et al., 2014). Nevertheless, the lowering salinity favours submerged 
plant species of freshwater origin, and higher interspecific competition between 
these and eelgrass is expected (Riddin and Adams, 2010). In addition, changed 
ice conditions also modify the competition between submerged plants. Models 
in Paper V suggest that reduction of ice cover duration favours slow-growing 
species such as eelgrass while fast-growing species such as M. spicatum, P. per-
foliatus and S. pectinata lose their advantage from periodically destructive ice.  

Although our model in Paper V predicted that all submerged plant species in 
the NE Baltic Sea would gain from climate change we have to keep in mind the 
combined influence of several stressors and non-linearities between the environ-
ment and biota, which can provoke unpredictable changes in biological com-
munities (e.g. Hoffman et al., 2003). There are several environmental forcings 
that our study did not consider. For example, in addition to heat waves, the 
increased temperature under the projected climate is expected to enhance the 
growth of ephemeral epiphytic macroalgae (Lotze et al., 1999; Taylor et al., 
2001) and macroalgal blooms will decrease eelgrass photosynthetic perfor-
mance mainly due to changes in light climate (see Paper V and also Section 3.3 
for a short overview). Light climate is expected to change also due to changes in 
the sea level: the IPCC (2013) prognoses the minimum global mean level rise of 
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0.63 m by 2100. In case of global sea level rise of 0.70±0.30 m, the prognoses 
of relative sea level change for the Baltic Sea vary between sea level fall of 
0.35 m (in northern areas) and sea level rise of 0.60 m (in southern areas). In the 
coastal areas where the slope is relatively slight, the increase in the water 
column height will automatically induce a lower depth limit of seagrasses 
whenever the limit is beyond the compensation depth. For a slope of 2%, an 
increase of 2 cm in the depth of the water column (vertical) corresponds to a 
linear regression of 1 m of the position of the lower limit (horizontal) of the 
seagrass meadow (Pergent et al., 2015). This again might be compensated by 
the predicted CO2 enrichment, which will enhance the maximum photosynthetic 
rate of eelgrass and reduce the daily light requirement of plants (Zimmerman et 
al., 1997).  

Not considered in our study, but genotypic diversity (aka clonal diversity) is 
another important factor affecting the stability and longevity of eelgrass 
meadows under fluctuating environmental conditions (see e.g. Boström et al., 
2014 for more details). The clonal diversity of seagrass is relatively high in the 
North Sea, Scandinavian west coast and the Kattegat area. Less is known about 
eelgrass population genetics in the southern and eastern areas of the Baltic Sea, 
but low clonal diversity has been described for eelgrass growing in isolated 
lagoons and fjords in the Kattegat area (e.g. Limfjorden, Denmark; Ferber et al., 
2008). In inner parts of the Baltic Sea eelgrass reproduces asexually due to low 
salinity and the probability of the occurrence of large, 800–1600 years old 
clones also increases (Reusch et al., 1999). These populations are expected to be 
highly sensitive to extrinsic stressors and potentially have a very low genetic 
adaptation potential (Lasker and Coffroth, 1999; Santamaría, 2002). At the same 
time, these genotypes are characterized by wide reaction norms enabling the 
persistence of species under highly fluctuating environmental conditions in 
terms of ice cover and eutrophication. However, according to the present 
knowledge, the clonal variability of eelgrass in the Baltic Sea is highly variable 
and neither related to present salinity conditions nor different sub-basins. 
Gonciarz et al. (2014) revealed that eelgrass populations located across the 
Baltic Sea (specifically in the coastal waters of Germany, Poland and Estonia) 
are genetically distinct, differing both in the clonal structure and in the level of 
genetic polymorphism. Surprisingly, no clones were discovered in the 
easternmost low-salinity study area (24 individuals studied) and the allelic 
richness was similar to that observed in the North Sea populations. Taken sepa-
rately, eelgrass populations at the southern Baltic Sea have low clonal diversity; 
however, when the total (southern) distribution range is considered, the diver-
sity is as high as in the North Sea (Diekmann and Serrao, 2012; Gonciarz et al., 
2014). Recently, the genome of eelgrass was fully sequenced (Olsen et al., 
2016) and this will contribute highly to the future studies e.g. on eelgrass 
adaption to different salinity regimes and climate change effects on the species 
distribution.  

Several marine foundation species in the Baltic Sea are expected to reduce 
their distribution range due to lower salinity, e.g. F. vesiculosus, Furcellaria 
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lumbricalis (Hudson) J.V.Lamouroux, 1813 (Vuorinen et al., 2015). Losing 
these species would impoverish species complexity and structure on hard sub-
strates. The loss of diversity would make marine ecosystems more vulnerable 
and less resilient to climate change and other environmental shifts caused by 
disease, alien invasive species and the cascading effects of overexploitation 
(Gjerde, 2006). Our modelling in V showed that the key species on soft sub-
strates, eelgrass, will benefit from climate change. In the NE Baltic Sea the 
species already grows on its physical tolerance limit, the eelgrass meadows are 
often narrow, patchy and sparse (II) and due to predominantly vegetative 
reproduction the recovery of disturbed meadows is limited. The estimated area 
of eelgrass habitats makes up less than 0.5% of the total Estonian sea area 
(36 500 km2), the distribution area of macrphytobenthic key-species habitats on 
hard substrate is even smaller (I). As discussed in Paper I, a holistic approach is 
needed to managing the marine environment and modelled distribution maps 
and predictions of the coverage of key species under future climate conditions 
are essential for effective conservational planning and would contribute to 
minimizing the risk of biodiversity loss.  
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4. CONCLUSIONS 

One of the aims of the thesis was to provide a methodological overview of 
studies of coastal benthic species and habitats with eelgrass as the case species. 
Traditional survey methods such as diving and physical sampling of seabed 
have been used in studies of Estonian coastal sea benthic communities since 
1959, and as these offer the most detailed information, they are most commonly 
used also today. Anyhow, as these methods require a lot of labour power, are 
very expensive and time consuming, mapping of large sea areas needs a 
different approach. Video observations came into use in 2005 and this method 
has been widely used as it provides a quicker and cheaper way to estimate the 
status of most key species in benthic habitats (I). In our studies a continuous 
video mode and a still picture mode based on 35 and 20 photographs produced 
the best results (III). Therefore these methods should be preferred in the 
mapping of benthic macrophyte communities as well as in the assessment of 
water quality in the relatively homogeneous environments of the northern Baltic 
Sea.  

Eelgrass is an ecosystem engineering species in moderately exposed sandy 
substrates of the NE Baltic Sea. In 2005–2015 eelgrass was found in more than 
300 locations (I–V). The species spreads all over the Estonian coastal sea, 
except the easternmost low salinity parts of the Gulf of Finland and the turbid 
and diluted Pärnu Bay area (I, V). Its main depth range is 2–5 m (I, II, V). The 
area of eelgrass coverage of higher than 10% is estimated at about 150 km2 (I). 
For comparison – in the whole Baltic Sea the distribution area of eelgrass is 
estimated at 1200 km2. 

The seasonal variability of the eelgrass habitat was low whereas spatially the 
biomass of eelgrass varied largely, often as a function of depth (i.e. light, tem-
perature, sediment characteristics) with some areas characterized by extensive 
but low-cover eelgrass meadows whereas other sites had only narrow but dense 
eelgrass belts (II). The average biomass of eelgrass was from 7 to 70 g dw per m2 
and the shoot density was on average 133–1300 shoots per m2 (II). According 
to literature, these findings are similar across the species distribution range in 
the Baltic Sea. Contrary to other areas of the Baltic Sea, a significant growth of 
eelgrass occurred in the Estonian coastal sea also in September (II).  

A total of 33 macrophytobenthic and 35 invertebrate taxa were found in 
samples from eelgrass stands in the coastal waters of Estonia (I). Taken 
separately, the eelgrass meadows inhabited 9–15 species of macrophytes and 8–
21 species of invertebrates (II). All species found in eelgrass meadows are also 
common in the coastal waters of Estonia (except the eelgrass epiphyte 
Cladosiphon zosterae) and findings correspond to about a quarter of total 
benthic species richness in the area. Eelgrass habitats hosted one of the richest 
mesograzers community in the Baltic Sea (I, II). Our niche modelling indicated 
that there was a large overlap in niche space among eelgrass and other 
submerged plant species (V), and although the total number of species found 
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either in eelgrass or other submerged plant species habitats is similarly high, the 
habitats differ significantly in species composition (I). A generic relationship 
was found between the biomass of the eelgrass community and the abundance 
of associated benthic invertebrates (II), suggesting that the local abiotic 
environment does not modulate how benthic invertebrates respond to eelgrass 
canopy parameters.  

Many novel tools such as hyperspectral remote sensing of benthic habitats, 
spatial predictive modelling and machine learning are becoming more and more 
common. Combining the traditional and novel tools is at present the best 
approach in order to understand biotic patterns and their change in the marine 
realm. The used remote sensing classification schemes produced accurate high-
resolution maps at 06 m depth with a potential to distinguish larger groups of 
macrophytes (IV). Although not able to distinguish species, the results provide 
an important cost-effective input when planning targeted large-scale mapping of 
e.g. eelgrass. In this thesis, as an example of modelling benefits, we used the 
predictive modelling technique called Boosted Regression Trees to quantify 
non-linear relationships between the cover of eelgrass and the environment as 
well as to predict species cover under current and future environmental con-
ditions (V). 

Our results confirmed that small- and large-scale environmental variability 
contribute both separately and interactively to the variability in the cover of 
eelgrass (V). Under future climate change, physical disturbances such as 
seawater warming, elevated wave-induced current velocity and reduced ice 
scour are predicted to override the effects of salinity reduction, elevated 
turbidity and pelagic production (V). Our modelling study showed that eelgrass 
is very resilient to a broad range of environmental perturbation and biomass 
gains are expected when seawater temperature increases (V). This is mainly 
because vegetation will develop faster in spring and will have a longer growing 
season under the projected climate change scenario. Nevertheless, opposite 
changes in the abiotic environment might also occur under other climate change 
scenarios and these may have catastrophic effects on local eelgrass populations 
(e.g. due to unforeseen heat waves). As the species is growing at its stress 
limits, a modelling of the cover of eelgrass under the future climate is essential 
in order to help managers to establish marine protected areas that can resist the 
projected influences of climate change and thereby minimize the loss of 
biodiversity.  
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SUMMARY IN ESTONIAN 

Läänemere kirdeosa põhjataimestiku leviku  
kaardistamine ja modelleerimine pika meriheina  

Zostera marina Linnaeus, 1753 näitel 

Tänapäeval on merekeskkond inimtegevusest tugevalt mõjutatud, kaasnevad 
peamised ohud on looduslike varude ületarbimine, elupaikade hävimine, reostus, 
võõrliikide invasioon ning keskkonnatingimuste muutumine kliimamuutuse 
tõttu. Mereressursside laialdane kasutamine on viinud liikide ning elupaikade 
säästva majandamise ning kaitsmise vajaduseni, mille edukaks läbiviimiseks on 
vajalik liikide levikumustrite kaardistamine ning muutuste prognoosimine. 
Võrreldes maismaaga on merekeskkonnas uuringute läbiviimine ning proovide 
kogumine keerukam ning seetõttu on ka meie teadmised puudulikumad.  

Mere põhjaelustik täidab ökosüsteemi toimimisel mitmeid olulisi funktsioone. 
Merepõhja elupaikadest on meriheinakooslused ühed produktiivseimad alad 
Maal, neil on oluline roll rannajoone kaitsel, sette stabiliseerimisel, lainete sum-
mutamisel, maismaalt pärinevate toitainete filtreerimisel ja süsiniku sidumisel. 
Samuti on nad olulised paljudele selgrootutele, kaladele ning imetajatele toitumis-, 
varje- või elupaigana. „Meriheinad“ on kokkuleppeline termin, mis tähistab öko-
loogilist rühma, kuhu kuuluvad merevees elavad kõrgemad taimed, mis asus-
tavad nii tõusu-mõõna kui sublitoraalseid piirkondi troopilistel ja parasvöötme-
listel rannikutel. Meriheinakoosluste levila on viimastel aastakümnetel oluliselt 
vähenenud ning lisaks lokaalsetele teguritele (sh eutrofeerumisele) on oluline 
roll ülemaailmsetel protsessidel (sh kliimamuutustel). Kliimamuutuste tagajärjel 
tekkivad muutused veetemperatuuris ning tugevate tormide sagedam esinemine 
võivad põhjustada meriheinakoosluste leviku muutumist ja mõjutada nii nende 
liigilist koosseisu, mitmekesisust, struktuuri kui ka produktsiooni. Eutrofeeru-
mine soodustab efemeersete makrovetikate vohamist ja madalas rannikumeres 
meriheinakoosluste asendumist vetikatega. Riimveelises Läänemeres kasvab 
72st meriheina liigist vaid neli. Vaid üks merelise päritoluga liik – pikk meri-
hein (Zostera marina) levib Läänemere lääne- ning põhjaosas. Läänemere piir-
konna kliimaprognoos näitab kasvuperioodi pikenemist, jääkatte vähenemist 
ning muutusi tuule- ja sademete mustris, mis omakorda mõjutavad meres 
valgustingimusi ning soolsust. Mittelineaarsete elustiku ja keskkonna vaheliste 
seoste tõttu võivad isegi väikesed muutused inimtegevuses ja/või kliimas 
põhjustada muutuseid meriheina kooslustes, mis kasvavad juba niigi oma 
füsioloogilisel taluvuspiiril, ning viia oluliste, pika meriheina poolt täidetavate 
funktsioonide kadumiseni Läänemeres.  

Käesolevas töös on kasutatud Eesti rannikumeres 2005–2015. aastatel laia-
ulatuslike merepõhjakoosluste kaardistamistööde käigus kogutud andmestikke. 
Töö põhieesmärkideks oli: (1) anda lühiülevaade Eesti rannikumere põhjakoos-
luste peamistest uuringumeetoditest (I–V), sh määrata kindlaks merepõhja 
koosluste võtmeliikide kaardistamiseks sobivaim videovaatlus meetod (III); 
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(2) kaasajastada pika meriheina levikukaart Eesti rannikumeres (I, V); (3) anda 
ülevaade pika meriheina koosluse põhiparameetritest Eesti rannikumeres (II); 
(4) uurida kaugseire võimalusi meriheina koosluste kaardistamisel Eesti 
rannikumeres (IV); (5) määrata kindlaks kõige olulisemad pika meriheina 
esinemist mõjutavad keskkonnamuutujad ning ennustada muutusi meriheina 
levikumustris tänapäeva ja tuleviku kliima tingimustes (V). 

Traditsioonilised merekeskkonna uurimismeetodid – merepõhjast proovide 
kogumine kas sukelduja poolt või pinnalt põhjaammutite abil on Eesti ranniku-
mere põhjakoosluste uurimisel kasutusel alates 1959. aastast. Mõlemad meeto-
did võimaldavad koguda detailset infot koosluste kohta ning on laialt kasutusel 
ka tänapäeval. Siiski, kuna eelnimetatud meetodid on tööjõumahukad, kallid 
ning aeganõudvad, on suurte merealade kaardistamisel vajalik rakendada kui 
muid uuringumeetodeid. Veepinnalt teostatavad videovaatlused on Eestis kasu-
tusel alates 2005. aastast ning kuna meetod võimaldab koguda infot võtme-
liikide katvuse kohta kiiremini ning odavamalt kui sukelduja või põhjaammuti, 
on see tänapäeval merepõhjaelustiku kaardistamisel laialt kasutusel (I, V). 
Väljatöötatud videopõhised või videost pärineva 20 või 35 foto põhised hinnan-
gud on piisava täpsusega ning sobivad kasutamiseks Läänemere kirdeosa põhja-
elustiku koosluste kaardistamisel (III).  

Pikk merihein on Eesti rannikumeres avatud liivastel põhjadel üks olulise-
maid võtmeliike (I, II). Aastatel 2005–2015 tuvastati üle 300 pika meriheina 
kasvukoha. Liik on tavapärane kogu Eesti rannikumeres, välja arvatud madala 
soolsusega piirkonnad (Soome lahe idaosa ning Pärnu laht) (I–V). Liik kasvab 
peamiselt sügavusvahemikus 2–5 m (I, II, V). Pika meriheina levikuala, kus 
liigi katvus ületab 10%, on hinnanguliselt 150 km2 (<0,5% Eesti mereala pind-
alast) (I). Läänemeres on pika meriheina praegune areaal hinnanguliselt 
1200 km2. Liigi katvuse sesoonne varieeruvus oli väike, ruumiline varieeruvus 
oli enam mõjutatud sügavusest (sh valgus, temperatuur, sette iseloom) ning 
varieerus kitsastest tihedatest meriheinavöönditest ulatuslike hõredate koos-
lusteni (II). Meriheina biomass varieerus vahemikus 7–70 g/m–2 (kuivkaal) ning 
võsude tihedus koosluses varieerus peamiselt vahemikus (50)133–1300 tk/m–2 
(II) – antud väärtused on kirjanduse andmetel sarnased kogu Läänemere ula-
tuses. Erinevalt teistest Läänemere piirkondadest jätkus pika meriheina kasv 
Eesti rannikumeres ka septembris (II). Pika meriheina kooslustest leiti kokku 35 
põhjataimestiku ning 33 põhjaloomastiku liiki, tavapäraselt esines ühes 
meriheinakoosluses 9–15 põhjataimestiku ning 8–21 põhjaloomastiku liiki (I, 
II). Pika meriheina kooslustes esinevad liigid on tavapärased kogu Eesti 
rannikumeres (ainult Cladosiphon zosterae esinemine on seotud pika meriheina 
levikuga) (I, II), leitud liikide arv on umbes neljandik piirkonna põhjaelustiku 
liikide arvust. Pika meriheina ning teiste Eesti rannikumeres levinud kõrgemate 
taimede elupaigad kattuvad suures osas (V) ning liikide arv on kõrge kõikides 
kõrgemate taimedega elupaikades, samas on nende koosluste liigiline koosseis 
erinev (I, II). Pika meriheina koosluste biomassi ning kooslusega seotud 
põhjaloomastiku liikide arvukuse vahel on tugev lineaarne seos (II), mis viitab 
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sellele, et meriheina poolt pakutav struktuur ja elukeskkond on loomastiku jaoks 
olulisemad kui muud lokaalsed keskkonnatingimused.  

Mitmed uued meetodid, nagu merepõhja elupaikade hüperspektraalne kaug-
seire, ennustav ruumiline modelleerimine ja masinõpe on järjest enam kasu-
tatavad. Nende kasutamine on osutunud eriti väärtuslikuks madalas ranniku-
meres, kus esineb suur ruumiline varieeruvus, mida traditsiooniliste uurimis-
meetodite abil pole võimalik kaardistada. Traditsiooniliste ja uute meetodite 
kombineerimine on hetkel parim lähenemine, mõistmaks liikide levikumustreid 
ning nende muutusi merekeskkonnas. Käesolevas töös välja töötatud kaugseire 
klassifikatsiooniskeem võimaldas luua täpsed kõrge lahutusvõimega põhjakoos-
luste levikukaardid 0–6 m sügavusel rannikuvees, sh eristades enimlevinud 
põhjataimestiku rühmad – rohe-, pruun- ja punavetikad, mändvetikad ja kõr-
gemad taimed (IV). Kuigi kõikide koosluses esinevate liikide eristamine ei ole 
alati detailselt võimalik, võimaldavad väljatöötatud levikukaardid ka liigi-
põhiste uuringute optimaalsemat planeerimist. Demonstreerimaks ruumilise 
modelleerimise võimalusi merepõhjakoosluste leviku hindamisel, kasutati 
doktoritöös näitena võimendatud regressioonipuu meetodit (boosted regression 
tree – BRT), mis võimaldas hinnata mittelineaarseid seoseid pika meriheina 
katvuse ning keskkonna vahel ning ennustada muutusi liigi katvuses nii prae-
guse kui tulevase kliima tingimustes (V).  

Modelleerimise tulemused kinnitasid, et väikese- ja suureskaalaline kesk-
konnamuutlikkus mõjutavad nii eraldi kui koos vaadatuna pika meriheina katvust 
ning levikut (V). Tuleviku kliima stsenaariumi kohaselt on füüsikalistel muutu-
jatel, sh merevee soojenemisel, lainetuse poolt põhjustatud vee liikumiskiiruse 
tõusul ning laguneva jää poolt põhjustatud mehaanilisel häiringul madalas 
rannikumeres suurem mõju pika meriheina levikule kui soolsuse vähenemisel, 
vee hägususe ning pelaagilise produktsiooni suurenemisel (V). Meie model-
leerimine näitas, et pikk merihein on vastupidav väga suurtele keskkonnatingi-
muste muutustele ning merevee temperatuuri tõusuga kaasneb eeldatavalt liigi 
biomassi suurenemine (V). Vastavalt levinud tuleviku kliima stsenaariumile on 
pika meriheina biomassi suurenemine peamiselt seostatav kiirema taimestiku 
arenguga kevadel ning pikema kasvuperioodiga. Antud tulevikuennustused pika 
meriheina leviku muutustest võimaldavad merekaitsealade paremat planeerimist 
ning aitavad tagada liigilise mitmekesisuse säilumist Läänemere idaosas. Pika 
meriheina koosluste püsimise tagamiseks on Läänemeres vajalik ka laiapõhja-
lisem koostöö ning üleüldine teadlikkuse tõstmine nende koosluste unikaal-
susest ning väärtuslikkusest. 
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