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Missing data in clinical trials 

Abstract: 

The aim of this Bachelor’s Thesis is to explain what missing data means and give some ways 

to deal with it in clinical trials. Firstly, an overview of different types of missing data is given 

and the reasons for their occurrence. Second part of the thesis explains which analytical 

approaches can be used to conduct an unbiased analysis. Further, missing data are simulated 

for a data set to show how the approaches described are used in practice with SAS software. 
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Puuduvad andmed kliinilistes uuringutes 

Lühikokkuvõte: 

Käesoleva bakalaureusetöö eesmärgiks on kirjeldada puuduvaid andmeid ja nendega 

tegelemise meetodeid kliiniliste uuringute kontekstis. Esimeses peatükis antakse ülevaade 

erinevatest puudumise struktuuridest ja põhjustest. Töö teises osas seletatakse analüütilisi 

meetodeid, millega on võimalik teostada nihketa analüüse. Viimases peatükis genereeritakse 

olemasolevasse andmestikku puuduvaid väärtusi, et näidata, kuidas eespool kirjeldatud 

meetodeid rakendustarkvaras SAS kasutada. 

Võtmesõnad: 

Kliinilised uuringud, täielike andmetega analüüs, juhuslik puudumine, täiesti juhuslik 

puudumine, puuduvad andmed, mitmene asendamine, SAS 

P160 Statistika, operatsioonanalüüs, programmeerimine, finants- ja kindlustusmatemaatika  
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Introduction 

This bachelor thesis is written as a guide for a company named StatFinn Oy. The aim of the 

thesis is to give instructions on how to deal with missing data in clinical trials and explain how 

each specific missing data method can be implemented using SAS software. 

Clinical trials are investigations in human subjects (participants of a clinical trial) to discover 

or verify effects of experimental treatments. Clinical trial’s rationale, background, objectives, 

design, methodology and statistical considerations are described in a document called protocol. 

Subjects are usually divided into treatment group in which they receive experimental treatment 

and control group where they receive no treatment (placebo) or standard (previously available) 

treatment. The main goal is to prove efficacy (maximum response achievable from the 

treatment) and to estimate treatment effect which is usually obtained from a comparison of a 

specific outcome variable between two or more treatments. [1] 

In clinical trials, it is important to get all the necessary information about subjects to conduct a 

thorough and unbiased analysis. But often, when working with human subjects, the data sets 

are incomplete and include missing data which are defined as values that are not available and 

would be meaningful for analysis if they were observed [2]. The degree of data incompleteness 

can be different, e.g. only baseline measurements can be available, or missingness can occur at 

baseline, measurements may be missing for one, several or all follow-up evaluations [3].  

This bachelor thesis consists of three chapters. The first chapter gives general information about 

the nature of missing data. The author explains the reasons for missing data occurrence, why it 

is a problem that needs to be dealt with and how to avoid it. Different types of missing data 

mechanisms are also presented with their definitions and examples. 

The second chapter explains which analytical approaches can be used to conduct an unbiased 

analysis. Explanation and general idea of each method is given, the strengths and weaknesses 

are also emphasized. In addition, when possible, it is shown how to use these methods on 

simplified examples without any programs. 

In the last chapter, chapter 3, theory is put into practise. For each missing data analytical method 

SAS codes are presented and their use is explained based on a real data set. Missing data were 

generated by the author and results are given with proportion of missingness set at 10%, 25% 

and 50% with each different missing data mechanisms. In the last section it is also shown what 

are the results if an incorrect assumption about the missingness mechanism is made.  
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Thesis is written in Microsoft Office Word 2016 and statistical analyses are conducted in SAS 

software (version 9.4). 

The author would like to thank supervisors Marju Valge and Pasi Korhonen for advice and 

suggestions.  
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1. Background of missing data 

  Reasons for missing data 

Data might be missing for several reasons. In clinical trials, one of the reasons for missing data 

is a protocol violation (serious non-compliance with the protocol), for example subjects do not 

meet the inclusion/exclusion criteria or they use another medication that is prohibited in the 

protocol. Subjects can also drop out because of adverse events (an untoward medical occurrence 

that might or might not be related to treatment), lack of efficacy or illness that is not related to 

the study medication. [1] [2] [3] 

In addition, data can be incomplete due to the lack of competence of the researcher or other 

study team members, e.g. the study nurse, lab personnel. There might be mistakes made in the 

data collection or in data entry. Researchers can also violate the protocol by mishandling the 

samples. 

  Consequences of missing data 

This chapter is based on [3] if not mentioned otherwise. 

The amount of missing data can affect the validity (Estonian valiidsus) of the clinical trial. If 

the losses to follow-up are less than 5% then the impact is likely not to be substantial, concerns 

about the validity rise when the losses are greater than 20% [4]. When the proportion of missing 

data is significant then it can affect the conclusions about the different treatments being studied, 

i.e. it might be impossible to conclude that evidence of efficacy has been established.  

Missing values also serve as potential source of bias in clinical trials. The exclusion of subjects 

may influence comparability of the treatment groups which, in turn, leads to bias in the 

estimation of the treatment effect. It might also have an impact on the external validity that is 

the representativeness of the study sample in connection to the target population. The danger 

of bias relies upon the relationship between missingness, treatment and outcome. Those 

relationships can affect the bias differently: 

 If the missing values are not connected to the actual value of the unobserved 

measurement then they will not be anticipated to lead to bias (for example, poor and 

good outcomes have the same likelihood of being missing). 
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 The estimate of the treatment can be biased if the unavailable observation is connected 

to the real value of the outcome (for example, mostly poor outcomes are missing), even 

if the missing values are not related to the treatment. 

 If the missing observations are associated to both treatment and the unobserved outcome 

variable (e.g. missingness occurs more often in one of the treatment arms), then ignoring 

them will lead to bias. 

One way of dealing with missing data is to completely exclude subjects who have values that 

are absent, therefore decreasing the sample size which in return will influence the statistical 

power (Estonian (testi) võimsus). The power of the trial will increase if the variability of the 

missing outcomes is reduced or if the sample size is increased. Consequently, the greater the 

number of missing values, the greater is the reduction in power.  

Mishandling the missing data can also impact the confidence intervals. Excluding non-

completers with extreme values (e.g. noticeably good or bad response before loss to follow-up) 

may lead to underestimate of variability which therefore narrows the confidence interval for the 

treatment effect. 

  Avoiding missing data 

Although there are several approaches to deal with missing data (given later), the best way is 

to prevent it in the study design and conduct period. It can be useful to predict the anticipated 

proportions of missing data in the design phase because it can influence the variability and 

required sample size and also it might be helpful for managing the range of sensitivity analyses 

that are necessary. [4]  

Clearly defined target population, along with efficacy and safety outcomes, and the analysis of 

the likely effects of missing data are attributes of a good clinical trial design. Researchers should 

target a population that has an incentive to stay in the study, for example because it is not 

sufficiently served by current treatment. [2] More, the study design should limit the burden of 

unnecessary data collection for the study participants. This can be accomplished by: 

 reducing the number of follow-up visits; 

 gathering only vital information at each visit; 

 making case-report forms (document that records all protocol required information on 

each trial subject [1]) user-friendly; 

 if attainable, using data capture that does not require clinic visits; 
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 shortening the follow-up period for the primary outcome as appropriate. [2][4][5] 

The approaches to minimize the missing data in trial planning and conduct are aimed at the 

participant, the data collection process and the study team [4]. Firstly, incentives can be offered 

to participants. These can include payment for the number of finished visits rather than payment 

for each subject. In fact, monetary incentives for voluntary participation in a clinical trial are 

considered ethical. Secondly, it is important to engage participants to make them feel included 

and appreciated for their exertion, especially those who are at higher risk for dropout, for 

example by including study-branded gifts, constant expressions of gratitude and enjoyable 

experience at study visits. In addition, the trial conduct phase may be facilitated by a reminder 

system, which helps subjects to understand the commitment to the trial and record the reasons 

for withdrawal to help in the interpretation of the results. [5] 

Approaches concerning the data collection process involve careful selection of study sites, 

training of the site personnel to ensure they know the importance of complete data collection, 

and structure for proficient communication among the study teams. Also, databases where data 

are inserted by the site personnel can have regulations, e.g. system gives a warning when a field 

is empty or inaccurate (for example, height is 1500 m). In addition, mandatory fields can be 

added. [4] 

Furthermore, regular team gatherings or web-based discussion boards allow a chance to find a 

solution to a possible missing data issue [4]. 

  Notation 

Let the intended data be denoted by a n × p matrix 𝐘 which is partitioned into 𝐘 = {𝐘𝒐, 𝐘𝒎} 

where 𝐘𝒐 represents observed and 𝐘𝒎 represents missing part of the data matrix. Missing value 

indicator matrix 𝐑 (n × p) that is corresponding to 𝐘 is defined as  

𝑟𝑖,𝑗 =  {
 1 𝑖𝑓 𝑦𝑖,𝑗  𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

0 𝑖𝑓 𝑦𝑖,𝑗 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔
 

  

where i = 1, …, n and j = 1, …, p. [6] 
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  Types of missing data 

Before making any decisions about suitable approaches to deal with missing data, it is necessary 

to evaluate how the missing data may have occurred. There are three different categories of 

how missingness has developed.  

Data are missing completely at random (MCAR, Estonian täiesti juhuslik puudumine) when the 

probability of an observation being missing is unrelated to any unobserved or observed 

variables. In mathematical terms it is written as 

𝑃(𝐑 | 𝐘𝒐, 𝐘𝒎)  =  𝑃(𝐑)[7]. 

It means that the probability of missing data is the same for all subjects, regardless of treatment 

received, treatment response or any other observed or unobserved aspect in Y [4]. The 

assumption of MCAR assumes that data from participants with missing data can be disregarded 

without bias because their outcomes would be anticipated to be similar to outcomes of subjects 

whose data were completely observed [2]. Examples for mechanisms yielding to MCAR 

include migration, random failure of instruments (or laboratory sample is dropped), termination 

of follow-up due to administrative end of study and more [4]. 

Data are missing at random (MAR, Estonian juhuslik puudumine) when the likelihood of 

missing data depends on observed variables but not on unobserved variables [4]. 

Mathematically, 

𝑃(𝐑 |𝐘𝒐, 𝐘𝒎) =  𝑃(𝐑 |𝐘𝒐) [7]. 

In other words, if subjects share similar observed values, the statistical behaviour on their other 

observations would be similar, whether observed or not [2]. MAR assumption indicates that if 

the baseline characteristics and intermediate measures are similar for dropouts and completers, 

then the outcomes would be expected to be similar for both, therefore the missing outcomes 

can be modelled on the basis of completers’ outcomes [2]. Subjects can drop out due to recorded 

side effects or known baseline features or absence of efficacy [4].  

Data are considered missing not at random (MNAR, Estonian mittejuhuslik puudumine) when 

the missing data depends on the unobserved data [4]. It can be written as  

𝑃(𝐑 |𝐘𝒐, 𝐘𝒎)  =  𝑃(𝐑 |𝐘𝒐, 𝐘𝒎) [7]. 

This missingness mechanism is also called non-ignorable because results will be biased if the 

process that leads to missing data is ignored. The assumption for MNAR implies that the 

decision to drop out can be based on events that were not observed, so outcomes for dropouts 
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are different from participants who have similar characteristics. [2] Examples of MNAR are 

dropout based on the unobserved response (if a person is not responding to treatment) and 

missed visits due to the fact that subjects have had an outcome (e.g. hospitalisation, significant 

improvements in the state of disease) already [4]. 

In this thesis, the author only explains approaches which deal with MCAR and MAR. 
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2. Approaches for dealing with missing data 

  Approaches for data MCAR 

2.1.1 Complete case analysis (listwise deletion) 

Complete case (CC, Estonian täielike andmetega analüüs) analysis includes only those 

participants who have all the measurements recorded [7]. Subjects who have missing 

observations are excluded from the analysis and standard methods are used on the remaining 

set of subjects. This approach is valid only when the missing data are MCAR, otherwise it may 

lead to biased results. [4] 

CC method is simple to describe and use, since common statistical tests are applied. 

Additionally, it gives a common basis for conclusions (despite the type of the analysis) because 

the estimates are calculated on the same subset of completers. [7] 

The main disadvantage of CC method is that it causes severe bias if the missingness mechanism 

is MAR or MNAR instead of MCAR because completely recorded cases are not usually 

representative of the whole sample. For example, in trials conducted to examine prevention of 

drug abuse, users are more likely to drop out than non-users, therefore completers do not 

represent the original sample, leading to bias in the parameters. Also, because of erasing some 

subjects and their information, the estimators might be inefficient. In addition, this method 

impacts the precision and power by reducing them. [7] 

Although complete case analysis is easy to use, it is not a recommended approach due to the 

disadvantages described above. 

Example 

Systolic blood pressure was measured for five subjects; the results are presented in Table 2.1. 
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Table 2.1 Measured systolic blood pressure with missing values 

Subject Systolic blood pressure (mm Hg) 

1 115 

2 150 

3 ? 

4 125 

5 ? 

 

In complete case analysis, subjects who have missing observations are removed. Therefore, the 

final data set to be analysed would consist of subjects 1, 2 and 4 (displayed in Table 2.2). 

Table 2.2 Systolic blood pressure measurements for complete case analysis 

Subject Systolic blood pressure (mm Hg) 

1 115 

2 150 

4 125 

2.1.2  Available case analysis (pairwise deletion) 

Available case analysis (Estonian tunnuspaari analüüs) or pairwise deletion is an approach to 

deal with missing data that attempts to minimize the loss that usually occurs in complete case 

scenario. It mainly focuses on the covariance (or correlation) matrix. For each pair of variables 

which have valid data, the correlation is calculated. For the variable that has no missing data, 

denoted by 𝑋, all cases are used to calculate the mean and standard deviation. Mean (𝑦̅) and 

standard deviation (𝑠𝑦) of variable with missing observations, denoted by 𝑌, are calculated 

based on complete cases. The correlation between 𝑋 and 𝑌 is then calculated as 

𝑟𝑥𝑦
2 =

1

𝑚 − 1

∑ (𝑥𝑖 − 𝑥̅(𝑚))(𝑦𝑖 − 𝑦̅)𝑚
𝑖=1

𝑠𝑥(𝑚)𝑠𝑦
 

where 𝑥̅(𝑚) and 𝑠𝑥(𝑚) are the mean and standard deviation of 𝑋 calculated from the 𝑚 complete 

cases. Estimated correlation (or covariance) matrix is used as an input for methods like 

regression. [8] 
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Like in complete case analysis, estimated parameters will be unbiased only if the missingness 

is MCAR. Because this method uses all the data available, it does not decrease power as much 

as complete case analysis. Unfortunately, there is no apparent way to specify the sample size 

for this method, therefore making it hard to estimate the standard errors. [6] 

Example 

Weight and height were measured for five patients (in Table 2.3). 

Table 2.3 Measured weight and height  

Subject Weight (kg) Height (cm) 

1 65 170 

2 55 165 

3 90 ? 

4 69 173 

5 100 ? 

 

Firstly, the means are calculated. The mean weight is 
65+55+90+69+100

5
= 75.8 kg and the mean 

height is 
170+165+173

3
= 169.33 cm.  

Secondly, standard deviations are found. The standard deviations for weight and height are 

√
(65−75.8)2+(55−75.8)2+(90−75.8)2+(69−75.8)2+(100−75.8)2

5−1
=  √345.7 = 18.59 kg 

and √
(170−169.33)2+(165−169.33)2+(173−169.33)2

3−1
= √16.33 = 4.04 cm, respectively. The mean 

and standard deviation of weight from full data are calculated to summarize weight but they are 

not used for correlation calculations. 

To calculate the correlation between weight and height the means and standard deviations over 

complete cases are calculated. The mean weight is then 
65+55+69

3
= 63 kg and weight’s standard 

deviation is √
(65−63)2+(55−63)2+(69−63)2

3−1
=  √52 = 7.21 kg. Then the correlation is 

1

3−1

(65−63)(170−169.33)+(55−63)(165−169.33)+(69−63)(173−169.33)

7.21∗4.04
= 0.995. 
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2.1.3  Single imputation 

2.1.3.1 Unconditional mean imputation 

In unconditional mean imputation (Estonian keskväärtusega asendamine) method, missing 

values are replaced with the average of the observed values on the same variable over other 

subjects. The method is called unconditional because it does not use other information that the 

subject with missing data has. [7] This method results in underestimation of variability which 

is proportional to the fraction of missing data because a constant is imputed for all of the 

subjects with missing data, regardless of their personal characteristics [4][6]. The bias in 

variability is proportional to (𝑛𝑜 − 1) (𝑛𝑜 + 𝑛𝑚 − 1)⁄  if the missingness mechanism is MCAR, 

where 𝑛𝑜 is the number of subjects having the value of a specific variable observed and 𝑛𝑚 is 

the number of subjects having the value of a specific variable missing. The covariances, which 

are biased by similar factor, and variances will hence be underestimated because the 

unconditional mean imputation for missing cases has a variance of 0. [6]. 

Example 

Five subjects were measured to find out their height and weight. The resulting measurements 

are presented in Table 2.4 below. 

Table 2.4 Measured height and weight with missing values 

Subject Height (cm) Weight (kg) 

1 185 90 

2 170 60 

3 156 ? 

4 198 120 

5 ? 55 

 

As can be seen from Table 2.4, one subject (subject number 3) is missing his/her weight and 

another one (subject number 5) his/her height. For unconditional mean imputation method, the 

mean for height (
185+170+156+198

4
= 177.25 cm) and the mean for weight (81.25 kg) are 

calculated based on the available data. Imputing the means for missing values leads to the 

following data set (presented in Table 2.5). 
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Table 2.5 Height and weight after unconditional mean imputation 

Subject Height (cm) Weight (kg) 

1 185 90 

2 170 60 

3 156 81.25 

4 198 120 

5 177.25 55 

 

The mean height in the final data is  
185+170+156+198+177.25

5
= 177.25 cm and the mean weight 

is 
90+60+81.25+120+55

5
= 81.25 kg. In case of unconditional mean imputation, the means do not 

change, as can be seen also from the example. 

2.1.3.2 Conditional mean imputation or Buck’s method (regression) 

This section is based on [7]. 

Conditional mean imputation (Estonian lineaarsete prognoosidega asendamine), known also 

as Buck’s method or regression-based imputation, uses available information about the subject 

with missing data when imputing missing values. The method first estimates the mean µ and 

covariance matrix Σ based on the complete cases. Then these estimates are used to calculate the 

linear regression of the incomplete variable on the other variables. In the second step the 

conditional mean is calculated and the missing value is replaced. 

With this method, it is vital that the regression of the missing components on the observed ones 

is constant across missingness patterns. Like the other single imputation methods, conditional 

mean imputation also overestimates the precision. 

Example 

Three females who suffered from anorexia were weighed before and after the study period. 

Results are show in Table 2.6. 
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Table 2.6 Measured pre-weight and post-weight 

Subject 
Pre-weight 

(kg) 

Post-weight 

(kg) 

1 36.6 36.4 

2 40.6 ? 

3 41.6 39.2 

4 33.6 39.1 

 

Firstly, means and covariance matrix are found for both variables using complete cases. The 

mean of pre-weight is 
36.6+41.6+33.6

2
= 37.27 kg and the mean of post-weight is 

36.4+39.2+39.1

2
=

38.23 kg. Covariance matrix based on complete cases is (calculation not shown here) 

  

𝚺 = (
16.33 1.12
1.12 2.52

). 

The model of incomplete variable (post-weight) on other variable (pre-weight) that is used to 

find the estimates is 

𝑝𝑜𝑠𝑡𝑤𝑒𝑖𝑔ℎ𝑡 = 𝛽̂0 + 𝛽̂1 ∙ 𝑝𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡 + 𝜀. 

Parameter estimates are found using least squares method. In this example 

𝜷̂ = (
𝛽̂0

𝛽̂1

) 

and the least square estimate is given by 

𝜷̂ = (𝐗′𝐗)−1𝐗′𝒚, 

where 𝐗 is the model matrix and  𝒚 is vector of post-weight results. 

Then (derivation is out of scope) 𝛽̂1 =
𝑐𝑜𝑣(𝑋,𝑌)

𝑐𝑜𝑣(𝑋,𝑋)
=

1.12

16.33
= 0.07 and 𝛽̂0 = 𝑦̅ − 𝛽̂1 ∙ 𝑥̅ = 38.23 −

0.07 ∙ 37.27 = 35.62. Imputed post-weight value for subject 2 is 𝛽̂0 + 𝛽̂1 ∙ 𝑝𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡2 =

35.62 + 0.07 ∙ 40.6 = 38.46 kg. The data with imputed value is presented in Table 2.7. 
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Table 2.7 Pre-weight and post-weight after conditional mean imputation 

Subject 
Pre-weight 

(kg) 

Post-weight 

(kg) 

1 36.6 36.4 

2 40.6 38.46 

3 41.6 39.2 

4 33.6 39.1 

 

2.1.3.3 Last observation carried forward 

In the approach of last observation carried forward (LOCF, Estonian viimase vaatluse edasi 

kandmine), missing values are replaced with the last observed value for the same subject, hence 

LOCF approach can only be used when the data has repeated structure. This technique can be 

used for monotone (when all observations are missing after dropout) and non-monotone (when 

a subject has missed some visits in between) missing data. [7] 

Even though LOCF is one of the most used approaches for dealing with missing data, it could 

be risky for several reasons. Firstly, to guarantee the validity of this method, often unrealistic 

assumptions are made. Belief that subjects stay at the same level after dropout or during their 

unobserved period is required. Secondly, due to the fact that LOCF handles imputed and 

actually observed values on equal basis, it often overestimates the precision. [7] Furthermore, 

low p-values and underestimated variability are the results of attributing identical values for the 

same subject [4]. 

Example 

Haemoglobin (g/dL) was measured for five male subjects during five visits. The data is 

presented in Table 2.8 below. 
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Table 2.8 Measured haemoglobin (g/dL) during five visits with missing values 

 

Subject 

Visit 

1 2 3 4 5 

1 13.3 13.4 14.0 ? ? 

2 16.5 16.5 16.7 17.0 17.0 

3 12.5 ? 13.0 13.5 ? 

4 14.5 14.6 14.6 ? ? 

5 14.0 14.0 14.2 14.2 14.3 

 

The data set obtained after applying last observation carried forward method is presented in 

Table 2.9 below. 

Table 2.9 Haemoglobin (g/dL) results during five visits after LOCF imputation 

 Visit 

Subject 1 2 3 4 5 

1 13.3 13.4 14.0 14.0 14.0 

2 16.5 16.5 16.7 17.0 17.0 

3 12.5 12.5 13.0 13.5 13.5 

4 14.5 14.6 14.6 14.6 14.6 

5 14.0 14.0 14.2 14.2 14.3 

2.1.4 Hot deck 

This section is based on [9]. 

Hot deck method handles missing data by replacing all the missing values with an observed 

response from a unit with similar characteristics. The non-respondent is called the recipient and 

the respondent the donor. There are two different kinds of hot deck methods: random hot deck 

methods and deterministic hot deck methods. For the first one, the donor is selected randomly 

from the donor pool, which is a set of potential donors. For the second method, only one donor 

is selected and used for the imputation.  
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Adjustment cell method is one of the approaches for identifying donors. Adjustment cells, also 

known as imputation classes or donor pools, are based on covariate information. Continuous 

covariates are categorized to create cells. For example, adjustment cell for weight uses variables 

like height, physical activity, consumption of alcohol, etc. So that subjects with similar height, 

physical activity and alcohol consumption are put into the same cell. 

After creating the adjustment cells, randomly picked donor is used for replacing the missing 

value for non-respondent within each cell in the random hot deck method. In case of sparseness 

of donors some hot decks limit the number of times one donor can be used for imputations to 

avoid over-usage. 

Another way for matching donors and recipients is to use some distance metrics. Let 𝒙𝑖 =

(𝑥𝑖1, … , 𝑥𝑖𝑞) be the values for subject i of q covariates that are used to create adjustment cells, 

and let  𝐶(𝒙𝑖) denote the cell in the cross-classification in which subject i falls. Then matching 

the recipients i to donors j can be done based on the metric 

𝑑(𝑖, 𝑗) = {
0  𝑗 ∈ 𝐶(𝒙𝑖)

1 𝑗 ∉ 𝐶(𝒙𝑖)
 

which is same as matching in the same adjustment cell. 

Other metrics are defined so that they do not need to categorize continuous variables. These are 

maximum deviation 

𝑑(𝑖, 𝑗) = max
𝑘≤𝑞

|𝑥𝑖𝑘 − 𝑥𝑗𝑘| 

where 𝒙𝑘 have been suitably scaled to make differences comparable (using ranks and then 

standardizing), the Mahalanobis distance 

𝑑(𝑖, 𝑗) = (𝒙𝑖 − 𝒙𝑗)
𝑇

𝑽𝒂𝒓̂(𝒙𝑖)
−1(𝒙𝑖 − 𝒙𝑗) 

where 𝑽𝒂𝒓̂(𝒙𝑖) is an estimate of the covariance matrix of 𝒙𝑖, and the predictive mean metric 

𝑑(𝑖, 𝑗) = (𝑌̂(𝒙𝑖) − 𝑌̂(𝒙𝑗))
2

 

where 𝑌̂(𝒙𝑖) = 𝒙𝑖
𝑇𝜷̂  is the predicted value of 𝑌 for non-respondent i from the regression of 𝑌 

on x using only the respondents’ data. 

The easiest distance to use is the predictive mean metric because it merely requires conversion 

to set of dummy variables for inclusion in the regression model. Its advantage is also that the 

metric will be dominated by variables that are predictive of Y, while the variables with little 
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predictive power may excessively influence the Mahalanobis metric. Predictive mean can be 

used for discrete and continuous outcomes if generalized linear models (e.g. logistic regression 

for binary responses) are used for modelling the metric. 

After choosing the metric, set of donors are defined for each recipient. One possibility is to 

specify a maximum distance δ and then define a donor set with 𝑑(𝑖, 𝑗) < 𝛿. Then the donor is 

randomly selected from the set (random hot deck). The alternative is to choose the nearest 

respondent and then the method is called a deterministic or nearest neighbour hot deck. 

Hot deck methods are popular because they enable analysts to use complete-data methods for 

secondary analysis. These methods use values that come from observed responses in the donor 

pool, therefore only plausible values are imputed. On the other hand, if missing values were 

extreme and they were replaced with common value then the variability is reduced. 

Furthermore, finding good matches for non-respondents might be difficult, especially in a 

smaller sample. 

 Approaches for data MAR 

2.2.1 Inverse probability weighting 

This section is based on [4]. 

Inverse probability weighting (IPW, Estonian pöördtõenäosusega kaalumine) method is 

approach used to deal with missing data when the missingness is MAR. It is based on sample 

survey weights which are the inverse of participant’s probability of being selected to the survey 

sample. In case of missing data, statisticians estimate the probability of data being observed and 

then the observed values are weighted by the inverse of these probabilities. Therefore, those 

who have lower probability of being observed will have bigger weight. The probability of a 

variable being observed may depend, for example, on which treatment group the subject is 

from, what are the previous outcomes of interest and other variables that might predict the 

observation. All of these are included into the model (for example logistic regression) from 

where the weights are acquired.  

Unfortunately, inverse probability weighting method includes only participants with complete 

data in the final weighted model, consequently reducing the power. 
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Example 

There are two groups of subjects in a trial of chronical back pain where one group receives 

placebo and the other group gets active medication. In a couple of weeks, the subjects had to 

answer from scale 1 to 5 how strong their pain was. The data is presented in Table 2.10 below. 

Table 2.10 Level of back pain within two treatment groups 

Group Placebo Active medication 

Response (actual): 5 3 4 4 5 3 4 2 2 1 

Response (observed): 5 ? 4 ? ? ? 4 2 2 1 

 

The average response for full data is 3.3. The mean calculated from the observed data is 3, 

which is biased. The probabilities of response for placebo and medication groups are 2/5 and 

4/5, respectively. Weights for the groups are the inverse of their probability, therefore being 5/2 

and 5/4. Hence the estimate for the response using IPW is 

(5 + 4) ∗
5
2 + (4 + 2 + 2 + 1) ∗

5
4

2 ∗
5
2 + 4 ∗

5
4

= 3.375 

which is an unbiased estimate under the assumption that the probability model for the missing 

data mechanism was correctly specified, i.e. the missingness only depended on the treatment 

arm. 

2.2.2 Multiple imputation 

This section is based on [7] if not mentioned otherwise. 

Multiple imputation (MI, Estonian mitmene asendamine) method is similar to single imputation 

methods (section 2.1.3) but instead of imputing one value for the missing observation, set of M 

plausible values are inserted. Firstly, it is important to look at the relationship between missing 

observations and observed ones to see what the conditional distribution of the missing 

observations given the observed data - (Ym|Yo)  - is. Secondly, missing values are replaced with 

the Bayesian value draw (it is not explained in this thesis; more thorough explanation is given 

in [7]) from the conditional distribution, and that imputation is done M (usually 5-20) times, 

therefore producing M complete data sets. Each of those data sets is then analysed using 

appropriate complete data analysis method that would have been used in the absence of 
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nonresponse, and all of those results are combined into one inference by finding the average of 

estimates. Imputations are generated from the imputation model, while the later analysis’ model 

is called the substantive model. 

It is of interest to make inferences about parameter β from the substantive model. Imputation 

model is used to make appropriate Bayesian posterior draws. M complete data sets are 

formulated by replacing the missing data with corresponding imputation samples. Let 𝛽̂𝑚 and 

𝜎𝑚
2̂  denote the estimate of β and its variance from the mth complete data set (m = 1, …, M). The 

MI estimate of β is calculated as an average of these estimates, 

𝛽̂𝑚
∗ =

1

𝑀
∑ 𝛽̂𝑚

𝑀

𝑚=1

 

To estimate the expected uncertainty in the imputations, between-imputation variability is 

calculated. It is defined as 

𝐵 =  
1

𝑀 − 1
∑ (𝛽̂𝑚

𝑀

𝑚=1

− 𝛽̂∗)2 

. 

The formula for calculating the estimation variability due to missing information, known as the 

within-imputation variability, is the following: 

𝑊 =
1

𝑀
∑ 𝜎𝑚

2̂

𝑀

𝑚=1

 

. 

The total variance is given by 

𝑉 = 𝑊 + (
𝑀 + 1

𝑀
) 𝐵 

. 

The advantages of MI are unbiased estimates and correct p-values if the missingness is MAR. 

In addition, this method is relatively easy to implement and gives opportunities to also handle 

the missing covariate information. On the other hand, the imputation model and substantive 

model need to be comparable which means that analysis model has to have the same variables 

as the imputation model. [4]   
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2.2.3 Likelihood-based analysis 

This section is based on [7] if not mentioned otherwise. 

Likelihood-based analysis, like maximum likelihood estimation (MLE, Estonian suurima 

tõepära meetod) methods which use expectation-maximization algorithm (EM, Estonian EM 

algortim), is another method for dealing with missing data when the mechanism is MAR.  

With this MLE method likelihood of the observed data is found which is then maximized. When 

missing data occurs then the likelihood of observed data is more complex and maximizing the 

likelihood is complicated. An iterative method, the EM algorithm, is the solution. [8] The EM 

algorithm calculates maximum likelihood estimates in parametric models. There are two steps 

for each iteration that are repeated until convergence. E step that is expectation step and M step, 

i.e. the maximization step. The E step uses observed data and a set of parameter estimates to 

calculate the conditional expectation of the complete data log-likelihood. The M step computes 

parameters maximizing the expected log-likelihood from the E step. 

The advantages of MLE-based imputation are that it produces unbiased estimates of the 

treatment effect and correct p-values if the missingness is MAR. For MLE-based imputation, 

there is only one estimate of treatment effect and since there is no imputation model, 

comparability of imputation model and analysis model is not needed (unlike with multiple 

imputation). Unfortunately, parametric assumptions (e.g. normality) have to be taken into 

consideration, but it is only fitting for missing outcome data (i.e. it is not capable of 

accommodating missing covariate data). [4] 
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3. Practical 

  Overview of the original data 

The data used for this chapter was originally captured in Hand, D. J., Daly, F., McConway, K., 

Lunn, D. and Ostrowski, E. eds (1993) A Handbook of Small Data Sets. Chapman & Hall, Data 

set 285 (p. 229) which is available in [10] under “Anorexia”. The SAS code for reading in data 

and making necessary adjustment is located in Appendix 1. 

The original data with no missing values had 72 female anorexia patients participating in a trial 

where their weights were measured before and after the study period. During the study period 

they got either cognitive behavioural treatment, family treatment or no treatment at all (control 

group). For the simplicity of the analysis, cognitive behavioural treatment and family treatment 

were combined into one group denoted by treatment 1 and control group was denoted by 

treatment 0, in this thesis. Basic statistical indicators and frequencies are presented in Table 3.1 

and Table 3.2 which is a standard way of summarising data in clinical trials. 

Table 3.1 Characteristics of pre-weight and post-weight 

Statistic Pre-weight (kg) Post-weight (kg) 

N 72 72 

Mean 37.38 38.63 

Standard deviation 2.351 3.645 

Minimum 31.8 32.3 

Median 37.33 38.12 

Maximum 43.0 47.0 

 

Table 3.2 Disposition of subjects 

Treatment Frequency 

Control group 26/72 (36.11%) 

Medication group 46/72 (63.89%) 
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In order to investigate how treatment group and pre-weight influenced the post-weight, a linear 

regression model was fitted. For the original data the regression model produced the following 

fit: 

𝑝𝑜𝑠𝑡𝑤𝑒𝑖𝑔ℎ𝑡 = 20.20 + 2.61 ∙ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 0.45 ∙ 𝑝𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡. 

All the variables were statistically significant with p-values lower than 0.05 (see Appendix 2 

for details). The Root MSE of the model was 3.25 which means that with probability of 68% 

the real value of post-weight is ±3.25 kg from the prognosis. The model accounted for 22.9% 

of the total variance of the post-weight (Appendix 2). 

When fitting a regression model, it is also important to check if the assumptions are valid. 

However, as the aim of this thesis is to show what are the results generated by different missing 

data methods, then the validity of assumptions is not described here. 

  Missing completely at random 

3.2.1 SAS programs 

Program code that was used for generating missing values completely at random can be found 

from Appendix 3. The new data set was named “anorexia_mcar”. Three new variables were 

created: postwgt1, where 10% of post-weights were missing, postwgt2, where 25% of data was 

missing and postwgt3 with 50% of missing observations (Figure 3.1).  

 

Figure 3.1 First 10 observations of data set with missing values 
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3.2.1.1 Complete case analysis 

Firstly, new data set was created where subjects with missing observations were excluded, that 

was done with command if nmiss(postwgt1)=0. If several numeric variables have missing 

values then all of them are removed with command if nmiss(of _numeric_)=0.  

After creating the new data set, linear regression model was fitted with proc reg procedure. 

The SAS code for anorexia trial example was following:  

data cc_1; 

 set anorexia_mcar; 

 if nmiss(postwgt1)=0;  

run; 

 

proc reg data=cc_1; 

 model postwgt1= treatm prewgt; 

run; 

3.2.1.2 Available case analysis 

The first step of available case analysis is to find covariances and output these into new data set 

(seen in Figure 3.2) which is then used for fitting the regression model. With this method only 

proc reg can be used, so categorical variables have to be converted into numeric. 

proc corr data=anorexia_mcar cov outp=ac_1; 

 var postwgt1 treatm prewgt; 

run; 

 

 

Figure 3.2 Outputted data set by proc corr command 

 

proc reg data=ac_1; 

 model postwgt1=treatm prewgt; 

run; 
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3.2.1.3 Unconditional mean imputation 

For unconditional mean imputation approach means of variables with missing information are 

put into new data set. 

proc means data=anorexia_mcar mean; 

var postwgt1 postwgt2 postwgt3; 

output out=mean1; 

run; 

Only means are taken from the data set outputted from proc means procedure. Statement do 

ID=1 to 72 makes 72 rows with ID numbers in order to merge with data set “anorexia_mcar”. 

data means; 

set mean1; 

 where _STAT_='MEAN'; 

 drop _TYPE_ _FREQ_ _STAT_; 

  

do ID=1 to 72; 

  m_postwgt1=postwgt1; 

  m_postwgt2=postwgt2; 

  m_postwgt3=postwgt3; 

 output; 

end; 

drop postwgt1 postwgt2 postwgt3; 

run; 

In the next step means are imputed to missing values and then used for fitting a regression 

model. 

data unconditional; 

 merge anorexia_mcar means; 

  by ID; 

 

 format unpostwgt1 unpostwgt2 unpostwgt3 6.1; 

 

 if postwgt1=. then unpostwgt1=m_postwgt1; 

  else unpostwgt1=postwgt1; 

 

 if postwgt2=. then unpostwgt2=m_postwgt2; 

  else unpostwgt2=postwgt2; 

 

 if postwgt3=. then unpostwgt3=m_postwgt3; 

  else unpostwgt3=postwgt3; 

 

 drop m_postwgt1 m_postwgt2 m_postwgt3; 

run; 

 

proc reg data=unconditional; 

 model unpostwgt1=treatm prewgt; 

run; 
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3.2.1.4 Conditional mean imputation 

Proc mi procedure can be used for conditional mean imputation. Nimpute is the number of 

imputations and nbiter is the number of burn in iterations, they both should be set to one for 

the conditional mean imputation method to ensure that only one set of imputed data sets is 

generated. Seed is put into the command so every time the code is run the imputed values stay 

the same. Statement fcs uses stochastic regression for imputing data. Values for imputing are 

put into new data set which is then used for fitting the regression model. 

proc mi data=anorexia_mcar nimpute=1 seed=37887 out=cond_1; 

 fcs nbiter=1; 

 var postwgt1 treatm prewgt; 

run; 

 

proc reg data=cond_1; 

 model postwgt1= treatm prewgt; 

run; 

3.2.1.5 Last observation carried forward 

For last observation carried forward method, if post-weight was missing for a patient then her 

pre-weight was imputed for the missing value. Afterwards, regression model was fitted. 

data locf; 

 set anorexia_mcar; 

 

 format postw1 postw2 postw3 6.1; 

 

 if postwgt1=. then postw1=prewgt; 

  else postw1=postwgt1; 

 if postwgt2=. then postw2=prewgt; 

  else postw2=postwgt2; 

 if postwgt3=. then postw3=prewgt; 

  else postw3=postwgt3; 

run; 

 

proc reg data=locf; 

 model postwgt1=treatm prewgt; 

run; 

3.2.1.6 Hot deck 

Hot deck methods are done with procedures proc hotdeck and proc surveyimpute but 

since they are not available in base SAS available for the author of the thesis, it is not shown 

here. 
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3.2.2 Results 

3.2.2.1 10% missing data 

In Table 3.3 parameter estimates, standard errors and p-values for variables pre-weight and 

treatment obtained with different approaches are presented, for intercept p-values are not 

presented. Intercept’s parameter estimates were mostly within the ±2 of the original result and 

the standard errors’ change was minimal. While parameter estimates and standard errors for 

pre-weight and treatment were either larger or smaller depending on the method, then p-values 

were larger with all the methods except for conditional mean imputation for pre-weight. Both 

variables stayed statistically significant for all approaches. Standard errors for pre-weight were 

the same as the original with complete case analysis and conditional mean imputation, with 

other methods they were ±0.01of the original result. 

Table 3.3 Summary of results for different approaches with 10% missing data 

Method 

Intercept Pre-weight Treatment 

Parameter 

estimate (s.e) 

Parameter 

estimate (s.e) 
p-value 

Parameter 

estimate (s.e) 
p-value 

Original 20.20 (6.14) 0.45 (0.17) 0.0084 2.61 (0.80) 0.0017 

Complete case 

analysis 
21.63 (6.51) 0.41 (0.17) 0.0221 2.74 (0.88) 0.0028 

Available case 

analysis 
21.57 (6.66) 0.41 (0.18) 0.0240 2.69 (0.87) 0.0030 

Unconditional 

mean imputation 
22.90 (6.08) 0.38 (0.16) 0.0215 2.38 (0.79) 0.0038 

Conditional mean 

imputation 
18.76 (6.46) 0.49 (0.17) 0.0060 2.47 (0.84) 0.0046 

Last observation 

carried forward 
20.71 (6.06) 0.44 (0.16) 0.0093 2.57 (0.79) 0.0018 

 

The Root MSE calculated with unconditional mean imputation and last observation carried 

forward were the closest to the original, all the other methods overestimated it. The most similar 

coefficient of determination with original data was with last observation carried forward method 

as can be seen from Table 3.4. 
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Table 3.4 Root MSE and coefficient of determination for different approaches with 10% 

missing data 

Method Root MSE  Coefficient of determination 

Original 3.25 22.91% 

Complete case analysis 3.34 21.63% 

Available case analysis 3.34 21.44% 

Unconditional mean 

imputation 
3.21 19.31% 

Conditional mean 

imputation 
3.41 21.55% 

Last observation carried 

forward 
3.20 22.60% 

 

3.2.2.2 25% missing data 

With 25% missing data the pre-weight stayed statistically significant while treatment became 

insignificant with conditional mean imputation and unconditional mean imputation (Table 3.5). 

For treatment the parameter estimate changed considerably, especially with conditional mean 

imputation - the estimate being almost three times smaller. The most different (with 0.26 

change) pre-weight estimate occurred with last observation carried forward method. LOCF 

method also had two times smaller parameter estimate for intercept. 
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Table 3.5 Summary of results for different approaches with 25% missing data 

Method 

Intercept Pre-weight Treatment 

Parameter 

estimate (s.e) 

Parameter 

estimate (s.e) 
p-value 

Parameter 

estimate (s.e) 
p-value 

Original 20.20 (6.14) 0.45 (0.17) 0.0084 2.61 (0.80) 0.0017 

Complete case analysis 15.97 (7.60) 0.57 (0.20) 0.0071 2.06 (0.96) 0.0366 

Available case analysis 17.79 (7.14) 0.53 (0.19) 0.0082 1.94 (0.93) 0.0429 

Unconditional mean 

imputation 
24.11 (5.53) 0.37 (0.15) 0.0156 1.41 (0.72) 0.0550 

Conditional mean 

imputation 
14.44 (6.05) 0.63 (0.16) 0.0002 0.96 (0.79) 0.2299 

Last observation 

carried forward 
10.60 (5.50) 0.71 (0.15) <.0001 1.67 (0.72) 0.0227 

 

The biggest underestimation of Root MSE happened with LOCF and unconditional mean 

imputation. For coefficient of determination underestimation was biggest with unconditional 

mean imputation and the overestimation was biggest with LOCF. With other approaches the 

change was minimal. Results are presented in Table 3.6. 
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Table 3.6 Root MSE and coefficient of determination for different approaches with 25% 

missing data 

Method Root MSE  Coefficient of determination 

Original 3.25 22.91% 

Complete case analysis 3.25 21.37% 

Available case analysis 3.26 20.95% 

Unconditional mean 

imputation 
2.92 14.11% 

Conditional mean 

imputation 
3.20 20.80% 

Last observation carried 

forward 
2.90 31.77% 

3.2.2.3 50% missing data 

The effect of missing data on analysis results is best seen with 50% missing data (Table 3.7). 

Pre-weight became statistically insignificant with complete case analysis, with p-value almost 

9 times larger than with original data set. Treatment became insignificant with LOCF, p-value 

also increased with complete case analysis, but otherwise it decreased. The most precise pre-

weight estimate was found with conditional mean imputation (being 0.44), the estimate furthest 

from the original was observed with LOCF. For treatment, estimates differed considerably. 

While unconditional mean imputation and LOCF methods’ estimates were smaller (by 0.64 and 

1.57, respectively), then other methods overestimated treatment effect remarkably. With LOCF 

parameter estimate for intercept decreased two times and with available case analysis 1.4 times.  
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Table 3.7 Summary of results for different approaches with 50% missing data 

Method 

Intercept Pre-weight Treatment 

Parameter 

estimate (s.e) 

Parameter 

estimate (s.e) 
p-value 

Parameter 

estimate (s.e) 
p-value 

Original 20.20 (6.14) 0.45 (0.17) 0.0084 2.61 (0.80) 0.0017 

Complete case 

analysis 
23.67 (7.37) 0.37 (0.20) 0.0754 3.40 (1.12) 0.0046 

Available case 

analysis 
14.48 (7.79) 0.60 (0.21) 0.0069 3.94 (1.02) 0.0005 

Unconditional mean 

imputation 
24.85 (4.36) 0.36 (0.12) 0.0031 1.97 (0.57) 0.0009 

Conditional mean 

imputation 
20.61 (6.73) 0.44 (0.18) 0.0175 3.38 (0.88) 0.0003 

Last observation 

carried forward 
10.65 (4.97) 0.72 (0.13) <.0001 1.04 (0.65) 0.1143 

 

The only method that overestimated Root MSE was conditional mean imputation, all the other 

methods underestimated it. With available case analysis coefficient of determination was almost 

two times bigger than that of original analysis (Table 3.8). 

Table 3.8 Root MSE and coefficient of determination for different approaches with 50% 

missing data 

Method Root MSE Coefficient of determination 

Original 3.25 22.91% 

Complete case analysis 3.08 36.96% 

Available case analysis 2.89 44.48% 

Unconditional mean 

imputation 
2.31 26.14% 

Conditional mean 

imputation 
3.56 25.32% 

Last observation carried 

forward 
2.63 33.43% 
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  Missing at random 

3.3.1 SAS codes 

Data set “anorexia_mar” was used for MAR experiments. This data set included three variables 

postwgt1, postwgt2 and postwgt3 that had 10%, 25% and 50% missing data with MAR 

mechanism (missingness generated by the author of this thesis). For MAR generation, the 

following assumptions were used: females who weighed less than average or more than 40 kg 

were unlikely to respond because they were afraid to reveal their weight or they thought they 

were too heavy. It was a deterministic removal so everyone in the assumption category was 

removed. SAS code is presented in Appendix 4. 

3.3.1.1 Inverse probability weighting 

The first step of inverse probability weighting is to find a number of subjects in different 

treatment groups, for which by statement is used within proc means.   

proc means data=anorexia_mar NMISS N; 

var postwgt1 postwgt2 postwgt3; 

by treatm; 

output out=nmissing; 

run; 

The probability of response is calculated by number of persons with complete data (postwgt1, 

postwgt2, postwgt3) divided by the number of persons in treatment group (_freq_). Probabilities 

are found for both treatment groups. 

data weights; 

 set nmissing; 

 where _STAT_='N'; 

  resp_w1=postwgt1/_freq_; 

  resp_w2=postwgt2/_freq_; 

  resp_w3=postwgt3/_freq_; 

 keep treatm resp_w1 -- resp_w3; 

run; 

Data set with missing values is then merged with data set with probabilities of response and 

weights are found for treatment and control group. 

data ipw; 

 merge anorexia_mar (in=a) weights; 

  by treatm; 

  if a; 

 

 format w1 w2 w3 6.2; 

 

 w1=1/resp_w1; 
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 w2=1/resp_w2; 

 w3=1/resp_w3; 

 

 drop resp_w1 resp_w2 resp_w3; 

run; 

Then the regression model is fitted using the weight statement within proc reg to specify the 

pre-calculated inverse probability weights. 

proc reg data=ipw; 

 model postwgt1=treatm prewgt; 

 weight w1; 

run; 

3.3.1.2 Multiple imputation 

Multiple imputation has three phases in SAS: imputation phase, analysis phase and pooling 

phase. In imputation phase number of imputations is specified in proc mi procedure with 

nimpute command. The imputed data sets are outputted into new data set that is later used for 

analysis phase. Proc mi procedure creates indicator variable imputation to number each 

imputed data set [11]. 

/*imputation phase with M=10 imputations*/ 

proc mi data= anorexia_mar nimpute=10 out=mi_trial1 seed=54321; 

 var postwgt1 treatm prewgt; 

run; 

Model is found in second – analysis – phase for every imputed data set individually with by 

statement. Parameter estimates from the regression model are outputted into data set that is used 

for the last phase – pooling. 

/*analysis phase*/ 

proc reg data = mi_trial1; 

 model postwgt1=treatm prewgt; 

  by _imputation_; 

 ods output ParameterEstimates=est_1; 

run; 

Procedure proc mianalyze used for pooling phase combines all the estimates across 

imputations. Coefficients are calculated as mean of individual coefficients for every imputed 

data set [11]. 

/*pooling phase*/  

proc mianalyze parms=est_1; 

modeleffects intercept treatm prewgt; 

run; 
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The output of pooling phase is presented in Figure 3.3. From it within-imputation and between 

imputations variances (explained in section 2.2.2) can be seen (Variance Information table). 

The procedure also releases 95% confidence limits for parameter estimates (Parameter 

Estimates table). 

Figure 3.3 Output of proc mianalyze procedure 

3.3.1.3 Likelihood-based analysis 

For maximum-likelihood estimation procedure proc mi is used with added statement EM, 

which requires EM algorithm to be used. Outputted data set of proc mi procedure is then used 

for fitting a regression model. 

proc mi data = anorexia_mar seed=45678; 

 EM out = mle1; 

 var postwgt1 treatm prewgt; 

run; 

 

proc reg data = mle1; 

 model postwgt1=treatm prewgt; 

run; 
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3.3.2 Results 

3.3.2.1 10% missing data 

The change in the parameter estimate and standard errors for intercept was minimal, so was it 

with pre-weight estimate and standard errors. The p-value for pre-weight decreased only with 

likelihood-based imputation, otherwise it increased but not as much to become insignificant. 

The same applied for p-value for treatment. The results are presented in Table 3.9. 

Table 3.9 Summary of results for different approaches with 10% missing data 

Method 

Intercept Pre-weight Treatment 

Parameter 

estimate (s.e) 

Parameter 

estimate (s.e) 
p-value 

Parameter 

estimate (s.e) 
p-value 

Original 20.20 (6.14) 0.45 (0.17) 0.0084 2.61 (0.80) 0.0017 

Inverse 

probability 

weighting 

21.68 (6.62) 0.42 (0.18) 0.0237 2.53 (0.86) 0.0046 

Multiple 

imputation 
20.62 (6.48) 0.45 (0.18) 0.0111 2.45 (0.85) 0.0042 

Likelihood-

based 

imputation 

20.98 (5.75) 0.44 (0.15) 0.0059 2.50 (0.75) 0.0014 

 

Because Root MSE and coefficient of determination are not released in multiple imputation 

procedure, they are calculated as the average of each imputation. Root MSE and coefficient of 

determination were closest to the original with multiple imputation method (see Table 3.10). 
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Table 3.10 Root MSE and coefficient of determination for different approaches with 10% 

missing data 

Method Root MSE Coefficient of determination 

Original 3.25 22.91% 

Inverse probability 

weighting 
3.35 24.15% 

Multiple imputation 3.20 22.38% 

Likelihood-based 

imputation 
3.04 24.05% 

 

3.3.2.2 25% missing data 

With 25% missing data, intercept’s parameter estimate came negative with every method most 

probably due to the deterministic removal. The parameter estimates for pre-weight were 

considerably larger, multiple imputation generated 2.7 times bigger estimate. P-values 

decreased noticeably. The parameter estimates for treatment decreased with each method and 

p-values increased but not with likelihood-based imputation that had the closest value to the 

original. Standard errors for all parameters became larger with the exception of likelihood-

based imputation. Results are shown in Table 3.11. 

Table 3.11 Summary of results for different approaches with 25% missing data 

Method 

Intercept Pre-weight Treatment 

Parameter 

estimate (s.e) 

Parameter 

estimate (s.e) 
p-value 

Parameter 

estimate (s.e) 
p-value 

Original 20.20 (6.14) 0.45 (0.17) 0.0084 2.61 (0.80) 0.0017 

Inverse probability 

weighting 
-4.22 (9.81) 1.10 (0.27) 0.0001 2.14 (0.87) 0.0174 

Multiple imputation -8.25 (9.05) 1.21 (0.24) <.0001 2.24 (0.84) 0.0091 

Likelihood-based 

imputation 
-6.66 (4.78) 1.17 (0.13) <.0001 2.07 (0.62) 0.0015 
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Root MSE and coefficient of determination that were furthest from the original were generated 

with likelihood-based imputation as shown in Table 3.12. Coefficient of determination 

increased greatly, especially with multiple and likelihood-based imputation, being two times 

bigger than the original estimate. 

Table 3.12 Root MSE and coefficient of determination for different approaches with 25% 

missing data 

Method Root MSE  Coefficient of determination 

Original 3.25 22.91% 

Inverse probability 

weighting 
3.37 39.04% 

Multiple imputation 2.86 55.38% 

Likelihood-based 

imputation 
2.53 59.76% 

 

3.3.2.3 50% missing data 

The most accurate intercept estimate was generated with likelihood-based imputation which 

was also the only one that had a decreased standard error (Table 3.13). Multiple imputation had 

the same parameter estimate for pre-weight, other methods’ estimates were also close. Pre-

weight was statistically insignificant with multiple imputation. Treatment effect was 

insignificant with inverse probability weighting and also with multiple imputation. Treatment 

estimate was smaller with each method and standard error was smaller only with likelihood-

based imputation. 
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Table 3.13 Summary of results for different approaches data with 50% missing data 

Method 

Intercept Pre-weight Treatment 

Parameter 

estimate (s.e) 

Parameter 

estimate (s.e) 
p-value 

Parameter 

estimate 

(s.e) 

p-value 

Original 20.20 (6.14) 0.45 (0.17) 0.0084 2.61 (0.80) 0.0017 

Inverse probability 

weighting 
18.86 (8.75) 0.51 (0.24) 0.0448 1.74 (1.31) 0.1923 

Multiple imputation 21.07 (8.91) 0.45 (0.25) 0.0769 1.94 (1.02) 0.0588 

Likelihood-based 

imputation 
19.92 (4.65) 0.48 (0.13) 0.0003 1.78 (0.61) 0.0046 

 

In Table 3.14 it is shown that inverse probability weighting method overestimated Root MSE 

almost by two times. On the other hand, the coefficient of determination was most accurate 

with inverse probability method. While Root MSE decreased only with likelihood-based 

imputation, it was also the only method that had increased coefficient of determination. 

Table 3.14 Root MSE and coefficient of determination with 50% missing data 

Method Root MSE Coefficient of determination 

Original 3.25 22.91% 

Inverse probability 

weighting 
5.13 19.78% 

Multiple imputation 3.51 16.50% 

Likelihood-based 

imputation 
2.46 27.60% 

 

  MCAR analysis methods with MAR data set 

This section shows that it is important to determine the missingness mechanism before deciding 

on a method. The analysis was conducted with 25% missing data with MAR mechanism but 

MCAR methods were used. Results are presented in Table 3.15. 
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Table 3.15 Summary of results with MCAR methods with 25% MAR missing data 

Method 

Intercept Pre-weight Treatment 

Parameter 

estimate (s.e) 

Parameter 

estimate (s.e) 
p-value 

Parameter 

estimate (s.e) 
p-value 

Original 20.20 (6.14) 0.45 (0.17) 0.0084 2.61 (0.80) 0.0017 

Complete case 

analysis 
-6.67 (9.88) 1.17 (0.27) <.0001 2.07 (0.90) 0.0259 

Available case 

analysis 
5.41 (6.14) 0.84 (0.17) <.0001 2.65 (0.80) 0.0018 

Unconditional 

mean 

imputation 

22.14 (5.48) 0.41 (0.15) 0.0076 2.04 (0.72) 0.0058 

Conditional 

mean 

imputation 

-5.06 (5.42) 1.14 (0.15) <.0001 1.08 (0.71) 0.1313 

Last 

observation 

carried forward 

-4.07 (4.91) 1.10 (0.13) <.0001 1.67 (0.64) 0.0113 

 

For pre-weight the parameter estimate was the most accurate with unconditional mean 

imputation. It was also with the closest p-value to the original, while the others’ p-value 

decreased to <.0001. Results furthest from the original was generated with complete case 

analysis, the parameter estimate 2.6 times bigger and standard error bigger by 0.10.  

The most inaccurate result for treatment came with conditional mean imputation. With this 

approach p-value of treatment became statistically insignificant and parameter was 

underestimated by two times. Available case analysis method created the most similar result 

with the original, with p-value and parameter estimate bigger by 0.1 and 0.0001, respectively, 

and with the exact same standard error. 

Three methods (complete case analysis, conditional mean imputation and LOCF) produced 

intercept with negative sign. Unconditional method was the only one that had even a bit similar 

intercept estimate to the original. 
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All the methods underestimated the Root MSE, the closest to the original was the one generated 

by complete case analysis and the most different with last observation carried forward method. 

Coefficient of determination increased two times with available case analysis and conditional 

mean imputation and even more with last observation carried forward approach. The most 

accurate coefficient of determination was obtained with unconditional mean imputation 

(presented in Table 3.16). 

Table 3.16 Root MSE and coefficient of determination with 25% missing at random data 

Method Root MSE Coefficient of determination 

Original 3.25 22.91% 

Complete case analysis 2.94 39.53% 

Available case analysis 2.80 45.03% 

Unconditional mean 

imputation 
2.90 20.59% 

Conditional mean 

imputation 
2.86 49.62% 

Last observation carried 

forward 
2.59 54.66% 
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Conclusion 

The aim of this thesis was to give information about missing data and explain approaches for 

dealing with it in clinical trials. 

In the first chapter, reasons, consequences, such as biased estimates and decreased power, and 

avoidance of missing data were described. Mechanisms like missing completely at random 

(MCAR), missing at random (MAR) and missing not at random (MNAR) were defined and 

examples given. 

Second chapter focused on approaches for missing completely at random and missing at random 

mechanisms. Complete case analysis, available case analysis, single imputation methods and 

hot deck method were explained under MCAR section. General ideas of inverse probability 

weighting, multiple imputation and likelihood-based imputation for MAR mechanism were 

described. To understand how each method works, written examples were given. 

SAS programs with instructions were presented in chapter 3. Data set that had 72 female 

anorexia patients were divided into treatment and control group and weight before study and 

after study were measured. Regression model was found with every method for 10%, 25% and 

50% of missing post-weight variable. Parameter estimate, standard error, p-values, Root MSE 

and coefficient of determination were shown and the results compared to the original. It was 

also shown how results change when using MCAR methods with MAR mechanism. 
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Appendices 

Appendix 1. Reading in the data set, making changes and finding regression 

model 

PROC IMPORT OUT= WORK.anorexia  

            DATAFILE= "C:\Users\birgit.kadastik\Downloads\anorexia.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

 

data anorexia_trial; 

 set anorexia; 

 

 ID=input(var1,BEST12.); 

 

 /*for simplicity only two treatments*/ 

 if treat in ('FT' 'CBT') then treatm=1; 

  else if treat='Cont' then treatm=0; 

 else treatm=''; 

 

 format prewgt 6.1 postwgt 6.1; 

 prewgt=prewt*0.45359237; /*converting lbs into kg*/ 

 postwgt=postwt*0.45359237; 

 

 label ID='Identifier' 

   treatm='Treatment' /*0 is control, 1 is medication*/ 

   postwgt='Post weight' 

   prewgt='Preweight' 

 ; 

 drop var1 treat prewt postwt; 

run; 

 

/*general statistics*/ 

 

proc means data=anorexia_trial N mean min max std median; 

 var prewgt postwgt; 

run; 

 

proc freq data=anorexia_trial; 

 tables treatm; 

run; 

 

/*regression model*/ 

proc reg data=anorexia_trial; 

 model postwgt=treatm prewgt; 

run; 
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Appendix 2. Goodness of fit and regression model estimates for original data 

 

Appendix 3. Generating missing values with MCAR mechanism 

data help; 

call streaminit(114); 

do ID = 1 to 72; 

   miss1=rand('uniform',0,1); 

   miss2=rand('uniform',0,1); 

   miss3=rand('uniform',0,1); 

   output; 

end; 

run; 

 

proc sort data=help; 

   by miss1; 

run; 

 

data help1; 

   set help; 

   if _N_ LT 8 then miss1=1; 

      else miss1=0; 

run; 

 

proc sort data=help1; 

   by miss2; 

run; 

 

data help2; 

   set help1; 

   if _N_ LT 19 then miss2=1; 

      else miss2=0; 

run; 

 

proc sort data=help2; 

   by miss3; 

run; 

 

data help3; 

   set help2; 

   if _N_ LT 37 then miss3=1; 
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      else miss3=0; 

 

 proc sort; 

  by ID; 

run; 

 

data anorexia_mcar; 

 merge anorexia_trial help3; 

  by ID; 

 

 format postwgt1 postwgt2 postwgt3 6.1; 

 

 if miss1=1 then postwgt1=.; 

  else postwgt1=postwgt; 

 

 if miss2=1 then postwgt2=.; 

  else postwgt2=postwgt; 

 

 if miss3=1 then postwgt3=.; 

  else postwgt3=postwgt; 

 

 label postwgt1='Postweight 10%' 

   postwgt2='Postweight 25%' 

   postwgt3='Postweight 50%'; 

 drop miss1 miss2 miss3 postwgt; 

run; 

Appendix 4. Generating missing values with MAR mechanism 

data anorexia_mar1; 

 set anorexia_trial; 

 if  prewgt le 35 or prewgt ge 40 then miss1=1; /*for 10% and 25%*/ 

  else miss1=0; 

 if prewgt le 37 or prewgt ge 40 then miss2=1; /*for 50%*/ 

  else miss2=0; 

run; 

 

proc sort data=anorexia_mar1; 

 by  descending miss1 postwgt; 

run; 

  

/*10% and 25% missing*/ 

 

data anorexia_mar2; 

 set anorexia_mar1; 

 if _N_ LT 8 then postwgt1=.; 

  else postwgt1=postwgt; 

 if _N_ LT 19 then postwgt2=.; 

  else postwgt2=postwgt; 

run; 

 

/*50% missing*/ 

proc sort data=anorexia_mar2; 

 by miss2; 

run; 

 

data anorexia_mar; 

 set anorexia_mar2; 

 if _N_ LT 37 then postwgt3=.; 

  else postwgt3=postwgt; 
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 label postwgt1='Postweight 10%' 

  postwgt2='Postweight 25%' 

  postwgt3='Postweight 50%'; 

 

 drop miss1 miss2 postwgt; 

 

 proc sort; 

  by ID; 

run; 
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