
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Aleksander Nikolajev

Delta Building Visualisation and Optimisation
Bachelor’s Thesis (9 ECTS)

Supervisor: Raimond-Hendrik Tunnel, MSc

Tartu 2018

2

Delta Building Visualisation and Optimisation

Abstract:

During this thesis, a visualisation of an academic building model in the Unity game engine

was created. The thesis describes the optimisations and pathfinding solution for simulated

people, as well as the design principles used to make the visualisation enjoyable for the

viewer. The thesis concludes with testing the optimisation and pathfinding, along with

verifying if the visualisation was pleasant to watch.

Keywords:

Visualisation, optimization, animations, pathfinding, colours, Unity, design

CERCS: P170 Computer Science, numerical analysis, systems, control

Delta Õppehoone Visualiseerimine ja Optimeerimine

Lühiskokkuvõte:

Antud töös loodi õppehoone visualisatsioon Unity mängu mootori kasutades. Lõputöö

kirjeldab visualisatsiooni optimeerimist ning simuleeritud inimeste raja leidmise lahendust.

Lisaks oli arendatud visualisatsiooni diasin Delta õppehoone visualisatsiooni vaatajate jaoks

selleks, et muuta visualisatsiooni kasutajasõbralikumaks ja ilusamaks. Töö käigus oli tehtud

optimeerimise ja raja leidmise testimine. Lisaks oli katsetatud visualisatsiooni meeldivus

kasutajatele.

Võtmesõnad:

Visualisatsioon, optimeerimine, animatsioonid, raja leidmine, värvid, Unity, disain

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
(automaatjuhtimisteooria)

3

Contents

1. Introduction ... 5

2. Requirements ... 7

2.1 Functional Requirements .. 7

2.2 Non-Functional Requirements .. 8

3. Design ... 10

3.1 Colour Palette ... 10

3.1.1 Actor Colour ... 11

3.1.2 Final Colour Palettes .. 11

3.2 Minimalistic Aesthetics .. 13

3.3 The Speech Bubbles ... 14

3.4 Furniture Design and Placement .. 15

3.5 The Views ... 16

3.6 Wall Design .. 17

3.7 Visualisation Design Optimisation ... 18

3.7.2 Lighting .. 18

3.7.1 Shadows and Filters ... 20

4. Implementation ... 23

4.1 Architecture .. 23

4.1.1 SpawnBasedOnData ... 24

4.1.2 SubjectType .. 25

4.1.3 ScheduleChecking .. 25

4.1.4 Actor ... 26

4.1.5 RoomManager .. 26

4.1.6 Seat and EducatorSeat .. 27

4.1.7 DoorOpen ... 28

4.1.8 CameraSwichScreen .. 28

4.1.9 ChanceToEmote ... 28

4.1.10 ActorLevelChanger .. 28

4.2 Pathfinding ... 29

4.2.1 The Preparation Stage .. 29

4.2.2 The Actor Distribution ... 30

4.2.3 Spawn Points .. 31

4.2.4 Pathfinding Optimizations ... 31

4.3 Model Optimizations .. 33

4

4.3.1 Furniture Models .. 33

4.3.2 Material Optimizations ... 34

4.3.3 Object Model Removal .. 34

4.4 Game Engine Physics ... 36

5. Testing ... 38

5.1 The Actor Count and Performance (NF1, NF2) ... 38

5.2 Actor Path Finding Time (NF2) ... 40

5.3 Viewpoints (NF4) ... 41

5.4 Design of the Visualisation (NF5) .. 42

5.4.1 Results .. 42

5.4.2 Conclusion .. 43

6. Future Development .. 44

7. Conclusion ... 45

8. References ... 46

9. Glossary ... 47

Appendix ... 48

License .. 50

5

1. Introduction
With big corporations constantly improving work atmosphere using methods such as

encouraging to have fun during work [1], it is good to come up with different strategies to

encourage said fun in studying environments. It is also important to motivate people in those

work environments, because, as explained by Tohidi on the effects of motivation,

“motivation powers people to perform better” [5]. As explain by Kim et al on the topic of

effects of animations in interest, “due to their aesthetical appeal and interest, animations

provide a motivation boost” [6].

The goal of this thesis is to create a 3D visualisation of the Delta building. The Delta

building itself is an academic building of many institutes, one of them being Institute of

Computer Science1. Also, one of the goals of the visualisation is to potentially provide

insight on how the visualisation can improve work atmosphere (chapter 5) and positively

impact the people viewing the said visualisation (chapter 3). The visualisation is created in

Unity2 – a game engine, which is often used to develop three-dimensional games and

simulations. The visualisation itself simulates how students and educators behave during

their time in an academic building (chapter 4). Furthermore, the visualisation is done in

cooperation with Andrei Voitenko. The goal of his thesis is to provide simulated sensor data

and schedule data to this part of the visualisation [11]. The sensor data will be used to

showcase the student and educator behaviour. Lastly, the thesis will provide insight on what

future developers or students of this visualisation can do in other to further improve said

visualisation (chapter 6).

The model of the Delta building was provided by the architecture firm Arhitekt11 OÜ. The

visualisation is planned to be displayed on either Video Wall Screens inside the Delta

building. The screen is expected to be 6 meters wide and 3 meters tall and is expected to be

placed on the first floor near the main entrance. This provides a good opportunity for any

passing viewers to notice the visualisation. As explained by Jin in his research on role of

animations in the consumer marker: “Animations makes a product become capable of

eliciting a positive emotion and attitude” [2], the visualisation can be seen as “selling” the

opportunities Computer Science Bachelor curriculum can provide to prospective students

and motivate them to enrol.

1 https://www.ut.ee/en/news/new-academic-building-narva-mnt-4-will-be-called-delta
2 https://unity3d.com/

6

Visualisation features three-dimensional objects, which represent people in the building.

They have the ability to determine their destination. They also imitate student and educator

behaviour using abstract animations. For the purpose of this thesis, these three-dimensional

objects will be called Actors. Actors will have their own colour and shape in order to

distinguish students from educators (chapter 3). Other abbreviations or definitions, as well

as additional files and tables, can be found in the appendix.

7

2. Requirements

Because an academic building and the people in it will be visualised, the visualisation is

expected to support a high Actor. The visualisation should be pleasant for the viewer to

watch, as the goal is to motivate prospective students to enrol. Furthermore, this project

expects input from sensor data in order to guide the Student Actors to their destinations and

schedule data to guide Educator Actors. For these reasons, both functional and non-

functional requirements were defined in order to fulfil the above mentioned criteria. These

requirements also served as main goals for the development.

2.1 Functional Requirements

Functional requirements focus on Actor destinations from the sensor data and the overall

look of the visualisation. Five functional requirements were created to define the Actor

behaviour (F1, F2) and animations (F3). They also provide information on the visualised

areas (F4) and the way the building model should be furnished (F5).

F1. Student Actor destination from sensor mock data

Student Actor movement in the visualisation should be based on sensor mock data. Because

the building is not built, data simulation will be used. Sensor mock data will be provided in

the form of a room name and the amount of people going to that room by Andrei Voitenko

[11].

F2. Educator Actor destination from a schedule

Educator Actor destination should be set once an educator is needed in any of the

classrooms. This should be determined by a SIS3 schedule - a Study Information System

that manages a range of information for students in Info Technology (IT). The SIS schedule

gives the Educator Actor the time it has to leave and the room it is going to via a Schedule

Module created by Andrei Voitenko [11].

F3. Actor animations based on their activity

Actor animations should be based on the classroom the Actor is going to and what kind of

table the Actor is going to be sitting at once it has reached its destination. Educator Actors

will be animated as if they were education the students in the classroom. Student Actors will

be animated as if they were studying.

3 https://itservices.usc.edu/sis/about/

8

F4. Visualised areas with high student presence

The visualisation should only feature areas of the building where a high student presence is

expected. These places are the first floor, second floor and the outside area. First and second

floors will be visualised because they have lecture halls, labs, seminar rooms etc., while the

outside area will be visualised because the Actors can be often seen going into the visualised

building model. Third and fourth floors will not be visualised because the student presence

is low due to these floors mostly having educator offices.

F5. The furnishment of the visualisation

Most of the rooms in the given Delta building model were empty and should be furnished

with suitable furniture models. The amount of furniture models expected in each room was

written in the building’s architectural blueprint. The blueprint of the building was provided

by Administrative Manager of the Institute of Computer Science, Piret Orav.

2.2 Non-Functional Requirements

Non-functional requirements focus on the performance of the visualisation, as well as

defining the emotional factors4 of the visualisation. Non-functional requirements explain

the amount of expected Actor number (NF1), the performance of the visualisation (NF2,

NF3), the planned views (NF4) and the planned viewer experience (NF5).

NF1. The visualisation should support a maximum of 2010 Actors

As stated by the Administrative Manager of the Institute of Computer Science, Piret Orav,

the building is expected to support up to (but not limited to) 1600 students and 410

employees (e.g. educators). Thus the visualisation should support a maximum of 2010

concurrent Actors. Note that during testing, 2010 Actors will be scattered throughout the

visualisation, meaning that the Actors might not all be seen in the visualisation in any given

moment.

NF2. The expected frame rate of the visualisation

Pourazad et al state in their research on the effects of frame rate that “good frame rate (FPS)

improves the Quality of Experience5 - a measure of delight or annoyance of a customer’s

experience. Also, if a scene contains fast moving objects, it is best to run the scene at higher

than 30 FPS” [4]. Thus the FPS of the visualisation should be above 30 FPS.

4 https://en.wikipedia.org/wiki/Non-functional_requirement
5 https://en.wikipedia.org/wiki/Quality_of_experience

9

In order to achieve this kind of performance, a modern PC with good hardware is required.

Below you can see the hardware that was used when creating and testing the visualisation’s

performance for this thesis:

OS: Microsoft Windows 10 Enterprise x64 bit

Processor: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

GPU: NVIDIA GeForce GTX 980 Ti, 4 GB RAM

RAM: 8 GB

NF3. Actors should find a path to their destination in 2 seconds or less

With multiple possible spawn points (subchapter 4.2) and a 125 different rooms, finding

paths for all those locations should be relatively fast so that actors do not stand idly in their

current location when they are required to move.

NF4. Views should be logically placed

The visualisation should feature multiple different views6 in the three-dimensional

environment of the building as to cover most of the interesting areas of the Delta building

model. This means the views should have a logical position to allow the visualised areas to

be seen in detail. Three viewpoints for each floor should allow the viewer of the visualisation

to get a better representation of the activities that are happening on the given floor. The

vertex (see the glossary) count for each viewpoint in the visualisation should be below 3M7,

as recommended by the official Unity documentation on graphics optimisation.

NF5. Design of the Visualisation

The visualisation should be simple and understandable to the viewer. Colours, the

animations and student behaviour in the visualisation should provoke a positive response to

the viewers of the visualisation and potentially improve work atmosphere.

6 https://en.wikipedia.org/wiki/Viewpoints
7 https://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html

10

3. Design

Design is a process of creating a solution for the functional and aesthetic demands of the

viewer8. In the case of this thesis, design is necessary as it is expected that a viewer should

enjoy watching the visualisation (NF5). The design of the visualisation is based on a

minimalistic aesthetic - an aesthetic that reduces the visualisation to its necessary elements9.

The most important elements of the visualisation are the Actors, their animations and the

building model. In order to distinguish them from other objects in the visualisation, each

object has its own defining colour.

The following chapters describe different design ideas and principles that were used in the

making of the visualisation. Design principles such as game design and film/animation

principles and data visualisation were analysed in order to satisfy requirements F3, F5 and

NF5.

3.1 Colour Palette

As Rost states in her guide to data visualisation: “In data visualisation, it is important that

colour in data highlights the important areas to the viewer” [8]. Furthermore, Zhang adds in

her explanation of colour distinguishment that “these colours should allow the viewer to

easily distinguish between different sets of data” [9]. In the case of this visualisation, we

can assume that the important areas to be highlighted and distinguished are the Actors.

Regarding the design of colours, different colour palettes allow the creation of different

moods. Some colour palettes follow patterns that feel more natural to the viewer [9]. In

game design, colour palettes affect the mood of the players, giving them different feelings

and atmosphere. For example, warm colours make you feel comfortable, while cool tones

give a more futuristic feel, as explained by Knez and Niedenthral in their research on the

effects of colours on play performance [10]. Thus the visualisation should not only highlight

important objects, but also provide an academic and aspiring feel of a university.

Because the visualisation is of a real-life building, some colours are already placed10. These

include staircases, doors, inside walls and other structural objects. When picking the other

colours for the visualisation, these colours were taken into account.

8 http://www.svid.se/en/What-is-design/Definition-of-design/
9 http://itprotech.eu/index.php/en/incdtp-2/modele/minimalist
10 http://ehitustrust.ee/2018/01/tartu-ulikooli-it-keskus-delta/

11

Colours for the different furniture, rooms and the Actors were determined by creating three

distinct colour palettes. An online software Coolors11 was used to create the colour palettes.

The following chapter describes the reasoning behind the Actor colours. The next chapter

explains the remaining picked colours for the visualisation.

3.1.1 Actor Colour

According to Kurt and Osueke when

explaining the effects of colours on college

students: “Blue encourages intellectual

activity and logical thought” [3]. Thus it

seemed suitable to make the Student Actors

blue, as they are associated with learning and

knowledge gathering at schools or higher

education institutions.

Kurt and Osueke also state: “Yellow is

associated with comedy and optimism” [3].

Because of that, the educators were chosen to

be yellow to give the visualisation a joyful

feeling to the viewers. Both Actors can be

seen in Figure 1.

Figure 1. Educator Actor on the left,
Student Actor on the right.

3.1.2 Final Colour Palettes

When generating a colour, the following factors were considered:

 Least favourite colours that of GRAPH 5 in Figure 2 were strongly avoided.

 Favourite colours that of GRAPH 6. in Figure 2 were picked more often.

 Shades of blue and yellow were avoided as they were already used for the Actors.

 Warm colours were supported because they increase arousal and stimulation [3].

11 https://coolors.co/

12

Figure 2. Graph 5 and Graph 6 from research done by Kurt and Osueke [3:8]. Graphs
describe the least and most favourite colour of university students.

One of the colour palettes that was generated can be seen on Figure 3. Colours were chosen

by the factors mentioned in chapter 3.1.2. Dark blue (#293241) was chosen to colour the

outside walls of the Delta building based on the images already on the web and videos of

the Delta building provided by Piret Orav. Blue in this case are the Student Actors; Educator

Actor colour can be found on Figure 4. Red was used on furniture models in the

visualisation. Lastly, green was used for areas outside to represent grass.

Figure 3. The first colour palette

The second colour palette can be seen on Figure 4. These colours helped add a less gloomy

feel to the visualisation. Some objects in the visualisation had to be blue as well, but in order

to not use the same colour as the Student Actors, a different blue colour was picked. The

beige colour was used to colour the floors of the visualisation. A different shade of red was

picked to distinguish between those objects that had the red colour of Figure 3. Yellow was

used to represent Educator Actors.

13

Figure 4. The second colour palette

The final colour palette, Figure 5, has darker colours that were used for wooden objects and

roads around the building. The last colour in Figure 5 was used to distinguish some wooden

parts from others, while the first one was the primary colour for all wooden objects. White

was used on objects such as paper, sinks, toilets and some walls. The second and third

colours were for roads, keyboards and computer screens.

Figure 5. The third colour palette

3.2 Minimalistic Aesthetics

Because of the high actor count (NF1) and performance requirements (NF2), simplistic

animations with little actions were chosen. The animations are played in a loop, which

allows them to play for the whole duration of the activity.

The following conditions were used to determine what animation should be played for the

Student Actors:

1. If the Student Actor would sit on a chair near a desk with a computer on it, the

Student Actor would work on the computer.

2. If the Student Actor would sit on a chair near an empty desk, the Student Actor

would either take out a laptop or start writing on a notebook.

14

3. If the Student Actor would sit on a chair near an empty desk in the first floor, the

Student Actor would write on a notebook.

4. If the Student Actor would sit on a chair near and empty desk in the second floor,

the Student Actor would use the laptop.

5. If the Student Actor would sit on a chair without a desk near it, the Student Actor

would use a tablet.

6. If the Student Actor would sit on the sofa, the Student Actor would sit on the sofa

relaxing.

7. If the Student Actor is in a seminar room, the Student Actor would play an animation

as if he was discussing something important with the other Actors in the Room.

8. If the Student Actor is in the computer lab near an empty table, the Student Actor

would build a computer.

9. If the Student Actor is in a hallway or standing somewhere, the Student Actor would

talk to other Actors.

10. If the Student Actor is sitting on a chair in the lecture room, the Student Actor would

move its body left to right. This is done because the lecture rooms are the most

crowded rooms in the building, meaning that more detailed animations would

significantly decrease performance.

Educator Actors appear in the visualisation the moment the Schedule Module sends the data

that a subject is about to start. Their animation consists of arm movements as if giving a

lecture or explaining something to the Student Actors.

3.3 The Speech Bubbles

Because the animations have to be simple with limited actions, it was difficult to express

the Student Actor emotion and behaviour (NF5) though animations alone. Thus, speech

bubbles (Figure 6) were added to the Student Actors. As Cohn says in his research on speech

bubbles: “Speech bubbles are one of the more popular techniques to convey visual imagery

and speech” [7]. They help to show that the Student Actors are thinking and learning, in

addition to moving around the building.

The speech bubbles appear on the Student Actors that are engaged in an activity other than

walking. For example, when they are sitting in a classroom, working at a computer screen

or relaxing. During the activity there is an 8% chance every 15 seconds for the speech

bubble to appear.

Figure 6. Example of a speech bubble12
by Valeria Capello.

When a speech bubble appears, it will

slowly increase in size for the 3 seconds.

After the 3 seconds the speech bubble

begins to fade and will become invisible

in a second. When a speech bubble is

active for a Student Actor, that Actor

cannot spawn an addition speech bubble

for 4 seconds.

3.4 Furniture Design and Placement

The furniture models for the visualisation were created with a free and open-source program

named Blender. When creating the furniture models in Blender, a similar real-life

counterpart of the desired furniture piece was measured first in order to create the said

furniture piece with approximately the same dimensions. This allowed for precise placement

of furniture in different rooms based on the building’s architectural blueprint. For example,

if a room 1004 was planned to fit 25 people according to the blueprint, 25 chairs had to be

put in the room together with other furniture such as tables and teacher desks. During the

furniture placement, there were some difficulties to fit the required amount in each room.

The difficulty was discussed with the Administrative Manager of the Institute of Computer

Science, Piret Orav. The issue was resolved by allowing the author to place as many

furniture models as was possible when a classroom in the model did not have enough space

to fit the planned amount.

The furniture models themselves have a simple and understandable design behind them,

allowing good performance even in the case of hundreds of objects being visible on the

screen. In this context, simple means that not a lot of extra details were put to the models,

as the extra details will be barely visible in the visualisation (Figure 7). The intent was also

to make sure the furniture models would be easily recognized by the viewers of the

visualisation.

12 https://en.wikipedia.org/wiki/Speech_balloon

16

3.5 The Views

Multiple views let the viewers to see the all different sides of the building. The views use

an orthographic13 projection - a projection that allows three-dimensional objects to

represented in two dimensions and the lines of the projection are perpendicular to the

drawing surface14. The orthographic projection was picked because it looked best when

testing the visualisation on a Video Wall. Each view position and rotation can be seen in

Appendix A. View parameters can be seen in Appendix B.

Furthermore, the views are panning from one direction to the other at a constant loop. This

was done to allow all the views to see different areas of the building model much clearly.

Figure 7 shows the starting position of all views.

Figure 7. All 6 views of the visualisation.

13 https://en.wikipedia.org/wiki/Orthographic_projection
14 https://www.merriam-webster.com/dictionary/orthographic%20projection

17

3.6 Wall Design

One major issue when creating this visualisation was figuring out a way to show the Actors

properly. Due to the rooms having walls (Figure 8), a way to show the Actors though these

walls had to be found.

The first approach was to make the walls semi-transparent, allowing the contents of the

room to be semi-visible. However, this approach was avoided due to reasons explained in

subchapter 4.3.2.

The second approach was to remove the walls of each room, not including the outside walls

altogether. However, that made it difficult to understand the bounds of each room.

The third approach, which is the current solution, was to lower the walls. This way, it is

clear to the viewer the bounds of each room, as well as gives the views a good oversight of

the Actors. Some walls have not been lowered, like the outer walls. By not lowering the

outer walls, it is clear what the bounds of the building are. Lift walls have not been lowered

either, as they are “Remove” points that despawn (see the glossary) Actors.

Figure 8. One of the hallways of the building model with walls blocking the contents of
rooms.

18

3.7 Visualisation Design Optimisation

When designing the visualisation, it was important to make the visualisation pleasant to look

at (NF5), but also perform well (NF2). When testing the performance of this visualisation

without any optimization, the frames per second requirement has not been met. The

following chapters describe optimization techniques that were used to meet the requirement

NF2, but also provide information on the design of the visualisation and how it was made

pleasant to look at.

3.7.2 Lighting

Research on lighting in digital worlds provided Knez and Niedenthal suggests that people

feel significantly more pleasant in warm lighting colours [10]. This statements helps satisfy

requirement NF5. To achieve this, Unity provides some tools to make the lighting not only

pleasant for the viewers of the visualisation, but also be optimized in order to satisfy

requirement NF2.

In order to better understand the tools Unity provides when dealing with lighting, first the

idea behind lighting in computer graphics should be explained. Lighting in computer

graphics consists of a range of techniques and mathematical equations which attempt to

simulate real-life light optics, such as where the light bounces and how it reflects from

objects. By default, Unity simulates real-life lighting by updating the way light should

behave every frame – realtime lighting. However, light rays do not illuminate other objects

during realtime lighting. This means that other techniques need to be used to create more

realism to scenes15. In the case of this thesis, Figure 9 shows what happens when light rays

illuminate other objects.

15 https://unity3d.com/learn/tutorials/topics/graphics/choosing-lighting-technique?playlist=17102

19

Figure 9. Lighting with only Realtime Lighting enabled.

Observing Figure 9, realtime lighting causes walls to have an illumination with cold colours.

This is evidenced by the fact that the walls are bluish white16, which from the research done

by Knez and Niedenthal suggests that it is in fact cold lighting [10:6]. In order to avoid cold

lighting, Unity provides a method called Global Illumination17 – a technique to calculate

how light is bounced off of surfaces into other surfaces. Also, to satisfy NF2, Global

Illumination can be baked, or in other words, pre-calculate the lighting bounces into textures

to avoid having to calculate them in the visualisation every frame. Thus, Global Illumination

was enabled in the visualisation. To see the effects of Global Illumination, see Figure 10.

The beige floors now reflect unto the white walls, giving them warm lighting colours.

16 https://en.wikipedia.org/wiki/Color_temperature
17 https://docs.unity3d.com/Manual/GIIntro.html

20

Figure 10 Lighting with Global Illumination.

3.7.1 Shadows and Filters

Like realtime lighting, shadows are calculated every frame unless they are pre-calculated

and saved to textures. However, based on Andrei Voitenko’s thesis, the visualisation will

change the direction the light is coming from based on time of day [11], meaning that baked

shadows will be stationary when they should be changing their position and shape.

However, having shadows enabled substantially decreased the performance as can be seen

in Figure 14. Thus, shadows have been disabled altogether in the visualisation.

In order to offset the loss of shadows, a post-processing18 filter called Ambient Occlusion

(AO) has been put on all views of the visualisation. Ambient Occlusion is an effect that

approximates how light should be shined on every surface. Figure 11 shows the comparison

when Ambient Occlusion is enabled and when it is disabled. In order to better notice the

difference, two more figures have been created. Figure 12 shows one of the corners in the

view with Ambient Occlusion, while Figure 13 shows the same corner without Ambient

Occlusion.

18 https://docs.unity3d.com/Manual/PostProcessingOverview.html

21

Figure 11. A view of the visualisation with and without Ambient Occlusion.

Figure 12. Showing a corner of the wall with Ambient Occlusion.

Figure 13. Showing a corner of the wall without Ambient Occlusion.

22

Figure 14. Average FPS comparison with shadows enabled and with AO enabled.

23

4. Implementation

During the development of this visualisation, it was important to create good a code structure

in order to allow fast and easy changes in the case of bugs and/or wrong outputs (subchapter

4.1). Also, good code structure allows future students and developers who might work on

this visualisation to easily read the code and create their own features (chapter 6).

In the code, an algorithm was implemented for logical Actor distribution. The algorithm

uses a simulated count of people in a room in order to distribute Actors to their destinations

(subchapter 4.2).

With the code architecture and algorithm created and defined, the visualisation was

optimized in order to satisfy the non-functional requirements NF1, NF2, NF3 and NF5. The

optimization first focused on removing or replacing some objects that were already present

in the initial Delta building model. Second, materials (glossary) of created objects were

optimized. Lastly, the physics simulation in Unity were disabled as they greatly reduced the

performance (subchapter 4.4).

4.1 Architecture

From the functional and non-functional requirements, 5 goals have been defined that the

code should accomplish:

1. Spawn Student Actors based on the simulated count of people in the rooms.

2. Spawn Educator Actors based on the Schedule Module.

3. Give Actors destinations based on the received simulated data.

4. Actors need to be seated in order to determine what animation needs to be played.

5. Actor should be distributed correctly to rooms using an algorithm (subchapter 4.2).

In order to fulfil these goals, classes have been created to fulfil individual goals. Figure 15

shows a picture of the system architecture - a diagram that shows how the classes interact

with each other. Rectangle shapes in the picture depict the classes, while diamond shapes

depict the data. The following 8 subchapters give a more detailed overview of what each

class does.

24

Figure 15. System architecture used in the project

4.1.1 SpawnBasedOnData

SpawnBasedOnData first starts when the sensor mock data sends information via the method

Refactor(int amount, string nameOfRoom). In order to better understand how data is being sent to this

method, read Delta Õppehoone Keskkonna Visualiseerimine by Andrei Voitenko [11]. We

use the argument amount to see how many Actors are going to a room and nameOfRoom to see

which room they are going to. The method is called Refactor because it changes the string

class to a GameObject19 class – the base entity in all Unity scenes which allows determining

the room coordinates.

19 https://docs.unity3d.com/ScriptReference/GameObject.html

25

After that, the data is stored. This process can be done multiple times, but after 60 seconds

Actors will be distributed across all rooms. The way Actors are distributed can be seen in

subchapter 4.2.

4.1.2 SubjectType

SubjectType reads all the data from a schedule file. A mock-up of the schedule file can be

found in Delta Õppehoone Keskkonna Visualiseerimine by Andrei Voitenko [11].

The class then checks the current day that is set in the computer that is running the

visualisation and returns only the necessary subjects to SpawnBasedOnData. We find the current

day using the DateTime structure of .NET Framework20 - an assortment of code and structures

the programmers can call without having to write them themselves.

For example, if the schedule has subjects for all five work days, only the current day subjects

are required to give Educator Actors their correct destinations. We assume that the computer

will have the correct date, however the visualisation will work even if the date is wrong in

the computer, even if wrongly.

4.1.3 ScheduleChecking

Once the proper subjects have been given, the class ScheduleChecking checks if a subject is

going to start with a 60 second delay. It does so using a Coroutine21 named CheckEveryMinute()

– a function that can suspend its execution for a given amount of time. It can also be used

to call the function multiple times, but with a set delay22.

The moment a subject is going to start, an Educator Actor is spawned and is sent to the room

where the subject is happening. In the case that some Educator Actor is already present in

that room, the old Educator Actor will leave the room and a new one will take its place.

A delay of 60 seconds is used for the following reasons:

1. It is assumed that subjects start by the minute and the current seconds do not matter.

For example, if a subject starts at 16:15, it does not matter that the current time with

seconds is 16:15:08.

2. It is assumed that only one educator will educate students in a single room.

3. Checking in less than a minute will result in unnecessary statements because of

reason 2. For example, assume that some subject starts at 14:15:00. Also assume that

20 https://lifehacker.com/5791578/what-is-the-net-framework-and-why-do-i-need-it
21 https://docs.unity3d.com/ScriptReference/Coroutine.html
22 https://docs.unity3d.com/ScriptReference/WaitForSeconds.html

26

CheckEveryMinute() checks if a subject is going to start every 30 seconds and starts

checking at 14:14:30. The first time CheckEveryMinute() will send an Educator Actor to

the room is at 14:15:00. The second time it will send a different Educator Actor is at

14:15:30. This is faulty behaviour, as it is assumed that only one educator is required

to educate the students. This can be resolved by checking if an Educator Actor is

already going to the given room or by setting the delay to 60 seconds. The second

solution does not require an extra statement; thus it is the current solution.

4. Checking less often than once a minute will result in some minutes not being

checked. For example, assume two subjects. The first starts at 14:16 and the second

one starts at 14:17. Also, assume that the delay is 90 seconds and CheckEveryMinute()

starts at 14:15:00. The first Educator Actor for the first subject will spawn at

14:16:30. however the next check will be at 14:18, meaning that the method missed

a subject that starts at 14:17.

4.1.4 Actor

Actor class is used to set destinations for the Actors. It does so once ScheduleChecking or

SpawnBasedOnData gives a destination via a method called SetDestination(SeatPath seatPath). The SeatPath

argument is a class that holds the room the Actor is going to go to, the seat it will sit on and

the pre-calculated path it will be using (subchapter 4.1.5).

In SetDestination(SeatPath seatpath), Actor will set its destination using a method called

SetDestination() found in NavMeshAgent23 – a component that allows objects in Unity to

navigate around the 3D space of the visualisation and perform tasks such as reaching their

set destination. However, an object with a NavMeshAgent component cannot walk on any

object, but only set objects with the NavMesh24 property. For the purpose of simplicity, we

can assume that the NavMesh property is a setting that can be enabled on any object.

Once the destination has been set, the Actor will move to its target room and target seat. If

a room has a door, it will open the room door once being near it. Note that it will not open

the door if it is already open. Once near its seat, the Actor will sit on it (subchapter 4.1.5).

4.1.5 RoomManager

RoomManager records seat occupation of every room in the visualisation and the amount of

Actors going to a given room. RoomManager also stores all the positions of every room, Spawn

23 https://docs.unity3d.com/ScriptReference/AI.NavMeshAgent.html
24 https://docs.unity3d.com/530/Documentation/ScriptReference/NavMesh.html

27

point and Remove point. It updates these values when certain methods in StartScheduleChecking,

SpawnBasedOnData, Seat or EducatorSeat require a position of a room or seat from RoomManager.

Because the RoomManager stores the positions of rooms and seats, it also pre-calculates paths

that Agents will use to reach their destination. It does so using the NavMesh class, which

has a method called CalculatePath()25. For the purpose of simplicity, we can assume that the

arguments of CalculatePath() are a starting position and the target position. Paths are pre-

calculated in the following way:

1. From each room to every other room.

2. From every room to every “Remove” point.

3. From every “Spawn” point to every other room.

4. From every “Spawn” point to every “Remove point.

Pre-calculated paths allow Actors to find a path to their destination faster, as required by

NF3. Subchapter 5.1 shows the difference when not using pre-calculated paths and having

Actors to find their path without any pre-calculation.

4.1.6 Seat and EducatorSeat

The Seat class is responsible for animating the sitting animation once an Actor is near its seat.

Once an Actor is near the seat, that Actor is removed from the scene and is replaced by

enabling a similar looking object, StudentActorAnimation, in the scene. Finding precise

coordinates for seating the original Actor proved to be difficult, as its position and rotation

are often unpredictable. For this reason, it was easier to delete the original Actor and replace

it with a similar looking object.

Once an Actor was determined to leave its seat because of sensor data (subchapter 4.2), the

Seat class will spawn a new Actor near the seat and send data to RoomManager that a new Actor

has spawned and is going to a certain destination given by sensor data.

The EducatorSeat class behaves in almost the exact same way as the Seat class. However,

EducatorSeat checks every 90 minutes if it is time for an Educator Actor to leave his seat and

be despawned. Currently it is assumed that each subject will have a duration of 90 minutes.

This is necessary because the current mock-up schedule has the starting time of each subject,

not the ending time. This means that if an EducatorActor does not get a new destination

from the ScheduleChecking class, it will stay in its room until the program closes.

25 https://docs.unity3d.com/530/Documentation/ScriptReference/NavMesh.CalculatePath.html

28

4.1.7 DoorOpen

The DoorOpen class is used to open and close the door when an Actor comes close. If the

door is closed and an Actor comes close, the door will be opened. If the door is open, but

the expected amount of Actors is less than 3, then the door will be closed. The reason for

the number to be 3 or less is because it was observed that some Actors would find a way to

their seat without going through their given door. This solution however has not fixed the

issue with doors not being closed all the time and the author suggests future students and

developers of the visualisation to find a way to extend the proximity detection to all doors,

not just one.

4.1.8 CameraSwichScreen

This class has a method called CameraSwitch() that switches between the different views every

five seconds. Five seconds was chosen as it gives enough time for the viewer to see what is

happening in the current view. Views can be manually switched by first pressing space bar

and then the 1 2 3 4 5 6 keys. Pressing space bar again will enable the automatic switching

again.

4.1.9 ChanceToEmote

This class is separate from most as it is enabled once StudentActorAnimation is enabled in

the scene. The class itself consists of methods that spawn speech bubbles (subchapter 3.3)

and play animations, such as typing or notebook writing (subchapter 3.2). Speech bubbles

look at the enabled view that is returned from the method getActiveCamera() in CameraSwitchScreen

class.

4.1.10 ActorLevelChanger

This class allows the Actors to switch layers when they reach a certain elevation in the

visualisation. All cameras can only see objects that have a set layer. For example, a camera

that can only see objects with the layer FirstFloor will not see objects with the layer

SecondFloor. This is important because if views have to render all Actors on both floors,

the performance will slightly decrease, as seen in Figure 16.

29

Figure 16. Performance change when Actors have separate layers.

4.2 Pathfinding

The Actors in the visualisation are required to have the ability to navigate around the model

of the building, change their destination in any given time and find their path in the required

amount of time (NF3).

The next 2 subchapters provide information on how the implemented algorithm distributes

Actors and how the NavMeshAgent component is used to improve pathfinding and

navigation. The subchapters will also explain what optimization techniques were used in

order to satisfy the performance requirement (NF3). After those 2 subchapters, the

pathfinding optimization methods will be explained to help satisfy requirements NF1.

4.2.1 The Preparation Stage

A class by the name of SpawnBasedOnData determines what rooms require an increase or

decrease of Actors. The method Refactor() in class SpawnBasedOnData is called when sensor data

is sending new data to the visualisation. This data includes important values such as the

room number and the amount of Actors that are going to the said room. For the purpose of

simplicity, let the room be called Room and the amount of Actors going to the room be

called ActorCount.

30

With the data received, SpawnBasedOnData first checks the amount of Actors already present in

the given room. After that calculation, it determines whether the new ActorCount is bigger

than the old value or higher.

 If the value is higher, that means the room will need an addition of actors. This will

be recorded in a dictionary26 named toAdd, where the key is the room number and

the value is a positive amount of Actors needed to be added to satisfy the data.

For example, assume room 101 exists and there are 10 Actors in the said room.

Sensor mock data sends information that room 101 now has 15 Actors.

SpawnBasedOnData will now assume that room 101 requires an addition of +5 actors.

 If the value is lower, that means the room will need a decrease of actors. This will

be recorded in a dictionary named toRemove, where the key is the room number and

the value is a negative amount of Actors needed to be removed to satisfy the data.

For example, assume room 102 exists and there are 10 Actors in the said room.

Sensor mock data sends information that room 102 now has 5 Actors.

SpawnBasedOnData will now assume that room 102 requires a decrease of -5 actors.

Note that the preparation stage can be done using a single dictionary. However, for the

purpose of simplicity and better understanding, two dictionaries have been chosen instead.

4.2.2 The Actor Distribution

With the Dictionaries prepared, SpawnBasedOnData will then distribute the Actors. This is done

in the following way:

 Determine how many Actors from the toRemove dictionary can go to the toAdd

rooms. Using the above example, Actors from 102 that have left can go to room 101.

 In the case that all the Actors from the toRemove dictionary have been used, but

toAdd rooms still require Actors, spawn new Actors outside the building and set their

destination to the rooms from toAdd until the data is satisfied. For example, assume

room 101 needs 15 actors and room 102 has a decrease of 5 actors. The 5 Actors

from room 102 will go to room 101 and the other 10 Actors needed to satisfy the

data will be spawned outside the building with their destination being 101.

 In the case that all the rooms in the toAdd dictionary are filled to satisfy the data, but

toRemove still has Actors that need to leave the room, make those Actors go to

“Remove” points that will despawn the Actors. For example, assume room 101

needs 5 actors and room 102 has a decrease of 13 actors. The 5 Actors from room

26 https://unity3d.com/learn/tutorials/modules/intermediate/scripting/lists-and-dictionaries

31

102 will go to room 101 and the other 8 will go to special “Remove” points to get

despawned.

 In the case that all the rooms in toAdd are filled to satisfy the data and toRemove has

no Actors that need to leave, do nothing as the distribution was even.

4.2.3 Spawn Points

Actors spawn on special areas called spawn points. There are in total 10 spawn points. They

are placed around the building model so that none of the 6 views can see Actors being

spawned. Reason for having more than one spawn point is to allow Actors to move in

different paths from other Actors. Also, multiple spawn points better distribute the initial

Actor spawn and allow Actors to take different paths. Figure 17 shows the location of all

spawn points.

Figure 17. A top down view of all spawn points. Spawn points are represented as red dots.

4.2.4 Pathfinding Optimizations

The NavMeshAgent provides many different solutions to solve the problem of having a high

Actor count. The following settings and methods of the Unity NavMeshAgent component

have been chosen for better pathfinding in order to satisfy NF3:

1. The ObstacleAvoidance27 radius parameter is changed to 0.1. By changing the

Obstacle Avoidance radius, the Actors are less likely to create obstacles for each

other.

2. Change the Quality in the Obstacle Avoidance parameter to Low Quality. This

allows the Actors to not be as precise when avoiding obstacles. Note that changing

27 https://docs.unity3d.com/ScriptReference/AI.NavMeshAgent-obstacleAvoidanceType.html

32

it to None will improve pathfinding and performance, but it was observed that the

Actors would ignore each other and make their walking feel unnatural.

3. Turn off Auto Repath in the Path Finding parameter. In the case if a path has been a

found, but Actors have blocked the way, an Actor with Auto Repath enabled will try

to find a different path. This will result in unnecessary calculations and increase the

time it takes for Actors to find their destination.

4. Using OffMeshLinks28 - shortcuts that Actors can use to either create a faster path to

their destination or create a “bridge” from one point to another. This is important

because the Actors can only walk on predefined areas and in the case that an area is

not defined, they will avoid it. While testing with the above mentioned settings

changed to worsen performance, OffMeshLinks were still placed in order for the

Actors to have a guaranteed path to their destination.

Even though NF3 can still be satisfied without these settings, it was observed that without

them Actors would get stuck in hallways and corridors trying to avoid each other. Thus the

above mentioned methods and settings were enabled.

Furthermore, as already explained in subchapter 4.1.5, paths to certain destinations are pre-

calculated so that Actors do not have to calculate most of their paths themselves. Without

pre-calculated paths, the time it took Actors to find a path was substantially higher, as seen

in Figure 18.

28 https://docs.unity3d.com/Manual/class-OffMeshLink.html

33

Figure 18. Difference in path finding time with and without pre-calculated paths. Orange
values are less than 0.1 seconds.

4.3 Model Optimizations

Other than keeping the furniture models simple and understandable (subchapter 3.4), it was

important that they would also be optimized. This means that the vertex count of the created

object should be low. This is explained further in subchapter 4.3.1.

Each furniture model needed to be coloured in order for the visualisation to look pleasant

(NF5). This was done in Unity using materials. subchapter 4.3.2 explains the material

optimizations that were made in the visualisation.

Some objects have not been optimized, but deleted instead in order for the visualisation to

perform well. These objects can be something like lamps that will not be visible in the

visualisation (Figure 19). More about deleted objects can be found in chapter 4.3.3.

4.3.1 Furniture Models

When creating the objects, a non-functional requirement NF4 helped set the goals for

optimized objects. Because each view renders a lot of objects, is important that each created

object has a small amount of vertices, or else NF4 cannot be satisfied.

For the purpose of this thesis, a non-functional recommendation has been created by the

author, which recommends each created object to be 400 vertices or less. By creating this

side recommendation, part of NF4 has also been satisfied (chapter 5.3).

34

The recommendation also extends to doors that were initially placed in the Delta building

model. The number of doors around the visualisation is high (over 100), meaning that if

they are not optimized, they will take up a lot more resources than they should. For this

purpose, an optimized version of the door has been created, which reduced the vertex count

of the door by approximately 60%. This method was done for every already placed model

that was decided not be deleted (chapter 4.3.3).

4.3.2 Material Optimizations

Materials play a big role in furniture models, because without them, the furniture models

would not be rendered. Also, the default material for every object is white, meaning that it

would be hard for the viewer to distinguish each furniture model. Thus the different furniture

models required different materials.

In the case of this thesis, unoptimized material objects will drastically ruin the performance

because of the high furniture model count. In order to avoid that, multiple material

optimization techniques have been used to make sure the visualisation satisfies requirement

NF2.

A lot of objects in the visualisation share the same mesh (see the glossary), as most objects

are copies of their original furniture model. As not to render these meshes individually, a

technique can be used for rendering multiple copies of the same mesh in a scene at once.

This technique is called GPU instancing29 - a technique that can be used on all materials

created in Unity.

Other optimization techniques include limiting transparent materials in the visualisation. A

semi-transparent material is a see-through material, commonly placed on objects such as

windows. Semi-transparent materials are one of the main reasons pixels are being drawn

multiple times. 30

4.3.3 Object Model Removal

The building model had a lot of objects that would obstruct the views of the visualisation,

thus it was important to remove only the objects that would hinder the view of the

visualisation. Figure 19 shows the second floor of the Delta building model without its

ceiling. After careful observation, it was decided that any object that was a part of the ceiling

should be removed from the Delta building model, as they would obstruct the view to the

29 https://docs.unity3d.com/Manual/GPUInstancing.html
30https://unity3d.com/learn/tutorials/temas/performance-optimization/optimizing-graphics-rendering-unity-
games

35

Actors. These objects included lamps, ceiling supports or other objects that were present on

the ceiling of any floor. Another solution was to make these objects semi-transparent, but

as already explained in subchapter 4.3.2, this method was avoided.

In the same Figure 19, we can notice support beams present in the initial Delta building

model. These were removed as well due to their amount (2240). Another reason for their

removal to give the visualisation a cleaner feel, allowing the Actors to walk freely without

avoiding these supports. Figure 20 shows the second floor with those objects removed.

Other removed objects include objects of a very high quantity; such as bars outside the

building model that can be seen in Figure 21. An argument can be made to not remove them,

but instead combine the meshes into one big mesh, with a technique that Unity provides

called CombineMeshes31. However, because bars have different materials, combining them

would not increase performance32. Also, removing these bars allows a better view of the

second floor, making the visualisation that much cleaner.

Last objects that were removed were the window frames around the glass windows that can

be seen in Figure 21. They were removed in order to allow windows to have a much clearer

view of the Actors around the visualisation.

Figure 19. A screenshot taken in Blender with visible support beams, lamps and ceiling
supports.

31 https://docs.unity3d.com/540/Documentation/ScriptReference/Mesh.CombineMeshes.html
32 https://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html

36

Figure 20. A screenshot taken in Unity of the second story with the objects removed.

Figure 21. A screenshot comparing the building model with and without bars and window
frames.

4.4 Game Engine Physics

Physics in games or simulations are simulated done by introducing the laws of psychics into

the said simulation or game. This allows objects, like falling rocks, to be visualised in a

realistic matter by adding physics simulations to it. In Unity, physics are enabled on an

object once a RigidBody component is placed on it. With the RigidBody component, the

object will respond to gravity created by the game engine.

However, during development of the visualisation, it was observed that when enabling

physics in the visualisation, the performance would drastically decrease and make NF2

impossible to satisfy. The technique to test performance with physics was different than the

37

techniques done in chapter 5. This technique involves putting the RigidBody component on

all Actors. Furthermore, it does not show frames per second of the visualisation, but instead

show the amount of milliseconds it took to reach the next frame. This is done because when

only calculating the FPS, the test would only show from 0-2 FPS, which is not descriptive

enough. The following Figure 22 shows the difference between enabled and disabled

physics.

Figure 22. Milliseconds per frame with and without physics.

38

5. Testing

The following chapters describe the verification of the non-functional requirements

(subchapter 2.2) and the methods used for that. It will also explain some of the results

gathered from the tests. To see what hardware was used for performance testing, see NF2.

5.1 The Actor Count and Performance (NF1, NF2)

In order to verify both non-functional requirements, a basic frame per second counter is

required to determine whether the visualisation is running at 30 frames per second or more.

Because this visualisation consists of multiple views (NF4), each view needed to be checked

whether it can handle 2010 Actors (NF1) at 30 FPS (NF2).

Unity provides multiple features to calculate FPS, such as the Statistics33 screen or the

Profiler34 window, however these features were found to be inaccurate35. Instead, a script

was used to determine FPS. The script for calculating FPS can be found on the Unity Wiki36,

created by Dave Hampson.

Once 2010 Actors appeared in the visualisation, every 5 seconds an average FPS count was

recorded. If the FPS count was at any point smaller than 31, the test would throw an error

and the test would stop. This method was determined by the author to be much clearer than

having to record FPS every frame. Figure 23 shows the average FPS of every. Also to note,

the test did not throw an error, meaning the FPS was never below 31. Thus, NF1 was

satisfied because the visualisation supports 2010 Actors and NF2 because the FPS was

above 30.

33 https://docs.unity3d.com/Manual/RenderingStatistics.html
34 https://docs.unity3d.com/Manual/ProfilerWindow.html
35 https://answers.unity.com/questions/33369/profiler-fps-vs-stats-fps-vs-timedeltatime.html
36 http://wiki.unity3d.com/index.php?title=FramesPerSecond

39

Figure 23. The average FPS measured every 5 seconds for every view.

It was observed that some views render more objects and Actors than the other views, hence

the big difference in FPS. Views 4,5 and 6 all visualise the first floor, where a large influx

of Actors first appears, as seen in Figure 24. Furthermore, views 4 and 6 visualise the lecture

halls, which have the highest amount of Actors than any room.

Figure 24. Showing a large influx of Actors on the first floor.

40

5.2 Actor Path Finding Time (NF2)

In order to determine if the Actors find their destination in 2 seconds or less, first the time

an Actor was given a new destination was recorded. This was done in Unity using the class

Time provided by the Unity game engine. The class Time has a property called

realtimeSinceStartup, which calculates the amount of seconds passed since the visualisation

started.

After that, the amount of time it took the said Actor to find a path to his new destination was

recorded. This can be accomplished using the NavMeshAgent component, as they have a

property called hasPath – a property that shows if an Actor has a found a path to his new

destination. Every 10 milliseconds it is checked whether the Actor has found a path to his

new destination. Once a path has been found, the parameter realtimeSinceStartup was called

again and the difference between the two values was found and recorded in a separate file.

This was done for all the 2010 Actors. The 2010 Actors appeared in the visualisation at the

same time.

Figure 25 shows the time it took an Actor to calculate a path from his starting destination to

his desired destination. However, it was observed that one took a significantly longer time

to find his path (0.012 seconds). When trying to find a reason for this behaviour, the author

did not find anything wrong with the starting destination, the path the Actor took or the

desired destination. Thus, the test was done 2 more times and can be seen in Figure 26.

Figure 25. A scatter plot showing the amount of seconds it took every Actor to find a path
to his new destination.

41

Figure 26. A scatter plot of all 3 tests and the time it took Actors to find a path to their
desired destination.

As seen by Figure 26, this behaviour was not recreated. From the following tests, the author

assumed that the difference in time (0.012 seconds) is not significant enough to mark it as

an issue for the visualisation that needed attention.

5.3 Viewpoints (NF4)

In order to verify that all views have a vertex count below 3 million, the Statistic37 screen in

the Game View38 was used. The Game View is a view in Unity that shows how all the views

render the visualisation. Because the views pan from one location to the next, it proved

difficult to find the best technique to prove that NF4 has been satisfied. The author decided

that Figure 26 will show the maximum and minimum vertex count values once 2010 Actors

spawn and are distributed in the visualisation.

37 https://docs.unity3d.com/Manual/RenderingStatistics.html
38 https://docs.unity3d.com/Manual/GameView.html

42

Figure 27. Vertex count of each viewpoint with and without actors.

Figure 27 shows that the vertex count for each view has not exceeded 3 million, thus

satisfying the requirement.

5.4 Design of the Visualisation (NF5)

In order to potentially provide insight on how the visualisation can improve work

atmosphere, a group of 5 people were questioned to give their feedback on the visualisation.

Three of those people were prospective students from the University of Tartu. The rest of

the group wanted to see what can be accomplished with the knowledge gathered from the

Computer Science curriculum.

The visualisation was shown on a Video Wall in the University of Tartu Library, as can be

seen in Figure 28, with a description that the goal of the visualisation is to simulate student

and educator behaviour using real-time sensor and schedule data. The group was given a

questionnaire with 3 questions. One of those questions was to grade the visualisation on a

4-point scale. The other two questions were given to allow the group to write their thoughts

on what the visualisation did good and what the visualisation could do better.

5.4.1 Results

Five out five people have given the visualisation a maximum grade, potentially proving that

the visualisation could improve work atmosphere. When asked about the good aspects of

the visualisation, 3 out of 5 people said that the visualisation is easy to follow and is

43

understandable. The rest of the group said that they enjoyed it, but did not give a detailed

answer.

The following things have been suggested by the group that can be improved in the

visualisation:

1. Improve FPS to 60.

2. Improve the Student Actor walking animation, as well as add textures to objects.

3. Make it easier to distinguish when the visualisation is showing the first floor and

when it is showing the second.

5.4.2 Conclusion

The author decided that not enough information has been given to make a verdict on the

topic of this visualisation improving work atmosphere. However, the visualisation was

enjoyable and understandable to the viewers, which was part of the non-functional

requirement.

Figure 28. Visualisation that was shown to the viewers.

44

6. Future Development

The Delta building will be finished in 2020, providing enough time for future students and

developers to continue working and improving this visualisation. The following is a list of

author suggested features that could potentially be interesting to implement for future

developers:

1. Randomize the Actor appearance. Currently Student Actors and Educator Actors are

always the same colour. Adding textures and objects (such as clothing) to Actors

would distinguish each individual Actor. This would give Actors more personality,

potentially improving viewer enjoyment.

2. Create more animations that would improve the look of the visualisation.

3. Create textures to make the building and the objects potentially prettier.

4. Have people participate on the study of work atmosphere and see if they think the

visualisation can improve the said atmosphere.

5. Improve the Actor behaviour in a way to make the visualisation more natural.

Currently the visualisation only relies on sensor data to spawn Actors, however

different Actors, such as janitors or other workers, can be spawned anyway.

6. Further improve the performance of the visualisation. Different methods, such as

grouping Actors together, can potentially improve the visualisation.

7. Add additional speech bubbles to Actors. This would give Actors more personality,

potentially improving viewer enjoyment.

Furthermore, as suggested by a viewer in subchapter 5.4.1, increasing the performance of

the visualisation to 60 FPS is a mayor goal for future developers. When observing potential

areas for optimisation (rendering (see the glossary), animations, pathfinding), animations

and pathfinding was found to take the most resources. Thus, focusing on those areas for

further optimisation is recommended.

45

7. Conclusion

The goal of this thesis was to create a 3D visualisation of the Delta building – an academic

building of many institute, one of which is the Institute of Computer Science. The

visualisation was done in the Unity game engine. The visualisation itself simulates student

and educator behaviour using sensor and schedule data.

One of the goals of this thesis was to create a visualisation that allows a high Actor count

(2010) with FPS above 30. This FPS goal was satisfied using multiple views, object and

material optimisation and removal of physics simulations. Furthermore, the high Actor

count was possible because of pre-calculation of paths and pathfinding optimisations using

tools found in the Unity game engine.

The chosen colour pallets were designed to pleasant and academic, in order to accomplish

the second goal of this visualisation – viewer enjoyment. This was evidenced by 5 testers of

the visualisation, who rated said visualisation with top scores and gave positive feedback.

The architecture was created to be logical and readable to future student developers of this

project. It is recommended that the said developers would focus on improving the

visualisation for the viewers, either by improving the building model or improving Actor

behaviour. However, in the case of wanting to improve performance – it is suggested to

focus on improving animations and pathfinding even further.

During the development on this visualisation, using the Unity game engine provided an

opportunity to ignore implementing a different path finding algorithm, as Unity already has

its own implementation – NavMeshAgents. This allowed the author to focus more on the

visualisation and viewer enjoyment. However, implementing a different pathfinding

algorithm could potentially improve performance, which was not tested during the

development of this visualisation due to time constraints.

First, I would like to thank the Administrative Manager of the Institute of Computer Science,

Piret Orav, for providing information about the Delta building and giving the Delta building

model. Second, I would like to thank the people of University of Tartu Library that provided

me with the opportunity to test the visualisation on Video Walls. Lastly, I need to thank my

supervisor Raimond-Hendrik Tunnel, who took the time to answer multiple questions that

appeared during development and giving me feedback on how to properly write my thesis.

46

8. References

[1] M. Kroth, P. Boverie, J. Zondlo. What Managers Do to Create Healthy Work

Environments. Journal of Adult Education, 2007, No. 2, pp 3-4.

[2] C. Jin. The role of animation in the consumer attitude formation: Exploring its

implications in the tripartite attitudinal model. Journal of Targeting, Measurement and

Analysis for Marketing, 2011, No. 19, pp 102-103

[3] S. Kurt, K. K. Osueke. The Effects of Color on the Moods of College Students. SAGE

Open, 2014, No. 1-12, pp 2-8

[4] A. Banitalebi-Dehkordi, M. T. Pourazad, P. Nasiopoulos. The Effect of Frame Rate on

3D Video Quality and Bitrate. 3D Research Center. Berlin Heidelberg: Kwangwoon

University and Springer-Verlag, 2014, pp 7-8.

[5] H. Tohidi, M. M. Jabbari. The effects of motivation in education. Procedia – Social and

Behavioural Sciences, No. 31, 2012, pp. 1-2.

[6] S.Kim, M.Yoon, S.M.Whang, B.Tversky, J.B.Morrison. The effect of animation on

comprehension and interest. Journal of Computer Assisted Learning, 2007, No. 23, pp. 1-2.

[7] N.Cohn. Beyond speech balloons and thought bubbles: The integration of text and

image. DE GRUYTER MOUTON, San Diego: University of California, 2013, pp 35-36.

[8] L. Charlotte Rost. Your Friendly Guide to Colors in Data Visualisation: 2016.

https://lisacharlotterost.github.io/2016/04/22/Colors-for-DataVis/ (28.04.2018)

[9] S.Zhang. Finding the Right Color Palettes for Data Visualizations: 2015.

https://www.invisionapp.com/blog/finding-the-right-color-palettes-for-data-visualizations/

(28.04.2018)

[10] I. Knez, S. Niedenthal, Lighting in Digital Game Worlds: Effects on Affect and Play

Performance. WP9 workshop, Sweden: University of Gälve, Malmö University, 2006, pp 1-

6.

[11] A. Voitenko. Delta õppehoone keskkonna visualiseerimine. Tartu Ülikool,
bakalaurusetöö 2018.

47

9. Glossary

Mesh A collection of vertices, polygons and edges that defines a shape of a 3D object.

Vertex A data structure that stores attributes such as colour and coordinates.

Face Faces consist of triangles or convex polygons.

Polygon Geometric figure with straight sides and angles.

Material An enhancement of texture mapping that simulate real-life materials.

Despawn Remove an object from the game environment.

Spawn Make an object originate at a fixed point in a game environment.

Bake Pre-compute something into a more permanent form.39

Render Automatic process of generating an image from a 2D or 3D model.40

39 https://cgcookie.com/articles/big-idea-baking
40 https://www.techopedia.com/definition/9163/rendering

48

Appendix

The appendix includes tables that were deemed too big to include in the thesis, but can

provide useful insight to future developers of this thesis.

There is also an archive accompanying this thesis that includes the following:

1. Images used for the visualisation that were not created by the author of this thesis

(credit given in the README.txt file).

2. Textures used for the visualisation that were not created by the author of this thesis

(credit given in the README.txt file).

3. README.txt file that contains the source of images and textures, the git repository

used for the development of this visualisation, as well as recommendations on what

Unity version is best to test the visualisation.

4. A project of the visualisation.

Table 1. Views and their rotation and position.

View name (See Figure 7) x;y;z positions x;y;z rotation

View1 -8; 18; -7 29; -35; 0

View2 19; 15; 119 36; 223; 0

View3 -106; 16; -3 26; 57; 0

View4 4; 12; -2 29; -35; 0

View5 11; 13; 81 36; 223; 0

View6 -119; 13; 0 26; 57; 0

Table 2. Views and their orthographic parameters.

View name (See Figure 7) Size Clipping Plane Near Clipping Plane Far

View1 10 16 117

View2 16 5 109

49

View3 15 10 120

View4 9 18 75

View5 14 3 115

View6 12 15 88

50

License

Non-exclusive license to reproduce thesis and make thesis public

I, Aleksander Nikolajev (13.07.1996),

1. herewith grant the University of Tartu a free permit (non-exclusive license) to

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the copyright,

of my thesis

Delta Building Visualisation, supervised by Raimond-Hendrik Tunnel,

2. I am aware of the fact that the author retains these rights.

 3. This is to certify that granting the non-exclusive license does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 09.05.2018

