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Chapter 1

INTRODUCTION

This thesis describes the experimental and theoretical investigations of the excited
state dynamics under high excitation density conditions of the technologically
important tungstate scintillator crystals.

Tungstates have a long history of being used mainly as detectors of ionizing
radiation, with applications ranging from medical imaging to astrophysics. For
example, CaWO4 (calcium tungstate) is known as the very first scintillator for its
use in 1896 for registering x-rays [1] and is still relevant in medical radiography
and security systems [2]. Also widely used is CdWO4, which, because of its low
afterglow, intense intrinsic luminescence, strong x-ray absorption, and radiation
hardness, is suitable for computed tomography [2, 3] and the search for the
double-beta decay [4]. Together with CaWO4 and ZnWO4, it is also used for the
detection of dark matter [5, 6, 7]. One of the most well-known of the tungstates is
PbWO4 for its place in the CMS and ATLAS calorimeters [8]. Recently, SrWO4
and BaWO4, in particular doped with Nd, have found application as Raman laser
mediums [9]. In addition, there are currently more than 49 000 airports and 926
seaports in the world that require detectors of contraband nuclear materials for the
hindrance of nuclear proliferation [10]. Such detectors often contain elements of
tungstate scintillators.

For the development of new efficient scintillators or for improving the
efficiency of the current ones, understanding of the their scintillation mechanisms
is crucial. One of the major unsolved problems for scintillators is their response
nonproportionality to ionizing radiation. The nonproportionality originates from
the nonlinear interaction of the excited states and is thus excitation density
dependent. Since the density of excitations in the track of an ionizing high-
energy particle is randomly distributed for each scintillation event, this leads to
a considerable worsening of the energy resolution. Several models have been
proposed that, depending on the material, describe the excited state dynamics
that lead to nonproportionality [11, 12]. In general, nonproportionality can be
modeled by luminescence quenching that is proportional to the 2nd or 3rd power
of the density of the excited states in the track or a combination of the two.
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Tungstates, which represent the class of excitonic intrinsic scintillators,
undergo 2nd order quenching due to the Förster dipole-dipole interaction (FRET)
of excitons [12, 13, 14]. In such systems, FRET can be modeled in terms
of a bimolecular reaction, where one of the excitons serves as a donor and
the other as an acceptor, and as a result one of the excitons recombines
nonradiatively while the other ionizes. The rate of the nonradiative transitions
is determined by the dipole-dipole interaction radius, Rd-d, which is one of
the most important parameters for quantifying nonproportionality. A standard
technique for determining Rd-d experimentally is measuring the luminescence
decay curves under a high excitation density and fitting them to the known
models [15, 16]. High excitation densities are required because the density-
dependent luminescence quenching, which manifests itself in the modification of
the decay curves, is present only for a sufficiently small average distance between
the excitons. It is worth noting that the small-radius Frenkel excitons, which
are characteristic to the wide band gap tungstate crystals, require much larger
excitation densities than the Wannier-Mott excitons for the interaction effects to
be noticeable. The possibility of producing such high densities has emerged only
during the last decade in the form of novel light sources such as the free electron
laser [17] or powerful tunable femtosecond laser systems [14].

A drawback of the current models of dipole-dipole interaction is their
sensitivity to the initial density distribution of excitons in the crystal after
excitation. The initial distribution is determined by the excitation source intensity
profile (e.g., the laser beam profile) and the absorption coefficient. The latter,
however, is generally not known in the fundamental absorption region, where
most experiments to date have been done, and must be taken from general
considerations, which leads to an inaccurate determination of Rd-d. An additional
complication is the multiplication of electronic excitations, which the current
models can only cope with in a rather crude manner. In this work, we take
a new approach and study the high density effects by using excitation energies
from the band tail region, the so-called Urbach tail [18, 19]. In this region, the
absorption coefficient is sufficiently small that it can be either measured directly or
accurately extrapolated according to the Urbach law. Additionally, multiplication
of electronic excitations is not present in the sub-band-gap region. Doing so
allows us to accurately quantify luminescence quenching or nonproportionality,
but requires the consideration of an additional effect that is not present in the
fundamental absorption region. Namely, we have shown that for a sufficiently
high excitation density, excitonic absorption saturates in a way that can be
explained by considering the short laser pulse duration and the peculiarities of
absorption in the Urbach tail. The saturation induces transparency, which affects
the efficiency of dipole-dipole interaction of excitons. We present a new model
that combines absorption saturation and dipole-dipole interaction and allows to
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quantify both effects. The model is successfully applied to the experimental
results obtained for CdWO4, CaWO4, and SrWO4.

In order to relate the dipole-dipole interaction radius to the characteristics
of the relaxed exciton, we study the time-resolved emission spectra and the
temperature dependencies of the intensity and the decay time of the intrinsic
emission of CaWO4, SrWO4, and BaWO4. In the series CaWO4 → SrWO4 →
BaWO4, we find a correlation between the cation radius, the exciton radius, and
the dipole-dipole interaction radius [20]. Due to the similar ground state structural
and electronic properties of these crystals, the correlation is shown to be caused
by the differences in the excited state dynamics.

Optical experiments, as have been described thus far, provide a fairly
controllable environment for studying some aspects of the scintillation
mechanism. In practical applications, the crystals are usually irradiated with
high-energy particles, which produce a so-called particle track that consists of
an inhomogeneous distribution of electronic excitations. We present a model
of scintillator nonproportionality, which examines the nonlinear interaction of
excitations within the track and is applicable to excitonic scintillators. The model
assumes dipole-dipole interaction as the source of nonproportionality and allows
experimental nonproportionality data to be fitted to the model for determining the
track radius of a high-energy particle.

The track radius could in principle also be calculated from first principles if
one correctly accounts for all the processes during thermalization, of which the
dominant ones are electron-phonon scattering and electron-electron scattering.
Often the thermalization length of hot electrons and holes is estimated by
considering only electron-phonon scattering [21]. In this work, we instead
calculate only the rates of electron-electron scattering, which allow us to
estimate the accuracy of neglecting electron-electron scattering when modeling
thermalization. The result will be qualitative in that no transition matrix elements
are calculated. Only the rates are calculated, which can be compared to the rates
of electron-phonon scattering.

The results presented in this thesis can be divided into three distinct time-
scales. i) In the excitation stage, which lasts on the order of 100 fs or less,
we consider an absorption saturation effect when exciting with fs laser pulses
with sub-band-gap energies (Secs. 2.1 and 4.2), or otherwise for a high-energy
electron, we present a model for the electron’s track (Secs. 2.4 and 4.4). ii) In
the thermalization stage, which is generally 1–10 ps, we calculate the excited
state lifetimes due to electron-electron scattering (Secs. 2.5 and 4.5). iii) In the
relaxation and luminescence stage, the latter being on the order of 10µs, we study
the dipole-dipole interaction between relaxed excitons (Secs. 2.2, 2.3, 4.1, and
4.3).
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1.1 Crystal structure and luminescence properties

Crystal structure. Tungstates are ionic crystals, where the anions are the
approximately tetrahedral WOα−

4 molecular complexes. The crystals used in this
work are CdWO4, CaWO4, SrWO4, and BaWO4, in all of which the cation has a
positive charge of close to 2, i.e., α ≈ 2. Tungstates divide into two categories by
crystal structure - wolframites and scheelites. In both cases, there are two formula
units of AWO4 in the unit cell.

CaWO4, SrWO4, and BaWO4 have the scheelite-type structure, which is in
the tetragonal class and belongs to the I41/a (No. 88) space group. The cation
and the W sites have S4 symmetry, and the crystal has an inversion center. Each
W site in these crystals is surrounded by four equivalent O sites at a bond length
of approximately 1.8 Å.

CdWO4 has the wolframite-type structure, which is in the monoclinic class
and belongs to the P2/c (No. 13) space group. The crystallographic a and c
axes intersect at an angle β and are both perpendicular to the b axis. Each W is
surrounded by six O sites. The resulting WO6−

6 octahedra form a chain by edge
sharing, which leads to two inequivalent O sites. Type 1 (O1) forms a short bond
to a W site while type 2 (O2) has longer bonds to two W sites.

The wolframite structure is a generally more closely-packed structure,
naturally forming in materials with small A2+ ions while the scheelite structure
naturally forms in materials with larger A2+ ions [22].

Luminescence mechanism. The crystals used in this work all have a similar
electronic structure. The top of the valence band is derived mainly from the O
2p states with some hybridization with the W 5d and the cation states, while the
bottom of the conduction band is dominated by the W 5d states [23, 24]. The
first excited states are characterized by the formation of an exciton within the
WO2−

4 molecular ion, followed by significant lattice distortions, resulting in a
self-trapped exciton with the hole component localized at O sites and the electron
component localized at the W site [25, 26, 23]. The intrinsic emission spectra peak
at 2.5–2.9 eV [27, 25, 26]. The Stokes shift is more than 2 eV in all cases (roughly
half the excitation energy goes into the Stokes shift). The intrinsic emission of
luminescence is based on the radiative recombination of triplet excitons. Due to
the forbidden nature of the transitions, the decay time of the unquenched intrinsic
luminescence of tungstates is at least 10µs.
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Chapter 2

THEORY

2.1 Absorption saturation with femtosecond pulses in the Urbach tail

In this section, we develop a model of absorption saturation for the excitation
stage in the Urbach tail under excitation with femtosecond pulses. The model
allows to predict the initial distribution of excitons for the luminescence stage, for
which another model is developed in the next section.

Origin of saturation. The Urbach tail refers to the region of energies below
the band gap, where phonon-assisted absorption is necessary for excitation. The
characteristic exponential energy dependence of the absorption coefficient in the
Urbach tail and its variation with temperature has been clearly demonstrated for
CdWO4 [28], ZnWO4 [29], and PbWO4 [30] and should be present also in other
tungstates.

As the pulse duration gets shorter the phonon formalism ceases to be valid. In
the limit of infinitesimally short excitation pulses, phonons should be considered
as lattice inhomogeneities [31] and absorption can be described as follows. At the
moment of excitation, the absorption probability of a photon with energy h̄ω for
a given atomic configuration X depends on the availability of excited and ground
states |e,X〉, |g,X〉 with a suitable displacement from the lattice equilibrium
positions providing the energy distance h̄ω between these states. Such a single-
particle picture describing optical absorption in terms of atomic configurations is
an accurate description of the Urbach tail [19]. The absorption probability of the
photon can then be expressed as ∝ |Veg|2δ (Ee(X)−Eg(X)− h̄ω), where Veg is
the dipole matrix element and Ee(g) is the excited (ground) state energy. Only
the centers (lattice sites) with the favorable configuration X for which Ee(X)−
Eg(X) = h̄ω holds at the time of excitation can participate in the electronic
transition. All such centers have the same absorption cross-section since |Veg|2
depends weakly on the atomic configuration X as the spatial distribution of an
electron’s wavefunction is much larger compared to an atomic displacement from
its equilibrium position. The probability of electronic transition for a given center
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in the Urbach tail is therefore either a constant or zero and the excitation stage can
be approximated with a two-level system.

The limited number of centers capable of absorption during the very short
excitation stage (e.g., with fs laser pulses) can lead to absorption saturation. It is
interesting to note that if the phonon formalism were valid for fs pulses, then the
saturation effect could be explained in terms of the local phonon population being
unable to recover during the short time interval.

In wide band gap scintillators, saturated absorption has so far been reported
for CsI and NaI crystals [32], where optically induced transparency was described
in terms of the dynamic Burstein effect. The latter is caused by the full occupation
of the lowest-energy states in the conduction band by nonequilibrium carriers
and originates from the Pauli exclusion principle. However, for tungstates, when
exciting with sub-band-gap photons, the electrons are excited directly into the
exciton band without producing uncorrelated e-h pairs. Excitons are subject to
the Bose-Einstein statistics and thus saturation cannot be explained in terms of the
Burstein effect as long as the densities are low enough to exclude overlapping of
exciton wavefunctions. Since tungstates are characterized by self-trapped excitons
(STE) localized at the WO2−

4 molecular ions, this requirement is always satisfied.

Absorption saturation in a two-level system. From the rate equations of the
two-level system, the absorption coefficient is found to be αn = α(1− 2n/N),
where n is the population density of the upper level, N is the maximum population
density of the lower level and α is the linear absorption coefficient. In our case,
n ≡ n(r, t) is the density of electronic excitations and N is the number of centers
with the favorable atomic configuration as discussed above. The factor 2 denotes
that due to stimulated emission only half of those centers can be excited in the
limit. From here on we denote the limit to the density of electronic excitations
by n0 ≡ N/2. The excitation stage is then governed by the following differential
equations:

∂n(ρ,θ ,z, t)
∂ t

= α

[
1− n(ρ,θ ,z, t)

n0

]
I(ρ,θ ,z, t),

∂ I(ρ,θ ,z, t)
∂ z

=−α

[
1− n(ρ,θ ,z, t)

n0

]
I(ρ,θ ,z, t),

n(ρ,θ ,z,0) = 0,

I(ρ,θ ,0, t) = IP(ρ,θ) f (t),

(2.1)

where n(ρ,θ ,z, t) is the density of electronic excitations, I(ρ,θ ,z, t) is the pulse
intensity and IP(ρ,θ) and f (t) are the spatial and temporal profiles of the laser
beam, respectively. Equations (2.1) show that no absorption occurs at n = n0,
which is when the crystal becomes transparent. It follows from the discussion
above that the higher the photon energy is in the low-energy tail of excitonic
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absorption, the smaller the displacements of ions from the lattice equilibrium
positions needed to satisfy the conditions of the electronic transition. Therefore,
n0 is expected to increase with increasing excitation energy and, correspondingly,
the pulse energies at which the crystal becomes transparent will also be higher.
At the excitation energy of resonant exciton creation and above we can formally
take n0→∞ (although strictly speaking the closest possible separation of STEs is
always limited by the lattice constant). We note that n0 is also proportional to the
pulse energy width and can be different for different experimental setups.

Despite being highly nonlinear, Eqs. (2.1) can be solved to yield (See the
Appendix of [16])

I(ρ,θ ,z, t) =
IP(ρ,θ) f (t)

1− (1− eαz)exp
(
− α

n0
IP(ρ,θ)

∫ t
0 f (t ′)dt ′

) (2.2)

and

n(ρ,θ ,z, t) = n0

[
1− 1

1− e−αz
(
1− eF(ρ,θ ,t)

)] ,
F(ρ,θ , t) =

α

n0
IP(ρ,θ)

∫ t

0
f (t ′)dt ′.

(2.3)

Equations (2.2) and (2.3) describe the pulse intensity and the density of electronic
excitations during the very short excitation stage and are valid for any two-level
system regardless of the exact mechanism of saturation.

Direct determination of n0. The saturation density n0 can be directly
determined from experiment by measuring either the beam intensity profile
after transmission or the transmission coefficient if the beam profile before
transmission is known.

With a Gaussian spatial beam profile of the form IP = I0
1

πa2 e−ρ2/a2
, where I0

is the number of photons in the pulse and a is the beam 1/e radius, and with any
temporal beam profile f , Eq. (2.2) yields

I(r,z, I0) =
n0

α
ln
[(

exp
(

α

n0

I0

πa2 e−r2/a2
)
−1
)

e−αz +1
]

(2.4)

for the beam intensity distribution and

T (z, I0) =
n0πa2

I0α

∫ I0α

n0πa2

0

dx
x

ln
[
(ex−1)e−αz +1

]
(2.5)

for the transmission coefficient. Here z is the sample thickness.
A measurement of I or T with a fit to Eq. (2.4) or (2.5) could in principle

be achieved with thin films of the crystals. For this purpose, we have grown thin
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Figure 2.1: Transmission of a thin crystal with the model parameters n0 =
1019 cm−3, α = 104 cm−1, a = 30µm.

films of CdWO4 deposited on MgO and CaF2 crystals. However, due to a complex
influence of the substrate material and some technical difficulties, we were unable
to perform the measurements with satisfactory accuracy and may only provide
some modeling results with (2.4) and (2.5).

Figure 2.1 shows the behavior of the transmission coefficient for various pulse
intensities for a model system. It is seen that the higher the pulse intensity,
the more transparent the sample becomes. The saturation effect would also be
noticeable by varying I0 instead of z.

Figure 2.2 shows the variation in the shape of the pulse profile after
transmission. Since the saturation effect is greatest at regions of maximum
excitation density, the effective absorption coefficient becomes smaller at points
closer to the beam symmetry axis. The shape of the beam profile is thus expected
to become narrower with increasing pulse intensity. Starting at a certain intensity,
however, it starts widening again since in the limit of infinite pulse intensities,
the crystal is almost completely transparent and there is no change in the beam
profile.

Indirect determination of n0. Indirect determination of n0 refers to observing
the effects of saturation during the later stages of the scintillation process.
Specifically, in tungstates, the saturation effect, which takes place during the
short excitation stage, influences the luminescence stage, where the rate of
luminescence quenching is dependent on the initial distribution of excitations.
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Figure 2.2: Beam profile after transmission at various pulse intensities. The model
parameters are n0 = 1019 cm−3, α = 104 cm−1, a = 30µm, z = 30µm.

With a suitable model for the luminescence intensity that uses Eq. (2.3) as the
initial condition for the density of excitations, n0 could be determined by fitting
the luminescence decay curves to the model. The derivation of such a model is
presented in the next section.

2.2 Dipole-dipole interaction of excitons

In general, the luminescence stage is a competition between radiative and
nonradiative transitions to the ground state involving uncorrelated electrons and
holes, different types of defects, and excitons. For the undoped single crystals
used in this work, we can consider only radiative transitions due to exciton
recombination and nonradiative transitions due to the dipole-dipole interaction
of excitons. The rate equation for the exciton density during the luminescence
stage is then

∂n(r, t)
∂ t

= D∇
2n(r, t)− n(r, t)

τ
− k2(r, t)n2(r, t), (2.6)

where n is the exciton density, D is the diffusion coefficient, τ is the radiative
decay time, and k2 is the bimolecular rate constant. In this work, the experiments
are performed at temperatures below the onset of thermal quenching of STEs,
which allows to neglect the diffusion term, i.e., we shall use the approximation of
immobile excitons.
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According to the theory of the Förster resonance energy transfer between
electric dipoles (FRET), the probability of an STE + STE→ 0 type of reaction is

w(r) =
1
τ

(
Rd-d

r

)6

, (2.7)

where r is the distance between two excitons and Rd-d is the characteristic dipole-
dipole interaction radius. The bimolecular rate constant is then given by [15]

k2(t) =
2π3/2

3
R3

d-d√
τt
. (2.8)

Inserting Eq. (2.8) into Eq. (2.6) yields the solution

n(r, t) =
N0(r)e−t/τ

1+ 2
3 π2R3

d-dN0(r)erf
(√

t/τ

) , (2.9)

where N0 is the initial distribution of excitons and erf is the error function.
Taking into account absorption saturation during the excitation stage, N0 is given
by n(ρ,θ ,z, t = T ) [Eq. (2.3)], where T is the laser pulse duration. Such a
substitution is justified if the stages of excitation and luminescence take place
in different times scales, making Eqs. (2.1) and (2.6) uncoupled. This holds for
CdWO4, where STE relaxation lasts for picoseconds [33], and is presumably true
also for other tungstates. The luminescence intensity is given by

Ilum(t) =
2π

τ

∫ z0

0
dz
∫

∞

0
ρ dρ

n(ρ,θ ,z,T )e−t/τ

1+ 2
3 π2R3

d-dn(ρ,θ ,z,T )erf
(√

t/τ

) , (2.10)

where z0 is the sample thickness. We shall consider two explicit forms for n
in Eq. (2.10) - one based on a Gaussian laser beam profile and one based on a
uniform beam profile.

For a Gaussian beam profile, we insert IP = I0
1

πa2 e−ρ2/a2
into Eq. (2.3), where

I0 and a have the same meaning as in Eq. (2.4). Note that
∫ T

0 f (t)dt = 1 for any
temporal profile. Equation (2.10) then yields

Ilum(t) =
n0πa2

τα(1+ c(t))
e−t/τ

∫ I0α

n0πa2

0

dx
x

ln
[

(ex−1)(1+ c(t))+1
(ex−1)(1+ c(t))e−αz0 +1

]
,

c(t) =
2
3

π
2n0R3

d-d erf
(√

t/τ

)
.

(2.11)

This result is valid for any absorption and sample thickness (including, e.g., thin
films). However, for αz0� 1 (single crystals and/or strong absorption) Eq. (2.11)
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reduces to

Ilum(t) =
n0πa2

τα
e−t/τ

∫ I0α

n0πa2

0
dx

×
ln
[
(ex−1)

(
1+ 2

3 π2n0R3
d-d erf

(√
t/τ

))
+1
]

x
(

1+ 2
3 π2n0R3

d-d erf
(√

t/τ

)) . (2.12)

We remind that the model of absorption saturation is valid only in the band tail
region. In the fundamental absorption region we may formally take n0 → ∞, in
which case Eq. (2.12) reduces to

Ilum(t) =
I0

τ
e−t/τ

−Li2
(
−2

3 I0
πα

a2 R3
d-d erf

(√
t/τ

))
2
3 I0

πα

a2 R3
d-d erf

(√
t/τ

) , (2.13)

which is what has been used in the previous studies of the nonlinear quenching of
exciton luminescence [13, 14, 17, 32].

For uniform excitation we take IP = I0/∆S in Eq. (2.3), where ∆S is the area
of excitation. Equation (2.10) then yields

Ilum(t) =
∆Sn0

τα(1+ c(t))
e−t/τ ln


(

exp
(

I0α

∆Sn0

)
−1
)
(1+ c(t))+1(

exp
(

I0α

∆Sn0

)
−1
)
(1+ c(t))e−αz0 +1

 , (2.14)

which for αz0� 1 becomes

Ilum(t) =
∆Sn0

τα
e−t/τ

ln
[(

exp
(

I0α

∆Sn0

)
−1
)
(1+ c(t))+1

]
1+ c(t)

, (2.15)

which in turn for n0→ ∞ becomes

Ilum(t) =
I0

τ
e−t/τ

ln
[
1+ 2

3 π2 I0α

∆S R3
d-d erf

(√
t/τ

)]
2
3 π2 I0α

∆S R3
d-d erf

(√
t/τ

) , (2.16)

which is Eq. 20 from [15].

Data analysis. Any of Eqs. (2.11)–(2.16), depending on the beam profile and
excitation energy, may be fitted with experimental decay curves for determining
the dipole-dipole interaction radius Rd-d, the saturation density n0, and other
parameters. However, since Rd-d and n0 are strongly correlated in these
equations, a single decay curve is usually insufficient for determining both of
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them accurately. Instead, the fitting procedure must be performed simultaneously
for a family of decay curves, which are measured by varying some experimental
parameter, for example the number of photons in the pulse I0. For this purpose, we
have developed an advanced global nonlinear optimization package [34] based on
a modified Levenberg-Marquardt algorithm [35]. For the fitting procedure we set
Rd-d, n0, and the decay time τ as global fitting parameters and the initial amplitude
and background as local parameters for each curve. For a stable fitting procedure it
is generally sufficient to fit the decay kinetics corresponding to about 10 different
values of I0.

2.3 Decay time temperature dependence of triplet excitons

While the mechanism of FRET leading to the nonlinear quenching of
luminescence has been well understood in excitonic scintillators, a relation
between the dipole-dipole interaction radius and the characteristics of the relaxed
exciton, e.g., its localization, is unclear. Due to the complex crystal structure of
tungstates and the fact that the exciton relaxation is accompanied by significant
lattice distortions, a direct ab initio calculation for the estimation of exciton
localization would be very challenging.

In this work, we shall indirectly try to establish a correlation between exciton
localization and Rd-d in tungstates by measuring the temperature dependencies
of the intensity and the decay time of the intrinsic emission of CaWO4, SrWO4,
and BaWO4. Temperature dependence of the intensity is indicative of exciton
diffusion, which is related to exciton localization. Temperature dependence of the
decay time, if fitted to the model presented in this section, yields information
about the spread of the electron component of the exciton, which is again
related to exciton localization. Because the named crystals have a similar crystal
(Table 2.1) and electronic structure and share the same luminescence mechanism,
the results obtained from the temperature dependencies are expected to be
directly comparable and will allow us to estimate the relative change of exciton
localization in the series CaWO4 → SrWO4 → BaWO4. By also determining the
variation of Rd-d in the given series, we can establish a relation between exciton
localization and Rd-d.

The intrinsic emission of tungstates is generally attributed to the radiative
recombination of STEs localized at the WO2−

4 molecular ions [37, 26, 38].
The exciton ground state has a triplet nature, with the lower lying energy level
separated from the higher lying doubly degenerate level by an energy ∆SOC, which
is attributed to spin-orbit interaction (SOC). We shall model the temperature
dependence of their decay time with a three level model that is based on [39].

The relaxed excitons populate the higher lying doubly degenerate level 2 and
the lower lying metastable level 1 with the total population n(t) = n1(t)+2n2(t).
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Table 2.1: Experimental and calculated lattice constants and the W-O bond
lengths. The slight variation in the lattice parameters reflects the increase of the
cation radius in the sequence Ca→ Sr→ Ba. See text (Sec. 4.3) for computational
details.

a (Å) c (Å) V (Å3) W-O (Å)

CaWO4
exp[23] 5.2429 11.3737 156.32 1.782
calca 5.2290 11.2546 153.86 1.800

SrWO4
exp[36] 5.4168 11.951 175.33 1.779
calca 5.4126 11.837 173.39 1.797

BaWO4
exp[36] 5.6134 12.720 200.41 1.782
calca 5.6280 12.605 199.64 1.795

a Present work

This results in the coupled rate equations

dn1

dt
=− k1n1−2k12n1 +2k21n2,

dn2

dt
=k12n1− k2n2− k21n2,

(2.17)

where k1,2 are the radiative transition rates from the levels 1,2 to the ground state
and k12 and k21 are the nonradiative transition rates between levels 1 and 2. In the
single-phonon approximation,

k21 =K[1/(e∆SOC/kBT −1)+1],

k12 =k21e−∆SOC/kBT = K/(e∆SOC/kBT −1),
(2.18)

where K is the transition rate at T = 0. With analytical solutions of the form
ni = Aie−λit for i = 1,2, Eqs. (2.17) yield

2λ± =k1 + k2 +χ+±
√
(k1− k2)2 +χ2

++2χ−(k2− k1),

χ± =K
e∆SOC/kBT ±2
e∆SOC/kBT −1

.
(2.19)

τ− = 1/λ− and τ+ = 1/λ+ are the equilibrium and the nonequilibrium decay
times, respectively. In our experiments, only the equilibrium component was
present in the decay of the intrinsic emission of the crystals. If we additionally
account for the nonradiative quenching to the ground state [40], the observed
decay time becomes

1/τ− = λ−+Kxe−Ex/kBT , (2.20)

where Kx is the quenching rate and Ex is the energy barrier. Such a substitution
in Eq. (2.20) is justified if the high temperature plateau is reached at a lower
temperature than the onset of thermal quenching.
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Equation (2.20) can be fitted with experimental data to determine the
transition rates k1,2,12, the quenching parameters, and, most importantly, the spin-
orbit splitting energy, ∆SOC, between levels 1 and 2. Of all the atoms present in
our systems, W has the biggest contribution to SOC because the splitting energy
is proportional to Z4, where Z is the nuclear charge. A variation in ∆SOC of the
crystals can be related to a variation in the time the electron spends in the vicinity
of W. A smaller value of ∆SOC can thus be translated into a larger spread of the
exciton wavefunction.

2.4 Scintillator nonproportionality

A high energy resolution for the detection of high-energy particles is one of the
most difficult constraints imposed on new scintillators. The energy resolution
is defined as the full width at half maximum of the absorption peak in the
pulse height spectrum divided by the energy of the exciting particle, R =
∆E/E. It is mainly limited by the Poisson statistics of the emitted photons,
intrinsic nonproportionality of the scintillator, and nonuniformities in the material.
The latter is caused by the inhomogeneous distribution of activators (only in
activated scintillators), various types of defects, and inhomogeneous distribution
of unintentional impurities. Additional contribution to the energy resolution is
from the photomultiplier tube (PMT) coupled to the scintillator. As scintillator
crystals can now be grown with high purity and the PMT performance is already
close to optimal, the only way to improve the energy resolution is to reduce the
nonproportionality, and for this a better understanding of its causes is necessary.

Nonproportionality means that the total light output of the scintillator is not
proportional to the energy of the absorbed high-energy particle. In other words,
the scintillator yield, defined as the light output per energy deposited in the crystal
(typically expressed in units of photons/MeV) is found not to be constant but vary
with energy of the incident particle. For a proportional scintillator, the scintillator
yield would be constant for all energies and the energy resolution would be limited
only by Poisson statistics. For example, it has been determined that because of
nonproportionality the energy resolutions of LaBr3:Ce, NaI:Tl, and LSO:Ce are
2.8 % (at 662 keV), 7 % (at 511 keV), and 9 % (at 511 keV), respectively, instead
of the ideal values of 2.3 %, 3.8 %, and 4.2 % [41, 42].

In order to model scintillator nonproportionality for intrinsic excitonic
scintillators such as those studied in this work, we shall assume the existence of
linear radiative and nonradiative channels and a bimolecular nonradiative channel
for the recombination of excitons. All the linear channels are indistinguishable in
the rate equation and are covered by the single term proportional to 1/τ . Diffusion
is assumed negligible. The scintillator yield can be expressed as

Y (E0) = E−1
0

∫
Ilum(t,E0)dt, (2.21)

20



where E0 is the initial energy of the primary electron created by ionizing radiation
and Ilum(t,E0) is the luminescence intensity along the track of the primary
electron, explicitly dependent on the energy E0. The luminescence intensity is
given by

Ilum(E0, t) =
2π

τ

∫
∞

0
ρ dρ

∫ L(E0)

0
dx

n(ρ,x)e−t/τ

1+ 2
3 π2n(ρ,x)R3

d-d erf
(√

t/τ

) , (2.22)

which is identical to Eq. (2.10) except for the track length L instead of sample
thickness z0. The track length implicitly depends on E0. The density of excitons
n is proportional to the deposited energy E at a distance x. If we assume the track
of the primary electron to have axial symmetry locally and assume a Gaussian
distribution of secondary electronic excitations in the transversal direction then

n(ρ,x) =−χe−ρ2/r2
tr

πr2
trEeh

dE
dx′

∣∣∣∣
x′=x

, (2.23)

where χ is the fraction of e-h pairs recombining into excitons, rtr is the track
radius, Eeh is the mean energy for the production of an e-h pair, and dE/dx is the
retarding force acting on the primary electron due to interaction with the crystal,
also called the stopping power. Eeh is often taken as 2.5 times the (single-particle)
band gap energy, Eeh = 2.5Eg. Accurate band gap energies can be obtained with
the G0W0 method as described in the next section.

After the insertion of Eq. (2.23) into Eq. (2.22) the scintillator yield becomes

Y (E0) =
1

E0

∫
∞

0
dξ

∫ E0

0
dE

χe−ξ

Eeh

ln[a(t)b(E)+1]
a(t)b(E)

,

a(ξ ) =
2πχR3

d-d

3r2
trEeh

erf
√

ξ ,

b(E) =− dE ′

dx

∣∣∣∣
E ′=E

.

(2.24)

While there are many ways to approximate the stopping power b(E), it is always a
decreasing function of energy. The slower the primary electron travels through the
crystal, the more energy it deposits. More energy is thus deposited at the end of the
track, where the nonlinear luminescence losses are also greater. It follows that the
greater the energy of the incident particle, the smaller is the overall relative loss of
luminescence. In the limit of infinite E0, b(E) is always small except at the end of
the track. There is thus negligible contribution from dipole-dipole interaction and
the crystal becomes proportional in the high-energy limit. The proportionality is
reflected in the constancy of the scintillator yield, which can be checked with the
limiting case

lim
E0→∞

Y (E0) =
χ

Eeh
. (2.25)
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Equation (2.25) follows from Eq. (2.24) based on the arguments presented above,
but can also be tested using the explicit forms of b(E) as given below. We can test
another limiting case by switching off the dipole-dipole interaction, in which case
Eq. (2.24) reduces to

lim
Rd-d→0

Y (E0) =
χ

Eeh
(2.26)

and the crystal again becomes proportional. This result is expected since in
our model the dipole-dipole interaction was assumed to be the only source of
nonproportionality.

Stopping power. In the relativistic Born approximation, the stopping power is
[11]

− dE
dx

=
1

πaBE
2(1+E/mc2)2

2+E/mc2

∫ E

0
h̄ω d(h̄ω)Im

(
− 1

ε(ω,0)

)
× ln

√
E
√

E +2mc2 +
√

E− h̄ω
√

E +2mc2− h̄ω√
E
√

E +2mc2−
√

E− h̄ω
√

E +2mc2− h̄ω
. (2.27)

In Eq. (2.27), the dependence of the imaginary inverse dielectric function (energy
loss function) on momentum transfer has been neglected, i.e., Imε−1(ω,q) ≈
Imε−1(ω,0), which follows from the assumption of mainly small-angle scattering
[11]. Using the ionization potential approximation and considering the sum rules
for the energy loss function, Eq. (2.27) reduces to

− dE
dx

=
e4

4πε0E
(1+E/mc2)2

2+E/mc2

×∑
i

Ni

V
θ(E− Ii) ln

√
E
√

E +2mc2 +
√

E− Ii
√

E +2mc2− Ii√
E
√

E +2mc2−
√

E− Ii
√

E +2mc2− Ii
, (2.28)

where Ii is the ionization potential of the ith core energy level, Ni is the number
of electrons in the core level, and V is the unit cell volume. As an example, in
CdWO4, if degeneracy is taken into account then, out of the total of 308 occupied
states in the unit cell, there are 37 distinct ionization potentials that must be
accounted for. Inserting Eq. (2.28) into Eq. (2.24) results in a fitting function that
can be used on experimental nonproportionality data for determining the track
radius rtr, provided that the other parameters required by Eq. (2.24) are known.
This includes Rd-d, which can be obtained from, e.g., photoexcitation experiments
based on the theory of Sec 2.2.

In the nonrelativistic regime, Eq. (2.28) reduces to

− dE
dx

=
e4

8πε0E ∑
i

Ni

V
θ(E− Ii) ln

√
E +
√

E− Ii√
E−
√

E− Ii
. (2.29)
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For energies larger than the ionization potentials, E� Ii,

− dE
dx

=
e4

8πε0E ∑
i

Ni

V
ln

4E
Ii

=
e4

8πε0E
N
V

ln
4E
I
, (2.30)

where the average ionization potential is defined according to N ln I = ∑i Ni× ln Ii.
Equation (2.30) is also known as the nonrelativistic Bethe formula for the stopping
power [43]. If Eq. (2.30) is inserted into Eq. (2.24) for the scintillator yield then,
with the physically reasonable assumption that the electron can only lose and not
gain energy, the lower bound of integration over energy should be modified from 0
to I/4. In this work, we shall test both (2.28) and (2.30) against experimental data
in order to find the track radius and to estimate the accuracy of using the average
ionization potential approximation and the nonrelativistic regime.

2.5 Electron-electron scattering

Secondary electrons and holes, which we call the particle track, are created as a
result of inelastic scattering by the primary electron. The track formation takes
place in the femtosecond time scale. This is followed by the thermalization stage,
generally on the order of picoseconds, during which the particles diffuse with
band velocities resulting in a finite track radius. For the well-known scintillators
CaF2, BaF2, NaI, and CsI, the thermalization stage extends to approximately 0.5,
1, 2, and 7 ps [44]. In CdWO4, thermalization has been estimated to be ≤ 0.5 ps
[12].

The main scattering mechanism that limits electron and hole mobilities in
a pure crystal is the electron-phonon interaction. The biggest contribution is
from the absorption and emission of longitudinal optical phonons, and once the
electron energy with respect to the conduction band minimum has fallen below
that of optical phonons, interaction with acoustic phonons takes over [21]. There
is, however, also some contribution from electron-electron scattering, which can
in principle affect the mobilities. This is generally small and is not considered;
to date, no studies have been performed to estimate the magnitude of electron-
electron scattering during thermalization in scintillators. It is one of the purposes
of this work to explicitly calculate the rates of electron-electron scattering for
CdWO4, a representative of the tungstates. The result is only qualitative in that
the rates can be compared with the rates of electron-phonon scattering for judging
the correctness of neglecting electron-electron scattering, but no matrix elements
are calculated that could be used in the modeling of thermalization.

Quasiparticle lifetimes. Electron-electron scattering comes from the fact that
the independent particle picture is not entirely valid in a real system. The electron
and hole energy levels as calculated within the band theory are generally close
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to, but not the exact eigenstates of the many-body system. Because of this, the
particles are scattering in and out of the single-particle levels, which are strictly
speaking not stationary. The scattering rate is determined by the imaginary part
of their complex eigenvalues.

Before proceeding, we remind that the true electron-electron scattering rate
is probably quite high due to the strong Coulomb interaction, which certainly
invalidates the single-particle picture. The latter survives, however, in terms of
quasielectrons and -holes as envisaged in Landau’s Fermi liquid theory [45]. The
interaction between quasielectrons, which can be thought of as an electron plus its
surrounding polarization cloud, is sufficiently weak for the single-particle picture
to be approximately valid, and likewise for quasiholes. By electron-electron
scattering we actually refer to the quasiparticle-quasiparticle scattering, whose
calculation is one of the objectives of this work.

Mathematically, quasiparticles (QPs) are introduced by using the (relatively
weak) dynamically screened potential

W (r,r′,ω) =
e2

4πε0

∫
ε−1(r,r′′,ω)

|r′′−r′|
dr′′ (2.31)

instead of the bare Coulomb potential. In the QP approximation, the many-body
excitation energies are determined by the QP equation,

(T +VH +Vext)ψ
QP
i (r)+

∫
Σ(r,r′,εQP

i )ψQP
i (r′)dr′ = ε

QP
i ψ

QP
i (r), (2.32)

where T , VH and Vext are the kinetic energy, the Hartree potential, and the
external potential. The self-energy operator, written symbolically as Σ = iΓGW
in terms of the vertex function, the Green’s function, and the dynamically
screened potential, represents the contribution from all the many-body effects that
influence the particle’s energy or its effective mass. In the context of condensed
matter, it represents the potential felt by the electron due to all interactions
with its immediate vicinity, which lead to the formation of a polarization cloud
surrounding the electron, an effect that is energy dependent (hence the term
dynamical screening). Standard techniques for solving Eq. (2.32) involve many-
body perturbation theory (MBPT). The starting eigenfunctions and eigenvalues
are usually obtained (nonperturbatively) from density functional theory (DFT) by
solving the Kohn-Sham equations,

(T +VH +Vext +Vxc)ψ
KS
i (r) = ε

KS
i ψ

KS
i (r), (2.33)

where Vxc is the exchange-correlation potential and ψKS
i and εKS

i are the Kohn-
Sham wavefunctions and energies. The exchange-correlation potential can be
thought of as a local, energy independent approximation to the self-energy. To
first order, the QP energies are then given by

ε
QP
i = ε

KS
i +

〈
ψ

KS
i

∣∣∣Σ(εQP
i )−Vxc

∣∣∣ψKS
i

〉
. (2.34)
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The difficulty with Eq. (2.34) is that Σ must be evaluated at the QP energy that
we are trying to compute. However, because the self-energy is close to linear in
energy [46], its value at ε

QP
i can be well approximated by

Σ(εQP
i )≈ Σ(εKS

i )+(εQP
i − ε

KS
i )

∂Σ(ε)

∂ε

∣∣∣∣
ε=εKS

i

, (2.35)

in which case

ε
QP
i = ε

KS
i +Z−1 〈

ψ
KS
i

∣∣Σ(εKS
i )−Vxc

∣∣ψKS
i
〉
, (2.36)

where

Z = 1−Re〈ψKS
i |

∂Σ(ε)

∂ε

∣∣∣∣
ε=εKS

i

|ψKS
i 〉 (2.37)

is the quasiparticle renormalization factor. Values of Z close to 1 imply well-
defined single-particle-like excitations; typical values are around 0.8 [47]. The
QP dispersion thus obtained is very close to the true band structure [48, 49, 50].

Once the QP eigenvalues have been calculated, the QP-QP (or electron-
electron) scattering rate is given by [51]

1

τ
QP
nk

=
2
h̄

∣∣∣Im〈ψ
KS
nk

∣∣∣Σ(εQP
nk )
∣∣∣ψKS

nk

〉∣∣∣ . (2.38)

The use of the KS wavefunctions in Eq. (2.38) instead of the QP wavefunctions is
well justified, since the two generally have about 99.9% overlap [52, 53]. The
evaluation of Σ to a reasonable accuracy, however, can be a formidable task,
especially for complex systems such as tungstates.

G0W0 approximation. The self-energy can in principle be accurately found as
a self-consistent solution to Hedin’s equations [54]. However, this would require
calculating the Green’s function to all orders of perturbation theory, which has
about the same complexity as the many-body wavefunction and is not feasible in
practice. A standard approach for approximating Σ is the so-called single-shot
GW (G0W0) approximation, which refers to performing only the first iteration of
Hedin’s equations with the KS wavefunctions and energies as a starting point in
the spirit of the “best G, best W” philosophy [47]. In the G0W0 approximation,
the self-energy is

Σ(r,r′,ε) =
i

2π

∫
eiε ′δ GKS(r,r′,ε + ε

′)W KS(r,r′,ε ′)dε
′, (2.39)

where GKS and W KS are the KS single-particle Green’s function and the KS
dynamically screened interaction and where δ → 0+. In essence, the G0W0
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approximation means keeping only the first term in the diagrammatic expansion
of the electron’s self-energy and neglecting any vertex corrections. If we return
for a moment to the initial assumption of quasiparticles [Eq. (2.31)], it is worth
noting that had we used the bare Coulomb interaction instead of W , the self-
energy expansion would be severely divergent making the use of MBPT difficult
or impossible [54].

Dividing the self-energy into exchange and correlation terms, Σ = Σx+Σc, the
matrix elements are explicitly given as [55]

〈
ψ

KS
nk

∣∣Σx(εKS
nk )
∣∣ψKS

nk
〉
=− e2

ε0V
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∑
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Gq

|Mmn
G (k,q)|2

|q+G|2
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〈
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∣∣Σc(εKS
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〉
=

h̄e2

ε0V ∑
mGG′q

∫
dω
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×Mmn∗
G (k,q)Mmn

G′ (k,q)JGG′(k,q,ω),

Jm
GG′(k,q,ω) =

i
2π

WGG′(q,ω)− vG(q)

h̄ω + h̄ω ′− εKS
mk−q+ iδ sgn(εKS

mk−q−µ)
,

Mmn
G (k,q) =〈ψKS

mk−q|ei(q+G)r|ψKS
nk 〉 ,

(2.40)

where WGG′(q,ω) is the double Fourier transform of the screened potential and
where vG(q) = e2/(ε0|G+ q|2). The frequency integral along the real axis is
rather ragged due to the presence of multiple poles and would in principle require
the evaluation of the large WGG′(q,ω) matrices at many different frequencies.

Integration along the real axis can be avoided by using the contour
deformation technique [55]. Adding and subtracting an integral over imaginary
frequencies allows to transform the frequency integral into

Jm
GG′(k,q,ω) =− 1

π

∫
∞

0
dω
′ [WGG′(q,ω)− vG(q)](h̄ω− εKS

mk−q)

(h̄ω− εKS
mk−q)

2 +(h̄ω ′)2

± vG(q)[WGG′(q,ω h̄− ε
KS
mk−q)− vG(q)]

×θ [±(εKS
mk−q−µ)]θ [±(h̄ω− ε

KS
mk−q)].

(2.41)

The contribution along the imaginary axis is fairly smooth and can be accurately
determined using, e.g., Gaussian quadrature for only a few distinct ω . The second
contribution from the poles is found by explicitly calculating W − v for some
frequencies and interpolating for the intermediate values. While this technique
greatly simplifies the original integral, the evaluation of the matrix elements can
still be quite expensive due to the necessity of calculating up to thousands of
empty states for satisfactory convergence. The scaling with system size is about
O(N4).
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DFT band gap problem. Besides being able to give the quasiparticle lifetimes,
the G0W0 method also yields accurate band gaps (within∼ 0.1 eV). In the present
context, the band gap values are required for estimating the mean energies for the
production of electron-hole pairs in our nonproportionality model (Sec. 2.4). To
date, no direct direct measurements of the band gap have been performed for any
of the tungstates.

The most popular method for calculating electronic structures is the relatively
cheap density functional theory. However, standard DFT calculations typically
underestimate band gap values by about 40% [56]. In principle, the band gap is
accurately given by

∆ = ε
KS
N+1(N)− ε

KS
N (N)+

δExc[n]
δn(r)

∣∣∣∣
n=N+δ

− δExc[n]
δn(r)

∣∣∣∣
n=N−δ

, (2.42)

where εm(N) is the mth KS eigenvalue of an N-electron system and where the
second part is the discontinuity in the functional derivative of the exchange-
correlation energy with respect to the number of particles. The derivative
discontinuity is always present in semiconductors and insulators and is the
main reason for the underestimation of band gaps [56, 57]. None of the
currently available approximations for the exchange-correlation energy are able
to reproduce the discontinuity. Sometimes it is inserted manually based on
experimental data, in which case it is called the scissor operator.

The origin of the band gap underestimation is related to the local,
energy independent approximations for the exchange-correlation energy that are
commonly used in DFT calculations. By contrast, the self-energy used in
quasiparticle calculations is nonlocal and, most importantly, energy dependent,
which allows to correctly account for electron correlation and leads to much more
accurate excited state eigenvalues.
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Chapter 3

EXPERIMENTAL

Crystals. In this work, we used the undoped crystals of CdWO4, CaWO4,
SrWO4, and two samples of BaWO4 of different origin. The samples of CaWO4,
SrWO4, and one of the samples of BaWO4 were grown at the General Physics
Institute, RAS, Russia. The other BaWO4 sample was grown at the Institute
for Solid State Physics and Optics, Wigner Research Centre for Physics, HAS,
Hungary. CdWO4 was grown at the Institute for Single Crystals, Kharkov. All
samples were grown by the Czochralski method. The crystals were cleaved in the
(010) plane and the excitation of the crystals was performed along the 〈010〉 axis.

Nonlinear decay kinetics. In order to experimentally observe FRET in the
decay kinetics of the exciton luminescence in insulators, very high excitation
densities must be used. This comes from the requirement that the average
separation between the small-radius Frenkel excitons be sufficiently small for
FRET to be efficient. Femtosecond laser systems provide a controllable
environment for achieving such densities.

We have performed experiments at the Laser Research Center of Vilnius
University and at the PLFA facility, CEA-Saclay, France for studying the
nonlinear decay kinetics of exciton luminescence in tungstates.

The Ti:Sapphire fs-laser at Vilnius University uses Kerr-lens modelocking
with a Superspitfire amplifier (Spectra Physics, USA). The TOPAS-800 amplifier
(Light Conversion Ltd, Lithuania) and frequency mixers provide wavelength
tuning in a wide range of 189 nm – 20µm. In our experiments, the pulse duration
was 100 fs and the maximum excitation power density ∼ 1012 W/cm2. The beam
radii were determined with a CCD camera. A half-wave plate and a polarizing
mirror were used to control the pulse energy. Luminescence was analyzed with a
Hamamatsu R2059 photomultiplier (2.6 ns resolution) and a digital 4 GS/s LeCroy
oscilloscope. Decay curves were averaged over 10 000 excitation pulses and
consisted of 9000 data points. Excellent beam stability (< 3%) resulted in low
noise and good reproducibility of the measured curves. For temperatures other
than room temperature, a cryostat with quartz windows was used.
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Figure 3.1: Experimental setup at CEA-Saclay. The first and second lenses have
the focal lengths of 100 cm and 5 cm, respectively. Spot size on the crystal is
102µm.

Figure 3.2: Gate width (squares) as a function of delay from the laser pulse and
the corresponding number of exposure (circles).

The Ti:Sapphire laser at CEA-Saclay is based on chirped pulse amplification
and is capable of producing 13 mJ pulses with a duration of 32 fs, repetition
rate of 1 kHz and peak power of 0.4 TW. Generation of the second, third, and
fourth harmonic is also possible. We used the third harmonic (THG) with the
excitation wavelength of 266 nm, pulse energy up to 20µJ and pulse duration
of 80 fs. Luminescence was recorded with a gated CCD camera allowing for
both spatially and temporally resolved measurements (Fig. 3.1). The Andor iStar
intensified CCD camera has a 1024×1024 resolution which, in combination with
magnification by a lens, covers an area of 520× 520µm2 on the crystal surface.
Gate width was varied so that to be shorter initially and longer for larger time
delays. This served the purpose of having both better temporal resolution at
the beginning of the decay curves, where the nonlinear phenomena mainly take
place, and keeping the accumulated signal intensity approximately constant in the
camera. The gate width was varied from 50 ns at the beginning to longer than
10µs at the end of an event (Fig. 3.2). The evolution of the luminescence image
with a spatial resolution of 0.5µm was recorded as a luminescence ’movie’ of
300 exposures within an 80-µs time interval. In order to compensate a slight
spot wobbling for subsequent pulses, the positions of the maxima of the signal
intensity distributions were shifted to coincide for each image. The positions were
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determined by fitting with Gaussians in two directions. After the stabilization
procedure, the decay curves corresponding to different points on the crystal
surface could be extracted, providing a unique opportunity to study the exciton-
exciton interaction across the beam profile. Additional information that could
be extracted from the data was the spatial distribution of the luminescence yield,
which results from the time integration of the images corresponding to a given
event. The sum of pixel intensities over an image yields spatially integrated
luminescence curves analogous to those usually recorded with a photomultiplier.
The 1/e beam radius was determined from the first image taken at the lowest pulse
energy of 20 nJ. The choice of the lowest pulse energy ensured minimal distortion
of the Gaussian beam profile due to the nonlinear effects.

Low excitation density measurements. Before determining the temperature
dependencies of the intensity and the decay time of the intrinsic emission,
we first attempted to identify the intrinsic emission by measuring the time-
resolved emission spectra of CaWO4, SrWO4, and BaWO4. The spectra and
the temperature dependencies were measured with 1µs pulses using a xenon
Perkin-Elmer FX-1152 Flashtube and an Ortec MCS-PCI Card with a 100 ns
resolution. Emission and excitation wavelengths were selected with double-quartz
monochromators DMR-4. The emission was detected with a Hamamatsu photon
counting head H6240-01.
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Chapter 4

RESULTS

4.1 Nonlinear decay kinetics of exciton luminescence

Luminescence decay curves. We have recorded the decay kinetics of the
intrinsic emission of CdWO4, CaWO4, and SrWO4 under high excitation density
conditions [58, 16]. For BaWO4, we could not identify the intrinsic emission (see
Sec. 4.3). Figure 4.1 presents normalized decay curves of CdWO4 at 301.9 nm
(4.1 eV) excitation. Since the optical gap of CdWO4 is 4.8 eV [28, 16], this falls in
the low-energy part of the Urbach tail. In the low density regime, the decay would
be purely exponential with a decay time of 15µs at room temperature [59]. As the
excitation density increases, the decay curves start showing nonexponentialities in
the beginning. The nonexponentiality, which is due to the nonradiative energy
transfer between excitons, becomes more pronounced with excitation density,
as has been observed before [13, 14]. As a consequence, the relative losses of
luminescence are seen to increase with pulse energy in Fig. 4.1.

In addition to the effects of exciton-exciton interaction, Fig. 4.1 also reveals
the presence of the saturation effect. As the pulse energy is increased from
0.07 to 0.96µJ, the decay becomes more nonexponential. However, for higher
energies the shape of the curves remains practically unchanged. This is indicative
of some saturation mechanism limiting the density of excitons and therefore the
efficiency of nonradiative energy transfer between excitons at high laser pulse
energies. Within the framework of the model of Sec. 2.1, this is explained by
the existence of a limit to the exciton density, n0, in the sample due to absorption
saturation. The efficiency of nonradiative transitions responsible for the initial
nonexponentiality is directly related to the exciton density. The closer the exciton
density gets to n0, the more transparent the crystal becomes locally and therefore
very high energy pulses simply penetrate deeper into the crystal without changing
the shape of the decay curve much. Further discussion on the saturation effect is
deferred to Sec. 4.2.

The decay curves recorded for CaWO4 and SrWO4 (not shown) showed
qualitatively the same features and are subject to the same conclusions. The
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Figure 4.1: Decay curves of the intrinsic emission of CdWO4 at 301.9 nm
excitation for different pulse energies. Black lines are fits with Eq. (2.12). For
better visualization the data is averaged over 40 data points.

thickness and the absorption coefficient of each crystal were sufficiently high so
that z0α � 1 for all cases, allowing us to use Eq. (2.12) for the fitting procedure.
The results of the fitting procedure are summarized in Table 4.1. The absorption
coefficients were directly measured up to values on the order of 100 cm−1 and then
extrapolated according to the Urbach law. In the wolframite-structured CdWO4,
the dipole-dipole interaction radius is 3.65 nm. We believe this to be more accurate
compared to the previously reported values for CdWO4 [13, 14] due to a better
knowledge of the parameters necessary for the fitting procedure. In particular, the
absorption coefficient and the exciton yield (number of excitons created by one
photon) are accurately known in the Urbach tail, as opposed to the fundamental
absorption region. From other known scintillators, Rd-d has been determined to be
2.9 nm for CsI and 5.0 nm for the triplet emission of NaI [32].

In the scheelites of CaWO4 and SrWO4, Rd-d is 3.2 nm and 5.8 nm,
respectively. Because the probability of energy transfer between a pair of excitons
is proportional to R6

d-d, FRET seems to be much more efficient in SrWO4 than in
CaWO4. Given the similar ground state crystal and electronic structures, such a
drastic difference is puzzling. In Sec. 4.3, it will be attributed to the differences in
the excited state structural relaxation of these crystals.

Spatially-resolved decay kinetics. At CEA-Saclay, the time-resolved lumines-
cence images of CdWO4 were recorded at an excitation wavelength of 266 nm
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Table 4.1: Results of the fitting procedure with Eq. (2.12). 8, 9, and 10 curves
were simultaneously fitted for CdWO4, CaWO4 and SrWO4, respectively, with
pulse energies ranging from 0.07µJ to 2.4µJ.

CdWO4 CaWO4 SrWO4

T 295 K 92 K 92 K
λ 301.9 nm 240.5 nm 240.5 nm
a 19.8µm 71.8µm 24.3µm
α 1036 cm−1 7067 cm−1 479 cm−1

z0 1.26 mm 2 mm > 1 mm
αz0 130 1413 > 47.9
τ 14.1µs 17.6µs 29.9µs
Rd-d 3.65 nm 3.17 nm 5.84 nm
n0 5.31×1018 cm−3 2.90×1018 cm−3 5.84×1017 cm−3

(4.66 eV) with pulse energies in the range of 20 nJ – 1 µJ. Figure 4.2 presents the
distribution of light sum measured at 60 nJ and 300 nJ. The distribution is flatter
for the higher energy, which indicates a greater efficiency of exciton quenching at
higher excitation densities. The laser beam profile was the same for both cases.

The pulse radius of 102µm was determined from the first image that was
recorded at the pulse energy of 20 nJ (Fig. 4.3), displaying an almost perfect
Gaussian intensity distribution. Figure 4.4 presents several decay curves recorded
at different distances from the pulse center, which we define as the intersection
of the crystal surface and the symmetry axis of the beam, which is the point of
maximum excitation density. The curves correspond to square-shaped areas of
66µm2 on the crystal surface. We see that a higher exciton density leads to a
greater nonexponentiality at the beginning of the curves, which turn to almost
single exponentials in the low-intensity regions of the image. The data presented
in Figs. 4.2 and 4.4 are a unique attempt to visualize the effects of exciton-exciton
interaction at the microscopic scale.

At 266 nm, data analysis is more complicated due to the unknown value of the
absorption coefficient, which is too high to be measured directly or extrapolated
with the Urbach law. However, it can be calculated from

α(ω) =
√

2
ω

c

√
|ε(ω)|−Reε(ω), (4.1)

where ε is the dielectric function. Figure 4.5 presents the absorption coefficient
for two different polarization directions. For the fitting procedure, we set the value
of the absorption coefficient to 3.17×105 cm−1, which corresponds to the average
of the two directions.

Since the excitation density can be considered nearly constant within an area
of 66µm2, Eq. (2.15) is the correct fitting function for this case. 7×7 curves with
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Figure 4.2: Spatial distribution of time-integrated luminescence intensity of
CdWO4 at two different pulse energies at 266 nm excitation. The images have
been averaged over 16×16 data points.

Figure 4.3: Luminescence intensity integrated over the first 50 ns and one spatial
direction under excitation at 266 nm at 20 nJ pulse energy. The symbols are data
points, the solid line is a fit by a Gaussian. Vertical lines mark the distances from
the pulse center at which the decay kinetics is shown in Fig. 4.4.
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Figure 4.4: Decay curves at different distances from the pulse center measured
at the pulse energy of 0.3µJ. The curves represent the average luminescence
intensity corresponding to 66µm2 square-shaped spots on the crystal and may
be fitted to Eq. (2.15).

Figure 4.5: Absorption coefficient as calculated using Eq. (4.1) with the electric
field of the incident light parallel to the a-axis (solid) and c-axis (dashed). The
dielectric function for both cases is taken from [60].
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equal spacing from a 171×171µm2 area were chosen to be fitted simultaneously
(with a total of 101 fitting parameters). In Eq. (2.15), we set I0 → I0∆Se−ρ2/a2

,
where ∆S = 66µm2, a = 102µm, and ρ is the distance from the pulse center. For
the 1µJ pulse energy, the fitting results were Rd-d = 3.99 nm, τ = 16.1µs, and
n0 = 1.89×1019 cm−3. For 300 nJ the results were Rd-d = 3.46 nm, τ = 16.5µs,
and n0 = 2.05× 1019 cm−3. These kind of fluctuations in the value of Rd-d were
expected due to poor beam stability and the sensitivity of the fitting parameters.
The fitting procedure failed to converge for lower pulse energies due to low signal.
We accept that the best estimates are the averaged values of n0 ≈ 1.9×1019 cm−3

and Rd-d ≈ 3.7 nm (including the value obtained at 301.9 nm excitation).
Under excitation by 80-fs pulses at 4.84 eV, Rd-d has been estimated to

be 3 nm [14]. Such excitation energy is near the energy of resonant exciton
absorption, where Eq. (2.13) is assumed to be valid. In that study, the absorption
coefficient was unknown and was taken from general considerations as 106 cm−1.
Using the corrected value of Rd-d = 3.7 nm and taking into account that R3

d-d
and α are coupled in Eq. (2.13), we can correct the absorption coefficient at
4.84 eV to (3/3.7)3106 cm−1 = 5.3× 105 cm−1. This is close to the value α =
4.7× 105 cm−1, which can be obtained by averaging the absorption coefficients
at 4.84 eV for two polarizations in Fig. 4.5. If all the necessary parameters are
known with sufficient accuracy, the Rd-d value determined at some energy could
in principle be used to determine the absorption coefficient at any other energy,
including regions where it would normally be too high to be measured directly.

4.2 Absorption saturation

That the saturation effect is present in our experiments is supported by the fact that
the saturation model fits the decay curves perfectly (Fig. 4.1), in addition to the
qualitative features of the decay curves as discussed in Sec. 4.1. We have also tried
to fit the decay curves with Eq. (2.13), which is the n0 → ∞ limit of the present
model [Eq. (2.12)] and which has been used in the previous studies. Because
it only accounts for the dipole-dipole interaction and not absorption saturation,
it was not possible to get a good fit. Similarly, it was not possible to fit the
decay curves corresponding to small patches on the crystal surface, such as those
displayed in Fig. 4.4, to Eq. (2.16), which is the n0 → ∞ limit of Eq. (2.15). It
has to be noted that for individual curves one would get a good fit using either
model. However, in order to have a good global fit, the fitting function needs
to correctly reproduce the dependence of the shape of the decay curve on pulse
energy. Because of the global constraints, the fitting curves corresponding to the
older model are unable to correctly pass an entire family of experimental curves.

The saturation density n0 depends on the pulse duration and the exciting
photon energy. For lower excitation energies, n0 is smaller due to the smaller
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5.2 eV excitation. Inset is a schematic of the Z-scan method used to obtain the
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for either energy is that as the crystal moves past the focus, the excitation density
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number of centers possessing the atomic configuration favorable for excitation,
and correspondingly the saturation effect will manifest itself at lower excitation
densities. In Sec. 4.1, we have shown this to be true for CdWO4, where the n0
values were 5.31×1018 and 1.9×1019 cm−3 at 4.1 and 4.66 eV, respectively. The
fact that we were unable to get a good fit at 4.66 eV with the older model, which
is close to the optical gap of 4.8 eV, is unsurprising considering that even close to
the band gap lattice vibrations still play the dominant role in absorption [61].

Figure 4.6 presents the light yield dependence on the exciton density at the
pulse center for two photon energies — one from the Urbach tail and one from the
fundamental absorption region. The data is obtained from Z-scan measurements,
where the exciton density is calculated as

nmax(z) =
N0α

πa2(z)
,

a(z) =a0

√
1+
(

M2λ z
2πa2

0

)2

,

(4.2)

where a0 is the 1/e beam radius, M2 is the laser beam quality factor, λ is the
photon wavelength, N0 is the number of photons in the pulse, and z is sample
distance from the beam focus. The light yield can be thought of as a measure of the
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Figure 4.7: Temperature dependence of the saturation density and the absorption
coefficient of CdWO4 at the excitation energy of 4.2 eV (optical gap ∼4.8 eV).
Each data point was determined by fitting the measured luminescence decay curve
to Eq. (2.12). Rd-d value was fixed at 3.7 nm.

average exciton density in the crystal — the higher the density, the lower the light
yield due to the nonlinear losses of luminescence. If the only nonlinear effect were
from the dipole-dipole interaction, then the exciton density could grow without
limit (strictly speaking until 1/V , where V is the unit cell volume). However,
at 4.2 eV the decreasing of the light yield slows down at a lower exciton density
than at 5.2 eV. This can be attributed to the saturation effect that is present only at
4.2 eV and is inhibiting a further increase of the exciton density.

In addition to the energy dependence, the saturation effect should also have
a temperature dependence. Even though the phonon picture is not applicable
in the femtosecond time frame, the number of centers capable of absorption at
the moment of excitation, n0, is still expected to be correlated with the phonon
distribution of the crystal. It follows that, for a fixed energy, n0 should increase
monotonically with increasing temperature just as the phonon population does.
Such behavior is indeed present in Fig. 4.7, where, in the temperature range of
78–400 K, n0 increases from the order of 1018 cm−3 to the order of 1019 cm−3.
In addition, since both n0 and the linear absorption coefficient α are proportional
to the total number of levels n1 + n2 in the two-level model, they are expected
to follow the same temperature dependence. This holds approximately true until
room temperature (Fig. 4.7), after which the model is probably not applicable due
to the thermal quenching of excitons in CdWO4 [62].
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Since both α and n0 are proportional to n1 + n2, they are also proportional
to each other. α additionally depends on the dipole matrix elements between the
valence and conduction states. If we take the matrix elements to be the same
for CaWO4 and SrWO4 because of the similar electronic structure, then their
n0 values become directly comparable. It follows that since in our experiments
SrWO4 had a lower α it should also exhibit a lower n0. Such conclusion in indeed
confirmed by the results of Table 4.1.

4.3 Correlation between the exciton radius and the dipole-dipole
interaction radius

Time-resolved emission spectra. In order to explain the large difference in
the Rd-d values of CaWO4 and SrWO4, we attempted to find any noticeable
differences in the relaxed exciton characteristics from low excitation density
experiments.

Figure 4.8 presents the time-resolved emission spectra and the excitation
spectra of CaWO4, SrWO4, and two samples of BaWO4 of different origin, all
measured at 4.2 K. The emission spectra were obtained by measuring the decay
kinetics at each emission energy and fitting the resulting decay curves to a sum
of at most four exponentials and background. Each data point in the figure
corresponds to the light sum I0nτn, where I0n and τn are the initial amplitude and
the decay time of the nth decay component. Relative values of the light sums
corresponding to a given crystal and excitation energy are directly comparable.

Tungstates are characterized by an intrinsic blue emission, which typically
peaks in the region 2.5–2.9 eV [26, 25, 59, 63], and a defect green emission,
which peaks in the region 2.3–2.4 eV [25, 26, 37]. The blue band is related to
the recombination of STEs localized at the WO2−

4 complexes and the green band
to lattice defects, most frequently to WO3 Schottky defects.

We measured the emission spectra for two excitation energies — one
corresponding to the band gap edge and one exciting to the fundamental
absorption region. Similarly, we attempted to measure the excitation spectra for
the green and blue luminescence, although for BaWO4, as explained below, the
latter was not identifiable.

Both CaWO4 and SrWO4 display an intrinsic emission band at around 2.8 eV
and a defect emission band at 2.4 eV, which are the characteristic blue and green
luminescence [64, 26, 65]. The corresponding luminescence decay times for
CaWO4 are 366µs (a4 in Fig. 4.8) and 551µs (a1). In addition to the main green
band, there are two other bands (a2, a3) at 4.5 eV excitation, which are about 5
times weaker at the maximum. The blue band of SrWO4 is resolved into 254 (b3)
and 1.0µs (b4) components, the latter being 100 times weaker. The green band
consists of 522µs (b1) and 40µs (b2) components, the latter being about 10 times
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Figure 4.8: Emission and excitation spectra of CaWO4 (a), SrWO4 (b), and two
BaWO4 (c,d) crystals at 4.2 K. Emission energies used for excitation are 2.10 (a5),
2.76 (a6), 2.0 (b6), 2.85 (b7), 2.7 (c1), and 2.75 eV (c2). Excitation energies for
measuring emission are 4.5 (a1, a2, a3), 5.2 (a4), 4.5 (b1, b2), and 5.2 eV (b3,
b4, b5). The decay times and excitation energies for the emission of BaWO4,
in the order of decreasing maximum intensity, are c) 16 ms (3.7 eV), 1.8 ms
(3.7 eV), 22 ms (4.45 eV), 7.7µs (3.7 eV), 1.5 ms (4.45 eV), > 10 ms (3.7 eV),
> 10 ms (4.45 eV), 26µs (4.45 eV), 72µs (4.45 eV) and d) 0.9µs (3.75 eV), 15µs
(4.45 eV), 8.3µs (3.75 eV), 151µs (4.45 eV), 2.2µs (5.2 eV), > 10 ms (5.2 eV).
Symbols are the light sums. Dotted lines are Gaussian fits.
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weaker. There is an additional long component at 2.8 eV (b5), which manifests
itself in the energy dependence of background and must have a decay time of at
least 10 ms. The fundamental absorption region starts at a higher energy in SrWO4
than in CaWO4 in accordance with [66], where the band gaps of tungstates were
predicted to grow with cation size.

For both BaWO4 crystals we could distinguish about ten emission components
at different excitation wavelengths, of which the most intense ones are shown in
Fig. 4.8. The decay times ranged from less than 1µs to more than 104 µs (see
the caption of Fig. 4.8). Notably, there is no clear agreement in the position
of the bands or the decay times between the two samples. There is also some
disagreement in the excitation spectra of the two samples, whose complicated
structure, possibly a result of several defect centers, is in contrast to CaWO4 and
SrWO4, where the green and blue components are clearly identified. Previously,
weak intrinsic emission of BaWO4 has been claimed to be seen at approximately
2.7 eV [67, 63]. However, with no time-resolved analysis such assignment can
be dubious, since our stationary emission spectra of BaWO4 (not shown) also
resemble single Gaussians and seemingly agree with those of [67, 63]. We
can conclude that the emission bands of the BaWO4 samples originate mainly
from defect centers, which are expected to be sample dependent. The intrinsic
luminescence is either too weak to be distinguished from defect luminescence or
it is nonexistent in BaWO4.

Decay time temperature dependence. Having distinguished the characteristics
of the decay kinetics of the intrinsic and extrinsic emission of CaWO4 and
SrWO4, we further investigated the nature of the exciton states responsible for
the intrinsic emission by measuring the temperature dependence of their decay
time. In BaWO4, no decay components identifiable as intrinsic emission could
be separated. Neither had the decay time of any component a temperature
dependence similar to that of CaWO4 or SrWO4 as shown in Fig. 4.9. For this
reason, the following analysis could not be done for BaWO4.

Figure 4.9 presents the temperature dependence of the decay time of the
intrinsic luminescence of SrWO4 and CaWO4. The CaWO4 curve corresponds
to a typical behavior of the triplet state. The low and high temperature plateaus
are determined by k1 and k2. The position and slope of the intermediate region
are determined by ∆SOC and K. It is seen that for SrWO4 neither plateau is
present. The reason for the low temperature behavior is that even at 2 K there
is considerable contribution from the k12 transitions due to the small value of
∆SOC, which does not allow the lower lying metastable level to become dominant,
which would otherwise lead to the plateau. The high temperature plateau is never
reached because of an early onset of thermal quenching, which can also be seen
from the temperature dependence of the intensity of the main emission. The latter

41



Figure 4.9: Decay time temperature dependence of the intrinsic emission of
SrWO4 (squares) and CaWO4 (crosses) and the temperature dependence of the
intensity of the intrinsic (stars) and extrinsic (circles) emission of SrWO4. Solid
lines are fits to the model [Eq. (2.20)]. Logarithmic scale is chosen for better
visualization.

is similar to the temperature dependence of the intensity of the green emission.
We fitted the curves with the model of triplet excitons [Eq. (2.20)]; the results

are shown in Table 4.2. Since neither plateau is present for SrWO4, its k1 and
k2 values contain considerable uncertainty. The rest of the fitting parameters are
much more insensitive to data point errors. Also, since the temperature range for
CaWO4 was below the onset of thermal quenching, its Ex and Kx values are taken
from [68].

The temperature dependencies of both the intensity of main emission and its
decay time (Fig. 4.9 and Fig. 11 from [69]) suggest that the thermal diffusion
of excitons is stronger in SrWO4 than in CaWO4 for the following reasons.
Firstly, the luminescence quenching, supposedly due to diffusion, starts at a much

Table 4.2: Three level model parameters for CaWO4 and SrWO4.
CaWO4 SrWO4

k1 2.4×103 s−1 5.9×102 s−1

k2 1.1×105 s−1 2×105 s−1

K 1.3×105 s−1 1.4×104 s−1

∆SOC 4.2 meV 0.8 meV
Kx 8.6×109 s−1 [68] 8.1×105 s−1

Ex 320 meV [68] 36 meV
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lower temperature in SrWO4 (36 meV) than in CaWO4 (320 meV). Secondly,
the effect of spin-orbit interaction (SOC) is less in SrWO4 (0.8 meV) than in
CaWO4 (4.2 meV). It follows that the electron spends less time in the vicinity
of W in SrWO4. Defining the spread of the exciton wavefunction as the effective
exciton radius, we may conclude that SrWO4 has a larger exciton radius, which
presumably enhances exciton diffusion. We stress that such a definition is merely
for convenience and should not be confused with the exciton Bohr radius, a term
that is only applicable to Wannier-Mott excitons. In tungstates, the hole and
electron components of the exciton are localized on O and W atoms, respectively,
the resulting wavefunction of which has far from spherical symmetry.

Assuming that thermal diffusion correlates with the exciton radius, it can
be explained why it is difficult to see any intrinsic luminescence in BaWO4. If
the exciton radius, and thus diffusion, increases in the order CaWO4 → SrWO4
→ BaWO4, then it could be that already at 4.2 K the intrinsic luminescence of
BaWO4 is quenched to a degree that only defect luminescence is observable.

A relation between the Frenkel exciton radius and its dipole moment has
thus far not been established. It is possible that a greater delocalization of the
exciton with possibly larger hybridization with cation states leads to a greater
dipole moment of the exciton for transitions between the exciton state and the
WO2−

4 ground state, and also to a greater dipole moment for exciton ionization.
With such a scenario we expect the dipole-dipole interaction radius to increase
in the order CaWO4 → SrWO4 → BaWO4, since a greater dipole moment leads
to a greater efficiency of FRET [70]. In Sec. 4.1, the Rd-d values of CaWO4 and
SrWO4 were determined to be 3.17 nm and 5.84 nm, respectively. The efficiency
of FRET thus seems to correlate with the exciton radius. By extrapolation, we
would expect BaWO4 to have the largest Rd-d of the crystals.

Ground state electron and hole localization. While we have thus shown that a
larger cation radius leads to a larger exciton radius, the reason for this is not clear.
Despite the differences in luminescence properties, the electronic structure, in the
energy range of interest, is remarkably similar for the crystals, with no cation
states near the top of the valence band (VB) or the bottom of the conduction band
(CB) [71]. The VB is 4–5 eV wide and consists mainly of O 2p states with some
contribution from the W 5d e and t2-like states in the lower half. The bottom of
the CB is comprised of W 5d e-like states, followed by a small gap. The main
effect of the cation seems to be on the unit cell parameters. It follows that the
stark contrast in the luminescence properties of these crystals, which we believe to
originate from the different exciton radii, cannot be explained in terms of ground
state properties, but is instead attributed to the different extent of electron-hole
correlation and/or the excited state geometry relaxation and the resulting auto-
localization of the exciton.
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To further test this claim, we estimated the localization lengths of the valence
and conduction states in the ground state configuration. In order to explain the
observed spectra and the decay kinetics, we would expect the valence and/or
conduction electrons to become drastically more delocalized in the order CaWO4
→ BaWO4. The localization lengths can be calculated using maximally localized
Wannier functions [72, 73]. Wannier functions are the real-space equivalent of
Bloch functions for representing the electronic structure of a solid. A set of N
generalized Wannier functions is defined via Bloch functions as

wn,R(r) =
V

(2π)3

∫
BZ

e−ikR
Nk

∑
m=1

Uk
mnψm,k(r)dk, (4.3)

where Nk is the number of bands within an energy window of interest and V
is the unit cell volume. The Uk

mn are only required to be unitary, leaving much
freedom in the construction of Wannier functions. Two physically equivalent sets
of Wannier functions could have very different spatial extents. However, there
exists a special set with a minimal spatial spread Ω, defined as

Ω =
N

∑
n=1

[
〈wn,0|r2 |wn,0〉−〈wn,0|r |wn,0〉2

]
. (4.4)

An efficient method for minimizing Ω is the Marzari-Vanderbilt scheme [72],
which for a given set of Bloch functions and energies from a uniform mesh of
k-points produces the Uk

mn required to construct MLWFs. If the bands of interest
form an isolated group, such as the valence bands of CaWO4, Nk = N in Eq. (4.3).
If this is not the case, such as the conduction bands of CaWO4, an additional
disentanglement procedure must be performed before minimizing the spread Ω

[73]. The Wannier functions thus constructed span the same portion of the Hilbert
space as the underlying Bloch functions.

Using the formalism of MLWFs, the localization length can be defined as

δn =

√
〈wn0|r2|wn0〉−〈wn0|r|wn0〉2 (4.5)

for a given Wannier function wn0(r). The Bloch states entering Eq. (4.3)
are generally approximated by the Kohn-Sham states obtained from a DFT
calculation. Our DFT calculations were performed with Abinit [74] within the
PAW [75] formalism using the PBEsol [76] exchange-correlation functional. The
calculated DOS and band structures (not shown) agreed well with previous results
[23, 77, 71] and, together with the optimized lattice constants (Table 2.1), attest
to the accuracy of the generated PAW datasets.

For tungstates, there are two formula units in the unit cell and thus a total of
48 valence electrons. From the shape of the MLWFs (Fig. 4.10), the upper half of
the VB has purely pπ character, in agreement with [23]. The lower half is formed
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pσ pπ dz2 dx2−y2

Figure 4.10: MLWFs corresponding to the valence and the lowest conduction
bands of BaWO4. Out of the total of 48 valence and 8 conduction states, only the
distinct ones are shown. The rest have a similar shape but are located at different
atoms with different orientations. The red and blue isosurfaces correspond to the
positive and negative values of the wavefunction at the isovalue of 5.2 Å−1.5.

Table 4.3: The localization lengths [Eq. (4.5)] for the (mainly) O 2p derived
valence band and the W 5d derived conduction band states in Å. The results are
shown only for the optimized geometry (Table 2.1), although similar results were
also obtained for the experimental lattice parameters.

valence band conduction band
32× pσ 16× pπ 4×dz2 4×dx2−y2

CaWO4 1.09 1.07 1.75 1.86
SrWO4 1.12 1.06 1.78 1.86
BaWO4 1.19 1.07 1.91 2.01
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Table 4.4: Physical parameters of CdWO4 as required by Eqs. (2.28) and
(2.30). The maximum scintillator yield taken from the high-energy part of the
experimental data is 15 800 ph/MeV, which according to Eq. (2.25) is equal to
χ/Eeh.

Rd-d 3.7 nm (present work)
V 149 Å3

χ/Eeh 15 800 MeV−1 [7]
I 468.3 eV [78]
rnonrel

tr 4.5 nm (fit)
rrel

tr 4.7 nm (fit)

of pσ bonds hybridized with 5d e and t2-like states. The 8 conduction states have
the 5d e-like character. It is evident (Table 4.3) that the valence and conduction
states indeed become slightly more delocalized as the cation radius increases, but
not enough to explain the observed experimental results. The differences in δ

are similar to the differences in the lattice constants. That the localization length
of the pπ states remains the same is understood by the fact that these are more
localized inside the tetrahedral WO2−

4 molecular complex. The W-O bond length
and thus the WO2−

4 dimensions are the same for these crystals (Table 2.1).
We conclude that indeed no ground state calculation is able to explain the

radically different thermal stabilities or the differences in the Rd-d values. These
must come entirely from the differences in the excited state dynamics in these
crystals. It is possible that after relaxation a larger cation radius leads to
a greater hybridization between the cation and the exciton state, causing the
exciton wavefunction to have a larger spread, which would explain the correlation
between the cation radius, exciton radius, and the dipole-dipole interaction radius.

4.4 Modeling nonproportionality of CdWO4

We have applied the models developed in Sec. 2.4 to CdWO4 using the parameters
of Table 4.4 and the experimental nonproportionality curve of [7]. We note
that although the experimental data account for photon-nonproportionality while
Eqs. (2.28) and (2.30) describe electron-nonproportionality, the two quantities
are very similar at high energies (above K-shell binding energies or 70 keV for
CdWO4).

If we estimate the average energy required for exciton formation to be
Eeh/χ = 63.3 eV and take Eeh = 2.5×Eg = 12.5 eV, then χ = 0.20, which shows
that 80% of all e-h pairs do not form excitons but are trapped or recombine
nonradiatively. The thermalization distance of such electrons can extend to
hundreds on nanometers [44]. Slow recombination of trapped charge carriers
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Figure 4.11: Scintillator yield of CdWO4 at RT normalized to the value at 662 keV.
Symbols are the experimental data [7], solid line is a fit with Eq. (2.28), dotted
line is a fit with Eq. (2.30). The relativistic formula produces a slightly better fit.

resulting in afterglow is not included in the present models.
The track radii, as calculated with Eqs. (2.28) and (2.30), are 4.7 and 4.5 nm,

respectively. There is little difference in the radii or in the fits to the model
(Fig. 4.11), showing that the two approximations made with Eq. (2.30) are well
justified. The first one was the average ionization potential approximation, which
requires E� Ii and influences only the low-energy part of the nonproportionality
curve. Even though the highest Ii is due to the W 1s orbitals (70 keV), most of the
contribution to the stopping power is actually from the outer shells, which have
bigger weights in Eq. (2.28). For most electron shells in the system, Ii < 10 keV,
which is less than the lowest energy data point in Fig. 4.11. The averaging of Ii is
thus a good approximation for the whole data range. The second approximation
was the nonrelativistic regime, i.e., E � 2mc2, which influences mainly the
high-energy region. The fact that the curves almost coincide also in the high-
energy region allows us to conclude that the crystal becomes proportional before
relativistic effects become important.

The fact that the simplified model [Eq. (2.30)] is just as accurate as the
full solution [Eq. (2.28)] for CdWO4, and presumably for other tungstates, is
significant because the latter is about two orders of magnitude more expensive.

We note that the current models do not account for electron exchange between
the secondary particles in the track. Including exchange would modify the factor
4 under the logarithm in Eq. (2.30) to

√
e/2 [43] and reduce the track radius to

3.9 nm [16].
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4.5 Quasiparticle band structure of CdWO4

We have calculated the quasiparticle band structure of CdWO4 in the G0W0
approximation. The calculations were performed with Abinit [74] within the
all-electron PAW [75] formalism using the PBEsol [76] exchange-correlation
functional. The PAW method is an accurate alternative to the commonly used
pseudopotential approximation, which tends to overestimate band gaps compared
to all-electron approaches in QP calculations [79]. Details about the construction
of PAW datasets in order to be sufficiently accurate for QP calculations are given
in [80]. Here we only demonstrate the accuracy of the datasets for ground state
calculations by comparing the calculated lattice constants to the experimental ones
(Table 4.5).

Table 4.5: Atom positions in the unit cell of CdWO4. Cd sites are located
at ±(1/2,y,3/4), W sites at ±(0,y,1/4) and Oi sites at ±(xi,yi,zi) and
±(xi,−yi,zi +1/2) for i = 1,2.

Experimental at RT [81] Calculated at 0 K
a(Å) 5.0289 5.0141
b(Å) 5.8596 5.8953
c(Å) 5.0715 5.0508
β (deg) 91.519 91.136
V (Å3) 149.39 149.27

x y z x y z
Cd 0.5 0.3027 0.75 0.5 0.3057 0.75
W 0.0 0.17847 0.25 0.0 0.1767 0.25
O1 0.242 0.372 0.384 0.243 0.368 0.387
O2 0.202 0.096 0.951 0.204 0.095 0.950

A convergence study was required for each summation index in the
expressions for the matrix elements [Eqs. (2.40) and (2.41)]. The convergence
criterion for each parameter tested was chosen to be 10 meV in the QP energies.
This should ensure that the final uncertainties are dominated by the theoretical
accuracy of the G0W0 method itself. The converged calculation was performed at
a plane wave cutoff of 626 eV, using 1536 empty states in the calculation of W
and 1536 states in the calculation of the matrix elements of Σc. The dimension
of the W matrix in terms of the energy of G-vectors was 326 eV (2013 plane
waves). The energy cutoff for the matrix elements of Σx was 5440 eV (136 247
plane waves) for the Cd 4d states and 1632 eV (28 193 plane waves) otherwise.
An unshifted 4×4×4 grid was used for Brillouin zone sampling (BZS). Detailed
information about the convergence studies is found in the supplementary material
of [80].
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Figure 4.12: QP (solid) and KS (dotted) band structures of CdWO4. A scissor
shift of 1.91 eV (see the end of Sec. 2.5) is include in the KS band structure. In
reality, the conduction bands are not isolated, only the first 6 bands are shown
here. Coordinates of the BZ points are given in [84].

Once the QP energies are calculated on a uniform k-mesh, the full band
structure can be interpolated using a technique based on Maximally localized
Wannier functions as detailed in [53]. The basic idea is similar to the Slater-Koster
interpolation method [82], except that here the tight-binding matrix elements are
calculated from first principles as opposed to being adjustable parameters. The
Wannier interpolation of the QP band structure was performed with the Wannier90
package [83].

The QP band structure is shown in Fig. 4.12 along with the KS band
structure, where the scissor shift is chosen to match the QP band gap. To our
knowledge, there are no prior calculations of the full QP band structure for such
complex crystals as tungstates. The KS band structure agrees well with previous
calculations [24, 84]. In the vicinity of the conduction band minimum or the
valence band maximum, the bands are similar for both cases, but further away
the position and shape of the KS bands starts differing from the QP results. The
second highest group of valence bands, derived from the Cd 4d states, is misplaced

49



Figure 4.13: Electron-electron scattering rate in CdWO4 as calculated according
to Eq. (2.38). Inset shows the quasiparticle lifetimes.

by 0.5 eV in DFT. The direct band gap minimum, located at the Y-point, is 5.0 eV
in the G0W0 approximation and 3.1 eV in DFT.

All calculations have been performed in the nonrelativistic regime. However,
due to the presence of Cd and W, spin-orbit coupling cannot be completely
neglected. Since the QP corrections and SOC can be considered independent
perturbations, it suffices to estimate the effects of SOC in DFT only. We have
calculated the KS band structure including SOC (not shown) within the PAW
formalism as implemented in Abinit. This modifies the KS energies by no more
than about 0.1 eV, except for the Cd 4d bands which are split in two, in agreement
with [24]. The band gap energy is reduced by 44 meV, which corrects the G0W0
band gap to slightly below 5 eV. Taking the optical gap from the Urbach tail
analysis as 4.8 eV [16, 28], comparing this to the calculated single-particle G0W0
band gap and considering the accuracy of the methods used, we propose an upper
bound of 0.4 eV for the exciton binding energy in CdWO4. For comparison, the
exciton binding energies in PbWO4 and the structurally similar ZnWO4 have been
estimated to be ∼ 0.1 eV [85] and 0.53 eV [86], respectively.

Figure 4.13 presents the energy dependence of the electron-electron scattering
rate. Near the band extrema the scattering rate nears zero and accordingly the
quasiparticle lifetime becomes infinite, as it should in the Fermi liquid theory.
Further away the scattering increases, which can be interpreted as an increasing
loss of the single-particle character. The classical phase space argument would
result in the 1/τQP ∝ |ε − εF |2 dependence. For CdWO4, the dependence seems
to be much more complex. In particular, the feature at -7 eV, which is due to the
Cd 4d states, shows a very sharp slope in the scattering rate and consequently in
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the QP lifetimes.
The electron-phonon scattering rate has not yet been determined for CdWO4.

However, it has been determined for the scintillators of NaI, CsI, CaF2, and BaF2,
where the LO phonon creation and annihilation rates are on the order of 1014 or
higher in a wide energy range [44]. Since the thermalization stage in CdWO4 has
been estimated to be faster than in those crystals [12], we expect the electron-
phonon scattering rates to be at least as high. The energy range relevant for
thermalization is determined by the energy distance of Eg = 5 eV from the band
extrema, or −5 . . .10 eV in Fig. 4.13. Only the electrons and holes with those
energies would be present in the crystal at the beginning of thermalization. In
that energy region, the electron-electron scattering rate is less than 3× 1013 s−1,
which is much less than the estimated electron-phonon scattering rate. We may
conclude that the electron-electron scattering rate is sufficiently small and the
quasiparticles sufficiently stable that if suffices to describe thermalization only
in terms of the electron-phonon scattering, as has been done in most studies on
modeling scintillator thermalization so far [21, 44].
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Chapter 5

CONCLUSIONS

In this work, we have studied the excited state dynamics under high excitation
density conditions in the tungstate scintillators. We have developed and tested
several models covering different stages of the scintillation process, which include
excitation, thermalization, and the luminescence stage.

Under excitation by femtosecond laser pulses with sub-band-gap photon
energies, we have discovered an absorption saturation effect, which is explained
in terms of a limited number of centers having the correct atomic configuration for
absorbing a photon at the moment of excitation. The saturation densities (limits
to the exciton density in the crystal) were determined for CdWO4, CaWO4, and
SrWO4 by fitting experimental data to the model. The temperature and energy
dependencies of the saturation density agreed with the model predictions.

Based on previous works, we have further developed the theory of nonlinear
quenching of exciton luminescence by introducing a model that accounts for both
absorption saturation and the dipole-dipole interaction (FRET) of excitons. The
model was successfully fitted with experimental data for determining the dipole-
dipole interaction radii for selected tungstates.

In addition to studying the nonlinear effects of exciton luminescence, we
have determined several exciton characteristics from low excitation density
experiments and found a correlation between the cation radius, exciton radius,
and the dipole-dipole interaction radius. A strong variation in those quantities
was found in the series CaWO4, SrWO4, BaWO4. The result is surprising due
to the similar ground state structural and electronic properties of these crystals
and leads us to hypothesize that the excited state structural relaxation could be
sensitive to the properties of the cation for reasons not yet understood.

A model of nonproportionality for intrinsic excitonic scintillators was
developed. The model was successfully tested on experimental data and produced
a track radius of 4.6 nm for CdWO4. We confirmed the validity of both the average
ionization potential approximation and the nonrelativistic regime for the modeling
of nonproportionality.

The contribution of electron-electron scattering to thermalization was
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investigated by calculating the excited state quasiparticle lifetimes in the G0W0
approximation. Based on general considerations and the results of the calculation
we were able to conclude that the rate of electron-electron scattering is
negligible compared to the rate of electron-phonon scattering, which dominates
thermalization.
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Chapter 6

SUMMARY IN ESTONIAN

Ergastatud seisundite dünaamika kõrge ergastustiheduse tingimustes
volframaatides

Antud töös uuritakse ergastatud seisundite dünaamikat kõrge ergastustiheduse
tingimustes volframaadi stsintillaatorkristallides. Me oleme tuletanud ja
rakendanud mitmeid mudeleid, mis katavad erinevaid stsintillatsiooni protsessi
staadiume, s.h. ergastamise, termilisatsiooni ja luminestsentsi staadiumid.

Ergastamisel fs laserimpulssidega keelutsooni energiast madalamate energia-
tega footonitega oleme avastanud neeldumise küllastumise efekti, mida
saab seletada lõpliku arvu tsentrite leidumisega kristallis ergastamise hetkel,
millede aatomite konfiguratsioon on sobilik footoni neelamiseks. Kohandades
mudelit eksperimentaalsete andmetega oleme leidnud küllastumise tihedused
(maksimaalsed lubatud eksitonitihedused kristallis) CdWO4, CaWO4 ja SrWO4
kristallide jaoks. Küllastustiheduste temperatuuri- ja energiasõltuvused lähevad
kokku mudeli ennustustega.

Lähtudes varasematest töödest oleme arendanud edasi mittelineaarse
eksitonluminestsentsi kustumise teooriat luues uue mudeli, mis arvestab nii
neeldumise küllastumise kui dipool-dipool interaktsiooniga (FRET) eksitonide
vahel. Mudelit õnnestus edukalt lähendada eksperimentaalsete andmetega
leidmaks dipool-dipool interaktsiooni raadiust volframaatide jaoks.

Lisaks mittelineaarsete efektide uurimisele eksitonluminestsentsi põhjal
oleme uurinud eksitoni karakteristikuid madala ergastustiheduse tingimustes
ja leidnud korrelatsiooni katiooni raadiuse, eksitoni raadiuse ja dipool-dipool
interaktsiooni raadiuse vahel. Nimetatud suuruste jaoks leiti suur varieeruvus
reas CaWO4, SrWO4, BaWO4. Tulemus on üllatav arvestades nende kristallide
sarnaseid kristall- ja elektronstruktuure ning lubab oletada, et ergastatud seisundi
relaksatsioon on tundlik katiooni omaduste suhtes siiani arusaamata põhjustel.

Arendasime mitteproportsionaalsuse mudeli eksitonkiirgusel põhinevate
stsintillaatorite jaoks. Mudeli edukas testimine eksperimentaalandmete peal
lubas leida kõrge energia osakese trajektoori raadiuse väärtuseks 4.6 nm CdWO4
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kristallis. Lisaks kinnitasime keskmistatud ionisatsioonipotentsiaali lähenduse
ja mitterelativistliku režiimi kasutamise korrektsust mitteproportsionaalsuse
mudelites. Hindasime elektron-elektron hajumise osakaalu termilisatsiooni faasis
arvutades ergastatud seisundi kvaasiosakeste eluead G0W0 lähenduses. Lähtudes
üldistest kaalutlustest ja kalkulatsiooni tulemustest võime järeldada, et elektron-
elektron hajumise osakaal on tühine võrreldes elektron-foonon hajumisega
termilisatsiooni ajal. Viimane on reeglina domineeriv.
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