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Delta Building Visualisation and Optimisation 

Abstract: 

During this thesis, a visualisation of an academic building model in the Unity game engine 

was created. The thesis describes the optimisations and pathfinding solution for simulated 

people, as well as the design principles used to make the visualisation enjoyable for the 

viewer. The thesis concludes with testing the optimisation and pathfinding, along with 

verifying if the visualisation was pleasant to watch. 
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Delta Õppehoone Visualiseerimine ja Optimeerimine 

Lühiskokkuvõte: 

Antud töös loodi õppehoone visualisatsioon Unity mängu mootori kasutades. Lõputöö 

kirjeldab visualisatsiooni optimeerimist ning simuleeritud inimeste raja leidmise lahendust. 

Lisaks oli arendatud visualisatsiooni diasin Delta õppehoone visualisatsiooni vaatajate jaoks 

selleks, et muuta visualisatsiooni kasutajasõbralikumaks ja ilusamaks. Töö käigus oli tehtud 

optimeerimise ja raja leidmise testimine. Lisaks oli katsetatud visualisatsiooni meeldivus 

kasutajatele. 
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1. Introduction 
With big corporations constantly improving work atmosphere using methods such as 

encouraging to have fun during work [1], it is good to come up with different strategies to 

encourage said fun in studying environments. It is also important to motivate people in those 

work environments, because, as explained by Tohidi on the effects of motivation, 

“motivation powers people to perform better” [5]. As explain by Kim et al on the topic of 

effects of animations in interest, “due to their aesthetical appeal and interest, animations 

provide a motivation boost” [6]. 

The goal of this thesis is to create a 3D visualisation of the Delta building. The Delta 

building itself is an academic building of many institutes, one of them being Institute of 

Computer Science1. Also, one of the goals of the visualisation is to potentially provide 

insight on how the visualisation can improve work atmosphere (chapter 5) and positively 

impact the people viewing the said visualisation (chapter 3). The visualisation is created in 

Unity2 – a game engine, which is often used to develop three-dimensional games and 

simulations. The visualisation itself simulates how students and educators behave during 

their time in an academic building (chapter 4). Furthermore, the visualisation is done in 

cooperation with Andrei Voitenko. The goal of his thesis is to provide simulated sensor data 

and schedule data to this part of the visualisation [11]. The sensor data will be used to 

showcase the student and educator behaviour. Lastly, the thesis will provide insight on what 

future developers or students of this visualisation can do in other to further improve said 

visualisation (chapter 6).  

The model of the Delta building was provided by the architecture firm Arhitekt11 OÜ. The 

visualisation is planned to be displayed on either Video Wall Screens inside the Delta 

building. The screen is expected to be 6 meters wide and 3 meters tall and is expected to be 

placed on the first floor near the main entrance. This provides a good opportunity for any 

passing viewers to notice the visualisation. As explained by Jin in his research on role of 

animations in the consumer marker: “Animations makes a product become capable of 

eliciting a positive emotion and attitude” [2], the visualisation can be seen as “selling” the 

opportunities Computer Science Bachelor curriculum can provide to prospective students 

and motivate them to enrol. 

                                                 
1 https://www.ut.ee/en/news/new-academic-building-narva-mnt-4-will-be-called-delta  
2 https://unity3d.com/  



6 
 

Visualisation features three-dimensional objects, which represent people in the building. 

They have the ability to determine their destination. They also imitate student and educator 

behaviour using abstract animations. For the purpose of this thesis, these three-dimensional 

objects will be called Actors. Actors will have their own colour and shape in order to 

distinguish students from educators (chapter 3). Other abbreviations or definitions, as well 

as additional files and tables, can be found in the appendix. 
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2. Requirements 

Because an academic building and the people in it will be visualised, the visualisation is 

expected to support a high Actor. The visualisation should be pleasant for the viewer to 

watch, as the goal is to motivate prospective students to enrol. Furthermore, this project 

expects input from sensor data in order to guide the Student Actors to their destinations and 

schedule data to guide Educator Actors. For these reasons, both functional and non-

functional requirements were defined in order to fulfil the above mentioned criteria. These 

requirements also served as main goals for the development.  

2.1 Functional Requirements 

Functional requirements focus on Actor destinations from the sensor data and the overall 

look of the visualisation. Five functional requirements were created to define the Actor 

behaviour (F1, F2) and animations (F3). They also provide information on the visualised 

areas (F4) and the way the building model should be furnished (F5). 

F1. Student Actor destination from sensor mock data 

Student Actor movement in the visualisation should be based on sensor mock data. Because 

the building is not built, data simulation will be used. Sensor mock data will be provided in 

the form of a room name and the amount of people going to that room by Andrei Voitenko 

[11]. 

F2. Educator Actor destination from a schedule 

Educator Actor destination should be set once an educator is needed in any of the 

classrooms. This should be determined by a SIS3 schedule - a Study Information System 

that manages a range of information for students in Info Technology (IT). The SIS schedule 

gives the Educator Actor the time it has to leave and the room it is going to via a Schedule 

Module created by Andrei Voitenko [11]. 

F3. Actor animations based on their activity 

Actor animations should be based on the classroom the Actor is going to and what kind of 

table the Actor is going to be sitting at once it has reached its destination. Educator Actors 

will be animated as if they were education the students in the classroom. Student Actors will 

be animated as if they were studying. 

                                                 
3 https://itservices.usc.edu/sis/about/ 
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F4. Visualised areas with high student presence 

The visualisation should only feature areas of the building where a high student presence is 

expected. These places are the first floor, second floor and the outside area. First and second 

floors will be visualised because they have lecture halls, labs, seminar rooms etc., while the 

outside area will be visualised because the Actors can be often seen going into the visualised 

building model.  Third and fourth floors will not be visualised because the student presence 

is low due to these floors mostly having educator offices.  

F5. The furnishment of the visualisation 

Most of the rooms in the given Delta building model were empty and should be furnished 

with suitable furniture models. The amount of furniture models expected in each room was 

written in the building’s architectural blueprint. The blueprint of the building was provided 

by Administrative Manager of the Institute of Computer Science, Piret Orav. 

2.2 Non-Functional Requirements 

Non-functional requirements focus on the performance of the visualisation, as well as 

defining the emotional factors4 of the visualisation. Non-functional requirements explain 

the amount of expected Actor number (NF1), the performance of the visualisation (NF2, 

NF3), the planned views (NF4) and the planned viewer experience (NF5). 

NF1. The visualisation should support a maximum of 2010 Actors 

As stated by the Administrative Manager of the Institute of Computer Science, Piret Orav, 

the building is expected to support up to (but not limited to) 1600 students and 410 

employees (e.g. educators). Thus the visualisation should support a maximum of 2010 

concurrent Actors. Note that during testing, 2010 Actors will be scattered throughout the 

visualisation, meaning that the Actors might not all be seen in the visualisation in any given 

moment. 

NF2. The expected frame rate of the visualisation 

Pourazad et al state in their research on the effects of frame rate that “good frame rate (FPS) 

improves the Quality of Experience5 - a measure of delight or annoyance of a customer’s 

experience. Also, if a scene contains fast moving objects, it is best to run the scene at higher 

than 30 FPS” [4]. Thus the FPS of the visualisation should be above 30 FPS. 

                                                 
4 https://en.wikipedia.org/wiki/Non-functional_requirement 
5 https://en.wikipedia.org/wiki/Quality_of_experience 
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In order to achieve this kind of performance, a modern PC with good hardware is required. 

Below you can see the hardware that was used when creating and testing the visualisation’s 

performance for this thesis: 

OS: Microsoft Windows 10 Enterprise x64 bit 

Processor: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz 

GPU: NVIDIA GeForce GTX 980 Ti, 4 GB RAM 

RAM: 8 GB 

NF3. Actors should find a path to their destination in 2 seconds or less 

With multiple possible spawn points (subchapter 4.2) and a 125 different rooms, finding 

paths for all those locations should be relatively fast so that actors do not stand idly in their 

current location when they are required to move.  

NF4. Views should be logically placed 

The visualisation should feature multiple different views6 in the three-dimensional 

environment of the building as to cover most of the interesting areas of the Delta building 

model. This means the views should have a logical position to allow the visualised areas to 

be seen in detail. Three viewpoints for each floor should allow the viewer of the visualisation 

to get a better representation of the activities that are happening on the given floor. The 

vertex (see the glossary) count for each viewpoint in the visualisation should be below 3M7, 

as recommended by the official Unity documentation on graphics optimisation.  

NF5. Design of the Visualisation 

The visualisation should be simple and understandable to the viewer. Colours, the 

animations and student behaviour in the visualisation should provoke a positive response to 

the viewers of the visualisation and potentially improve work atmosphere. 

                                                 
6 https://en.wikipedia.org/wiki/Viewpoints 
7 https://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html  
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3. Design 

Design is a process of creating a solution for the functional and aesthetic demands of the 

viewer8. In the case of this thesis, design is necessary as it is expected that a viewer should 

enjoy watching the visualisation (NF5). The design of the visualisation is based on a 

minimalistic aesthetic - an aesthetic that reduces the visualisation to its necessary elements9. 

The most important elements of the visualisation are the Actors, their animations and the 

building model. In order to distinguish them from other objects in the visualisation, each 

object has its own defining colour. 

The following chapters describe different design ideas and principles that were used in the 

making of the visualisation. Design principles such as game design and film/animation 

principles and data visualisation were analysed in order to satisfy requirements F3, F5 and 

NF5. 

3.1 Colour Palette 

As Rost states in her guide to data visualisation: “In data visualisation, it is important that 

colour in data highlights the important areas to the viewer” [8]. Furthermore, Zhang adds in 

her explanation of colour distinguishment that “these colours should allow the viewer to 

easily distinguish between different sets of data” [9]. In the case of this visualisation, we 

can assume that the important areas to be highlighted and distinguished are the Actors. 

Regarding the design of colours, different colour palettes allow the creation of different 

moods. Some colour palettes follow patterns that feel more natural to the viewer [9]. In 

game design, colour palettes affect the mood of the players, giving them different feelings 

and atmosphere. For example, warm colours make you feel comfortable, while cool tones 

give a more futuristic feel, as explained by Knez and Niedenthral in their research on the 

effects of colours on play performance [10]. Thus the visualisation should not only highlight 

important objects, but also provide an academic and aspiring feel of a university. 

Because the visualisation is of a real-life building, some colours are already placed10. These 

include staircases, doors, inside walls and other structural objects. When picking the other 

colours for the visualisation, these colours were taken into account.  

                                                 
8 http://www.svid.se/en/What-is-design/Definition-of-design/  
9 http://itprotech.eu/index.php/en/incdtp-2/modele/minimalist 
10 http://ehitustrust.ee/2018/01/tartu-ulikooli-it-keskus-delta/ 
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Colours for the different furniture, rooms and the Actors were determined by creating three 

distinct colour palettes. An online software Coolors11 was used to create the colour palettes. 

The following chapter describes the reasoning behind the Actor colours. The next chapter 

explains the remaining picked colours for the visualisation. 

3.1.1 Actor Colour

According to Kurt and Osueke when 

explaining the effects of colours on college 

students: “Blue encourages intellectual 

activity and logical thought” [3]. Thus it 

seemed suitable to make the Student Actors 

blue, as they are associated with learning and 

knowledge gathering at schools or higher 

education institutions. 

Kurt and Osueke also state: “Yellow is 

associated with comedy and optimism” [3]. 

Because of that, the educators were chosen to 

be yellow to give the visualisation a joyful 

feeling to the viewers.  Both Actors can be 

seen in Figure 1. 

 

Figure 1. Educator Actor on the left, 
Student Actor on the right. 

 

3.1.2 Final Colour Palettes 

When generating a colour, the following factors were considered: 

 Least favourite colours that of GRAPH 5 in Figure 2 were strongly avoided. 

 Favourite colours that of GRAPH 6. in Figure 2 were picked more often. 

 Shades of blue and yellow were avoided as they were already used for the Actors. 

 Warm colours were supported because they increase arousal and stimulation [3]. 

                                                 
11 https://coolors.co/ 



12 
 

 
Figure 2. Graph 5 and Graph 6 from research done by Kurt and Osueke [3:8]. Graphs 
describe the least and most favourite colour of university students. 

One of the colour palettes that was generated can be seen on Figure 3. Colours were chosen 

by the factors mentioned in chapter 3.1.2. Dark blue (#293241) was chosen to colour the 

outside walls of the Delta building based on the images already on the web and videos of 

the Delta building provided by Piret Orav. Blue in this case are the Student Actors; Educator 

Actor colour can be found on Figure 4. Red was used on furniture models in the 

visualisation. Lastly, green was used for areas outside to represent grass. 

 
Figure 3. The first colour palette 

The second colour palette can be seen on Figure 4. These colours helped add a less gloomy 

feel to the visualisation. Some objects in the visualisation had to be blue as well, but in order 

to not use the same colour as the Student Actors, a different blue colour was picked. The 

beige colour was used to colour the floors of the visualisation. A different shade of red was 

picked to distinguish between those objects that had the red colour of Figure 3. Yellow was 

used to represent Educator Actors. 
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Figure 4. The second colour palette 

The final colour palette, Figure 5, has darker colours that were used for wooden objects and 

roads around the building. The last colour in Figure 5 was used to distinguish some wooden 

parts from others, while the first one was the primary colour for all wooden objects. White 

was used on objects such as paper, sinks, toilets and some walls. The second and third 

colours were for roads, keyboards and computer screens. 

 
Figure 5. The third colour palette 

3.2 Minimalistic Aesthetics 

Because of the high actor count (NF1) and performance requirements (NF2), simplistic 

animations with little actions were chosen. The animations are played in a loop, which 

allows them to play for the whole duration of the activity. 

The following conditions were used to determine what animation should be played for the 

Student Actors: 

1. If the Student Actor would sit on a chair near a desk with a computer on it, the 

Student Actor would work on the computer. 

2. If the Student Actor would sit on a chair near an empty desk, the Student Actor 

would either take out a laptop or start writing on a notebook. 
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3. If the Student Actor would sit on a chair near an empty desk in the first floor, the 

Student Actor would write on a notebook. 

4. If the Student Actor would sit on a chair near and empty desk in the second floor, 

the Student Actor would use the laptop. 

5. If the Student Actor would sit on a chair without a desk near it, the Student Actor 

would use a tablet. 

6. If the Student Actor would sit on the sofa, the Student Actor would sit on the sofa 

relaxing. 

7. If the Student Actor is in a seminar room, the Student Actor would play an animation 

as if he was discussing something important with the other Actors in the Room. 

8. If the Student Actor is in the computer lab near an empty table, the Student Actor 

would build a computer. 

9. If the Student Actor is in a hallway or standing somewhere, the Student Actor would 

talk to other Actors. 

10. If the Student Actor is sitting on a chair in the lecture room, the Student Actor would 

move its body left to right. This is done because the lecture rooms are the most 

crowded rooms in the building, meaning that more detailed animations would 

significantly decrease performance. 

Educator Actors appear in the visualisation the moment the Schedule Module sends the data 

that a subject is about to start. Their animation consists of arm movements as if giving a 

lecture or explaining something to the Student Actors. 

3.3 The Speech Bubbles 

Because the animations have to be simple with limited actions, it was difficult to express 

the Student Actor emotion and behaviour (NF5) though animations alone. Thus, speech 

bubbles (Figure 6) were added to the Student Actors. As Cohn says in his research on speech 

bubbles: “Speech bubbles are one of the more popular techniques to convey visual imagery 

and speech” [7]. They help to show that the Student Actors are thinking and learning, in 

addition to moving around the building. 

The speech bubbles appear on the Student Actors that are engaged in an activity other than 

walking. For example, when they are sitting in a classroom, working at a computer screen 

or relaxing. During the activity there is an 8% chance every 15 seconds for the speech 

bubble to appear. 



 
Figure 6. Example of a speech bubble12  
by Valeria Capello. 

 

 

When a speech bubble appears, it will 

slowly increase in size for the 3 seconds. 

After the 3 seconds the speech bubble 

begins to fade and will become invisible 

in a second. When a speech bubble is 

active for a Student Actor, that Actor 

cannot spawn an addition speech bubble 

for 4 seconds.

 

3.4 Furniture Design and Placement 

The furniture models for the visualisation were created with a free and open-source program 

named Blender. When creating the furniture models in Blender, a similar real-life 

counterpart of the desired furniture piece was measured first in order to create the said 

furniture piece with approximately the same dimensions. This allowed for precise placement 

of furniture in different rooms based on the building’s architectural blueprint. For example, 

if a room 1004 was planned to fit 25 people according to the blueprint, 25 chairs had to be 

put in the room together with other furniture such as tables and teacher desks. During the 

furniture placement, there were some difficulties to fit the required amount in each room. 

The difficulty was discussed with the Administrative Manager of the Institute of Computer 

Science, Piret Orav. The issue was resolved by allowing the author to place as many 

furniture models as was possible when a classroom in the model did not have enough space 

to fit the planned amount. 

The furniture models themselves have a simple and understandable design behind them, 

allowing good performance even in the case of hundreds of objects being visible on the 

screen. In this context, simple means that not a lot of extra details were put to the models, 

as the extra details will be barely visible in the visualisation (Figure 7). The intent was also 

to make sure the furniture models would be easily recognized by the viewers of the 

visualisation.  

                                                 
12 https://en.wikipedia.org/wiki/Speech_balloon 



16 
 

3.5 The Views 

Multiple views let the viewers to see the all different sides of the building. The views use 

an orthographic13 projection - a projection that allows three-dimensional objects to 

represented in two dimensions and the lines of the projection are perpendicular to the 

drawing surface14. The orthographic projection was picked because it looked best when 

testing the visualisation on a Video Wall. Each view position and rotation can be seen in 

Appendix A. View parameters can be seen in Appendix B.  

Furthermore, the views are panning from one direction to the other at a constant loop. This 

was done to allow all the views to see different areas of the building model much clearly. 

Figure 7 shows the starting position of all views.  

 

 
Figure 7. All 6 views of the visualisation. 

                                                 
13 https://en.wikipedia.org/wiki/Orthographic_projection 
14 https://www.merriam-webster.com/dictionary/orthographic%20projection  
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3.6 Wall Design 

One major issue when creating this visualisation was figuring out a way to show the Actors 

properly. Due to the rooms having walls (Figure 8), a way to show the Actors though these 

walls had to be found. 

The first approach was to make the walls semi-transparent, allowing the contents of the 

room to be semi-visible. However, this approach was avoided due to reasons explained in 

subchapter 4.3.2. 

The second approach was to remove the walls of each room, not including the outside walls 

altogether. However, that made it difficult to understand the bounds of each room.  

The third approach, which is the current solution, was to lower the walls. This way, it is 

clear to the viewer the bounds of each room, as well as gives the views a good oversight of 

the Actors. Some walls have not been lowered, like the outer walls. By not lowering the 

outer walls, it is clear what the bounds of the building are. Lift walls have not been lowered 

either, as they are “Remove” points that despawn (see the glossary) Actors.  

 
Figure 8. One of the hallways of the building model with walls blocking the contents of 
rooms. 
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3.7 Visualisation Design Optimisation 

When designing the visualisation, it was important to make the visualisation pleasant to look 

at (NF5), but also perform well (NF2). When testing the performance of this visualisation 

without any optimization, the frames per second requirement has not been met. The 

following chapters describe optimization techniques that were used to meet the requirement 

NF2, but also provide information on the design of the visualisation and how it was made 

pleasant to look at. 

3.7.2 Lighting 

Research on lighting in digital worlds provided Knez and Niedenthal suggests that people 

feel significantly more pleasant in warm lighting colours [10]. This statements helps satisfy 

requirement NF5. To achieve this, Unity provides some tools to make the lighting not only 

pleasant for the viewers of the visualisation, but also be optimized in order to satisfy 

requirement NF2. 

In order to better understand the tools Unity provides when dealing with lighting, first the 

idea behind lighting in computer graphics should be explained. Lighting in computer 

graphics consists of a range of techniques and mathematical equations which attempt to 

simulate real-life light optics, such as where the light bounces and how it reflects from 

objects. By default, Unity simulates real-life lighting by updating the way light should 

behave every frame – realtime lighting. However, light rays do not illuminate other objects 

during realtime lighting. This means that other techniques need to be used to create more 

realism to scenes15. In the case of this thesis, Figure 9 shows what happens when light rays 

illuminate other objects. 

                                                 
15 https://unity3d.com/learn/tutorials/topics/graphics/choosing-lighting-technique?playlist=17102 



19 
 

 
Figure 9. Lighting with only Realtime Lighting enabled. 

Observing Figure 9, realtime lighting causes walls to have an illumination with cold colours. 

This is evidenced by the fact that the walls are bluish white16, which from the research done 

by Knez and Niedenthal suggests that it is in fact cold lighting [10:6]. In order to avoid cold 

lighting, Unity provides a method called Global Illumination17 – a technique to calculate 

how light is bounced off of surfaces into other surfaces. Also, to satisfy NF2, Global 

Illumination can be baked, or in other words, pre-calculate the lighting bounces into textures 

to avoid having to calculate them in the visualisation every frame. Thus, Global Illumination 

was enabled in the visualisation. To see the effects of Global Illumination, see Figure 10. 

The beige floors now reflect unto the white walls, giving them warm lighting colours. 

                                                 
16 https://en.wikipedia.org/wiki/Color_temperature 
17 https://docs.unity3d.com/Manual/GIIntro.html 
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Figure 10 Lighting with Global Illumination. 

3.7.1 Shadows and Filters 

Like realtime lighting, shadows are calculated every frame unless they are pre-calculated 

and saved to textures. However, based on Andrei Voitenko’s thesis, the visualisation will 

change the direction the light is coming from based on time of day [11], meaning that baked 

shadows will be stationary when they should be changing their position and shape. 

However, having shadows enabled substantially decreased the performance as can be seen 

in Figure 14.  Thus, shadows have been disabled altogether in the visualisation.  

In order to offset the loss of shadows, a post-processing18 filter called Ambient Occlusion 

(AO) has been put on all views of the visualisation. Ambient Occlusion is an effect that 

approximates how light should be shined on every surface. Figure 11 shows the comparison 

when Ambient Occlusion is enabled and when it is disabled. In order to better notice the 

difference, two more figures have been created. Figure 12 shows one of the corners in the 

view with Ambient Occlusion, while Figure 13 shows the same corner without Ambient 

Occlusion.  

                                                 
18 https://docs.unity3d.com/Manual/PostProcessingOverview.html  
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Figure 11. A view of the visualisation with and without Ambient Occlusion. 

 
Figure 12. Showing a corner of the wall with Ambient Occlusion. 

 
Figure 13. Showing a corner of the wall without Ambient Occlusion. 



22 
 

 
Figure 14. Average FPS comparison with shadows enabled and with AO enabled. 
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4. Implementation  

During the development of this visualisation, it was important to create good a code structure 

in order to allow fast and easy changes in the case of bugs and/or wrong outputs (subchapter 

4.1). Also, good code structure allows future students and developers who might work on 

this visualisation to easily read the code and create their own features (chapter 6). 

In the code, an algorithm was implemented for logical Actor distribution. The algorithm 

uses a simulated count of people in a room in order to distribute Actors to their destinations 

(subchapter 4.2). 

With the code architecture and algorithm created and defined, the visualisation was 

optimized in order to satisfy the non-functional requirements NF1, NF2, NF3 and NF5. The 

optimization first focused on removing or replacing some objects that were already present 

in the initial Delta building model. Second, materials (glossary) of created objects were 

optimized. Lastly, the physics simulation in Unity were disabled as they greatly reduced the 

performance (subchapter 4.4). 

4.1 Architecture 

From the functional and non-functional requirements, 5 goals have been defined that the 

code should accomplish: 

1. Spawn Student Actors based on the simulated count of people in the rooms. 

2. Spawn Educator Actors based on the Schedule Module. 

3. Give Actors destinations based on the received simulated data. 

4. Actors need to be seated in order to determine what animation needs to be played. 

5. Actor should be distributed correctly to rooms using an algorithm (subchapter 4.2). 

In order to fulfil these goals, classes have been created to fulfil individual goals. Figure 15 

shows a picture of the system architecture - a diagram that shows how the classes interact 

with each other. Rectangle shapes in the picture depict the classes, while diamond shapes 

depict the data. The following 8 subchapters give a more detailed overview of what each 

class does.  
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Figure 15. System architecture used in the project 

4.1.1 SpawnBasedOnData  

SpawnBasedOnData first starts when the sensor mock data sends information via the method 

Refactor(int amount, string nameOfRoom). In order to better understand how data is being sent to this 

method, read Delta Õppehoone Keskkonna Visualiseerimine by Andrei Voitenko [11]. We 

use the argument amount to see how many Actors are going to a room and nameOfRoom to see 

which room they are going to. The method is called Refactor because it changes the string 

class to a GameObject19 class – the base entity in all Unity scenes which allows determining 

the room coordinates. 

                                                 
19 https://docs.unity3d.com/ScriptReference/GameObject.html 
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After that, the data is stored. This process can be done multiple times, but after 60 seconds 

Actors will be distributed across all rooms. The way Actors are distributed can be seen in 

subchapter 4.2. 

4.1.2 SubjectType 

SubjectType reads all the data from a schedule file. A mock-up of the schedule file can be 

found in Delta Õppehoone Keskkonna Visualiseerimine by Andrei Voitenko [11]. 

The class then checks the current day that is set in the computer that is running the 

visualisation and returns only the necessary subjects to SpawnBasedOnData. We find the current 

day using the DateTime structure of .NET Framework20 - an assortment of code and structures 

the programmers can call without having to write them themselves.   

For example, if the schedule has subjects for all five work days, only the current day subjects 

are required to give Educator Actors their correct destinations. We assume that the computer 

will have the correct date, however the visualisation will work even if the date is wrong in 

the computer, even if wrongly. 

4.1.3 ScheduleChecking 

Once the proper subjects have been given, the class ScheduleChecking checks if a subject is 

going to start with a 60 second delay. It does so using a Coroutine21 named CheckEveryMinute() 

– a function that can suspend its execution for a given amount of time. It can also be used 

to call the function multiple times, but with a set delay22.  

The moment a subject is going to start, an Educator Actor is spawned and is sent to the room 

where the subject is happening. In the case that some Educator Actor is already present in 

that room, the old Educator Actor will leave the room and a new one will take its place. 

A delay of 60 seconds is used for the following reasons: 

1. It is assumed that subjects start by the minute and the current seconds do not matter. 

For example, if a subject starts at 16:15, it does not matter that the current time with 

seconds is 16:15:08. 

2. It is assumed that only one educator will educate students in a single room. 

3. Checking in less than a minute will result in unnecessary statements because of 

reason 2. For example, assume that some subject starts at 14:15:00. Also assume that 

                                                 
20 https://lifehacker.com/5791578/what-is-the-net-framework-and-why-do-i-need-it 
21 https://docs.unity3d.com/ScriptReference/Coroutine.html 
22 https://docs.unity3d.com/ScriptReference/WaitForSeconds.html 
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CheckEveryMinute() checks if a subject is going to start every 30 seconds and starts 

checking at 14:14:30. The first time CheckEveryMinute() will send an Educator Actor to 

the room is at 14:15:00. The second time it will send a different Educator Actor is at 

14:15:30. This is faulty behaviour, as it is assumed that only one educator is required 

to educate the students. This can be resolved by checking if an Educator Actor is 

already going to the given room or by setting the delay to 60 seconds. The second 

solution does not require an extra statement; thus it is the current solution. 

4. Checking less often than once a minute will result in some minutes not being 

checked. For example, assume two subjects. The first starts at 14:16 and the second 

one starts at 14:17. Also, assume that the delay is 90 seconds and CheckEveryMinute() 

starts at 14:15:00. The first Educator Actor for the first subject will spawn at 

14:16:30. however the next check will be at 14:18, meaning that the method missed 

a subject that starts at 14:17.  

4.1.4 Actor 

Actor class is used to set destinations for the Actors. It does so once ScheduleChecking or 

SpawnBasedOnData gives a destination via a method called SetDestination(SeatPath seatPath). The SeatPath 

argument is a class that holds the room the Actor is going to go to, the seat it will sit on and 

the pre-calculated path it will be using (subchapter 4.1.5). 

In SetDestination(SeatPath seatpath), Actor will set its destination using a method called 

SetDestination() found in NavMeshAgent23 – a component that allows objects in Unity to 

navigate around the 3D space of the visualisation and perform tasks such as reaching their 

set destination. However, an object with a NavMeshAgent component cannot walk on any 

object, but only set objects with the NavMesh24 property. For the purpose of simplicity, we 

can assume that the NavMesh property is a setting that can be enabled on any object. 

Once the destination has been set, the Actor will move to its target room and target seat. If 

a room has a door, it will open the room door once being near it. Note that it will not open 

the door if it is already open. Once near its seat, the Actor will sit on it (subchapter 4.1.5). 

4.1.5 RoomManager 

RoomManager records seat occupation of every room in the visualisation and the amount of 

Actors going to a given room.  RoomManager also stores all the positions of every room, Spawn 

                                                 
23 https://docs.unity3d.com/ScriptReference/AI.NavMeshAgent.html   
24 https://docs.unity3d.com/530/Documentation/ScriptReference/NavMesh.html 
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point and Remove point. It updates these values when certain methods in StartScheduleChecking, 

SpawnBasedOnData, Seat or EducatorSeat require a position of a room or seat from RoomManager.  

Because the RoomManager stores the positions of rooms and seats, it also pre-calculates paths 

that Agents will use to reach their destination. It does so using the NavMesh class, which 

has a method called CalculatePath()25. For the purpose of simplicity, we can assume that the 

arguments of CalculatePath() are a starting position and the target position. Paths are pre-

calculated in the following way: 

1. From each room to every other room. 

2. From every room to every “Remove” point. 

3. From every “Spawn” point to every other room. 

4. From every “Spawn” point to every “Remove point. 

Pre-calculated paths allow Actors to find a path to their destination faster, as required by 

NF3. Subchapter 5.1 shows the difference when not using pre-calculated paths and having 

Actors to find their path without any pre-calculation. 

4.1.6 Seat and EducatorSeat 

The Seat class is responsible for animating the sitting animation once an Actor is near its seat. 

Once an Actor is near the seat, that Actor is removed from the scene and is replaced by 

enabling a similar looking object, StudentActorAnimation, in the scene. Finding precise 

coordinates for seating the original Actor proved to be difficult, as its position and rotation 

are often unpredictable. For this reason, it was easier to delete the original Actor and replace 

it with a similar looking object.  

Once an Actor was determined to leave its seat because of sensor data (subchapter 4.2), the 

Seat class will spawn a new Actor near the seat and send data to RoomManager that a new Actor 

has spawned and is going to a certain destination given by sensor data. 

The EducatorSeat class behaves in almost the exact same way as the Seat class. However, 

EducatorSeat checks every 90 minutes if it is time for an Educator Actor to leave his seat and 

be despawned. Currently it is assumed that each subject will have a duration of 90 minutes. 

This is necessary because the current mock-up schedule has the starting time of each subject, 

not the ending time. This means that if an EducatorActor does not get a new destination 

from the ScheduleChecking class, it will stay in its room until the program closes. 

                                                 
25 https://docs.unity3d.com/530/Documentation/ScriptReference/NavMesh.CalculatePath.html 



28 
 

4.1.7 DoorOpen 

The DoorOpen class is used to open and close the door when an Actor comes close. If the 

door is closed and an Actor comes close, the door will be opened. If the door is open, but 

the expected amount of Actors is less than 3, then the door will be closed. The reason for 

the number to be 3 or less is because it was observed that some Actors would find a way to 

their seat without going through their given door. This solution however has not fixed the 

issue with doors not being closed all the time and the author suggests future students and 

developers of the visualisation to find a way to extend the proximity detection to all doors, 

not just one. 

4.1.8 CameraSwichScreen 

This class has a method called CameraSwitch() that switches between the different views every 

five seconds. Five seconds was chosen as it gives enough time for the viewer to see what is 

happening in the current view. Views can be manually switched by first pressing space bar 

and then the 1 2 3 4 5 6 keys. Pressing space bar again will enable the automatic switching 

again. 

4.1.9 ChanceToEmote 

This class is separate from most as it is enabled once StudentActorAnimation is enabled in 

the scene. The class itself consists of methods that spawn speech bubbles (subchapter 3.3) 

and play animations, such as typing or notebook writing (subchapter 3.2). Speech bubbles 

look at the enabled view that is returned from the method getActiveCamera() in CameraSwitchScreen 

class. 

4.1.10 ActorLevelChanger 

This class allows the Actors to switch layers when they reach a certain elevation in the 

visualisation. All cameras can only see objects that have a set layer. For example, a camera 

that can only see objects with the layer FirstFloor will not see objects with the layer 

SecondFloor. This is important because if views have to render all Actors on both floors, 

the performance will slightly decrease, as seen in Figure 16. 
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Figure 16. Performance change when Actors have separate layers. 

 

4.2 Pathfinding 

The Actors in the visualisation are required to have the ability to navigate around the model 

of the building, change their destination in any given time and find their path in the required 

amount of time (NF3).  

The next 2 subchapters provide information on how the implemented algorithm distributes 

Actors and how the NavMeshAgent component is used to improve pathfinding and 

navigation. The subchapters will also explain what optimization techniques were used in 

order to satisfy the performance requirement (NF3). After those 2 subchapters, the 

pathfinding optimization methods will be explained to help satisfy requirements NF1. 

4.2.1 The Preparation Stage 

A class by the name of SpawnBasedOnData determines what rooms require an increase or 

decrease of Actors. The method Refactor() in class SpawnBasedOnData is called when sensor data 

is sending new data to the visualisation. This data includes important values such as the 

room number and the amount of Actors that are going to the said room. For the purpose of 

simplicity, let the room be called Room and the amount of Actors going to the room be 

called ActorCount. 
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With the data received, SpawnBasedOnData first checks the amount of Actors already present in 

the given room. After that calculation, it determines whether the new ActorCount is bigger 

than the old value or higher.  

 If the value is higher, that means the room will need an addition of actors. This will 

be recorded in a dictionary26 named toAdd, where the key is the room number and 

the value is a positive amount of Actors needed to be added to satisfy the data. 

For example, assume room 101 exists and there are 10 Actors in the said room. 

Sensor mock data sends information that room 101 now has 15 Actors. 

SpawnBasedOnData will now assume that room 101 requires an addition of +5 actors. 

 If the value is lower, that means the room will need a decrease of actors. This will 

be recorded in a dictionary named toRemove, where the key is the room number and 

the value is a negative amount of Actors needed to be removed to satisfy the data. 

For example, assume room 102 exists and there are 10 Actors in the said room. 

Sensor mock data sends information that room 102 now has 5 Actors. 

SpawnBasedOnData will now assume that room 102 requires a decrease of -5 actors. 

Note that the preparation stage can be done using a single dictionary. However, for the 

purpose of simplicity and better understanding, two dictionaries have been chosen instead. 

4.2.2 The Actor Distribution 

With the Dictionaries prepared, SpawnBasedOnData will then distribute the Actors. This is done 

in the following way: 

 Determine how many Actors from the toRemove dictionary can go to the toAdd 

rooms. Using the above example, Actors from 102 that have left can go to room 101. 

 In the case that all the Actors from the toRemove dictionary have been used, but 

toAdd rooms still require Actors, spawn new Actors outside the building and set their 

destination to the rooms from toAdd until the data is satisfied. For example, assume 

room 101 needs 15 actors and room 102 has a decrease of 5 actors. The 5 Actors 

from room 102 will go to room 101 and the other 10 Actors needed to satisfy the 

data will be spawned outside the building with their destination being 101. 

 In the case that all the rooms in the toAdd dictionary are filled to satisfy the data, but 

toRemove still has Actors that need to leave the room, make those Actors go to 

“Remove” points that will despawn the Actors. For example, assume room 101 

needs 5 actors and room 102 has a decrease of 13 actors. The 5 Actors from room 

                                                 
26 https://unity3d.com/learn/tutorials/modules/intermediate/scripting/lists-and-dictionaries 
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102 will go to room 101 and the other 8 will go to special “Remove” points to get 

despawned. 

 In the case that all the rooms in toAdd are filled to satisfy the data and toRemove has 

no Actors that need to leave, do nothing as the distribution was even. 

4.2.3 Spawn Points 

Actors spawn on special areas called spawn points. There are in total 10 spawn points.  They 

are placed around the building model so that none of the 6 views can see Actors being 

spawned. Reason for having more than one spawn point is to allow Actors to move in 

different paths from other Actors. Also, multiple spawn points better distribute the initial 

Actor spawn and allow Actors to take different paths. Figure 17 shows the location of all 

spawn points.

 

Figure 17. A top down view of all spawn points. Spawn points are represented as red dots. 

4.2.4 Pathfinding Optimizations 

The NavMeshAgent provides many different solutions to solve the problem of having a high 

Actor count. The following settings and methods of the Unity NavMeshAgent component 

have been chosen for better pathfinding in order to satisfy NF3: 

1. The ObstacleAvoidance27 radius parameter is changed to 0.1. By changing the 

Obstacle Avoidance radius, the Actors are less likely to create obstacles for each 

other. 

2. Change the Quality in the Obstacle Avoidance parameter to Low Quality. This 

allows the Actors to not be as precise when avoiding obstacles. Note that changing 

                                                 
27 https://docs.unity3d.com/ScriptReference/AI.NavMeshAgent-obstacleAvoidanceType.html 
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it to None will improve pathfinding and performance, but it was observed that the 

Actors would ignore each other and make their walking feel unnatural. 

3. Turn off Auto Repath in the Path Finding parameter. In the case if a path has been a 

found, but Actors have blocked the way, an Actor with Auto Repath enabled will try 

to find a different path. This will result in unnecessary calculations and increase the 

time it takes for Actors to find their destination. 

4. Using OffMeshLinks28 - shortcuts that Actors can use to either create a faster path to 

their destination or create a “bridge” from one point to another. This is important 

because the Actors can only walk on predefined areas and in the case that an area is 

not defined, they will avoid it. While testing with the above mentioned settings 

changed to worsen performance, OffMeshLinks were still placed in order for the 

Actors to have a guaranteed path to their destination. 

Even though NF3 can still be satisfied without these settings, it was observed that without 

them Actors would get stuck in hallways and corridors trying to avoid each other. Thus the 

above mentioned methods and settings were enabled. 

Furthermore, as already explained in subchapter 4.1.5, paths to certain destinations are pre-

calculated so that Actors do not have to calculate most of their paths themselves. Without 

pre-calculated paths, the time it took Actors to find a path was substantially higher, as seen 

in Figure 18.  

                                                 
28 https://docs.unity3d.com/Manual/class-OffMeshLink.html 
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Figure 18. Difference in path finding time with and without pre-calculated paths. Orange 
values are less than 0.1 seconds. 

4.3 Model Optimizations 

Other than keeping the furniture models simple and understandable (subchapter 3.4), it was 

important that they would also be optimized. This means that the vertex count of the created 

object should be low. This is explained further in subchapter 4.3.1.  

Each furniture model needed to be coloured in order for the visualisation to look pleasant 

(NF5).  This was done in Unity using materials. subchapter 4.3.2 explains the material 

optimizations that were made in the visualisation. 

Some objects have not been optimized, but deleted instead in order for the visualisation to 

perform well. These objects can be something like lamps that will not be visible in the 

visualisation (Figure 19). More about deleted objects can be found in chapter 4.3.3. 

4.3.1 Furniture Models 

When creating the objects, a non-functional requirement NF4 helped set the goals for 

optimized objects. Because each view renders a lot of objects, is important that each created 

object has a small amount of vertices, or else NF4 cannot be satisfied. 

For the purpose of this thesis, a non-functional recommendation has been created by the 

author, which recommends each created object to be 400 vertices or less. By creating this 

side recommendation, part of NF4 has also been satisfied (chapter 5.3). 
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The recommendation also extends to doors that were initially placed in the Delta building 

model. The number of doors around the visualisation is high (over 100), meaning that if 

they are not optimized, they will take up a lot more resources than they should. For this 

purpose, an optimized version of the door has been created, which reduced the vertex count 

of the door by approximately 60%. This method was done for every already placed model 

that was decided not be deleted (chapter 4.3.3). 

4.3.2 Material Optimizations 

Materials play a big role in furniture models, because without them, the furniture models 

would not be rendered. Also, the default material for every object is white, meaning that it 

would be hard for the viewer to distinguish each furniture model. Thus the different furniture 

models required different materials. 

In the case of this thesis, unoptimized material objects will drastically ruin the performance 

because of the high furniture model count. In order to avoid that, multiple material 

optimization techniques have been used to make sure the visualisation satisfies requirement 

NF2. 

A lot of objects in the visualisation share the same mesh (see the glossary), as most objects 

are copies of their original furniture model. As not to render these meshes individually, a 

technique can be used for rendering multiple copies of the same mesh in a scene at once. 

This technique is called GPU instancing29 - a technique that can be used on all materials 

created in Unity. 

Other optimization techniques include limiting transparent materials in the visualisation. A 

semi-transparent material is a see-through material, commonly placed on objects such as 

windows. Semi-transparent materials are one of the main reasons pixels are being drawn 

multiple times. 30 

4.3.3 Object Model Removal 

The building model had a lot of objects that would obstruct the views of the visualisation, 

thus it was important to remove only the objects that would hinder the view of the 

visualisation. Figure 19 shows the second floor of the Delta building model without its 

ceiling. After careful observation, it was decided that any object that was a part of the ceiling 

should be removed from the Delta building model, as they would obstruct the view to the 

                                                 
29 https://docs.unity3d.com/Manual/GPUInstancing.html 
30https://unity3d.com/learn/tutorials/temas/performance-optimization/optimizing-graphics-rendering-unity-
games 
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Actors. These objects included lamps, ceiling supports or other objects that were present on 

the ceiling of any floor. Another solution was to make these objects semi-transparent, but 

as already explained in subchapter 4.3.2, this method was avoided. 

In the same Figure 19, we can notice support beams present in the initial Delta building 

model. These were removed as well due to their amount (2240). Another reason for their 

removal to give the visualisation a cleaner feel, allowing the Actors to walk freely without 

avoiding these supports. Figure 20 shows the second floor with those objects removed. 

Other removed objects include objects of a very high quantity; such as bars outside the 

building model that can be seen in Figure 21. An argument can be made to not remove them, 

but instead combine the meshes into one big mesh, with a technique that Unity provides 

called CombineMeshes31. However, because bars have different materials, combining them 

would not increase performance32. Also, removing these bars allows a better view of the 

second floor, making the visualisation that much cleaner.  

Last objects that were removed were the window frames around the glass windows that can 

be seen in Figure 21. They were removed in order to allow windows to have a much clearer 

view of the Actors around the visualisation.  

 
Figure 19. A screenshot taken in Blender with visible support beams, lamps and ceiling 
supports. 

                                                 
31 https://docs.unity3d.com/540/Documentation/ScriptReference/Mesh.CombineMeshes.html 
32 https://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html 
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Figure 20. A screenshot taken in Unity of the second story with the objects removed. 

 

 
Figure 21. A screenshot comparing the building model with and without bars and window 
frames. 

4.4 Game Engine Physics 

Physics in games or simulations are simulated done by introducing the laws of psychics into 

the said simulation or game. This allows objects, like falling rocks, to be visualised in a 

realistic matter by adding physics simulations to it. In Unity, physics are enabled on an 

object once a RigidBody component is placed on it. With the RigidBody component, the 

object will respond to gravity created by the game engine. 

However, during development of the visualisation, it was observed that when enabling 

physics in the visualisation, the performance would drastically decrease and make NF2 

impossible to satisfy. The technique to test performance with physics was different than the 
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techniques done in chapter 5. This technique involves putting the RigidBody component on 

all Actors. Furthermore, it does not show frames per second of the visualisation, but instead 

show the amount of milliseconds it took to reach the next frame. This is done because when 

only calculating the FPS, the test would only show from 0-2 FPS, which is not descriptive 

enough. The following Figure 22 shows the difference between enabled and disabled 

physics. 

 
Figure 22. Milliseconds per frame with and without physics. 
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5. Testing 

The following chapters describe the verification of the non-functional requirements 

(subchapter 2.2) and the methods used for that. It will also explain some of the results 

gathered from the tests. To see what hardware was used for performance testing, see NF2. 

5.1 The Actor Count and Performance (NF1, NF2) 

In order to verify both non-functional requirements, a basic frame per second counter is 

required to determine whether the visualisation is running at 30 frames per second or more. 

Because this visualisation consists of multiple views (NF4), each view needed to be checked 

whether it can handle 2010 Actors (NF1) at 30 FPS (NF2). 

Unity provides multiple features to calculate FPS, such as the Statistics33 screen or the 

Profiler34 window, however these features were found to be inaccurate35. Instead, a script 

was used to determine FPS. The script for calculating FPS can be found on the Unity Wiki36, 

created by Dave Hampson. 

Once 2010 Actors appeared in the visualisation, every 5 seconds an average FPS count was 

recorded. If the FPS count was at any point smaller than 31, the test would throw an error 

and the test would stop. This method was determined by the author to be much clearer than 

having to record FPS every frame. Figure 23 shows the average FPS of every. Also to note, 

the test did not throw an error, meaning the FPS was never below 31. Thus, NF1 was 

satisfied because the visualisation supports 2010 Actors and NF2 because the FPS was 

above 30. 

                                                 
33 https://docs.unity3d.com/Manual/RenderingStatistics.html   
34 https://docs.unity3d.com/Manual/ProfilerWindow.html 
35 https://answers.unity.com/questions/33369/profiler-fps-vs-stats-fps-vs-timedeltatime.html 
36 http://wiki.unity3d.com/index.php?title=FramesPerSecond 
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Figure 23. The average FPS measured every 5 seconds for every view. 

It was observed that some views render more objects and Actors than the other views, hence 

the big difference in FPS. Views 4,5 and 6 all visualise the first floor, where a large influx 

of Actors first appears, as seen in Figure 24. Furthermore, views 4 and 6 visualise the lecture 

halls, which have the highest amount of Actors than any room. 

 
Figure 24. Showing a large influx of Actors on the first floor. 
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5.2 Actor Path Finding Time (NF2) 

In order to determine if the Actors find their destination in 2 seconds or less, first the time 

an Actor was given a new destination was recorded. This was done in Unity using the class 

Time provided by the Unity game engine. The class Time has a property called 

realtimeSinceStartup, which calculates the amount of seconds passed since the visualisation 

started. 

After that, the amount of time it took the said Actor to find a path to his new destination was 

recorded. This can be accomplished using the NavMeshAgent component, as they have a 

property called hasPath – a property that shows if an Actor has a found a path to his new 

destination. Every 10 milliseconds it is checked whether the Actor has found a path to his 

new destination. Once a path has been found, the parameter realtimeSinceStartup was called 

again and the difference between the two values was found and recorded in a separate file. 

This was done for all the 2010 Actors. The 2010 Actors appeared in the visualisation at the 

same time. 

Figure 25 shows the time it took an Actor to calculate a path from his starting destination to 

his desired destination. However, it was observed that one took a significantly longer time 

to find his path (0.012 seconds). When trying to find a reason for this behaviour, the author 

did not find anything wrong with the starting destination, the path the Actor took or the 

desired destination. Thus, the test was done 2 more times and can be seen in Figure 26. 

 
Figure 25. A scatter plot showing the amount of seconds it took every Actor to find a path 
to his new destination. 
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Figure 26. A scatter plot of all 3 tests and the time it took Actors to find a path to their 
desired destination. 

As seen by Figure 26, this behaviour was not recreated. From the following tests, the author 

assumed that the difference in time (0.012 seconds) is not significant enough to mark it as 

an issue for the visualisation that needed attention. 

5.3 Viewpoints (NF4) 

In order to verify that all views have a vertex count below 3 million, the Statistic37 screen in 

the Game View38 was used. The Game View is a view in Unity that shows how all the views 

render the visualisation. Because the views pan from one location to the next, it proved 

difficult to find the best technique to prove that NF4 has been satisfied. The author decided 

that Figure 26 will show the maximum and minimum vertex count values once 2010 Actors 

spawn and are distributed in the visualisation. 

 

                                                 
37 https://docs.unity3d.com/Manual/RenderingStatistics.html 
38 https://docs.unity3d.com/Manual/GameView.html 
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Figure 27. Vertex count of each viewpoint with and without actors. 

Figure 27 shows that the vertex count for each view has not exceeded 3 million, thus 

satisfying the requirement. 

5.4 Design of the Visualisation (NF5) 

In order to potentially provide insight on how the visualisation can improve work 

atmosphere, a group of 5 people were questioned to give their feedback on the visualisation. 

Three of those people were prospective students from the University of Tartu. The rest of 

the group wanted to see what can be accomplished with the knowledge gathered from the 

Computer Science curriculum. 

The visualisation was shown on a Video Wall in the University of Tartu Library, as can be 

seen in Figure 28, with a description that the goal of the visualisation is to simulate student 

and educator behaviour using real-time sensor and schedule data. The group was given a 

questionnaire with 3 questions. One of those questions was to grade the visualisation on a 

4-point scale. The other two questions were given to allow the group to write their thoughts 

on what the visualisation did good and what the visualisation could do better. 

5.4.1 Results 

Five out five people have given the visualisation a maximum grade, potentially proving that 

the visualisation could improve work atmosphere. When asked about the good aspects of 

the visualisation, 3 out of 5 people said that the visualisation is easy to follow and is 
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understandable. The rest of the group said that they enjoyed it, but did not give a detailed 

answer. 

The following things have been suggested by the group that can be improved in the 

visualisation: 

1. Improve FPS to 60. 

2. Improve the Student Actor walking animation, as well as add textures to objects. 

3. Make it easier to distinguish when the visualisation is showing the first floor and 

when it is showing the second. 

5.4.2 Conclusion 

The author decided that not enough information has been given to make a verdict on the 

topic of this visualisation improving work atmosphere. However, the visualisation was 

enjoyable and understandable to the viewers, which was part of the non-functional 

requirement. 

 
Figure 28. Visualisation that was shown to the viewers. 

 



44 
 

6. Future Development 

The Delta building will be finished in 2020, providing enough time for future students and 

developers to continue working and improving this visualisation. The following is a list of 

author suggested features that could potentially be interesting to implement for future 

developers: 

1. Randomize the Actor appearance. Currently Student Actors and Educator Actors are 

always the same colour. Adding textures and objects (such as clothing) to Actors 

would distinguish each individual Actor. This would give Actors more personality, 

potentially improving viewer enjoyment. 

2. Create more animations that would improve the look of the visualisation.  

3. Create textures to make the building and the objects potentially prettier. 

4. Have people participate on the study of work atmosphere and see if they think the 

visualisation can improve the said atmosphere. 

5. Improve the Actor behaviour in a way to make the visualisation more natural. 

Currently the visualisation only relies on sensor data to spawn Actors, however 

different Actors, such as janitors or other workers, can be spawned anyway. 

6. Further improve the performance of the visualisation. Different methods, such as 

grouping Actors together, can potentially improve the visualisation.  

7. Add additional speech bubbles to Actors. This would give Actors more personality, 

potentially improving viewer enjoyment. 

Furthermore, as suggested by a viewer in subchapter 5.4.1, increasing the performance of 

the visualisation to 60 FPS is a mayor goal for future developers. When observing potential 

areas for optimisation (rendering (see the glossary), animations, pathfinding), animations 

and pathfinding was found to take the most resources. Thus, focusing on those areas for 

further optimisation is recommended. 
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7. Conclusion 

The goal of this thesis was to create a 3D visualisation of the Delta building – an academic 

building of many institute, one of which is the Institute of Computer Science. The 

visualisation was done in the Unity game engine. The visualisation itself simulates student 

and educator behaviour using sensor and schedule data.  

One of the goals of this thesis was to create a visualisation that allows a high Actor count 

(2010) with FPS above 30. This FPS goal was satisfied using multiple views, object and 

material optimisation and removal of physics simulations. Furthermore, the high Actor 

count was possible because of pre-calculation of paths and pathfinding optimisations using 

tools found in the Unity game engine. 

The chosen colour pallets were designed to pleasant and academic, in order to accomplish 

the second goal of this visualisation – viewer enjoyment. This was evidenced by 5 testers of 

the visualisation, who rated said visualisation with top scores and gave positive feedback. 

The architecture was created to be logical and readable to future student developers of this 

project. It is recommended that the said developers would focus on improving the 

visualisation for the viewers, either by improving the building model or improving Actor 

behaviour. However, in the case of wanting to improve performance – it is suggested to 

focus on improving animations and pathfinding even further. 

During the development on this visualisation, using the Unity game engine provided an 

opportunity to ignore implementing a different path finding algorithm, as Unity already has 

its own implementation – NavMeshAgents. This allowed the author to focus more on the 

visualisation and viewer enjoyment. However, implementing a different pathfinding 

algorithm could potentially improve performance, which was not tested during the 

development of this visualisation due to time constraints. 

First, I would like to thank the Administrative Manager of the Institute of Computer Science, 

Piret Orav, for providing information about the Delta building and giving the Delta building 

model. Second, I would like to thank the people of University of Tartu Library that provided 

me with the opportunity to test the visualisation on Video Walls. Lastly, I need to thank my 

supervisor Raimond-Hendrik Tunnel, who took the time to answer multiple questions that 

appeared during development and giving me feedback on how to properly write my thesis.  
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9. Glossary 

Mesh A collection of vertices, polygons and edges that defines a shape of a 3D object. 

Vertex A data structure that stores attributes such as colour and coordinates. 

Face Faces consist of triangles or convex polygons. 

Polygon Geometric figure with straight sides and angles. 

Material An enhancement of texture mapping that simulate real-life materials. 

Despawn Remove an object from the game environment. 

Spawn Make an object originate at a fixed point in a game environment. 

Bake Pre-compute something into a more permanent form.39 

Render Automatic process of generating an image from a 2D or 3D model.40 

 

                                                 
39 https://cgcookie.com/articles/big-idea-baking  
40 https://www.techopedia.com/definition/9163/rendering  
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Appendix  

The appendix includes tables that were deemed too big to include in the thesis, but can 

provide useful insight to future developers of this thesis.  

There is also an archive accompanying this thesis that includes the following: 

1. Images used for the visualisation that were not created by the author of this thesis 

(credit given in the README.txt file). 

2. Textures used for the visualisation that were not created by the author of this thesis 

(credit given in the README.txt file). 

3. README.txt file that contains the source of images and textures, the git repository 

used for the development of this visualisation, as well as recommendations on what 

Unity version is best to test the visualisation. 

4. A project of the visualisation. 

Table 1. Views and their rotation and position. 

View name (See Figure 7) x;y;z positions x;y;z rotation 

View1 -8; 18; -7 29; -35; 0 

View2 19; 15; 119 36; 223; 0 

View3 -106; 16; -3 26; 57; 0 

View4 4; 12; -2 29; -35; 0 

View5 11; 13; 81 36; 223; 0 

View6 -119; 13; 0 26; 57; 0 

Table 2. Views and their orthographic parameters. 

View name (See Figure 7) Size Clipping Plane Near Clipping Plane Far 

View1 10 16 117 

View2 16 5 109 
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View3 15 10 120 

View4 9 18 75 

View5 14 3 115 

View6 12 15 88 
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