ABEL ARMAS CERVANTES

Diagnosing Behavioral Differences between

Business Process Models

DISSERTATIONES
MATHEMATICAE
UNIVERSITATIS
TARTUENSIS

100

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
100

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
100

ABEL ARMAS CERVANTES

Diagnosing Behavioral Differences between
Business Process Models

e
Z
<
m
=~
2]
®)
M
2
9
e

Institute of Computer Science, Faculty of Mathematics and Computer Sci-
ence, University of Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doc-
tor of Philosophy (Ph.D.) in informatics on June 15, 2015, by the Council of
the Institute of Computer Science, Faculty of Mathematics and Computer
Science, University of Tartu.

Supervisors:
Prof. PhD. Marlon Dumas
Institute of Computer Science
University of Tartu, Tartu, Estonia
Assoc. Prof. PhD. Luciano Garcia Banuelos
Institute of Computer Science
University of Tartu, Tartu, Estonia
Opponents:
Res. Assoc. PhD. Eric Badouel

INRIA Rennes, France

Assoc. Prof. PhD. Josep Carmona
Department of Computer Science
Universitat Politecnica de Catalunya (UPC),
Barcelona, Spain

Commencement will take place on August 28, 2015, at 13.15 in Liivi 2-403.

The publication of this dissertation was financed by Institute of Computer
Science, University of Tartu.

* * For education and research in Estonia
DoR

[§ oRka ARCHIMIEDES

European Union
European Social Fund Investing in your future

ISSN 1024-4212
ISBN 978-9949-32-865-9 (print)
ISBN 978-9949-32-866-6 (pdf)

Copyright: Abel Armas Cervantes, 2015

University of Tartu Press
www.tyk.ee

Abstract

Companies operating in multiple markets or market segments often need to
manage multiple variants of the same business process. Such multiplicity
of variants may stem from distinct products, different types of customers,
different regulations across countries in which the company operates, or id-
iosyncratic choices made by multiple business units over time. During the
ongoing management of these processes, analysts need to compare models
of multiple process variants in order to identify opportunities for standard-
ization or to understand relative performance differences across variants.

Existing approaches to process model comparison can be broadly classi-
fied into those based on structural similarity and those based on behavioral
similarity. Approaches based on structural similarity can conveniently ex-
plain certain types of differences between pairs of process models, such as
insertion, deletion or substitution of tasks, or simple re-arrangements of
nodes (e.g. swapping of two tasks). However, two variants may be syntac-
tically different and still be behaviorally equivalent. Conversely, they may
be similar syntactically while very different behaviorally, as changes in a
few gateways or edges may entail significant behavioral differences.

In this context, this thesis addresses the problem of diagnosing behav-
ioral differences between pairs of business process models, based on a no-
tion of equivalence that takes into account concurrency. Given two process
models, the thesis proposes a method to determine if they are behaviorally

equivalent, and if not, to describe their differences in terms of behavioral

relations captured in one model but not in the other. The proposed so-
lution is based on a translation from process models to event structures,
specifically prime event structures, asymmetric event structures and flow
event structures. A naive version of this translation suffers from two limita-
tions. First, this translation is not applicable to process models with cycles.
Second, it produces redundant difference diagnostic statements because an
event structure may contain unnecessary event duplication. To tackle the
first limitation, the thesis proposes a notion of unfolding that captures all
possible causes of each task, where the tasks that can occur more than
once in a computation are distinguished from those that cannot. From
this unfolding, an event structure is derived, thus enabling the diagnosis of
behavioral differences in terms of repetition and behavioral relations that
hold in one model but not in the other. For the second limitation, the
thesis puts forward a technique to reduce event duplication in an (asym-
metric and a flow) event structure while preserving canonicity by applying
a set of behavior-preserving event folding rules. The proposed method has
been implemented as a prototype that takes pairs of process models in the
standard Business Process Model and Notation (BPMN) and produces dif-
ference diagnostics both in the form of statements in natural language and

graphically overlaid on the process models.

Acknowledgements

This research was supported by the European Social Fund via the Doctoral
Studies and Internationalisation Programme (DoRa), which is carried out
by Foundation Archimedes, and by an institutional grant of the Estonian
Research Council.

I would like to thank my supervisors Marlon Dumas and Luciano
Garcia-Baniuelos for their guidance, the fruitful discussions and continu-
ous encouragement throughout these years. I am grateful for the constant
opportunities for professional development they gave me. Special thanks
to Paolo Baldan from University of Padova who took the role of my third
supervisor during and after my research visit to University of Padova. His
mentoring, availability for discussions and collaboration has made this the-
sis possible. Last but not least, I would also like to extend my sincere
gratitude to the reviewers Eric Badouel and Josep Carmona for their in-

sightful comments.

Contents

List of Abbreviations

List of Symbols

List of Figures

List of Original Publications

1 Introduction

1.1 Problem Statement
1.2 Contributions
1.3 Outline

2 State of the art

2.1 Process model comparison based on task labels

2.2 Process model comparison based on model structure

2.3 Process model comparison based on behavior

3 Background

3.1 Petrinets
3.1.1 Petri net subclasses
3.1.2 Branching process of a Petri net system
3.1.3 Configurations and families of pomsets

3.2 Event structures

3.2.1 Prime event structures

11

12

13

17

19

21

26

29
30
31
33

3.2.2 Asymmetric event structures 59

3.2.3 Flow event structures 64
3.3 True concurrency semantic equivalences 68
3.3.1 Configuration equivalence 69
3.3.2 Completed visible-pomset equivalence 70
3.3.3 History preserving bisimilarity 71
Behavioral profiles for process model comparison 73
4.1 Behavioral profiles (BP) 74
4.2 FESas BP 7
4.3 An execution semantics for BP|y 80
4.4 Expressing differences using BP|,, 85
4.5 BP and silent transitions oL, 87
4.6 Discussion 90
Process model comparison based on event structures 92
5.1 Finite representation of cyclic process models 93
5.1.1 Multiplicity of activities 97
5.1.2 Multiplicity of activities in free-choice workflow nets 100
5.2 Comparison based on event structures 102
5.2.1 Partial synchronized product 106
5.2.2 Identifying differences. 114
5.2.3 Verbalizing differences 117
5.3 Discussion 121
Reduction of event structures 123
6.1 Foldings 124
6.2 Reductionof AESs L. 124
6.3 Reduction of FESs 139
6.4 Deterministic foldings and canonicity 153
6.5 Discussion o 156

7 Implementation and validation

7.1 Evaluation

8 Conclusions
8.1 Summary of contributions

8.2 Future work
References

Appendix A Basic notions and notations
A.1 Sets and numbers L
A2 Sequences
A3 Relations. L
A4 Functions

10

159
161

169
169
172

175

List of Abbreviations

Abbreviation Meaning Page
BPMN Business Process Model and Notation 19
EPC Event-driven Process Chain 19
UML Unified Modeling Language 19
FSM Finite State Machine 32
LTS Labeled Transition System 33
BP Behavioral Profiles 34
WEF-net Workflow net 47
ES Event Structure 57
PES Prime Event Structure 58
AES Asymmetric Event Structure 59
FES Flow Event Structure 64
WEF-flow net Workflow and flow net 76
Cp Complete Prefix 93

11

List of Symbols

o5

O MeMillan
OFERV

GPred
R

K
E

Description

Asymmetric event structure.

Flow event structure.

Petri net system.

Branching process.

Prime event structure.

Configuration equivalence.

Tasks labels.

Natural numbers including 0.

Executions of a net system.

Strong postconditions.

Family of pomsets.

Completed visible-pomset equivalence.
History preserving bisimulation equivalence.
WEF-flow nets.

Behavioral relations.

Class of nets.

Isomorphism.

Unlabeled WF-flow nets.

Cutting context.

Cutting context defined in [McMi 95].
Cutting context defined in [Espa 02].

(new) Cutting context based on predecessors.
Self-preceding transitions.

Necessary transitions.

Event structure, in Chapter 5 either A or F.

12

List of Figures

1.1
1.2
1.3
1.4
1.5

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14

Subset of core BPMN elements 20
Equivalent variants of business process models 22
M3, process model variant of models in Figure 1.2 23
Mapping of tasks, events and gateways to Petri nets. 24
Petri net of process model M3 (Fig. 1.3) 25
Messaging system modeled as a Petrinet N.. 37
Petri net system N of N with a marking My 39
Net systems exemplifying causal, conflict, and concurrent

relations between events 40
Petri net system A with a terminal marking M, 42
Example of causalnets 43
Non-free choice Petrinet 46
Occurrence net N1 o o o v i i 47
(sound) Workflow net system 48
Non-flow and flow net example 49

Flow net system and its configurations ordered by set inclusion 51

Branching process, inductive rules. 52
Petri net system and its unfolding 53
Family of pomsets ordered by inclusion, i.e., pomsets of flow

net system in Fig. 3.10a. 56
Example of PES o 58

3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

3.23

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3

Example of AES 60

Inheritance of conflict along causality in AESs. 62
Inheritance of ~ oo 63
AES A and its set of configurations ordered by extension . . 65
Example of FES oo 65
A FES which is neither faithful nor full. 67
Example of configuration-equivalent families of pomsets. . . 69

Visible pomset equivalent flow net systems (a), (b) and their

visible pomsets ordered by inclusion (c). 70
History preserving bisimilar AESs 72
Net system and its behavioral profile BP|,, 74
WE-flownets, 75
Flow net system and its corresponding FES 7
BPlies(N6) - oo oo 79

Equivalent WF-flow nets without (4.5a) and with (4.5b) an

implicit place and their corresponding FESs aside. 80
Net system N7 and its behavioral profiles BP|,, and BP|fs 81
Net system Ng and its behavioral profiles BP|, and BP|f.s 83

Net system Ng and its behavioral profile BP|y, 86
Branching process of net system Ny (Fig. 4.8a) 86
WEF-flow net system and its BP|fes 88
Net systems with isomorphic sets of 4C relations over labels 89
Generalization of the net systems in Fig. 4.11. 90
Net systems with isomorphic sets of 4C relations over labels

without concurrency oL 90
Petri net system and its complete unfolding prefix 93
Complete unfolding prefix B2 94
Non-free choice “cyclic” net system and its unfolding 100

14

5.4

9.5
5.6
5.7
5.8
5.9

5.10

5.11
5.12

5.13
5.14

6.1
6.2
6.3
6.4
6.5

6.6

6.7
6.8
6.9
6.10
6.11
6.12

Non hp-bisimilar PESs, but completed visible-pomset equiv-

alent 103
PES and its restriction to observable behavior 104
Example of graph-based PES comparison 106

Partial matching operations given a partial match (C1,§,Cs) 108
PESs and a pair of partial matches between their configurations109
PESs and their partial synchronized product with the opti-
mal partial matcheso oo 112
(a) Matrix representations for (a) partial match

({a1,b1,c1},&,{a2,be}) and (b) extended partial match

({a1,b1,¢1},(=€&[c1 = 2], {ag,bo}) - o o o oo oo 115
Synthetic matching operation 117
PESs and their partial synchronized product with the opti-

mal matches L 120
AES equivalent to Py in Figure 5.12a 121
Three history preserving bisimilar event structures. 122
AES A" and a folding A”. 125
AESs such that Ag =5, Ay but Ag #p, Ag. ..o oL 125
Configurations of the AESs in Figure 6.2, ordered by extension126
AES and its quotient L 129

Quotients with respect to a set X = {ag,a1} of non-similar
events 133
The set p({co,c1}) = {a,b}, includes a which is neither in

the history of comorof ¢q L. 135
Foldings for the AES in Figure 6.2 138
FES F and a folding F" 139
Sample FESs 140
Example of direct conflict in FES, a#sd and -=(d#sa) . . . 141

Example FESs to illustrate Condition 5 in Definition 6.12 . 143

FES and two minimal non-isomorphic quotients 153

15

6.13 Equivalent AESs 153

6.14 Canonical labeling and folding 155
6.15 A PES P and a possible folding P’ that cannot be obtained

by composing elementary foldings 157
6.16 Non-completeness of the quotient technique for FESs 158
7.1 Process model example My, 160
7.2 Representation of differences 161
7.3 Web interface of BP-Diff 162
7.4 Snippet of the process models SA 3 and WA3 166

7.5 Difference 1 (J2, P2) between SA 3 and WA 3 using PES . . 167

7.6 Difference 2 (J2, P2) between SA 3 and WA 3 using PES . . 167
7.7 Difference 3 (J2, P2) between SA 3 and WA 3 using PES . . 167
7.8 Difference 4 (J2, P2) between SA 3 and WA 3 using PES . . 168
7.9 Difference 1 (J2, P2) between SA 3 and WA 3 using AES. . 168

16

List of Original Publications

I

II

11

Abel Armas-Cervantes, Luciano Garcia-Banuelos and Marlon Dumas.
Event Structures as a Foundation for Process Model Differencing, Part
1: Acyclic processes. In 9th International Workshop on Web Services
and Formal Methods 2012, Tallinn, Estonia, September 6-7, 2012. Lec-
ture Notes in Computer Science, vol. 7843, pages 69-86, Springer 2013.

o The author contributed the selection of the examples, literature

review and writing of some sections.

Abel Armas-Cervantes, Paolo Baldan and Luciano Garcia-Banuelos.
Reduction of Event Structures under History Preserving Bisimulation.
Submitted to Journal of Logical and Algebraic Methods in Program-
ming, Special Issue: The 23rd Nordic Workshop on Programming The-
ory (NWPT 2013). 44 pages.

o The author contributed part of the idea, part of writing, part of

the formalizations and proofs and selection of examples.

Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas and Luciano
Garcia-Banuelos. Behavioral Comparison of Process Models Based on
Canonically Reduced Event Structures. In Proceedings of the 12th In-
ternational Conference on Business Process Management (BPM 2014),
Eindhoven, The Netherlands, September 10, 2014. Lecture Notes in
Computer Science, vol. 8659, pages 267-282, Springer 2014.

17

v

VI

e Lead author. The author contributed part of the idea, formaliza-

tion, writing, proofs, selection of examples and implementation.

Abel Armas-Cervantes, Marlon Dumas, Luciano Garcia-Banuelos and
Artem Polyvyanyy. On the Suitability of Generalized Behavioral Pro-
files for Process Model Comparison. In 11th International Workshop
on Web Services and Formal Methods: Formal Aspects of Service-
Oriented and Cloud Computing 2014, Eindhoven, The Netherlands,
September 11-12, 2014. LNCS, 15 pages, Springer 2015, (in press).

e Lead author. The author contributed the idea, formalization, writ-

ing, proofs and selection of examples.

Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas and Luciano
Garcia-Banuelos. BP-Diff: A Tool for Behavioral Comparison of Busi-
ness Process Models. In Proceedings of the BPM Demo Sessions 2014
Co-located with the 12th International Conference on Business Process
Management (BPM) 2014, Eindhoven, The Netherlands, September
10, 2014. CEUR Workshop Proceedings, Vol. 1295, pp. 1-5.

e Lead author. The author contributed the idea, writing and imple-

mentation.

Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas and Luciano
Garcia-Banuelos. Diagnosing Behavioral Differences Between Business
Process Models: An Approach Based on Event Structures. Submitted
to Journal of Information Systems, Special Issue of Business Process
Management (BPM) 2014. 51 Pages.

e Lead author. The author contributed the idea, implementation,

writing, part of proofs and selection of examples.

18

Chapter 1

Introduction

Process

models

\ /
| |
| | :
| | Comparison
| |

N ————

Business processes are the arteries of modern organizations. They de-
termine how work is done in an organization. A business process is a
“collection of related events, activities and decisions, that involve a num-
ber of actors and resources, and that collectively lead to an outcome that
is of value to an organization or its customers.” [Duma 13].

There are several modeling languages for business process modeling;
BPMN, EPC and UML are cases in point. For the sake of exemplification,
Figure 1.1 shows a subset of the core elements of BPMN. The start and end
events represent the initiation and termination of an instance of a process,
respectively. The tasks denote units of work to be performed. The flow
represents the order among the events, gateways and tasks. Finally, gate-
ways are control flow elements and they can represent either the splitting
or merging of paths. In the case of exclusive gateways, a split has more

than one outgoing flow, but only one of them can be activated (according

19

to a defined condition); the counterpart, the join exclusive gateway, merges
the incoming alternative flows. Conversely, the fork parallel gateway de-
notes the parallel activation of all the outgoing paths; whereas, the merging

counterpart denotes the synchronization of the multiple incoming paths.

Start End
Activity
Task
Sequen
quence
flow
Normal
flow
Gateway @ <—I>
Exclusive Parallel
gateway gateway

Figure 1.1: Subset of core BPMN elements

Process models offer a suitable representation for many analysis tech-
niques, e.g., techniques to assess the performance of the overall process, and
can cope with ambiguities that may emerge from, for instance, a textual
description of processes. In business process management, process models
are a pervasive element, insofar as the life cycle of a single process can en-
compass multiple versions of the same model. The as-is model represents
an existing —or a new— process, from which the to-be model is constructed
after a stage of analysis and redesign, and finally, a new improved model is
created by correcting encountered issues, such as deviations or bottlenecks.
The importance of process models as key information assets in modern or-
ganizations motivates the creation of effective techniques for their efficient

management.

20

The comparison of process models is a basic operation when managing
collections of business process models [Dijk 11]. For example, an organi-
zation with mature business process practices can gather large amounts
of models. Oftentimes, they include multiple variants of the same pro-
cess. Variants may stem, not only from the as-is and to-be process models,
but from distinct products, different types of customers (e.g. corporate vs.
private customers), different legislations across countries in which a com-
pany operates, or idiosyncratic choices made by multiple business units
over time. In this setting, analysts need to compare models and accurately
understand the differences between multiple variants in order to determine
how to reconcile them.

This thesis deals with the problem of comparing pairs of business pro-
cess models, with an emphasis of comparing the behavior represented by
the process models as opposed to comparing the process models lexically or
syntactically. The specific process model comparison problem addressed in
this thesis is formulated and scoped in Section 1.1. Next the contributions
of the thesis are spelled out in Section 1.2. Finally, Section 1.3 provides

the outline of the thesis.

1.1 Problem Statement

Existing techniques for process model comparison can be roughly divided
into those based on structure and those based on behavior. In the former,
the differences are explained as graph edit operations, such as remove,
insert or replace tasks, that need to be applied in one model in order to
obtain the other; whereas in the latter, the differences are explained in
terms of the behavioral dependencies among tasks captured in one model
and not in the other. In some cases, a structural comparison is sufficient
to understand the differences between two variants. However, two variants

may be structurally different, yet behaviorally equivalent; or they may be

21

very similar structurally, but quite different behaviorally, as changes in a

few gateways or edges may entail significant behavioral differences.
Arrange

O
appt. Arrange
delivery

Arrange
pickup

Produce
ship.
notice

Prepare
transp.
quote

Arrange
delivery
appt.

(a) M1

Produce
ship.

Arrange
delivery
appt.

Prepare

O—> transp.

quote

Arrange
pickup

Produce
ship.

Arrange
delivery

Arrange
pickup
appt.

(b) M

Figure 1.2: Equivalent variants of business process models

Figure 1.2 shows two process models M; and M, ! represented using
BPMN. They are structurally dissimilar to the extent that their numbers
of tasks differ. Nevertheless, the executions of both process models are the
same, and so they can be considered as behaviorally equivalent.

This thesis approaches the problem of diagnosing behavioral differences
between pairs of business process models. Then given a pair of process
models, this thesis proposes a method to determine if they are behaviorally
equivalent — taking concurrency into account — and if not, the discrepancies
are explained using simple and intuitive statements, the last in order to
target the analysts as the end users of the technique.

The simplest way to explain the behavioral differences between a pair

of processes is, possibly, as behavioral relations between pairs of tasks (or

'Based on an order fulfillment process presented in [Rosa 10].

22

occurrences of tasks) that hold in one model and not in the other. We
specifically deal with three elementary types of behavioral relations that, to-
gether with repetition, have been postulated as basic control-flow workflow
patterns [Aals 03], namely causal precedence (corresponding to “sequence”
in a process model), conflict (exclusive branches in a process model), and
concurrency (parallel branches in a process model).

Concurrency is an important construct in nowadays process modeling
languages and analysis techniques. For instance, the cycle time of a process
with the concurrent execution of a set of tasks differs from the cycle time
of the same process with the arbitrary interleaved representation thereof.
Therefore, we consider that while comparing process models, it is necessary
to adopt an equivalence notion, together with behavioral abstractions, that

preserve the concurrency modeled by the analysts.

b Arrange d
o] i e
appt.
Arrange
delivery

c | appt.

a Prepare

Produce
ship.
notice

Figure 1.3: Ms, process model variant of models in Figure 1.2

As an example of the results that we aim at, consider the process model
Ms in Figure 1.3, which is a variant of the models in Figure 1.2. Mj is
structurally and behaviorally dissimilar to M; and My, then an intuitive
way to explain the behavioral differences between Ms and M (similarly,
between M3 and My) to an analyst can be via statements of the form: “In
Ms, there is a state after Prepare transportation quote where Arrange delivery
appointment can occur before Produce shipment notice or Arrange delivery
appointment can be skipped, whereas in the matching state in My, Arrange
delivery appointment has to occur before Produce shipment notice”, and “In
M3 activity Arrange delivery appointment occurs 0,1 or more times, whereas

i My it occurs at most once”.

23

Petri nets [Petr 62] are a well-known modeling tool for concurrent pro-
cesses [van 98] that has been widely used in the context of analysis of busi-
ness processes. It has a formally defined semantics and there exist various
available analysis techniques for it. Throughout the thesis we assume that
the input process models are given as Petri nets. This design choice enables
the application of the presented techniques to any process modeling lan-
guage with a mapping to this formalism. For example, a transformation of a
large subset of BPMN to Petri nets can be found in [Dijk 08b], and a subset
of such mapping rules are shown in Figure 1.4." For instance, the Petri net
resulting from the application of the mapping rules to model M3 (Fig. 1.3)
is that of Figure 1.5. In addition to providing a language-neutral repre-
sentation, the use of Petri nets allows us to reuse a large body of existing

theoretical results, for example the theory of unfoldings [Enge 91, Niel 81].

BPMN Petrinet

Start

Ol
O O
oW

End

|

Task

®

Exclusive "
gateway Split Join

b

Parallel
gateway

4
4

A
y

Fork 7 " Merge

Figure 1.4: Mapping of tasks, events and gateways to Petri nets

!This transformation does not cover some BPMN constructs such as OR-joins, which
cannot be straightforwardly translated into Petri nets [Favr 15].

24

Figure 1.5: Petri net of process model M3 (Fig. 1.3)

1.2 Contributions
The contributions of the thesis are the following.

e Unfolding technique of process models with cycles

We propose an unfolding technique to compute a finite representation
of a process model with cycles. The unfolding guarantees to capture

all the causal dependencies between the tasks of a process model.

e Behavioral comparison of process models

We propose a comparison technique based on event structures. Specif-
ically, given a pair of process models, we compute their correspond-
ing event structures, which describe the behavior in terms of events
(occurrences of actions) and behavioral relations. Then another for-
malism, named as partial synchronized product, is used to determine
the optimal matching between the behavior of the compared pro-
cesses and, by the same token, to identify the behavioral differences.
The adopted notion of equivalence is completed visible-pomset equiv-

alence.

e Verbalization of differences as binary behavioral relations

We present a method to detect and express behavioral differences
as pairs of mismatching binary behavioral relations. The differences
are detected in the partial synchronized product resulting from the

comparison technique, whereas the verbalization uses the relations

25

in the underlying event structures. The verbalization of the differ-
ences produces natural language statements using a set of predefined

templates.

o (Deterministic) Reduction technique for asymmetric and flow event

structures

We propose behavior-preserving reduction techniques for asymmetric
and flow event structures. The adopted equivalence notion is his-
tory preserving bisimulation. The reduced representation of an event
structure can lead to more succinct diagnosis during the verbalization
of the differences. Although, in general, there is no minimal repre-
sentation of the behavior of a process using either asymmetric or flow
event structures. Therefore, we define a deterministic order on the

reduction operations to compute a canonical reduced representation.

e Implementation of the comparison technique, BP-Diff

The proposed comparison technique has been implemented in a tool
called BP-Diff. It is a web-based tool that takes pairs of process
models in BPMN format and outputs the textual explanation and

graphical representation of the differences.

1.3 Outline

State of the art techniques are discussed in Chapter 2. Specifically, we
review comparison techniques based on three aspects of process models:
tasks labels, structure and behavior.

The theoretical background of the thesis is presented in Chapter 3.
The first part presents Petri nets and their semantics. Next, three variants
of event structures are introduced: prime event structures, asymmetric
event structures and flow event structures. Finally, we present the three

behavioral equivalence notions used throughout the thesis.

26

Chapter 4 studies the expressive power of behavioral profiles, an existing
formalism proposed for the behavioral representation of business process
models. It is shown that while existing behavioral profiles can ensure a
notion of equivalence for a restricted family of Petri nets, the interpretation
of the relations can be vague and misleading in some scenarios. Finally,
we present a set of counter examples where the notion of equivalence stops
holding with existing behavioral profiles, i.e., when Petri nets contain silent
transitions. The results of this chapter were published in [Arma 14e].

In Chapter 5, we present a behavioral comparison technique based on
prime event structures. First, we propose an unfolding technique for process
models with cycles. The unfolding constructs a finite representation of the
behavior while capturing all possible causal dependencies between the tasks
in the model. Using such representation the tasks that can occur more
than once in a computation are distinguished from the ones that cannot.
Second, in order to compute the similar and divergent behavior of a pair of
processes, we introduce a, so called, partial synchronized product of (prime)
event structures. Finally, we present a verbalization technique to produce
natural language statements expressing encountered differences. However,
we note that using other types of event structures, such as asymmetric and
flow event structures, it is possible to provide smaller diagnosis. The results
of this chapter were published in [Arma 14a, Arma 14c].

Chapter 6 presents reduction rules for asymmetric and flow event struc-
tures. The presented reduction techniques ensure the preservation of the
behavior w.r.t. history preserving bisimulation. In general, there is not a
single (minimal) representation for the behavior of a process, neither using
asymmetric nor flow event structures. In the context of reduction of event
structures, the order on which the reduction operations are applied can lead
to non-isomorphic and non-reducible (equivalent) event structures with the
same number of events. Thus, at the end of Chapter 6, we suggest a way

to define a deterministic order on the reduction operations, such that the

27

reduced version of an event structure is always the same. The results of
this chapter were published in [Arma 14a, Arma 14d].

Chapter 7 provides an overview of BP-Diff, a prototype tool imple-
menting the proposed technique. Additionally, it presents an evaluation of
the tool using two libraries of real-life process models. The results of this
chapter were published in [Arma 14b, Arma 14c].

Finally, Chapter 8 concludes this thesis and presents some future lines

of research.

28

Chapter 2

State of the art

[
I
: Comparison
I

N ———

\

—_——_——————

Structure Labels Behavior

Existing comparison techniques for process models are based on three
complementary aspects [Duma 09]: task labels, structure and behavior.
The comparison of labels seeks an alignment among the tasks of a pair
of process models. State-of-the-art techniques that approach this type of
comparison are reviewed in Section 2.1. Next, we review structure-based
comparison techniques in Section 2.2. Specifically, we review techniques
that consider process models as labeled graphs and describe the differences
as edit operations either over edges, nodes or both. Finally, Section 2.3
reviews behavior-based comparison techniques that focus at the comparison

of the execution semantics of the process models.

29

2.1 Process model comparison based on task la-
bels

The alignment between a pair of process models seeks for correspondences
among their tasks [Duma 09]. Roughly, a task corresponds to another if
both represent the same activity. An obvious way to define such alignment
is to look at the labels attached to the tasks, such that if a pair of tasks
have the same label then it is possible to define a 1:1 correspondence,
aka elementary match, between them. Task correspondences can also be
complex (non-elementary) 1:n matches where one task in one model can
correspond to a set of n tasks in the other.

Tasks representing the same activity can have different, yet similar,
labels attached, what makes more difficult the computation of a task align-
ment. In this regard, string similarity measures can mitigate the effect
of having various ways to describe and name a single task. They can be
defined with respect to the syntax or the semantics of a string. String
edit distance [Leve 66] is an example of a syntactic similarity measure, and
it counts the minimum string edit operations (delete, insert or substitute
characters) necessary to transform one string into another. Conversely, a
similarity measure based on semantics can be computed using a thesaurus,
e.g, WordNet, that determines the semantic similarity between the words
of a pair of strings. A thesaurus can help coping with the cases where a
pair of labels are syntactically different, but they have a close meaning,
e.g., “Send documents” and “Forward documents”.

In the context of process model similarity, the majority of existing works
have focused their attention on the computation of elementary matches
between the tasks of the models. Different authors have used similarity
measures between a pair of task labels based on syntax, semantics, or a

combination of both, that is the case of the techniques presented in [van 08,

30

Dijk 11, Duma 09, Ehri 07]; in such works the similarity of a pair of models
is given by the combination of the similarities of their tasks labels.

A work addressing the problem of complex 1:n matches is [Weid 10].
The authors propose a framework comprising four different components:
searchers, boosters, evaluators and selectors. In this framework, the simi-
larity metrics to define matches among the tasks can use other aspects than
string label similarity, e.g., they can also take into account the descriptions
of the matched tasks, and structural or behavioral relations between them.
The framework is then extended in [Leop 12, Klin 13] where probabilistic
optimizations are integrated for the computation of the matches.

The alignment between a pair of process models can be seen as a pre-
processing step for either a structural or behavioral comparison. In this
work we acknowledge the importance of such alignment, but we assume
that the correspondence between the tasks in the models is given. In the
remaining of the thesis,we consider only elementary matches and the cor-
respondence between tasks is denoted by the labels of the activities, i.e., if
a pair of tasks represents the same activity then they have necessarily the

same label.

2.2 Process model comparison based on model

structure

Process models are annotated graphs where the flow relations are edges and
the tasks, events, gateways, or any other element in the modeling language,
are nodes. Then a structural comparison can rely on standard graph edit
distance techniques to describe the differences between a pair of process
models as edit operations [Mess 95|, such as insert, delete and substitute
nodes or edges. Such operations reflect the changes required in one graph

in order to obtain the other.

31

The authors in [Ait 09] present a structure-based comparison technique
for finite state machines (FSM). Roughly, given a pair of FSMs, the tech-
nique computes correspondences between their states and verify that the
operations on one FSM are available on the other at every pair of matched
states. Then the differences reflect the operations available in a FSM that
are not available in the other, and they are expressed as addition, deletion
and modification of operations (edges in the state machines).

Structural comparison techniques defined for business process graphs
are presented in [Dijk 11, Dijk 09b, Yan 12, Dijk 09a]. Different
from [Ait 09], these works define edit operations over both nodes and edges,
thus the differences are expressed in terms of deletion, insertion and substi-
tution of nodes, and deletion and insertion of edges. In [Dijk 09a, Yan 12],
the authors present different heuristics that can cope with the complex-
ity inherent to the graph edit distance technique (NP-complete [Mess 95]).
Other related works include [Madh 04], where the authors propose a struc-
tural metric between process models based on similarity flooding [Meln 02].

The body of research in the field of label-based and structure-based com-
parison of process models has reached a certain level of maturity. A process
model matching contest [Cayo 13] has been organized where a number of
methods for process model comparison, based on both task labels and struc-
ture, have been pitched together. While a number of challenges remain, the
current limitations of lexical and structural process model matching are un-
derstood.

As mentioned in Chapter 1, a fundamental limitation of structure-based
comparison techniques is that a pair of process models can be structurally
different, yet behaviorally equivalent. Conversely, a pair of process models
can be very similar structurally, but they can entail completely dissimilar

behavior. The next section reviews the techniques based on behavior.

32

2.3 Process model comparison based on behavior

A large amount of research has been devoted to the definition of equiva-
lence notions for concurrent systems [Glab 89, Glab 90, Glab 01], ranging
from trace equivalence to bisimulation equivalence, to finer equivalences in
the true-concurrency (aka partial-order) semantics where the concurrent
execution of tasks is taken into account. The adoption of one of those no-
tions in the context of the comparison of behavior is crucial since it would
establish the ground rules of the comparison. For example, the notions
based on interleaving semantics deem as equivalent the concurrent and in-
terleaved (sequential) execution of tasks; whereas, the notions based on
true concurrency semantics would deem such case as inequivalent.
Perhaps one of the earliest works on diagnosing concurrent system dif-
ferences is [Clea 91]. The author presents a technique to derive equations in
a process algebra characterizing the differences between two labeled tran-
sition systems (LTSs). On the one hand, the use of a process algebra
rather than a graphical language can make the feedback more difficult to
grasp for end users (process analysts, in our context). On the other hand,
the technique relies on interleaving bisimulation equivalence and does not
take into account the concurrent structure of the process (a process model
with concurrency and its interleaved version are equivalent). The authors
in [Soko 06] present a method for assessing the dissimilarity of LTSs in
terms of “edit” operations. This technique adopts a notion of equivalence
that does not differentiate between the concurrent and the interleaved ex-
ecution of tasks; whereas, the generated feedback does not tell the analyst
what behavioral relations exist in one model that do not exist in the other.
The same remarks apply to [Dijk 08a] that presents a method for diagnos-
ing differences between pairs of process models using standard automata
theory. In addition, this technique uses a fixed taxonomy of differences to
identify the discrepancies between a pair of processes. As pointed out by

the author, the taxonomy of differences is not guaranteed to be complete,

33

and thus the technique might not report differences between inequivalent
processes.

Behavioral profiles (BP) [Weid 11b] and causal behavioral pro-
files [Weid 11c] are two approaches that represent processes using binary
relations. They abstract a process using a n x n matrix, where n is the
number of tasks in the process. Each cell contains one out of three re-
lations: strict order, exclusive order or interleaving; plus an additional
co-occurrence relation in the case of causal behavioral profiles. Both tech-
niques are incomplete as they mishandle several types of constructs, e.g.,
task skipping (silent transitions), duplicate tasks, and cycles. In this case,
two processes can have identical BPs despite not being behaviorally equiv-
alent in any standard sense (e.g., trace equivalent).

4C spectrum [Poly 14] is another family of binary relations that repre-
sents the behavior of a process in a n x n matrix. It offers a plethora of
different relations and each cell in the matrix can contain more than one
relation. However, 4C spectrum suffers from the same issues as the behav-
ioral profiles because it does not guarantee any of the well-known notions
of equivalence. Furthermore, the relations in this family can be difficult to
interpret and may result counter intuitive to the analysts. In Chapter 4 we
present a more extensive analysis, i.e., reach and limitations, of the behav-
ioral comparison of process models using the relations in 4C spectrum and
behavioral profiles.

Alpha relations [van 04] are another representation of processes us-
ing binary behavioral relations (direct causality, conflict and concurrency),
proposed in the context of process mining. Direct causality however is not
transitive (i.e., causality has a localized scope) and cannot capture so-called
“short loops” and silent behavior [Bado 12]. Relation sets [Weid 12] are a
generalization of alpha relations. Instead of one matrix, the authors use k
matrices (with a variable k). In each matrix, causality is computed with a

different look-ahead. It is shown that 1-look-ahead matrices induce trace

34

equivalence for a restricted family of Petri nets. The authors claim that
using k£ matrices improves accuracy. Nevertheless, it is unclear how human-
readable diagnosis could be extracted from two sets of £ matrices and to

what notion of equivalence would this diagnostic correspond.

35

Chapter 3

Background

Petri Behavioral Event
nets equivalences structures

This chapter presents basic definitions and fixes the notation used in
the remaining of the thesis. As a complement, a compilation of standard
notions can be found in Appendix A.

Section 3.1 introduces fundamental notions on Petri nets, specifically,
syntax, execution semantics and behavioral properties. By the same to-
ken, families of pomsets are presented as a generic model of concurrency
applicable to different formalisms defining a notion of configuration. It
is used later to formulate generic definitions, e.g., behavioral equivalence
notions. Section 3.2 reviews basic definitions on event structures. We in-
troduce three types of event structures: prime, asymmetric and flow event
structures. Finally, different notions of equivalences in the true concurrency

spectrum are presented in Section 3.3.

36

3.1 Petri nets

Petri nets [Petr 62] are a formal model for concurrent systems. It offers an
intuitive graphical representation and a precise mathematical definition.
Furthermore, additional key features of this model include its formally de-
fined semantics and the availability of several analysis techniques. This
section recalls the basics of Petri nets: graphical representation, notation

and semantics.

Syntax of Petri nets

A Petri net is a directed graph with two types of nodes: transitions and
places, and every arc in the net (aka flow relation) cannot connect two
nodes of the same type. Intuitively, the transitions represent the tasks of a
process, the places represent the states of the process and the order among
the nodes is defined by means of flow relations. Typically, the transitions,
places and flow relations in a Petri net are graphically represented with
boxes, circles and directed arrows, respectively. For example, the Petri net
in Figure 3.1 represents a process to file reports. The annotated boxes
Prepare report, Send report, Update documents, Update entry and Create
new entry are transitions, the annotated circles p; — p5 are places, and the

directed arrows are flow relations.

Prepare
P1 report P2

Update
documents

Create new
entry

Figure 3.1: Messaging system modeled as a Petri net NV

37

Formally, a Petri net is defined as follows.

Definition 3.1 (Petri net). A Petri net, or a net, is a tuple N = (P, T, F),
where P and T are disjoint sets of places and transitions, respectively, and
Fc(PxT)u(T x P) is the flow relation; each element of F' is an arc of
the Petri net.

Throughout the thesis, we consider only finite Petri nets, i.e., nets with
a finite number of places and transitions. The transitions of a Petri net
can wear labels representing the activity that they represent. A transi-
tion wearing a label is called observable, otherwise silent. In the running
example, Figure 3.1, all the transitions in the net are observable. A net
with a labeling function from transitions to labels is called labeled. The for-
mal definition of a net is extended below to consider the labeling function.

Hereinafter, A stands for a fixed set of tasks labels.

Definition 3.2 (labeled Petri net). A labeled net is the tuple (P, T, F,\)
where (P,T,F) is a net, and X\ : T > A u {7} is a function that maps
transitions to labels. Note that 7 is a special label, 7 ¢ A, and if A(¢) = 7,

where t € T', then ¢ is said to be silent; otherwise t is observable.

Oftentimes we will refer to the pre- (respectively, post-) set of a node.
A node y is in the preset (respectively, postset) of another node z if there
is a flow relation from y to x (respectively, from z to y). As an example,
in Figure 3.1, py4 is in the preset of Create new entry; whereas, ps and py
are in the postset of Send report. This intuition is formally captured in the

next definition and extended to the pre- and postset of sets of nodes.

Definition 3.3 (pre- and postset of a (set of) node(s)). Let N = (P, T, F)
be a Petri net and y € PuT be a node in N. The preset of y is defined
as % = {x € PuT | (x,y) € F}; whereas the postset of y as y* = {z €
PuT | (y,z)eF}.

Similarly, for a set of nodes X ¢ PuT, *°X = U{*z |z € X} and X* =
U{z® |z e X}.

38

The above concepts constitutes the syntax of the Petri nets. Different
classes of nets have been defined by imposing restrictions at the syntactic
level; further in this chapter we will present three classes of such nets, causal
nets, occurrence nets and free choice nets. Now we turn our attention to

the semantical aspect of Petri nets.

Semantics of Petri nets

Places are containers for tokens that stands for data, documents, messages
or anything else that moves along the system. The cornerstone to formulate
the behavior, or dynamics, of Petri nets is the firing rule, which establishes
the circumstances under which a transition can occur and how the tokens
are moved in the net. A token distribution of a net, aka marking, denotes a
state during the execution of the system. Formally, a marking is a function
from places to natural numbers including 0. E.g., the marking in Figure 3.2
associates p; and ps with 1, number of tokens (graphically represented as

black filled circles) in those places, and po, p3, ps and pg with 0.

Prepare
P1 report P2

Update
documents

Create new
entry

Figure 3.2: Petri net system A of N with a marking M

A Petri net equipped with a marking is called a Petri net system, e.g.,

Figure 3.2, and it is formalized in the next definition.

Definition 3.4 (marking, (labeled) Petri net system). Given a Petri net
N = (P, T,F), a marking of N is a function M : P - Ny that assigns a

39

non-negative number to every place p € P. A Petri net system, or simply a
net system, N = (N, M) is the net N = (P, T, F) with a marking M. The
initial marking of a net is denoted as M. Finally, a net system (N, M) is
labeled if N is labeled.

A transition is said to be enabled if every place in its preset has at least
one token. In simple words, if a transition is enabled then it means that
there exist the necessary resources to execute the corresponding activity,
and thus it can occur. The firing of an enabled transition removes one
token from every place in its preset, and sets one token to every place in
its postset. The firing of a transition produces an event (an occurrence of
an activity). In the running example, Figure 3.2, Prepare report and File
report are the only enabled transitions, and in order to enable, for instance,
Send report then it is necessary to fire Prepare report first.

Formally, a marking M of a net N = (P, T, F') enables a transition t € T,
denoted as M [t), iff Vp e % : M(p) > 0. Moreover, the occurrence (firing) of
t leads to a new marking M’, denoted as M Ny Vi , computed according

to the following rules for every place p € P:

M(p)-1 ifpe’t~t®
M'(p)={ M(p)+1 ifpet® N
M(p) otherwise

Update File

Prepare

P1 re?ort P2

Prepare Send @ C)
P1 report P2 report Pa
@_,i}_,@_,i}_,o Createnew p; Fle ps P, File P
entry report 2 report
(a) Causality (b) Conflict (¢) Concurrency

Figure 3.3: Net systems exemplifying causal, conflict, and concurrent rela-
tions between events

Implicitly a Petri net system represents different dependency relations

between the events. For example, in Figure 3.3a, Send report can occur

40

only after Prepare report, in which case the produced events are said to
be in causal relation. In Figure 3.3b, Update entry and Create new entry
are both enabled and the occurrence of one disables the occurrence of the
other, thus the corresponding events are said to be in conflict. Finally,
Figure 3.3c shows the case when Prepare report and File report can occur
independently, i.e., the events are concurrent.

Using the firing rule of transition as a basis, we present techniques to
describe the behavior of the Petri net models, namely sequential semantics

and causal semantics.

Sequential semantics The sequential semantics describes the behavior
of a Petri net by means of transition sequences that can be executed by
the net. Such sequences are called firing sequences. A single transition can
appear multiple times in a firing sequence, e.g., when the net has cycles,
and thus several events corresponding to the same transition are produced.
Firing sequences produce totally ordered sets of events and the concurrent
execution of transitions is represented as arbitrary interleaving. The formal

definition of a firing sequences is as follows.

Definition 3.5 (firing sequence). Let N' = (N, My), N = (P,T,F), be a
Petri net system. A sequence of transitions o =t;...t, in T', where n € Ng,
is a firing sequence in N iff o is empty or it holds that M 4, My 2,
M. .. In, M,,. In the latter case, we say that o leads from My to M, and
denote by My[o)M,,.

A marking M where there is no enabled transition is called terminal.

Definition 3.6 (terminal marking). Let N' = (N, My), N = (P,T,F), be a
Petri net system. A marking M of N is terminal iff there exist no transition
enabled at M.

A firing sequence leading from an initial to a terminal marking is called

an execution. For example, consider the net system with initial marking My

41

in Figure 3.2, and let ¢ be a firing sequence consisting of the transitions:
Prepare report, Send report, Create new entry and File report. Then o leads
from My to M, marking displayed in Figure 3.4. It is easy to check that
M, is terminal since there is no enabled transition, and therefore o is an

execution. This intuition is captured by the next definition.

Definition 3.7 (execution). Let N = (N, My), N = (P, T, F), be a Petri net
system. A firing sequence o that leads from My to M, where M is terminal,
is called an execution. By A(N'), we denote the set of all executions of N.

Prepare
P1 report P2

Update
documents

Create new
entry

Figure 3.4: Petri net system A with a terminal marking M,

Causal semantics Another technique to describe the behavior of a Petri
net, besides sequential semantics, is via causal nets; in the literature they
are also called process nets. This type of nets defines some syntactical
restrictions, i.e., in a causal net the transitive closure of the flow relation
is a partial order (there are no cycles) and the cardinality of the pre- and
postset of every place is at most one. Then the causal semantics of a
Petri net is composed by the causal nets representing the executions of the
System.

Causal nets describe the partial order semantics of a net system. A

causal net represents two relations between the nodes: causality and con-

42

currency. Let us define first the behavioral relations before proceeding with

the formal definition of causal nets.

Definition 3.8 (causality and concurrency relation). Let N = (P, T, F) be
a Petri net and x,y € PuT two nodes in N. Then

e z is a cause of y, denoted x <V y, if (z,y) € F*. The inverse causal

relation is denoted >V. By <V we denote the reflezive causal relation.

e and y are concurrent, written as z ||V y, if =(z < y) and ~(y <V z).

Then the causal nets are formally defined as follows.

Definition 3.9 (causal net). A causal net is a Petri net N = (P,T,F)
where:

1. |°| <1 for any p e P,

2. |p*| <1 for any p € P, and

3. <V is a partial order.

Figure 3.5 shows three different causal nets representing three execu-
tions of the net system in Figure 3.2. Note that Prepare report <¥ " File

report in Figure 3.5a; whereas Prepare report ||N” File report in Figure 3.5b.

Prepare
report
Prepare Send Create new File O—P‘i—bo
report entry
File
report
(a) N, "
(b) N
Prepare Send Update Update File

report entry documents report

Figure 3.5: Example of causal nets

43

Behavioral properties of Petri net systems

Petri net systems have a number of behavioral properties. We review the
reachability and coverability of markings, and safeness, liveness, and bound-
edness of the net systems. A marking M is reachable if there is a firing

sequence that leads from the initial marking My to M.

Definition 3.10 (reachable marking). Let N = (N, M), N = (P, T,F),
be a Petri net system. A marking M is reachable in N iff M = My or
there exist a firing sequence o that leads from My to M. The notation
M' €[N, M) represents that M’ is reachable in (N, M).

A marking M is coverable if there is another reachable making associ-

ating every place with a larger (w.r.t. M) number of tokens.

Definition 3.11 (coverable marking). Let N' = (N, My), N = (P,T,F),
be a Petri net system. A marking M € [N, M) is coverable if there exist
another marking M’ € [N, My) such that M'(p) > M(p) for every p e P.

A desirable property for many analysis applications using Petri nets is
the finiteness of the state space of makings. Such property is met if a Petri
net can contain up to a fixed n € Ny number of tokens at any reachable

marking, in such case the net is said to be n-bounded.

Definition 3.12 (boundedness). Let N' = (N,My), N = (P,T,F), be a
Petri net system. A marking M € [N, M) is n-bounded iff every place
p € P contains up to n € Ny tokens at M, i.e., M(p) <n. N is n-bounded

iff all reachable markings are n-bounded.

If a net system is 1-bounded then it is called safe.

Definition 3.13 (safeness). Let N = (N, M), N = (P,T, F), be a Petri net
system. A net system N is safe if it is 1-bounded.

Intuitively, a net system is live if every transition can always occur again

from any reachable marking M.

44

Definition 3.14 (liveness). Let N' = (N,My), N = (P,T,F), be a Petri
net system. A is live iff for every reachable marking M € [N, Mp) and for
every transition ¢ € T there exist a marking M’ € [N, M) such that M'[t).

Throughout the thesis, we restrict the discussions to safe net systems.
A safe marking M of a net (P, T, F') is identified as the set of places {p €
P | M(p) =1}.

3.1.1 Petri net subclasses

In the existing literature different classes of Petri nets have been put for-
ward defining structural and/or semantical restrictions. Throughout the
thesis we consider four different classes of Petri nets, namely Free-choice
and Occurrence nets — which impose structural restrictions—, and (sound)
Workflow and Flow nets — which impose semantical restrictions. Each of
the considered classes of Petri nets is presented next. Some of the results
presented in this thesis are formulated for specific classes of nets, neverthe-
less, if the class of nets is not specified, then it shall be assumed that the

only imposed restriction is safeness.

Structural restrictions

Free-choice nets Free-choice Petri nets [Best 87, Dese 95] are a family
of nets with specific structural restrictions. The characteristics of this kind
of nets allow efficient verification techniques for several properties, which
are hard to check for general Petri nets. In a free-choice net whenever two
places share a transition in their postsets, then they share all transitions
in their postsets. Thus, choices are free in this net, since they are not
influenced by the rest of the system. For instance, the classic case of a
non-free choice Petri net is depicted in Figure 3.6. In this example, one can
observe that Send report and File report are not in conflict (Send report is
not enabled), unless Prepare report is fired before File report.

Formally a free-choice Petri net is defined as follows.

45

P1

Prepare
report

P2 Ps

Send File
report report

Figure 3.6: Non-free choice Petri net

Definition 3.15 (free-choice Petri net). A Petri net N is free-choice if for
any pair of places p1,p2 € P then either p1* np2® =@ or p1°® = po°.

Occurrence nets Occurrence nets were introduced in [Niel 81], and they
can be seen as a generalization of causal nets where a form of (forward)
conflict is allowed. In this type of nets, places and transitions are often
referred to as conditions and events, respectively. Among of the syntactical
restrictions imposed by this type of nets is that every condition has up to
one event in its preset, but it can have any number of events in its postset.
Occurrence nets are acyclic and the transitive closure of the flow relation
is a partial order. Different from causal nets, occurrence nets define three
behavioral relations between the nodes: causality, concurrency and conflict.
Let us first present the three behavioral relations and, even though, the
definition for the causal relation is the same as the one in Definition 3.8,

we include it below for completeness.

Definition 3.16 (causality, conflict and concurrency relation). Let N =
(P,T,F) be a Petri net and z,y € PUT two nodes in N. Then
e z is a cause of y, denoted x <V v, if (z,y) € F*. The inverse causal
relation is denoted >V . By <V we denote the reflexive causal relation.
e z and y are in conflict, denoted = # vy, if z,y € T U P are distinct
nodes and 3t;,ty € T, such that (1) ¢; # to, (2) %1 N %2 + @, and
(3) t; <N x and ty <N y.
e x and y are concurrent, denoted as z ||V y, if =(z <V y), ~(y <V z)
and —(z #V y).

46

Then an occurrence net can be formally defined as follows.

Definition 3.17. A net N = (P, T, F) is an occurrence net iff:

. |I*p| £ 1 for every condition p € P

N is acyclic, i.e., the causal relation (<%) is a partial order
. The set {y e PUT | y <" z} is finite for every z e PuT
#N i irreflexive, i.e., ~(z#Vz) for any z e PuT

W N

Update File
entry

Prepare Send
report

Create new File
entry report

Figure 3.7: Occurrence net Ny

The net in Figure 3.7 is an occurrence net and, for example, it is easy
to note that Prepare report <N Send report, and Update entry #™ Create

new entry.

Behavioral restrictions

Workflow nets A class of Petri nets defining both semantical and struc-
tural restrictions is (sound) Workflow nets [van 97], shorthanded as WEF-
nets. The imposed syntactical restrictions include the definition of a ded-
icated source and sink place, and the property that every transition is on
a path from the source to the sink place. Figure 3.8 shows a WF-net sys-
tem version of the process to file reports. In this example, p; is the source
place and pg is the sink place. Furthermore, it is easy to check that every
transition is on a path from p; to pg.

The formal definition of a WF-net (system) is given below.

Definition 3.18 (WF-net, WF-net system). A Petri net N = (P,T,F) is
a workflow net, or a WF-net, iff N has a dedicated source place i € P, with

* = @&, N has a dedicated sink place o € P, with 0o®* = @, and the short-circuit

47

Update

Create new
entry

Figure 3.8: (sound) Workflow net system

net N* = (P,Tu{t*},Fu{(o,t*),(t*,i)}) of N is strongly connected, s.t.,
t* ¢ T. A WF-net system is a net system (N, M), where N is a WF-net
with the source place ¢ and M = {i}.

The commonly adopted criterion of correctness for WF-net systems is
soundness [Aals 00]. It is a behavioral restriction guaranteeing that every
execution of a WF-net system ends with one token in the sink place and
no tokens elsewhere. Indeed, the WF-net system in Figure 3.8 is sound.

Below we provide the formal definition of soundness for WF-nets.

Definition 3.19 (soundness). Let N = (N, M), N = (P,T,F), be a WF-
net system. N is sound iff the net system (N*,M), where N* is the

short-circuit net of IV, is live and bounded.

Flow nets Another behaviorally restricted class of Petri nets is Flow
nets [Boud 90]. Transitions and places are referred to as events and con-
ditions, respectively. Flow nets are semantically acyclic, meaning that in
any firing sequence a token cannot return to a place that was previously
used as a precondition. Thus, all the transitions in a firing sequence are
distinct. Interestingly, any occurrence net is a flow net.

The places in flow nets define causal dependencies between transitions.
Intuitively, we say that a transition ¢; causally depends on another transi-
tion t; if there is a place p between them, and whenever both transitions
appear in a firing sequence then ¢; is the only transition that puts a token

in p; then p is said to be a strong postcondition of t;. In general, flow nets

48

Update Create new Update Create new
entry entry entry entry

Ps Ps

File File
report report

(a) Non-flow net system (b) Flow net system

Figure 3.9: Non-flow and flow net example

are not required to be safe, but it is necessary that the causal dependencies
between transitions are unambiguous.

Figure 3.9a shows an example of a Petri net that is not a flow net.
Observe that Update entry and Create mew entry can occur in the same
firing sequence, and thus it is not possible to determine what event precedes
an occurrence of File report. Specifically, when ps has two tokens, it is not
possible to determine whose token will be consumed once File report is
fired. Conversely, the Petri net displayed in Figure 3.9b is a flow net. In
this flow net, either Update entry or Create new entry puts a token in
the condition ps in any firing sequence. Therefore, it is clear what event
precedes an occurrence of File report. Then ps is a strong postcondition of
Update entry and Create new entry.

The formal definition of strong postcondition is presented next and

complements the informal description provided above.

Definition 3.20 (string postcondition). A place p € P of a net system
N = (N, M), where N = (P,T,F), is a strong postcondition of t € T if the
following holds
1. pet®, and
2. for any firing sequence o = ty...t,, such that ¢; = t, n € Ny and
1 < i < n, then M(p) + |F'| = 1, where F' = {(¢t;,p) € F'} for any
1<j<n.
Let ¢(t,t") denote the set of strong postconditions between a pair of
transitions ¢,t' € T, i.e., ¥(t,t") ct* n*t’.

49

The formal definition of flow nets is given next.

Definition 3.21 (flow net, flow net system). A net system N = (N, M),
N =(P,T,F), is a flow net system and N is a flow net iff for every firing
sequence o = ti1ty ... t, in N and for every 7,5 € Np, s.t. 1 <i<j<n,it
holds that:
e p € P cannot be used as a precondition more than once in a firing
sequence o, i.e., *%; N *t; =@, and
o if t;°n%; # @ then Ipet;*n’t; : pe(ty,ty).

Flow nets are a class of nets defining a notion of configuration, which
describe the partial order semantics of a net system. A configuration can
be understood as sets of events that can occur in the same execution. In
flow nets, firing sequences and configurations are in close relation due to

the next definition.

Definition 3.22 (configuration of flow net). A configuration of a flow net
system N' = (N,M), N = (P,T,F), is a subset C ¢ T of transitions in N,
such that there exist a firing sequence ¢ in V' that consists of the transitions

in C, i.e.,
U:tltg tn and C: {tl,tg,...,tn}

The set of all configurations of a flow net system N is denoted by Conf (N).

Set inclusion (<) defines an order over the flow net configurations. We
say that a configuration C' evolves into a configuration C’ if C' ¢ C'. Fig-
ure 3.10 shows a flow net system and its configurations ordered by inclusion.

Furthermore, using the notion of configuration, it is possible to define
two relations between pairs of events in a flow net: flow and conflict. A
pair of events is in flow relation if they can occur in a firing sequence and
there is a strong postcondition between them. On the other hand, a pair of
events is in conflict relation if they never occur in the same configuration.

The formal definition of both relations, flow and conflict, is provided below.

50

{i,a,b,c}
|
{i,a,b} {i,b,c'}
o |
{i,a} {i,b}
AN /
{a}
|

4}
(a) Flow net system N (b) Conf(N1)

Figure 3.10: Flow net system and its configurations ordered by set inclusion

Definition 3.23 (conflict and flow relation). Let N = (N,M), N =
(P,T,F), be a flow net system and x,y € PUT be two events in N. Then
e z and y are in conflict, denoted as x#"y, if for all configurations

C € Conf(N) then {z,y} ¢ C.

e 1 is a potential cause of y, denoted as = <"V y and referred to as flow,
if =(z#Ny) and ¥(z,y) * @.

Note that the presented notion of configuration for flow nets is not
applicable to any class of nets. In general, a configuration can contain
several occurrences of a single transition (e.g., in the presence of cycles) thus
it would not be a set, but a multi-set. Next we introduce the branching
process of a net system. Intuitively, it represents the unfolding of a net
system as an occurrence net that captures the partial order semantics of
the system. Furthermore, in this structure, it is possible to have a notion

of configurations as sets of events.

3.1.2 Branching process of a Petri net system

The causal semantics of a net can be described as runs or, more precisely,
prefixes of runs, by means of causal nets. Alternatively, several (possibly
all) runs can be accommodated in a single tree-like structure, called branch-
ing process [Enge 91, Niel 81]. A branching process is an occurrence net

and so describes three behavioral relations between the nodes: causality,

51

conflict and concurrency. We next provide a formal definition of branching

process and unfolding of a net system.

Definition 3.24 (unfolding, branching process). Let N' = (N, Mj) be a
net system and N = (P, T, F) be a net. The unfolding of N is the tuple
Unf(N) =(B,E,G,p), where (B, E,G) is an occurrence net generated by
the inductive rules in Figure 3.11, and a homomorphism p: BUE - PuUT),
such that for every ej,es € E, if e = %o and p(e1) = p(e2) then e = eo.
We call branching process of N any prefix of the unfolding, i.e., any
tuple 8 = (B',E',G',p’) such that B'c B, E' ¢ F, for any e € E', |e|] € E'

and %, e®* € B’, and G',p’ are the obvious restriction of G and p.

pe M teT XcB X?c| p(X)="t
b:=(a,p)e B p(b):=p e=(X,t)eE ®*:=X p(e):=t

e=(X,t)eE t"={p1,...,pn}
bi=(e,pi)eB e*={b,....0n} p(b;):=p;

Figure 3.11: Branching process, inductive rules

Intuitively the unfolding Unf(N') represents any possible behavior of
the net system, while a generic branching processes represents a subset of
the possible computations.

As stated in the definition of occurrence nets, an unfolding and a branch-
ing process do not contain merging conditions. As a result, some nodes in
a net system need to be represented more than once in the corresponding
branching process. Figure 3.12 shows a net system and its unfolding. The
shaded areas represent the relations in the function p and it is easy to note
that ps, File report and pg are related to multiple nodes in the unfolding.

In what follows we provide some formal definitions related to branching

processes that will be used later.

Definition 3.25 (Basic notions on branching processes). Let [=

(B, E,G,p) be a branching process.

52

Update
ent

Prepare
report

Create new
entry

Figure 3.12: Petri net system and its unfolding

e A configuration C of [is a set of events, C' € E, which is (i) causally
closed, i.e., Ve' e E,ee C:e' <P e = ¢’ € C, and (ii) conflict free, i.e.,
Ve,e' € C, (e #° ¢'). We denote by Conf () the set of configurations
of the branching process 3 and by MazConf (3) the subset of maximal
configurations w.r.t. set inclusion.

e The local configuration of an event e € F is its set of causes |e] =
{e' | ¢ < e}. The set of strict causes of an event e € E is |e) = |e|\{e}.

e A deterministic process ™ = (B, Ex,Gr,p) is the net induced by a
configuration C, where B; = U (cuc®), E; = C, and G = Gn(By x
ErUE, x By). e

For a condition b € B we will write |b| as a shorthand for |*].

The set Min(f) of minimal elements of B U E with respect to causal-
ity corresponds to the set of places in the initial marking of N, i.e.,
p(Min(B)) = Mp. A co-set is a set of conditions B’ ¢ B such that for
all b,b' € B"it holds b ||® '. A cut is a maximal co-set w.r.t. set inclusion.

The target cut for a configuration C' € Conf(f3) is defined as
Cut(C) = (Min(B)u Ucc')\(Uc'c).

The image of Cut(C) in N, p(Cut(C)), is a reachable marking in N
denoted by Mark(C). Let C' and C' be configurations of 3, such that

53

C c (', and let 7 and 7" be their corresponding deterministic branching
processes. If X = '\ C, then we write 7’ = 7 ® X and we say that 7’ is an

extension of .

3.1.3 Configurations and families of pomsets

An alternative way to define the execution semantics of a net system is
using a notion of configurations as in the case of flow nets and branching
processes. Different from firing sequences, which describes the interleaving
semantics of a net system, configurations describe the partial order seman-
tics. A configuration C' of a net system is a subset of events, occurrences
of actions, that represents a state of the system, i.e., the state in which the
events in C' have occurred.

In order to have a more uniform presentation of the different formalisms
used throughout the thesis, which define a notion of configuration, we in-
troduce families of pomsets in the line of [Rens 92, Glab 96, Glab 95]; note
that in [Arma 14d] we refer to this concept as an abstract event structure.

A pomset is a tuple (X,<x,Ax), where X is a set of events, <x is a
partial order and Ax is a labeling function. An isomorphism of pomsets
X and Y is an isomorphism between the underlying sets, which respects
labels and order, i.e., a bijection f : X — Y such that, Ax = Ay o f, and
e<x e < f(e)<y f(e) for all e,e’ € X.

A configuration C' can be seen as a pomset, where the elements in C
are events and there is a partial order <o and a labeling function A\¢ : C' -
Au{r}. Then C will used interchangeably for both the configuration and
its corresponding pomset. For a configuration C', we denote by C* = {e e
C'| M(e) # 7} the subset of visible events in C' or the corresponding pomset,

which is called the visible pomset underlying C.

Definition 3.26 (family of pomsets). A family of pomsets is a triple
P = (E, Conf(P),\) where E is a set of events, Conf(P) is a set of con-

figurations and A : F — A u {7} is a labelling function. Each configuration

54

consists of a set of events C' € E, endowed with a partial order <¢ called
the local order of C.

The relation <¢ associated with a configuration C intuitively represents
the order in which the events in C' can occur. A configuration will be often

denoted simply by C, leaving the partial order < implicit.

Definition 3.27 (extension order). Let P = (E, Conf(P), A) be a family of
pomsets. The set of configurations Conf(P) is endowed with the extension
order defined as C € Cy whenever C; ¢ Cy, <¢,=<¢, N(C x C1) and for all
e1 € C1, e € Oy, if eg <¢, €1 then ey € (.

Intuitively, C; £ (' means that the configuration C can evolve into
Csy by executing the events in Cy \ Ci. In fact, C; is required to be a
subset of Cs, with events ordered exactly as in Cy and the new events
in Cy \ (1 cannot precede events already in Ci. Moreover, we denote by
C’onf(P)A the set of visible pomsets underlying a set of configurations of
a family of pomsets, i.e., Conf(P)* = {C*: C ¢ Conf(P)}. Furthermore,
MazConf (P) denotes the subset of maximal pomsets w.r.t. set inclusion,
and MazConf(P)" the underlying visible pomsets.

Flow nets can be seen as an instance of a family of pomsets. The order
of each configuration C' € Conf(N), of a flow net system N = (N, M), is
given by (ﬂ%)*. As specified above, the extension order is simply subset-
inclusion, so for Cy, Cy € Conf (N'), we have Cy € Csy, iff C; € Cy. Moreover,
in the case of flow nets, if e; € C1, e; € C3 and e; <¢, €;, then necessarily

ej € C1, this property is captured in the following proposition.

Proposition 3.28. Let N = (N, M) be a flow net system and let C1,Co €
Conf (N) be a pair of configurations, such that Cy € Co. Then, for any pair

of events e; € C1, ej € Oy, if €j <, €; then necessarily e;j € C1.

Proof. By the definition of configurations of flow nets (Def. 3.22), there is
a firing sequence oy consisting of the transitions of Cy = {e;,...,e,}, ie.,

09 = €;...en, where n € Ny, such that 1 < 5 <¢ < n. Thus, by induction

95

on the distance from e; to e; in o9, consider the base case when the length
0 and so e; <Ne, = ej+1. By the definition of flow relation (Def. 3.23),
Jp € e;* n%;. First, note that °e; cannot be part of the initial marking
M, i.e., %e; ¢ M, because the places in ‘e; would be marked twice in Co,
one during the initial marking and another time after the occurrence of e;,
and thus the places in *e; would be used as preconditions twice in a firing
sequence. The last contradicts Definition 3.21. Then by the definition of
flow nets (Def. 3.21), let p be a strong postcondition of ej. Suppose that
ej ¢ C1, and since %e; ¢ M, Jez € Cr :e3° S %; A pee;®nes®, but as C) € Co
then ez € Cy. Although, p would not be a strong postcondition of e; and it

contradicts the assumptions. The inductive step follows accordingly. O

i—b ——— i—b—(

/ \
g — 14
\ P — a

1 —a
i—a ——— N\, —— \b\
—

b

Figure 3.13: Family of pomsets ordered by inclusion, i.e., pomsets of flow
net system in Fig. 3.10a.

Figure 3.13 shows an example of a family of pomsets ordered by inclu-
sion, it corresponds to the flow net system in Fig. 3.10.

Furthermore, it should be clear that a branching process g = (B,
E.G,p) of a net system is also an instance of a family of pomsets, where
each configuration C' € Conf(f) is ordered by g‘ﬁo. The extension order
is simply subset-inclusion. Furthermore, by Definition 3.25, the configura-
tions of a branching process are causally closed, and thus given a pair of
configurations C1,Cs € Conf () : C1 € Cy, if e1 € Cy, eg € Cy and ey S‘ﬁCQ e1,
then es € Cf.

56

3.2 Event structures

Event structures (ES) are another formalism for modeling concurrent pro-
cesses. The seminal work [Wins 87, Niel 81] introduces event structures
as intermediate representations that connect Petri nets and domains. In
an event structure, computations underlying the execution of processes are
represented by means of events and behavioral relations. Events represent
occurrences of atomic actions; whereas behavioral relations, which differ in
the various types of event structures, explain how events relate each other.
Originally, two types of event structures were presented, elementary event
structures and prime event structures (PES), since then many others have
been proposed.

Elementary and prime event structures can be derived from causal and
occurrence nets, respectively, where the relations of causality and conflict
(in the case of occurrence nets) are defined. Either type of event structure
is obtained from the corresponding nets by removing the conditions and
keeping the events and the relations between them, i.e., causality in the
case of causal nets, and causality and conflict in the case of occurrence
nets. Intuitively, if a pair of events is in causal relation then the occurrence
of one requires the prior execution of the other. On the other hand, when
the occurrence of one event prevents the occurrence of another event, we
say that they are in conflict relation.

In this thesis, we consider three types of event structures, prime event
structures, asymmetric event structures (AESs) [Bald 01] and flow event
structures (FESs) [Boud 89]. On the one hand, AESs provide an asym-
metric version of conflict and, on the other hand, FESs provide a form of

disjunctive causality.

o7

3.2.1 Prime event structures

Prime event structures (PESs) [Wins 87, Niel 81] represent the computa-
tions of concurrent systems by means of events and two relations, causality
and conflict. For example, Figure 3.14 represents a PES. The straight di-
rected arrows represent causality. Since causality in PESs is a transitive
relation, in pictures we only depict direct causal dependencies. The anno-
tated dotted edges represent conflict. They are undirected since conflict in
PES is symmetric. For instance, the presence of a straight directed arrow
from a to b indicates that a is a cause of b, written a < b, which means that
“in any computation where b occurs, event a must have occurred before”.
Instead, events d and b, connected by a dotted arrow labelled by #, are in
conflict, written b#d, which means that “in any computation, either d or

b does not occur”.

"""""""""" #
. o
#o |
e d-#-b-#-C
Nk
cp ™ 1
R

Figure 3.14: Example of PES

We recall the formal definition of prime event structures [Niel 81] that

complements the informal description provided above.

Definition 3.29 (prime event structure). A (labelled) prime event struc-
ture (PES) is a tuple P = (E, <, #,), where E is a set of events, < and

are binary relations on E called causality and conflict, respectively, and
A: E - Au{r} is a labelling function, such that

e < is a partial order and |e| = {e¢’ € E | ¢’ < e} is finite for all e € F;

e # is irreflexive, symmetric and hereditary with respect to causality,

i.e., for all e,e’,e” € E, if efte’ <e” then e#e.

58

Henceforth, we will write e < ¢’ for ¢ < ¢’ and e # ¢/. In order to
lighten the notation, events will be often named by the corresponding labels,
possibly with subscripts (e.g., cg,c1 and co are events labelled by c).

The computations in an event structure are usually described in terms
of configurations, i.e., sets of events that are closed with respect to causality

and conflict free.

Definition 3.30 (configuration of PES). Let P = (E,<,#,) be a PES. A
configuration of PES is a set of events C ¢ E such that

e foralleecC, |e]cC and
o for all e,e’ € C, ~(e#e’).
The set of all configurations of a PES P is denoted by Conf(P).

PESs can be seen as instances of families of pomsets. More specifically,
given a PES P = (E, <, #, \) and its set of configurations Conf (P), the local
order of a configuration C' € Conf(P) is <c=<|c, i.e., the restriction of the
causality relation to C. The extension order turns out to be simply subset
inclusion. In fact, given C ¢ Cy clearly <¢,=<n(C} x C}) is the restriction
to C of <o,=< N(Ca x Cy). Moreover, if e; € C7 and ey € Cy, with eg <¢ €1,

then necessarily es € C'1 since configurations are causally closed.

3.2.2 Asymmetric event structures

Asymmetric event structures (AESs) [Bald 01] are another flavor of event
structures. In the case of AESs, there are two relations: causality, with
the same interpretation as in PES, and asymmetric conflict, which is a
non-symmetric version of the conflict in PES. Figure 3.15 depicts an AES.
Causal dependencies are still represented using straight directed arrows,
e.g., we have that a < b. Instead, asymmetric conflict is represented by a
dotted directed arrow and the corresponding relation is denoted by . For

instance, we have that b 7 cg; which means that “the occurrence of event

99

co1 prevents b to occur afterwards”. Hence b and cy1 can occur in the same
computation, but b has to precede ¢y in such computations. Nevertheless,
whenever two events, such as d and b, are related by asymmetric conflict
in both directions, namely d ~ b and b ~ d, then none can occur after the

other, and thus “either event d occurs or b occurs, but not both”.

Figure 3.15: Example of AES

We start by briefly reviewing the basics of asymmetric event structures,
which, as mentioned before, generalise PESs by allowing a conflict relation

that is not required to be symmetric.

Definition 3.31 (asymmetric event structure). A (labelled) asymmetric
event structure (AES) is a tuple A = (E, <, 7, \), where F is a set of events,
< and ~ are binary relations on E called causality and asymmetric conflict,

respectively, and A\: E — A u {7} is a labelling function, such that
e < is a partial order and |e] = {e’ € E | ¢’ < e} is finite for all e € F;

e ~ satisfies, for all e, e/, € E
1. ife<e' thene 7~ €,
2. ife 7 e and e’ <€ then e 7 €";
3. 7|le) 1s acyclic;
4. if 7 lelule’] is cyclic then e # €.

Complementing the intuition provided above, we can say that asymmet-
ric conflict has two possible interpretations, that ise # €’ can be understood
as (i) the occurrence of ¢’ prevents e to occur afterwards or (ii) the occur-

rence of e precedes the occurrence of €' in all computations where both

60

appear. In the first view, ~ can be seen as an asymmetric form of conflict,
whence the name. Indeed, note that if e and €’ are related by asymmetric
conflict in both directions, i.e., e / €’ and €’ # e, then none can occur after
the other, and thus e and e’ can never occur in the same computation as
it happens for symmetric conflict in PESs. In the second view, ~ can be
seen as a weak form of causality since e ~ ¢’ imposes an order on the oc-
currences of e and €', but only when they appear in the same computation.
Instead, causality e < €’ imposes a stricter requirement: in any computation
in which e’ occurs then e also occurs, and the latter must occur before.
Condition (1) of Definition 3.31 is motivated by the fact that, as ob-
served in (ii), ~ imposes weaker requirements than <, hence it is natural
to ask that ~ includes <. In the graphical representation of an AES, the
asymmetric conflicts e 7 €’ between events that are also causally dependent
e < €’ are not represented explicitly. Condition (2) expresses inheritance
of asymmetric conflict along causality: if e 7 ¢’ and ¢’ < ¢’ then e is nec-
essarily executed before ¢’ when both appear in the same computation,
hence e # e (see Fig. 3.17a). Conditions (3) and (4) can be understood by
recalling that events forming a cycle of asymmetric conflict cannot appear
in the same computation, since each event in the cycle should occur before
itself. This leads to a notion of conflict over sets of events #.X, defined by

the following rules

€y /el ... /ey M e #(Xu{e})e<e

#{eo,...,en} #(X u{e})

The first rule captures the fact that events in a cycle of asymmetric conflict
cannot occur in the same computation. The second rule expresses inheri-
tance of conflict with respect to causality: if events in the set X u{e} cannot
occur in the same computation and e < €', then also events in X u{e’} can-
not occur in the same computation. The reason is that the presence of e’
requires the prior occurrence of e. Figure 3.16 shows an example where

#{e1,e2,e3} by the first rule of conflict over sets and, by the second rule,

61

applied three times, we deduce #{e},e),e5}. Note that the second rule
is essential: in fact, by Definition 3.31(2) we have that ez ~ €], e; 7 €5
and ep ~ e} (as clarified later, inherited asymmetric conflicts are not rep-
resented in pictures), but events €], €5, e5 are not in a cycle of asymmetric

conflict, hence the first rule would be insufficient to prove #{e], e}, e5}.

Figure 3.16: Inheritance of conflict along causality in AESs.

In this view, condition (3) corresponds to irreflexiveness of conflict in
PESs, and it ensures that any event is executable i.e., it appears in some
computation. Concerning condition (4), notice that whenever the union of
the causes of e and e’ includes a cycle of asymmetric conflict, according
to the rules for conflict above, we have that #{e, e}, i.e., e and €’ are in
binary symmetric conflict. In this case, condition (4) imposes that e ~ ¢’
and also €/ 7 e, since union is symmetric and thus the role of e and €’
is interchangeable. This means that symmetric conflict is represented by
asymmetric conflict in both directions.

Conditions (2) and (4) impose a form of saturation for the asymmetric
conflict relation. Whenever e 7 €’ <€’ or 7| ¢|y|e Is cyclic, then it holds
that e’ cannot precede e in a computation. These conditions ask that this is
also represented syntactically with an explicit asymmetric conflict. Apart
from aesthetic motivations, the validity of these conditions will simplify the
formulation of the folding technique described in Chapter 6.

As usual, a set of events X is called consistent if its causal closure does

not include a subset of events in conflict, i.e., there is no Y ¢ | X | such that

ne

62

"
(a) e /s’ and e 7 € (b) € 75e and e#se”

Figure 3.17: Inheritance of ~#

We recall that PESs can be seen as special AESs where asymmetric

conflict is a symmetric relation. Namely, the following holds (see [Bald 01]).

Lemma 3.32 (PESs are AESs). If P = (E,<,#) is a PES then A = (E,<
, A7), with # =, is an AES. If A = (E,<, /) is an AESs with symmetric
~, then P =(E,<,#) with # = is a PES.

In the following, direct relations, namely causality, asymmetric conflict

and conflicts that are not inherited, will play a special role.

Definition 3.33 (direct relations). Let A = (E, <, 7, \) be an AES and let
e,e’ € E. We say that e is a direct cause of €', denoted e<se’, when e < €’
and there is no e” such that e < ¢’ < ¢/. An asymmetric conflict e 7 €’
is called direct, written e 7 5e’ when there is no e” such that e 7 €’ < ¢€’.
A binary conflict e#e’ is called direct, written e#se’, when e 75¢’ and

e Ase.

For instance, in Fig. 3.17a e 7~ 5¢’ while it is not the case that e 75¢€”,
since e # €' < €. In Fig. 3.17b we have that ¢’ 75e and e 75¢”, hence
e#se.

For the sake of readability and consistency with what we did for PESs,
in pictures, often only direct relations will be represented.

Configurations in AESs are defined, as in PESs, as causally closed and

conflict free sets of events.

Definition 3.34 (configuration of AES). A configuration of an AES A =
(E,<, 7,) is a finite set of events C' ¢ E such that i) for any e € C, |e] c C

(causal closedness) and ii) 7|¢ is acyclic (conflict freeness).

63

The set of all configurations of A is denoted by Conf(A).

AESs can be seen as instances of families of pomsets by considering
each configuration C' € Conf(A) with local order ()", i.e., the transitive
closure of asymmetric conflict restricted to C'. Differently from what hap-
pens for PESs, the extension order is not simply set-inclusion. It is easy
to see that according to the definition showed above, for C1,Cy € Conf(A),
we have C1 € Oy, iff C; € Cs and for all e € C1, €' € Co N Cp, —(e' 7 e).
In words, configuration C cannot be extended with events which should
precede some of the events already present in Cf.

A fundamental notion is that of history of an event in a configuration.

Definition 3.35 (possible histories). Let A = (F, <, #) be an AES and let
e € E be an event in A. Given a configuration C' € Conf(A) such that e € C,
the history of e € C' is defined as C[e] = {¢' € C'| €/(~|¢)"e}. The set of
possible histories of e, denoted by hist(e), is then defined as

hist(e) ={C[e] | C € Conf(A)neeC}

The history C[e] consists of the events which necessarily must occur
before e in the configuration C or, in other words, it is the minimal sub-
configuration of C', with respect to the extension order, which contains
event e. For PESs, each event e has a uniquely determined history, which
is the set |e], independently of the configuration it occurs in. Instead, in
the case of AESs, an event e may have several histories. For example, Fig-
ure 3.18 shows an AES A and its configurations ordered by extension. In

this example, it is easy to check that the event ¢ has four different histories,
hist(c) = {{c},{d,c},{e,c},{d,e,c}}.
3.2.3 Flow event structures

Flow event structures [Boud 89] is another type of event structures. This
type of event structures has two relations, flow relation, which is represented

with a double-headed straight arrow and denoted by <, and conflict, with

64

{e,d, c}
|
{e,c} {e,d} {d,c}

d ¢ N/ N\ /
\\ ,’ {e} {d} {C}
N c W \ é /
(a) A (b) Conf(A)

Figure 3.18: AES A and its set of configurations ordered by extension

the same interpretation and representation as in PES. The flow relation is
not transitive and, intuitively, expresses the set of potential direct causes for
a given event. Then, in order for an event to occur, a maximal, conflict free
set of potential direct causes has to occur beforehand. Figure 3.19 shows
an example of a FES, where e < ¢y, d < ¢p and b < ¢g. Hence, {e,d, b} is the
set of potential direct causes for ¢y, whose execution must be preceded by
either {e,d} or {b}.

........... #oe
P
i ..."'.‘ a
P
e d--#--b-# C12
W €0 e

Figure 3.19: Example of FES
We start by recalling the formal definition of (labelled) flow event struc-
tures [Boud 89].

Definition 3.36 (flow event structure). A (labelled) flow event structure
(FES) is a tuple F = (E, #,<,\) where E is a set of events, A\: F - Au{r}

is a labelling function, and

e < C EEx FE, the flow relation, is irreflexive.

65

e # c Ex FE, the conflict relation, is a symmetric relation,

The <-predecessors of an event e € F, are defined as % = {¢/ | €/ < e}.

Similarly, for a set of events X we write °X = U ‘.
reX

Next, we present the formal definition of configuration of FES.

Definition 3.37 (configuration of FES). Let F = (E,#,<,A) be a FES. A
configuration of IF is a finite subset C € E such that

1. —(e#e’) for all e, e’ € C;

2. <"‘C is a partial order, i.e., Sc:<‘*c;

3. forallee C and €’ ¢ C s.t. € < e, there exists an e’ € C such that

e'#e <e.

We denote by Conf(F) the set of configurations of F.

A configuration is a conflict free subset of events, where <* is acyclic,
conditions 1 and 2 in Definition 3.37. The third condition in Definition 3.37
requires that, given an event e € C, for any <-predecessor e’ < e, either e’ € C
or it is excluded by the presence of €” € C, where €’ is in conflict with e’
and e” < e. This means that for any e € C, the configuration C' must include
a maximal consistent subset of <-predecessors of e.

An alternative formulation of configurations of flow event structures is

done using proving sequences.

Definition 3.38 (proving sequence). A proving sequence in a FES F =
(E,#,<) is a (finite or infinite) sequence o = e;...e,... of distinct non-

conflicting events, s.t. ViVee E:e<e; = (3j<i:(e=e;Ve#He;)reji< €;).

A subset of events C' ¢ F is a configuration of a FES F = (E, #,<), s.t.
C ={e1,...,en}, if and only C' is conflict free and for every event ey € C,
k < n it holds that e; ...ey is a proving sequence in F, cf. [Boud 90].

FESs can be seen as another instance of families of pomsets by consid-

ering each configuration C € Conf(F), of a FES F, ordered by (<¢)*. As

66

for PESs, the extension order is simply subset-inclusion, namely according
to the definition above, for C1,Cs € Conf (IF), we have C; € Cy, iff C1 € Cs.
In particular, observe that if e; € C, e3 € Co we have that es <¢, €1, then

eo € C1, this is proved by the following proposition.

Proposition 3.39. Let F = (E,#,<) be a FES and let C1,Cy € Conf (IF) be
a pair of configurations, such that C1 € Cy. Then, for any e; € C1, eg € Cy
if ea <c, €1, then ez € Cf.

Proof. Assume by contradiction that e; ¢ C7. Since g(;2=<|*02, the proof can
proceed on induction on the length of the <-chain connecting es to ej. If
the length is 0, namely e < e, since es ¢ Cq, by definition of configuration,
there must be e] € Cy such that e} < e; and e|#es. Since €] € Cy ¢ Cy
this means that C; include the conflictual events eg, e}, contradicting the
assumption that it is a configuration. This concludes the base case. The

inductive step is straightforward. O

In FESs, the flow relation is not transitive and the conflict relation
is not inherited along causal chains as in PESs. Therefore, two events
that are not in conflict syntactically, might not appear together in any
configuration. For similar reasons, an event could be not executable at all.
More precisely, let us define the semantic conflict relation # as e#4e’ when
for all configuration C' € Conf (F), it does not hold that {e,e’} € C. Then
clearly # <€ #, but in general the inclusion is strict. Moreover, it could be

that e#se for an event e (hence e is never executable).

AL

Figure 3.20: A FES which is neither faithful nor full.

For example, the FES in Fig. 3.20 is not faithful, i.e., despite the fact
that there is no conflict b#c, it holds b#sc, namely b and ¢ cannot appear

67

in the same configuration. Moreover, since a is the only <-predecessor of
¢, for any configuration C, if ¢ € C' then also a € C'. Therefore, since a#b,
necessarily b ¢ C. Similarly, a#.d and c#4d. Additionally, observe that
any configuration containing e, according to Definition 3.37, should include
both ¢ and d (since they are not in conflict with any other <-predecessor of
e). Therefore, there is no such configuration, i.e., e#ge.

In line with the authors of [Boud 89], hereafter we restrict to the sub-

class of FES, where:
1. semantic conflict #g coincides with conflict # (faithfulness),
2. conflict is irreflexive (fullness), hence all events are executable,
3. < and # are disjoint.

Condition 3 is not in [Boud 89]. We assume it here since it is in line with
conditions 1 and 2 and it allows us to simplify the presentation.

Note that that FESs generalise PESs. Specifically, every PES can be
seen as a special FES where the flow relation is transitive and the <-

predecessors of any event are conflict free.

3.3 True concurrency semantic equivalences

Several equivalence notions for concurrent systems have been presented in
the literature (see [Glab 89, Glab 90, Glab 01] for a compilation of some of
them). This thesis adopts equivalence notions on the true concurrency se-
mantics. l.e., we consider equivalence notions that distinguish arbitrary in-
terleaving from simultaneous (concurrent) execution of tasks. This section
introduces configuration equivalence, completed visible-pomset equivalence
and history preserving bisimulation equivalence. The following definitions
are formulated in terms of families of pomsets, thus the notions are appli-

cable to the different formalisms presented in this chapter.

68

3.3.1 Configuration equivalence

The first equivalence notion is configuration equivalence [Glab 95]. A pair
of families of pomsets are configuration equivalent if 1) there is a bijection
between events, and 2) they represent, essentially, the same set of configu-
rations over those events.

Observe that the bijection between the events is given and so the labels
of the events, as well as the order between them are not (explicitly) taken

into account.

Definition 3.40 (configuration equivalence wcnf). Let P =
(E, Conf(P),\) and P" = (E', Conf(P'),\) be two families of pom-
sets, and let I': E — E’ be a bijective function between the sets of events.
Let P i~eong P’ denote that for any configuration C' in Conf(P) there is
a corresponding configuration C’ in P’ consisting of the images of C. Ie.,
VC e Conf(P)3C" € Conf(P"):C'={T'(e) | e C}.

The families of pomsets P, P’ are configuration equivalent, denoted

P eonf P’y if P iveong P’ and vice-versa.

Rconf

Q, «&—— 9
VARV
O H— O H— .

N/

(a) N2 (b) FES F

Figure 3.21: Example of configuration-equivalent families of pomsets.

Figure 3.21 shows an example of two families of pomsets, a flow net
and a FES, which are configuration equivalent. The bijection between the

events is given by the labels.

69

3.3.2 Completed visible-pomset equivalence

Completed visible-pomset equivalence [Glab 89, Golt 94] deems as equiva-
lent a pair of families of pomsets iff they have isomorphic maximal visible-
pomsets (namely computations that cannot be further extended, because
they are either terminated or infinite). As mentioned previously, a pair of
pomsets are isomorphic if there is a bijection between the events and it
respects the order and labeling. This means that the concurrent structure
of such computations (causal dependencies and parallelism between visible

events) is exactly the same.

Definition 3.41 (completed pomset equivalence). Let P = (E, Conf(P), A)
and P’ = (E', Conf(P’),\') be two families of pomsets. We say that two
net systems P and P’ are completed (visible) pomset equivalent, denoted
P ~ep P', whenever MazConf (P)* = MaxzConf (P").

1 —a
e —— N — NI\
b— ¢
(c)

Figure 3.22: Visible pomset equivalent flow net systems (a), (b) and their
visible pomsets ordered by inclusion (c).

70

Figure 3.22 depicts a pair of completed visible pomset-equivalent net

systems along with their visible pomsets ordered by inclusion.

3.3.3 History preserving bisimilarity

History-preserving bisimilarity [Rabi 88, Glab 89, Best 91] is based on
branching time partial order semantics. Thus, it does not only look at
the behavior generated by the systems (e.g., pomsets or configurations),
but it also considers the moments of choice between alternative branches

of behavior.

Definition 3.42 (history preserving bisimilarity =~py,). Let P =
(E, Conf(P),A) and P' = (E’, Conf(P"),\') be two families of pomsets. A
history preserving (hp-)bisimulation is a set R of triples (C1, f,C3), where
Cy € Conf(P), Cy € Conf(P') and f : C; — Cs is an isomorphism of
configurations, such that (@, @, @) € R and for all (Cy, f,C2) € R

a) if Cq Loy u {e1}, for an event e; € E, there exists es € E' such that
Cy = Cyu{ey)} and (Cru{er}, fler = ea],CaU{es}) € R;

b) if Cy —2> Cy U {ez}, for an event ey € E', there exists e; € E such that
Cl i) Cl U] {61} and (Cl @] {61}, f[el = 62], CQ @] {62}) € R;

When a history preserving bisimulation exists, P, P’ are called history

preserving bisimilar, written P w~p,, P’

Observe that in the definition above, an event must be simulated by
an event with the same label, as it follows from the fact that for triple
(Cru{er}, fler = ea],Cau{ea}) € R the second component f[e; — ea] is
an isomorphism of configurations (thus it preserves labels). An example of

a pair of history-preserving bisimilar AESs is depicted in Figure 3.23.

71

I, Zl \\
1 \
/N
¥ v
ay by ¢» 0]
/ \ \ :
. / ,\
\ ’
A ’
01 \\ Oi’ // Oi,,
,-\\ \fv\, ;‘ zhp
(a) Al

(b) A

Figure 3.23: History preserving bisimilar AESs

72

Chapter 4

Behavioral profiles for

process model comparison

Unlabeled \|

m————— PRENms m—————

e
Configuration 7/
equivalence : WEF-flow

|\ nets

/

| Behavioral |

[i |

Labeled / 1 profiles
7 \

!
I
| Comparison
I

—_——————

This chapter analyses the expressive power of Behavioral Profiles (BP),
which have been proposed as a behavioral abstraction of business process
models. Section 4.1 introduces behavioral profiles. Section 4.2 shows that
FESs can be behavioral profiles for a class of nets. An execution semantics
for an existing type of behavioral profiles, BP)|,, is proposed in Section 4.3,
and the interpretation of its relations is discussed in Section 4.4. Next,
Section 4.5 shows that existing behavioral profiles cannot ensure a well-
known notion of equivalence for nets with silent transitions. Final remarks

and discussions are presented in Section 4.6.

73

4.1 Behavioral profiles (BP)

Behavioral profiles [Weid 11b] have been proposed as an abstract repre-
sentation of process models’ behavior. The behavioral profile of a process
model can be seen as a complete graph over the set of tasks of the model,
where edges are annotated by types of behavioral relations. Alternatively,
a behavioral profile is a matrix where rows and columns represent tasks
and each cell is labeled by a behavioral relation between a pair of tasks. In
this section we assume that the tasks (transitions in the nets) have distinct

labels and say that the size of the behavioral profile is O(]A[?).

a b c d e

a + > > — >

b« + Il - +

c = M+ =

d L I + i

R
(b) BP|,

Figure 4.1: Net system and its behavioral profile BP|s,

Figure 4.1 shows a net system and alongside its behavioral profile com-
puted with the relations from [Weid 11b], referred to as classic behavioral
profile and denoted as BP|,. In the matrix representation, the strict or-
der relation () denotes causal precedence between a pair of tasks in all
the computations of the model. Exclusive order relation (+) denotes that
a pair of tasks never occurs in the same computation. Finally, interleav-
ing (]||) represents the absence of order in the execution of a pair of tasks.
Since the introduction of classic behavioral profiles many other families
of relations have been proposed for creating O(JA|*) behavioral represen-
tations of process models; causal behavioral profiles [Weid 11c| and 4C

spectrum [Poly 14] are cases in point.

74

Classic behavioral profiles count with several properties appealing for
the behavioral comparison of process models. For instance, they can be
efficiently computed [Weid 11a], they have been used to define a behavior
similarity metric between process models [Kunz 11], and their comparison
can generate feedback in the form of mismatching pairs of behavioral rela-
tions. By the same token, if the behavioral relations used in this formalism
represent constructs in the modeling language — such as —, + and |||~ then
the generated feedback can be easily interpretable.

Since the introduction of the behavioral profiles [Weid 11b], the authors
acknowledged that this representation does not correspond to any of the
well-known notions of behavioral equivalence insofar as two behaviorally
different models (e.g., by trace equivalence) may have the same matrix
representation. Other families of relations that follow the same idea of
behavioral profiles suffer from the same issue, e.g., causal behavioral profile
and 4C' spectrum. Furthermore, the lack of execution semantics of these
representations hinders the analysis of their expressive power. Specifically,
it is not clear what is the behavior captured or lost in a behavioral profile.
Thus, it is still an open question how accurate behavioral profiles are, and
if it is possible to characterize a substantial family of Petri nets for which

a notion of equivalence can be ensured.

Figure 4.2: WF-flow nets

This chapter defines an execution semantics for behavioral profiles, con-
cretely for BP|,. The execution semantics is defined as a mapping from

BP|, to FES. Then, it is shown that BP|,, can ensure a well known-notion

75

of equivalence in true concurrency semantics, i.e., configuration equivalence,
for a family of nets without silent transitions. The discussions throughout
this chapter consider Petri nets in the intersection of two families, sound
WEF-nets and flow nets, shorthanded as WF-flow nets and denoted by 7,
Figure 4.2.

WEF-flow nets impose structural and behavioral restrictions, on the one
hand, a WF-flow net is acyclic and has a dedicated source place % = @& and a
dedicated sink place 0® = @. On the other hand, a WF-flow net system 1) is
sound —and so every execution ends with one token in the sink place and
no tokens elsewhere—; 2) has an initial marking M = {i}; and 3) for every
firing sequence o, a place can be in the preset of at most one transition of
o, and if two transitions in ¢ have a place between them then there is a
strong postcondition between them. These restrictions are in line with the
definitions of (sound) WF-net system and flow net system (Def. 3.21 and
3.18).

Generalized behavioral profiles

Behavioral profiles can be seen as a framework that is concretely defined
according to a set of behavioral relations. Roughly speaking, a behavioral
profile BP|4 of a process model is a complete graph over the set of tasks,
which uses a set of relations Z# as edge labels. This general notion of behav-
ioral profiles results useful for uniformly analyze the different formalisms
considered in this section. We denote the behavioral profile over Z# of a net
system N as BP|z(N)

We say that a behavioral profile is behavior preserving for a class of nets

N, if any pair of behavior-equivalent (under certain notion of equivalence)
net systems with nets in 91, have isomorphic behavioral profiles (denoted by

=is0) and vice-versa. This intuition is captured by the following definition.

Definition 4.1 (behavior-preserving BP|z). Let 91 be a class of nets and

~ be an equivalence relation on 91. A behavioral profile BP

18 behavior-

76

preserving on N, if for any N, N’ € 9 with net systems N = (N, M), N’ =
(N, M) and behavioral profiles BP|%(N') and BP
the following holds:

#(N"), respectively,

N~N'< BP

%’(N) =iso BP

#(NY).

4.2 FES as BP

Boudol shows that FES corresponds to the family of flow nets [Boud 90],
i.e., it is always possible to compute a FES for a given flow net system,
where the configurations of the FES are firing sequences in the system.
Interestingly, it is possible to establish a bijection between the transitions
and the events in the corresponding FES representation for a sound WF-
flow net.! Figure 4.3 shows a flow net system and the corresponding FES
aside. Note that for every transition in the net there is an event in the
event structure with the same label, and the relations of flow and conflict
are those of Definition 3.23. Intuitively, a pair of events are in flow relation
if there is a strong postcondition between them in the net; whereas they

are in conflict relation if they never occur in the same firing sequence.

(b) FES of N

Figure 4.3: Flow net system and its corresponding FES

! Additional self-conflicting events can be required in a FES when, in the context of
WF-nets, a net system does not meet the property of liveness.

7

The next definition suggests how to construct a FES from sound WEF-
flow nets and so self-conflicting events are omitted. Additionally, given that
there is a bijection between the transitions in the net and the events in the

FES, we use T to represent both, events and transitions, indistinctively.

Definition 4.2 (FES of a flow net). Let N = (N, M), N = (P,T,F) €1, be
a WF-flow net system. The FES of N is the tuple F = (T, #, <), where
#N and <V are those defined in Definition 3.23.

The following proposition restates the results proved in [Boud 90] for

flow nets.

Proposition 4.3 (Proposition 3.4 in [Boud 90]). Let N' = (N, M) be a
WF-flow net system, with a net N = (P,T,F) € n, and let F be its cor-
responding FES, then Conf(N) = Conf(F). More precisely, a sequence

t1 ...ty is firable in N if and only if it is a proving sequence in .

A result from Proposition 4.3, captured in the following Corollary, is
that a pair of configuration equivalent WF-flow nets have, similarly, con-

figuration equivalent FESs.

Corollary 4.4. Let N,N' be nets inn. Moreover, let F and F' be the FESs
of N and N, respectively. Then, the following holds:

Nzconf N' = TF Nconf F’

FESs define a type of behavioral profiles, denoted by BP)|f.s, where the
events are the tasks of the behavioral profile, and the flow and conflict are
the relations thereof. Additionally, the notions of configuration and exten-
sion of FES gives an execution semantics to this type of behavioral profiles,
such that any conclusion (w.r.t. behavior) derived from BP)|¢.s holds in the
corresponding WF-flow nets system, and vice-versa. The BP)|y.s represent-
ing the FES in Figure 4.3b is shown in Figure 4.4 and, by completeness, it

contains the inverse flow relations (<71).

78

i a b c d o
7 < <
a <1 # < <
b <1 # < <
<1 <’1 <
d <1 1 <
o <1 1

Figure 4.4: BP|.s(Ng)

In FESs, the flow relation is defined with respect to the strong post-
conditions between pairs of transitions. The following corollary shows that
all the places, with exception of the source and sink places, in a WF-flow
net are indeed strong postconditions. This technical result is used later to

show that BP|f.s are not behavior preserving.

Corollary 4.5. Let N = (N, My) be a net system, with a WF-flow net
N =(P,T,F)en, and t,t’ €T be a pair of transitions, such that t* N’ + .
Then, any place p € t* N ' is a strong postcondition, i.e., p € (¢, t").

Proof. Let o =ty ta...t, € A(N), for a n € Ny, be an execution of N,
such that t; =t and t; =t and 1 < 4,] < n. In this case, it is shown that
the property holds for an execution o, but then it also holds for any firing
sequence, which elements are part of 0. Observe that p is neither the source
nor the sink place since *p # @ # p* and that, by the properties of soundness
of WF-nets, My[o)M,, and M, = {o}, where o is the sink place.

Suppose that p is not a strong postcondition of ¢, i.e., p ¢ ¥(t,t'). The
only chance p is not a strong postcondition is that My(p) +|F’| > 1, where
F'={(tj,p) € F} for 1 < j <n. My(p) is clearly 0 since p is not the source
place, but then there is a t; # t in o, for a 1 < k <n, such that (¢,p) € F.
Then p was marked, at least, twice while firing o, by t; and ¢, but since
the net is 1-safe, then a token was consumed before the other was set. By
Definition 3.21, p is in the preset of at most one transition of o and so ¢
consumes a token from p, but then it remains with at least 1 token at M,,,

i.e., pe M,. Nevertheless, it violates the property of sound WF-nets, since

79

M, ={o} and p # 0. Thus p € ¢t* n*’ is necessarily a strong postcondition

of t, as required. O

As a result of the corollary above, the behavioral profiles BP|s.s are
not behavior preserving. L.e., a net system with implicit places would de-
fine “unnecessary” flow relations between the events in the corresponding
FES. For instance, consider the WF-flow net systems and their FESs in Fig-
ure 4.5. The WF-flow net system in Figure 4.5b has an additional place that
leads to the flow relation between the events ¢ and o in the corresponding
FES. Nevertheless, even though the resulting FESs are not isomorphic, they

represent the same set of configurations, namely {@,{i}, {i,a}, {i,a,0}}.

O H—— O —— =
CH—— o —— =

(a) WF-flow net system (b) WF-flow net system with an implicit
and its corresponding FES place and the corresponding FES

Figure 4.5: Equivalent WF-flow nets without (4.5a) and with (4.5b) an
implicit place and their corresponding FESs aside.

4.3 An execution semantics for BP|,

As mentioned in Section 4.1, classic behavioral profiles [Weid 11b] lacks of
an execution semantics, which hinders on a behavioral evaluation of this
formalism. For example, it is not possible trace back the computations
of the system that lead to a given BP|,, or to identify the computations
captured in this formalism. This section presents a transformation from

BP|,, to BP|es and shows that it is behavior preserving for WF-flow nets

80

without silent transitions. First, let us define the behavior relations used

in BP)|,, along with its computation.

Definition 4.6 (BP|,). Let N' = (N,M) be a net system, with N =
(P,T,F). A pair of transitions ¢,¢' € T is in one of the following relations:
e Strict order relation, denoted by t — t', if for every firing sequence
o€ A(N), with ¢ = t; ta...t, such that ¢; = ¢ and t; = ¢/, it holds
1<i<j<n.

e FEzclusive order relation, denoted by t +¢', if for every firing sequence
o€ AN):0 =1 ta...t, there are no t;,t;, where 1 <i,j < n, s.t.
i#j,t;=tand t; =1t

o Interleaving relation, denoted by t ||| t', if =(¢t — t'), =(¢' — t) and
—(t+1t").

For technical reasons, we also define the direct strict order. Transitions ¢

and t" are in direct strict order, denoted by t - t', iff
i —~1; A ti'ﬂ.tj g

The set BP|,(N) = {~,+, |||} is the classic behavioral profile of N.

7 a b c d o 7 a b c d o
i + > > b b e i < <
a « + Il > > a <1 < <
b “ If + - > > b <1 < <
c | a4 « « o+ o+ - c <1 -1 # <
d “ o« o« 4+ + > d <l oy <
0 | < w a o« o« o+ o <L <1

(b) BP|w (c) BP|fes

Figure 4.6: Net system N7 and its behavioral profiles BP|,, and BP)|y.s

For the sake of clarity, in the matrix representation of BP|, the direct

strict order is explicitly represented, but it should be clear that - implies

81

. Figure 4.6 shows a WF-flow net system, its BP|,, and its BP|.s. Note
that with the definition of - in BP)|,, both behavioral profiles are very
alike. In particular, direct strict order - and exclusive order + (without
the self-exclusive relations) in BP|, correspond to flow < and conflict #
in BP|es. Such correspondence defines the proposed transformation from
BP|, to BP|tes and provides the former with the execution semantics of
the latter. This transformation is a good basis to analyze the behavior
represented (or lost) in a BP),.

The transformation from BP|,, to BP|.s is formally defined as follows.

Definition 4.7 (BP}{*). Let BP|,(N) = {~,+,]||} be the classic behav-
ioral profile of a net system N = (N, M), with N = (P,T,F) en. Let +' =
+\{(t,t) | t € T} be the exclusive order relation without the self-exclusive
relations. The BP|ses of BP|,(N) is defined as BP* (V) = {-, +'}.

The reminder of this section considers unlabeled WF-flow nets denoted
by 75 The case for labeled nets is presented in Section 4.5. The following
proposition shows that the BP[L*(N) derived from BP},(N) is isomor-
phic to BP|fes(N), i.e., BPJf* (N) represents the same configurations as
BP|jea(N).

Proposition 4.8. Let N = (N, M) be a net system, where N = (P, T,F) €
1 s an unlabeled WF-flow net. Then BP|I#(N) = {~,+'} is isomorphic
to BP|fes(N) = {<,#}. Specifically, for any two transitions x,y €T 1) z+'
y < x#y, and 2) x >y < T <y.

Proof. Given that the nets are unlabeled, then for any transition in T
there is a task in BP|f., and in BP|,, (and so in BP|{%). Therefore, let
us consider the same set of elements T' throughout the different structures.
1. z+'y < x#y. It is easy to check that the definition of exclu-
sive ordering relation (+') in BP|,, and conflict (#) in BP|y.s is the
same. Then the conflict in the FES coincides with the exclusive order

relation in BP)|,.

82

2. x »y < x<y. (=) Consider a pair of transitions z,y € T :x - y.
By Definition 4.6, 30 =ty ta...,ty :x =t;,y = t; A i <j. Additionally,
since the causal relation is direct, then there is at least a place p ¢
x* N %y. Thus, by Definition 3.23, z <y in BP|es(N).

(<) Suppose z < y in BP|fes(N), but ~(z - y) in BPI{(N).
First, by Definition 3.23, since x < y then 3p € ¥ (x,y) and -(z#y).
Furthermore, since p is a strong postcondition of x, there is a firing
sequence o =ty t3...,t, such that x = t;,y = t;, where 1 <i<j <n.
The only case where —(x — y) can hold is if there is another execution
o' e AN), st., o' =t],t5,...,t;, and t, =z, t; =y: 1<l <k <n,
and thus z ||| y in BP|,(N). Observe that since p € ¢(x,y) then
p € *t;. Although, the last would imply that M (p) + |F'| > 1, where
F"={(tj,p) € F} for any 1< j <n, in ¢’. Specifically, p has a token
prior the firing of ¢; and after the firing of ¢;. The last contradicts
the fact that p is a strong postcondition (Def. 3.20(2)). Thus, if x <y

then x - y.
O

7 a b c d o 7 a b c d o
7 + —> — — — — 7 < < < < <
a « + Il B a <1 < < <
b “« H| + — —> —>> b <1 < < <
c |« « « + o+ - ¢ | <P <1<t # <
d “« o« o« + + —> d <l 11 # <
o <« « « <« <« + o <l

(b) BP}, (¢) BP|ses

Figure 4.7: Net system N and its behavioral profiles BP|,, and BP|scs

83

Figure 4.7 shows another WF-flow net system and its corresponding
behavioral profiles. The net systems Ng and N7 (Fig. 4.6) are configura-
tion equivalent, but have non-isomorphic BP|s.s due to the flow relations
derived from the additional places in N'g. Interestingly, the BP|, of both
net systems are isomorphic, and the difference in the set of flow relations
< is blurred by the definition of the strict order ~ in BP),,.

Armed with the results above, the next proposition shows that BP|,, is

behavior preserving for the 7.

Theorem 4.9. Let N = (P,T,F) and N' = (P',T',F") be WF-flow nets
in 1y, and let T' 2 T — T be a bijection between the transitions. Let N =
(N, My) and N' = (N',Mj) be the net systems and My and M{ be the

corresponding initial markings. Thus the following holds:
Ble(N) Ziso BP|w(N,) = N Nconf N'.

Proof. (=) Firstly, let us show that if BP|,(N) =50 BPlw(N') then
N %cong N
Suppose that BP|y,(N') =i50 BPw(N"), but =(N o s N7). By Corol-
lary 4.4, we have —~(BP|L%(N) Reonf BPIL(N)) since ~(N Reonf N').
Assume a configuration C' ¢ T in BP|{Z€S(N) and its mapping C’ =
{T(t') | ' € C} in N, such that C’ is not a configuration in BP[L** ().
By Definition 3.37, the configuration C' (i) is conflict free, (ii) for all ¢’ € C
and e ¢ C, s.t., e < € there exist an e’ € C s.t. e#e’ <€’ and (iii) has no
flow cycles. Then consider the following cases:
(i) Conflict freeness. Since C is a configuration in BP[A*(N), then
for any e,e’ € C it holds —(e#€’) and, in consequence, —(e +
e') in BP|,(N') by Proposition 4.8(1). Then, by the assumption on
the isomorphism of the BP|,’s, Jej,e] € C':T'(e) =e; A T'(e) = €],
such that —(e; +¢]) and thus —(e;#e]). So, C' is also conflict free iff
C is conflict free.
(ii) For any ef € C" and e; ¢ C', s.t., e; < €, there exist an e} € C" :
e1fte] < ef. Suppose that there is an event e; ¢ C’, such that Jel €

C':e1 <€ and Vel € C': =(e1#e€]). Given that e; <ef, then e; — €Y

84

(more specifically, e; - €Y), and since —(e1#€]) then =(ey + ¢€}) for
any e] € C', by Proposition 4.8. Hence, by the isomorphism of BP,,’s,
Je¢ Ce"eC:T(e)=e3 A T(e")=€f A er e’ and for any €' € C
it holds —(e + ¢"). However, the last contradicts the fact that C' is a
configuration in BP|L?* (), because e would necessarily be in C and
thus e € C’. Hence, condition 2 also holds for C”’.

(iii) Free of flow cycles. The only case remaining, so that C’ is not a
configuration in BPJ¢*(N), is when C’ contains cycles, i.e., <& is
not a partial order. This case simply cannot happen because WEF-
flow nets are acyclic and any firing sequence contains at most one
occurrence of each activity.

Therefore, if C is a configuration in BP[L(N), then C’ must also be a

configuration in BP|{068 (N7). The reverse case follows analogously.

(<) The opposite case, N ~cons N' = BP|y(N) =50 BPw(N'), holds

directly from the construction of the BP|,, (Def. 4.6). O

Finally, the next Corollary states the fact that BP|, is behavior-

preserving for the class of nets 7.

Corollary 4.10. The behavioral profiles BP|,, is behavior-preserving for

the class 1y, w.r.t. configurations equivalence ~cop -

The presented results also holds for the different extensions of the classic
behavioral profiles that have strict and exclusive order relations, e.g., causal
behavioral profile [Weid 11c] and behavioral profiles based on the relations
of the 4C spectrum [Poly 14].

4.4 Expressing differences using BP)|,

A key consideration to use behavioral profiles for process model comparison
is the clear interpretation of the relations. They can express patterns of
behavior, such as strict order, exclusive order and interleaving in the case
of BP|,. For example, if a pair of tasks are in strict order relation in

one model and exclusive order in another, then it is clear that in the first

85

process the tasks can occur in the same computation and the occurrence of
one follows the occurrence of the other; whereas they never occur together

in the second process.

a b c d e i o)

a nm m - - « =~
bl -> o+« -
c |l <« I« <« -
d |« +a >
e “« + —> + “« —>
i - > = > — >
(0] <~ <« «“— “«“— «“— <~

a

o (b) BP.

Figure 4.8: Net system N and its behavioral profile BP|,

Even though BP)|, was shown to be behavior preserving for WF-flow
nets without silent transitions, the interpretation of its relations can still
be ambiguous and produce misleading diagnostics. Consider the WF-flow
net system in Figure 4.8 and its behavioral profile BP|,, aside. Let us draw
you attention to transitions a and ¢, for which BP)|,, asserts an interleaving
relation. However, in all the configurations where e occurs it is always the
case that a precedes c. It is only in the set of configurations where e does
not occur where a and ¢ occur in any order. The fact is that these subtle

kind of differences requires a diagnostic with contextual information'.

Figure 4.9: Branching process of net system ANy (Fig. 4.8a)

Tt should be clear that it is possible to derive such sets of configurations from the
BP|f.

86

A solution to disambiguate the situation presented in Figure 4.8 is given
by the branching processes, which reason not in terms of actions, but in
terms of instances of actions. In a branching process, it is possible to define
a single relation (causality, conflict or concurrency) between every pair of
nodes. For instance, the branching process of the net system Ny (Fig. 4.8)
is displayed in Figure 4.9, and it contains two instances of ¢, one which
is preceded by a and one concurrent with a. The price to pay is that a
branching process can contain several instances of a single activity, and the
O(|A?) size of the representation is no longer guaranteed.

Another approach to tackle the ambiguity of the BP)|,, is to use a larger
set of behavioral relations. For instance, the 4C' spectrum [Poly 14] defines
a repertoire of eighteen basic behavioral relations that capture such be-
havioral phenomena as co-occurrence, conflict, causality, and concurrency.
One can employ the relations of the 4C' spectrum to construct a behavioral
profile (guaranteeing a O(]A|?) size of the representation). Note that due
to the nature of the 4C spectrum, a pair of tasks can be associated with
several behavioral relations. Even though this approach solves the prob-
lem of the ambiguity for the family of unlabeled net systems, it falls short
when trying to generalize the solution to the case of net systems with silent

transitions (as discussed in the next section).

4.5 BP and silent transitions

This section extends the analysis of the behavioral profiles to labeled WF-
flow nets, i.e., nets containing silent transitions. It is shown that for this
class of nets neither the notion of classic behavioral profiles nor its exten-
sions, including those based on the relations of the 4C' spectrum, provide
behavior-preserving representations of process models.

Proponents of classic behavioral profiles search for providing a represen-

tation that only considers the observable behavior. When it comes to repre-

87

senting labeled net systems, the common approach is to omit the columns
and rows in the matrix that would be associated with silent transitions.
This decision, however, comes with a loss of accuracy of the representa-
tion. E.g., consider the net system AN1g in Fig. 4.10a. Its classic behavioral
profile is isomorphic to the one of N5, cf. Fig. 4.1. However, N'19 has two
additional configurations: {a,b,d} and {a,e,d}, w.r.t. Ns.

a b c d T e
a < < < <
b | <1 < #
<1 < #
d <1t <1 <1
T <1 # <
(a) Net system N1 e <t o# <

(b) BP|ses(N10)

Figure 4.10: WF-flow net system and its BP|y.s

In order to preserve behavior, as for the case of unlabeled WF-flow nets,
one possibility is to explicitly represent silent transitions in the matrix, as
illustrated in Fig. 4.10b. It is easy to see that, using this approach, the
behavior of A5 and N9 would be represented with two non-isomorphic
matrices. However, this approach does not provide a complete solution
since multiple net systems may exist with different numbers of silent tran-
sitions exhibiting the same observable behavior.

The use of a larger number of behavior relations can be seen as a way
to tackle the above problem. For instance, both causal behavioral pro-
files and behavioral profiles based on the relations of 4C' spectrum provide
non-isomorphic representations for A's and N1g9. However, none of them
provides representations that distinguish the WF-flow net systems N'1; and
N12 in Fig. 4.11 w.r.t. configuration or trace equivalence.

4C spectrum provides a vast family of behavioral relations. Al-

though, the set of common configurations between N1 and AN'i2, namely

88

{{i,a,0},{1,b,0},{i,a,b,0}}, gives rise to the same representation based on
the relations of the 4C' spectrum. Observe that there is only one configura-
tion that distinguishes both systems: {i,0}. Then an interesting question
is how accurate are the 4C spectrum relations and if it is worth to sacrifice

some accuracy while preserving the O(|A|?) representation.

Figure 4.11: Net systems with isomorphic sets of 4C' relations over labels

Figure 4.12 shows two constructions that generalize the net systems in
Figure 4.11 with a variable number of transitions n. It turns out that,
for any fixed value of n € Ny, the system N3 would comprise the set of
configurations {{i,a1,as,...,an,0}} U{{i,am,0} | me[1..n]}, however, it
would have the same representation as the system A14 over the relations
of the 4C spectrum. Note that system A3 encodes n + 1 configurations,
whereas system N4 describes 2" configurations. Therefore, there exist two
net systems for which there is an exponential number of configurations that
are indistinguishable when using the representation based on the relations
of the 4C' spectrum. Specifically, 2" —n — 1 are indistinguishable configura-
tions between the net systems in Figure 4.12. This fact is captured in the
next proposition.

The counter example is not only for systems with concurrent behav-
ior, the net systems N'15 and N1 have the same 4C relations over labels.
Although, the net system N6 describes an additional configuration {7, 0}
which is not captured by the net system N15.

89

(a) Net system N3 (b) Net system N4

Figure 4.12: Generalization of the net systems in Fig. 4.11

(a) Nis (b) N6

Figure 4.13: Net systems with isomorphic sets of 4C' relations over labels
without concurrency

Proposition 4.11. There exist two labeled WF-flow net systems that have
the same 4C relations over labels, while the number of distinct configura-
tions that the net systems describe differ in a value which is in the order of
O(2™), where n is the number of distinct labels assigned to transitions of

the net systems.

The obtained results confirm that existing behavioral profiles are lossy
behavioral representations of labeled net systems. So, if one relies on exist-
ing behavioral profiles for comparing process models, then one must tolerate

inaccurate diagnosis.

4.6 Discussion

This section shows that, despite their efficient computation, behavioral pro-
files can be used to decide configuration equivalence only for a restricted

family of acyclic and unlabeled net systems. Specifically, this result ceases

90

to hold (for any currently known notion of behavioral profile) once transi-
tions of net systems are allowed to ‘wear’ labels.

Event structures are a model of concurrency that represents processes
by means of dependency relations and events. The events are occurrences
of actions and the dependencies explain how the events relate each other.
Prime Event Structures (PESs) [Niel 81, Wins 87] are one type of event
structures where dependencies between events are reduced to causality and
conflict (then a pair of event are concurrent if they are neither in causal
nor in conflict relation). PESs solve the issues inherent to behavioral pro-
files. E.g., they have an execution semantics and every pair of tasks can
be associated to a single relation that accurately describes the behavioral
dependencies between them.

PES can be also represented as a matrix, but it can be considerably
larger than O(|A[?), since a task may occur in many different computa-
tions. Indeed, the prime event structure of a process with cyclic behavior
would contain an infinite amount of events. The following chapter proposes
a technique to compute the PES of a process with cyclic behavior. To this
end, we present an unfolding technique that captures all the causal depen-
dencies between tasks. Then, we define a comparison technique to diagnose

and explain behavioral differences using PESs.

91

Chapter 5

Process model comparison

based on event structures

__

Tt [. / /

g9 . y Prime Partial . -
5! petri | | Prefix | | | artia 1 ! Detection of | | Verbalization |
25 nets ' I unfolding | ! Event Synchronized, differences ! ! of differences !
E g b I I Structures ! | Product I | [I

This chapter presents a comparison technique that takes pairs of (prime)
event structures as input and produces natural language statements (using
predefined templates) expressing encountered differences. A limitation of
this technique is that it is not be applicable to process model with cycles,
since the corresponding event structures have an infinite amount of events.
Section 5.1 addresses this limitation and presents an unfolding technique to
compute finite representations of cyclic process models. Section 5.2 intro-
duces the partial synchronized product of a pair of (prime) event structures,
which aims at finding similar and deviant behavior. By the same token,
this section also shows how to verbalize encountered differences as natural

language statements. Finally, Section 5.3 presents some discussions.

92

5.1 Finite representation of cyclic process models

A fundamental problem with cyclic process models is that their unfoldings
are infinite. The seminal work in [McMi 95|, later developed by many au-
thors (see, e.g., [Espa 08] and citations therein) introduced sophisticated
strategies for truncating the unfolding to a finite level, while keeping a
representation of any reachable state, thus getting what is referred to as
the complete unfolding prefix (CP). In particular, the authors in [Khom 03]
introduced a framework where a canonical unfolding prefix, complete with
respect to a suitable property and not limited to reachability, can be con-

structed. Our own work relies on such a framework.

b, by

(a) N7 (b) B

Figure 5.1: Petri net system and its complete unfolding prefix

Consider the net system A7 and its complete unfolding prefix 31 pre-
sented in Figure 5.1. Both conditions b; and by correspond to the place
p1 in N17. To compute a complete unfolding prefix, we start applying the
inductive rules in Figure 3.11 and stop the unfolding once we reach b3 and
b4, roughly because any addition to the prefix would duplicate information
already represented. Events b and c are called cutoff events. Even though
this prefix includes a representation of all reachable markings and all exe-
cutable transitions, in our setting, it does not include the information that
we require to diagnose the behavioral differences of processes. E.g., the fact
that ¢ causally precedes b and d is not explicitly represented in this prefix.

We define a cutoff condition that is stronger than state reachability.
Thus we obtain a larger prefix of the unfolding that makes explicit all the

causal relations between tasks (visible transitions). In the case of the net

93

system Aq7 in Figure 5.1a, the required unfolding prefix is 35 in Figure 5.2.
The cutoff conditions and their equivalent states are represented with the
same color. This prefix describes all causal dependencies between tasks,
thus it also captures the fact that an occurrence of b can be preceded by

another occurrence of the same activity (e.g., events e; and e7).

Figure 5.2: Complete unfolding prefix 55

Formally, we resort to the notion of cutting context introduced
in [Khom 03]. A cutting context is a tuple O = (», <,C) where ~ is an equiv-
alence relation over configurations, < is a total order over configurations,
and C is the set of configurations used at the time of the computation of
the unfolding prefix. E.g., the cutting context used in McMillan [McMi 95]
is O nrensitian = (Fmarks size, Cloc), where ~p,.-, equates two configurations
when they produce the same marking, <. is the total order induced by
the size of configurations, and Cj,. = {|e] | e € E} is the set of local con-
figurations. As already mentioned, the complete unfolding prefix [y is
computed by using McMillan’s cutting context. In fact, if we consider
the local configurations |c| = {a,T,c} and |a] = {a}, then one can easily
check that Mark(|a]) = Mark(|c]) = {p1}. Moreover, since ||a]| < ||¢]l,
then event c is a cutoff event. The cutting context in [Espa 02], denoted
OERvV = (®mark, 9sif> Cloc), differs from that in [McMi 95] for the definition
of the partial order <, which is refined by considering action labels thus
leading to more cut-offs and smaller prefixes (see [Espa 02] for details). For
our purposes, consider a cutting context which is a modification of Oggy

with a refined equivalence relation over configurations taking into account

94

also the tasks that produced the current marking. Roughly speaking, each

token stores also the history of the events.

Definition 5.1 (»p,cq). Let 5 = (B, E,G,p) be a branching process of a
labeled Petri net system with a net N = (P, T, F,\). A pair of configu-
rations C1,Cy € Conf(f) are equivalent, represented as Cy 8ppeq Co, iff
eMark(C1) = eMark(Cs), where

eMark(C) = {{p(b), p([b]")) | be Cut(C)}.

We rely on the cutting context © pyeq = (¥pred; <sif,Cioc)- According to
the theory in [KKhom 03], once we have proved that the equivalence »p;.cq
and the adequate order < ; are preserved by finite configuration extensions,
we immediately have an algorithm for constructing a canonical, finite prefix
of the unfolding, complete with respect to the equivalence ~p,.q4. The latter
means that for any configuration C in the full unfolding there will be a
configuration C in the finite prefix such that C ~p,..q C".

Since our cutting context is a slight variation of that in [Espa 02], we

can rely on their work for the proof.

Proposition 5.2 (equivalence is preserved by extension). Let [=
(B,E,G,p) be the branching process of a net system N, with a net
N = (P,T,F), and C,C" € Conf(5) be a pair of configurations, s.t. that
C wpreq C'. Therefore, for every suffix V of C, there exists a finite suffix
V' of C" s.t.:

C'"uV' 8preg CUV

Proof. Let C,C" be configurations such that C' ~p,..q C' and let V be a
suffix of C. We can assume that V consists of a single event, namely
V = {e}. The general case easily follows by an inductive argument. This
means that there is a transition ¢ in N such that p(e) =t and Mark(C)[t).

According to Definition 5.1, eMark(C) = eMark(C"), which in turn
implies that Mark(C) = Mark(C"). Hence Mark(C")[t), which implies the

existence of an extension V' = {e’} of C’, where p(e’) =t.

95

Clearly Mark(Cu{e}) = Mark(C"u{e'}). So, the fact that
eMark(C u{e}) = eMark(C"u{e’}) is quite immediate. Take any con-
dition " € Cut(C"u{e'}). There are two possibilities:

o s'ce
We have that |s'| ={e}u U [s"]. Consider the only condition s € e*

s'’e%

such that p(s") = p(s). We have that

p(Ls'1%) = {p(e) [M(p(e")) # 7} U S”LEJ.EIP(lS"JA)

={p(e) | A(p(e)) # 7} U S,g.eﬂ(ls"JA) [since p(e) =1 =
p(e") and C mppeq C']

= p(ls]")

Therefore (p(s), p([s]")) = (p(s"), p(ls']"))-

o s' e Cut(C")~%
In this case, if we take the only condition s € Cut(C) \ %e such

that p(s’) = p(s), since C w~pq C', we immediately get that

(p(5), p(Ls1M)) = {p(s"), p(Ls']")).

Therefore we conclude that eMark(C") ¢ eMark(C). Since the argument
is perfectly symmetric, we can deduce the converse inclusion, and thus

equality. O

The following proposition shows that the canonical unfolding prefix con-
structed with ©p,.q contains witnesses for all the causal relations that
would be exhibited in the (possibly infinite) unfolding of a Petri net with

cycles.

Proposition 5.3 (causal dependencies in the prefix). Let N be a net
system, let 8 = (B,E,G,p) be its unfolding (i.e., 8 = Unf(N)) and let
fo = (Be, Fo,Ge,pe) be the CP based on the cutting contert ©ppeq =
(Npred,qslf,cloc). Then Bg is “complete with respect to causal dependen-

cies”, i.e., for any pair of events e1,es € E :eq <P ey then
3e), el e Eg : € <Pe ey, where p(e1) = pe(e}) and p(e2) = po(eh).

96

Proof. Let e1,es € EM be events of the unfolding such that e; <? e5. This
means e; € |ez). Consider the configuration C' = |e3). By completeness
there is a configuration C’ in the prefix such that eMark(C) = eMark(C").
Certainly Mark(C") = Mark(C') enables p(e2) hence C” admits an extension
with event e} such that pg(ey) = p(e2). Moreover, since e; < ey there is a
condition s € %y N Cut(C) such that e; <? s and thus p(e1) € p(|s]*).
If we take the only condition s’ € Cut(C’) such that p(s) = pe(s),
we have that s’ € %} and, since eMark(C) = eMark(C"), it holds that
(pa(s),pe(ls' M) = (p(s),p(|s]*)). This means that there is ¢} € |s']
such that pg(e]) = p(er). Note that e} € |s'] means e] <%® &', whence

e} <Pe ¢l as desired. O

5.1.1 Multiplicity of activities

The unfolding prefix described above captures the fact that a task can
occur multiple times in a single run and thus a notion of multiplicity can
be attached to each task. Then if an event in the unfolding prefix, which is
an occurrence of task a, can be preceded by another occurrence of a, then
this activity can occur more than once in a computation. The multiplicity
of tasks helps differentiating the behavior of isomorphic unfolding prefixes
steaming from non-equivalent net systems. The last since the unfolding
prefix of a cyclic net can be isomorphic to an acyclic one (i.e., an occurrence
net) with duplicate labels.

We now show how to identify the multiplicity of each task (i.e., labeled
transition in the original net) given the canonical unfolding prefix induced
by ©peq- To lighten the notation in the remaining of this subsection, we
omit the super index of the relations of the branching process f, i.e., <7 is
simply represented as <.

Since we deal with safe nets, we observe that if a transition can occur

twice in a configuration, the corresponding events must be causally related.

Proposition 5.4 (repetition). Let 3 be a branching process of a net system
N, with a net N = (P,T,F). Let C € Conf(N) be a configuration such that

97

there exists e,e’ € C, e+ €' and p(e) = p(e') =t € T. Then either e < e’ or

e <e.

Proof. Observe that ef#te’ cannot hold, otherwise C' would not be a con-
figuration. If we had neither e < ¢’ nor €’ < e, then e and ¢’ would be
concurrent. As a consequence also *e U %’ would be concurrent. Therefore,
the corresponding marking in A/ would be coverable and it would have two

tokens in any place in *, contradicting the assumption that A is safe. [

The above observation motivates the interest for the following definition

in the study of repetitive behaviors.

Definition 5.5 (self-preceding transitions). Let 5 = (B, E,G,p) be the
unfolding prefix induced by © p,..q for anet N = (P, T, F,\). The set of self-
preceding transitions of N is defined as R = {p(e1) | IC € Conf (). e1,e5 €
C A p(er) =plea) nep <ea}.

Note that the possibility of reducing the repetition to a causal depen-
dency ensures that the finite prefix (which contains full information about
causal dependencies) will be also sufficient to identify repeated events. As
an example it can be checked that C' = {eg,e2,e6}, C' = {eg,e1,e5} and
C" = {eg,e1,€e3,e7,e13} are configurations in the unfolding prefix 8y from
Figure 5.2. Activity b is part of repetitive behavior as C” includes two
(causal dependent) occurrences of b. This holds despite the fact that there
are (maximal) configurations including only a single occurrence of b (like
C') or none (like C”).

Definition 5.5 tells us which transitions in the original net system may
occur more than once. By the same token, we can determine which tran-
sitions occur at least once. The latter correspond to events that occur in

the intersection of all completed configurations.

Definition 5.6 (necessary transitions). Let 5 = (B, E, G, p) be the unfold-
ing prefix induced by O p,.4 for a net system A. The necessary transitions
K of N is defined as K = N o(MazConf (53)).

98

Based on the above definitions of R and KC, we classify transitions in
a net system into three disjoint categories: those fired “0 or more times”
Wy ”

(denoted as “+”); “1 or more times” (denoted as “+7”); and at most once

“0..17. Formally:

Definition 5.7 (multiplicity of a transition). Let 5 = (B, E,G,p) be the
unfolding prefix induced by ©p,.q for a net system N, the multiplicity of
a labeled transition is defined as:

e 0.1={ecE|ple)¢R}

e +={ecE|ple) e RnK}

e x={eecFE|ple) e R\K}

Observe that if we are interested in the multiplicity of tasks, namely
transition labels, rather than of transition themselves (this makes a differ-
ence if the labeling in the net is not injective), we need some adjustments
to the definitions above. More precisely, the sets of labels corresponding to

R and IC above are

e AR={acA|3C e MaxConf(B).|(Aop)t(a)nC|22},
namely labels that can occur more than once in a computation are
those that occur more than once in a maximal configuration of a

branching process generated with © p,..4 (this is, in general, a superset
of A(R));

o AK =N A(e(MazConf(B)))
namely labels that necessarily appear in a computation are those
that occur in any maximal configuration of the branching process

generated with O p,..q.

In the case a transition may be fired “one or more times” or “zero or
more times” (“+” or “+”), the above definition does not tell us whether the
transition can be repeated an unbounded or a bounded number of times.

E.g., consider the net system and its unfolding in Figure 5.3, observe that

99

Figure 5.3: Non-free choice “cyclic” net system and its unfolding

the multiplicity of activity a is “+”, but it can occur at most twice in a
computation.

Below, we refine the notion of multiplicity for a class of workflow nets,
for which we show that when a task is classified as “+” or “+”, it means it

can be fired any number of times.

5.1.2 Multiplicity of activities in free-choice workflow nets

Transitions which, according to Definition 5.5 are marked as repetitive,
namely either “4” or “*” can surely occur more than once in a computation,
but still they could occur at most a bounded number of times (e.g., Fig. 5.3).
We next show that if we focus on the class of sound free-choice workflow
nets [van 97], a transition which is marked as “+” or “*”, may fire any
number of times, namely it is part of a cyclic behavior.

We show that for the class of (safe) free-choice sound WF-nets, the self-
preceding transitions captured by the proposed cutting context Op.q =
(®pred, <si f,Cloc), namely those transitions marked as “*” or “+” according
to Definition 5.5 represent unbounded repetitive behavior.

We first need a preliminary technical result.

Lemma 5.8 (sequences of firings). Let N be a sound free-choice WF-

net system. Let tg,...,t, be transitions such that t;* N ;.1 + & for
any i € {0,...,n -1} and let M be a marking such that M{[to). Then
there are sequences of transitions o; € T*, i € {0,...,n — 1}, such that

M[todotlo'l e O'nfltn)-

100

Proof. The proof is by induction on n. The base case n = 0 is trivial. Let
us assume the result for n and prove it for n + 1. By inductive hypothesis
there are oy, ..., o0y, such that M[tgogt101 ...0pn-1tn)M,. Moreover, by hy-
pothesis, there is at least one place p € t,,* N *,.1 and we know that p € M,,.
Since N is a sound WF-net, from marking M, there is a firing sequence

which leads to a marking consisting of one token only in the sink place
My[o){o}.

Since p € *,41, surely p # o. Hence the token in p is consumed by some
transition in o, namely o = o'tc” with p € *t.
Since N is free-choice, and *t N %,+1 2 {p} # @ we deduce *t = %,.1.

Therefore, since M, [c't) we also have M,,[0't,+1). Therefore
M[t000t101 e O'n_ltno"tn+1>

as desired. O

We can now easily conclude with the desired result.

Proposition 5.9. Let N be a free-choice sound WF-net and let t be a tran-

172 324

sition marked as repetitive (“*” or “+7). Then there are firings sequences

in which transition t fires any number of times.

Proof. Let t be a transition marked as repetitive (“*” or “+”). This means
that there are events e, e’ in the prefix Sg, such that p(e) = p(e’) =tre<e’.
We show that for any marking M, such that M[t), there is a sequence o € T*
such that M[tot). From this the result immediately follows.

Since e < €/, there must be a causal chain of e=¢y <e; <...<e, =¢€
such that e;* n%;,1 # @ for any i € {0,...,n—1}. Therefore, if we consider
the image through p in N, we get corresponding sequence of transitions
pleg) = to =t, pler) = t1, ..., plen) =ty = t, with ;* N %1 # @ for
i€{0,...,n—1}.

Now, given any marking M such that M][t), we can simply apply
Lemma 5.8, to deduce that there are o; € T*, i € {0,...,n — 1}, such that

M tooot101 ... Op-1tp).

101

recalling that ¢ = ty = ,, and denoting o = ogt107 ...0,-1, we get the desired
result. O

Again, the theory can be adapted if the labeling of the net is not in-
jective and we are interested in the repetition of labels (tasks) rather than
transitions. In this case we can distinguish between labels that can occur
more than one time in a computation (the class “*” defined as before) and
the subclass of those which can occur an unbounded number of times in a
computation, defined as A(R).

The insights we got from this section are used later in the verbalization

of differences involving repeated tasks (Section 5.2.3).

5.2 Comparison based on event structures

This section presents a comparison technique that takes pairs of event struc-
tures and produces natural language statements expressing encountered
differences. The computed differences reflect binary behavioral relations
between events and repetition of tasks that hold in one model but not in
the other. The comparison technique adopts completed visible-pomset as
the notion of equivalence and is formulated in terms of families of pom-
sets, thus it is applicable to various flavors of event structures (e.g., prime,
asymmetric and flow event structures).

As a starting point we consider the comparison of PESs, such that be-
havioral differences between a pair of process models are expressed in terms
of causality, conflict and concurrency binary relations. Before presenting
the comparison technique, we define the PES of a Petri net system and
put forward two different approaches to handle silent events present in the
event structures.

The PES of a Petri net system N is basically the unfolding Unf(N')
without the conditions and relations over conditions. However, in order

to tackle the problem of infinite unfoldings (as explained in the previous

102

section), we consider the branching process computed with the cutting
context ©p,eq. The formal definition of the PES of a net system is as

follows.

Definition 5.10 (PES of a net system). Let N = (N, M) be a net system,
where N = (P,T,F,)\), and o = (B,E,G,p) be its branching process
computed with O p,.qy. The labeled Prime Event Structure (PES) of fg is

defined as P = (E, <, #, ') where g:ng and # = #fE. Finally, \' = Ao p

is a labeling function that associates each event e € E with the label of its

corresponding transition ¢t € T', i.e., X' (e) = A(p(e)).

The differences between a pair of process models can include both ob-
servable and unobservable behavior. Although, reporting differences in-
volving silent transitions or events can result irrelevant to the user. For
this reason, the proposed technique considers only the observable events in
the PESs. This approach precludes the adoption of an equivalence notion
in branching semantics. For instance, Figure 5.4 shows a pair of non-history
preserving bisimilar PESs, but completed visible-pomset equivalent, which

differ only in the silent behavior (i.e., 7 event).

(2) P’ (b) Py

Figure 5.4: Non hp-bisimilar PESs, but completed visible-pomset equivalent

As a reference behavioral equivalence, we use a variation of pomset
equivalence, which ignores invisible events and is sensible to termina-
tion [Glab 89, Golt 94]. Roughly speaking, it equates systems which can
execute the same visible activities, with identical relations of causal depen-

dency and concurrency.

103

We can also take a more radical solution which consists in directly
removing the silent events from the PES, keeping only the visible events
and their dependencies. We adopt this latter approach.

The following definition is the restriction of a PES to its observable

behavior.

Definition 5.11 (restriction of PES to A). Let P = (E, <, #, \) be a labeled
PES, then the restriction of PES to observable behavior is defined as P* =
(B, <", # X), where E' = {e ¢ E | Me) # 7}, <'=<|pr, #' = #pr and
N = g

In specific cases, the restriction of a PES to its observable behavior
can lead to lose conflicts and maximal configurations. For example, the
restriction of P” in Figure 5.5 “loses” the (visible) maximal configuration
{a,b} in PA”. The last is due to the fact that 7 is the only event in conflict
with ¢ in P”.

It is easy to see that the problem does not occur if we consider process
models where silent events can never be maximal in a configuration, i.e.,

intuitively, where a silent event is never the last event of a computation.

D T «— QR

(a) P (b) PAH

Figure 5.5: PES and its restriction to observable behavior

Proposition 5.12 (restriction of PES to A preserves =.,). Let P = (E, <
,#,\) be a PES such that for any C' € MazConf (P), no event in C'x C* is

<-mazximal in C. Then P~ PA.

104

Proof. 1t is immediate to see that, under the hypothesis, for any C €
MaxConf(P) we have C = U |e]p € Conf(P) (where |€¢'|p denotes the
A

ecC
set of causes of ¢’ in P).

Now, if C' € MazConf(P) in order to conclude that C* € Conf(P") is
maximal, observe that if C* ¢ C' for some C’ ¢ Conf(P") then, by the

above, C' = U |e]p € U |e]p. Since the latter is a configuration in P,
ecCA eeC’

by maximality of C' we have C' = U |e]p hence C* = (U |ep)® = €, as
eeC’ eeC’
desired.

Vice versa, if C* € MazConf(P"), in order to conclude that C' e
Conf (P) is maximal, observe that if C' < C} for some C; € Conf(P) then
ch c C{\ By maximality of C* this means that C* = C{X. Therefore
C= U lelp= U le]p=0C1, as desired. O

ecCA eeCP

The comparison technique introduced in this chapter is compatible with
both approaches, namely, after the translation of a process model to a PES
one can either consider the underlying visible PES (if the transformation is
known to preserve the behavior) or keep the silent events and ignore them
in the later stage of the comparison.

The presence of different activities reduces, at the level of event struc-
tures, to the presence of events with different labels, which are easy to
detect and describe. Instead, properly diagnosing and reporting differences
in the way common activities (i.e., events carrying the same label in both
process models) are related in the process is a more complex problem.

A PES can be seen as a labeled graph, where events are nodes and re-
lations are edges. Thus, if two PES are diagnosed as isomorphic, it seems
sensible to conclude that they are behaviorally equivalent. Moreover, if an
error-correcting graph matching is used, the same algorithm would gather
the information about the differences on event occurrences (process activ-
ities) and mismatching behavior relations. Unfortunately, a conventional
approximate graph matching technique would not take into account the

order induced by the behavioral relations.

105

a ap - # - az

SN Lol

b(1) o # o o(2) b(1) ()
(a) Py (b) P,

Figure 5.6: Example of graph-based PES comparison

Figure 5.6 shows a pair of completed visible-pomset equivalent PESs
and a (partial) mapping between the events, which is given by the num-
bers in the parenthesis. Note that there are two possible mappings for the
event a in Py. Although, any mapping of a in Py, either with a; or as,
will spot the fact that there is another instance of a in Py that cannot not
be mapped. Thus, relying on graph isomorphism techniques and report-
ing differences based on mappings and mismatches of nodes can lead to
inaccurate diagnosis.

One additional concern is to provide a systematic approach to produce
intuitive diagnostics describing the differences found while comparing a
pair of PESs. Therefore, in the remainder of this section we present the
elements of our approach to compare event structures: matching behavior,

identifying differences and verbalizing differences.

5.2.1 Partial synchronized product

The first challenge is to determine the behavior similarity between a pair
of event structures. We adopt completed visible-pomset equivalence as
the reference notion for the comparison. So, if two event structures exhibit
different behavior (due to differences in the set of events or in the underlying
behavioral relations), it is clear that their corresponding visible-pomsets
would differ as well. Hence, we are interested in finding the best (or at least

a good) approximated behavioral matching between both event structures.

106

We start by introducing the concept of partial match between two con-
figurations, which is intended to capture the idea of an approximated iso-
morphism between the corresponding visible-pomsets. Note that the def-
initions in this subsection are based on the notion of families of pomsets,
thus they apply to the different flavors of event structures. Let us indicate

that a partial function f is undefined on = as f(z) =1.

Definition 5.13 (partial match). Let Py = (E71, Conf(P1), A1) and Pg =
(E2, Conf(P2), A2) be a pair of families of pomsets and let C; € Conf(P;),
for i € {1,2} be configurations. A partial match between C; and Cj is a
partial injective function & : Cy + Cy, such that for all ej,e] € Ey, with
&(e1),&(e]) # 1, the following holds:

1. X2(&(er)) = Mi(er)
2. e1< 6,1 iff f(el) <2 5(6,1)

A partial match is a function £ that establishes a correspondence be-
tween events of the two pomsets, respecting both labeling and order. Note
that partial match is a partial and non surjective function, meaning that
some events in C1 may not have a mapping to any event in Cs, and vice
versa.

A partial match between configurations can be thought as the result of

applying two operations over “growing” pomsets

1. matching of events (both pomsets synchronously evolve a pair of

events that have the same label), and

2. hiding of an event (only one pomset evolves with a single event while

the other remains the same).

Matching and hiding operations can be expressed as inductive rules, as
shown if Figure 5.7, that applied to a partial match £ between Cy and Co
produce another partial match involving larger configurations. Since the

same partial match can be associated with different pairs of configurations,

107

we write (C1,&,C3) to refer to € seen as a partial match between C; and
Cy. Finally, we write C' <.y C'U {e} to denote C'u {e} € Conf(P), for a
configuration C' € Conf(P) and an event e ¢ C. Note that, in case silent
events have not been removed from the families of pomsets during their
extraction from the process, the hiding operations are used also to ignore

silent events.

C1 35,0 Cy 25,0 € =¢[er 2] partial match
(01,5702) (C{,f’,Cé)

match ey, ey

match ej,eo

el ’
Cl —a Cl

(0175702) m (0176702)

hide e;

€2 7
Cy —4 02

hide e hide €2
— (C1,¢',Cy)

(0176702)

Figure 5.7: Partial matching operations given a partial match (C4,¢&, Co)

An example of partial matches between configurations is depicted in
Figure 5.8. The first and second rows show a pair of PESs P3 and Py,
and their corresponding visible-pomsets aside framed in a gray box. The
second row shows a pair of partial matches between the configurations of
both pomsets, the hidden events and their relations are highlighted in gray,
whereas the matches are in black. Formally, the matchings in Figure 5.8
are denoted as ({a,b,c},[a ~ a,c~ c],{a,c}) and ({a,b,c},[b+ b],{b}).

Starting from the above concepts, we aim at defining a technique that
allows to optimize the matching of pomsets or, equivalently, to minimize
the number of hiding operations in a partial match. Clearly, whenever
it is possible to establish a mapping between the pomsets of two families
of pomsets using only matching operations, those families will be equiv-
alent. Conversely, when the families of pomsets are not equivalent then
the optimal match of their pomsets —the one with the minimum number

of hidings— would capture both the largest approximate visible-pomset (or

108

«— O «— Q
O «— S «— Q
S

Figure 5.8: PESs and a pair of partial matches between their configurations

common behavior) and the corresponding differences, in the form of hiding
operations.

Let Py and P3 be families of pomsets, and C € Conf(P1) and Cs €
Conf(P3) be a pair of configurations. The “quality” of a partial match
s =(C1,&,C9) is captured by a value g(s)

g(s) =[O+ |03 - Jé] - 2. (5.1)

The function g(s) above is aimed at quantifying the “quality” of the
matchings between a pair of pomsets. When g(s) = 0, then £ is a visible-
pomset isomorphism between pomsets C and Co. When g(s) > 0 the
partial match £ required one or more hiding operations. This case can be in-
terpreted as an approximate (or non complete) visible-pomset isomorphism
of pomsets C1 and Cs. E.g., the quality of the partial matches in Figure 5.8
are g({a,b,c},[a~ a,c~ c],{a,c}) =1 and g({a,b,c},[b~ b],{b}) =2.

Given two families of pomsets P; and Ps, for any two configurations

C1 € Conf(P1) and Cy € Conf(P2) there is always a partial match. How-

109

ever, only a subset of the possible partial matches would have a minimum

cost; those partial matches are said optimal.

Definition 5.14 (optimal match). Let P; and P2 be families of pomsets
and let C; € Conf(P;), for i € {1,2} be configurations. A partial match
s=(C1,&,Cs), where € : Cq +» Cy, is called optimal when

g(s) =min{g(s) | £': C1 » Ca}

The partial matches between configurations of two families of pomsets
can be collected in what we call a partial synchronized product, defined in

the line of [Adri 13] but for pairs of families of pomsets.

Definition 5.15 (partial synchronized product). Let P; and P5 be families
of pomsets. The partial synchronized product is the graph G = (S, T') where:

e S is the set of triples (C1,£,Cs), where £ : Cy +» Cs is a partial match;

e T is the set of transitions (Cy,&, Co) 2> (C1,€',CY%) defined by the

rules in Figure 5.7.

It is immediate to see that the partial synchronized product is induc-
tively built starting from an “initial” node (@, @, @) corresponding to the
unique partial matching for the empty configurations, and then expand-
ing the graph by using the rules in Figure 5.7. Note that the hiding
(hide e; and hide ez) operations can only increase the cost g of a par-
tial match by one (when the hidden event is visible) or leave it unchanged
(when the hidden event is silent); whereas the match e;,es always leave
the cost unchanged. Therefore, whenever (C1,§,C2) 2, (C1,¢,CY%), then
g((C1,&,C2)) < g((C1,¢',C5)). This fact, when searching for optimal par-
tial matches, allows for some pruning in the generation of the partial syn-
chronized product.

The partial synchronized product obviously contains all optimal

matches (as it contains all partial matches). However, the size of a partial

110

synchronized product is exponential, making its full construction compu-
tationally unfeasible.

We adopt a branch an bound approach, more specifically an adaptation
of the well-known A* algorithm [Hart 68], in order to build an informative
part of the partial synchronized product. As usual, the A* algorithm re-
quires two cost functions: one to evaluate the cost from the root of the state
space to a given path, referred to as the function g or past-cost function,
and a heuristic function to estimate the distance to the goal state, referred
to as the function h or future-cost function.

Given a partial match s = (C1,&,C5), the past-cost function g(s) is that
defined in Equation 5.1. Let E = CiLEJC' C'" \ C; be the set of all possible
extensions of C;, where i € {1,2} and C’ is any configuration extending C;.

The future cost function h(s) is shown in Equation 5.2.

h(s) = 1(A(ED) U A(ES)) N (A(ET) 0 A(E))) (5.2)

Intuitively, h provides a measure of the number of events to be hidden
in the future of C; and Cy. It optimistically assumes that events with the
same label will indeed contribute to a one-to-one match between the two
configurations. It can be seen that this estimate is admissible in the sense
required in [Dech 85] for the use of the algorithm A*. Specifically, given
a partial match s = (C1,£,C3), in order to match all the events in the
extensions of Cy and (5, then it is necessary to hide at least the events
with different labels (labels seen only in the extension of either Cy or Cy).
It does not necessarily mean that the partial matches obtained using the
function h will be optimal, since a single partial match s = (C1,£,C3) can
be “in the path” to match several maximal configurations.

The function for the A* algorithm is then x(s) = g(s) + h(s) for any
partial match s = (C1,£,C2). The pseudo-code for the search algorithm is

presented in Algorithm 1 and uses function k.

111

The presented version of the A* algorithm is tightly coupled with the
semantics of the underlying event structure, because the match and hide
operations are based on the possible extensions of the configurations. In
other words, the nodes expanded by the A* algorithm from a partial match
represent extensions in both configurations in the case of match, or exten-
sion in only one configuration in the case of hide.

Figure 5.9 shows two PESs and a part of their partial synchronized prod-
uct, which contains the optimal matches for the maximal configurations.
Observe that, in the partial synchronized product, the fact that a pair of op-
erations can be applied independently is captured by diamonds-like shapes
in the graph. E.g., in Figure 5.9, after ({a1},£ = [a1 »~ a2],{a2}), it is
possible to match the events with label b ({a1,b1},£" = £[b1 = ba],{az2,b2})
and hide the c-labeled event ({a1,b1,c1},&,{a2,b2}) in any order without
affecting the final partial match.

b/l\ N

(a) Ps (b) PG
(2,9,2)
| match
match ({a1},€ = [a1 = az], {a2})
({a1,b1},61 = €[b1 = b2], {a2,b2}) ({a1,¢e1},6,{a2})
atch match

({a1,b1,e1},861,{az,b2})

({a1,ce1},&2 =€[c1 » c2], {az,c2}) ({a1,b1},€,{a2})

| match

({a1,b1,c1},82,{az,c2})

(¢) partial synchronized product for Ps and Pg

Figure 5.9: PESs and their partial synchronized product with the optimal
partial matches

112

Algorithm 1 Computing partial matches

Algorithm

Input: 771 = (El, C’O77¢f('731)7)\1) and 732 = (EQ, C’onf(Pz),)\2)
Output: Multiset of partial matches for the maximal configurations
// Initialization
foreach C € MazConf(P1)u MazConf(P2) do
GW(C) = oo
MATCHES[C] =@
end
so = (2,2,)
OPEN « {so}
while OPEN + @ do
Choose any s = (C1,£,C2) € OPEN, with minimum x(s)
OPEN « OPEN \{s}
// Pruning
if isCandidate(C1,s,P1) Vv isCandidate((C2,s,P2) then
// Best match

if C1 € MazxConf(P1) A C2 € MaxConf (P2) then
updateMatches(C1, s)

updateMatches (Cy, s)
end
foreach C; =% C1,Cy 2, C3, s.t. M(e1) = Az2(e2) do
if £[e1 — e2] is a partial match (Def. 5.13) then
| OPEN « OPEN u{{C},¢[e1 = €2],C5)} > MATCH
end

end
foreach C; =% ¢} do

| OPEN < OPEN U {(C},£,C2)} > HIDE e,
end
foreach Cy 23 C% do

| OPEN « OPEN U {(C1,£,C4)} > HIDE e
end

end

end
return MATCHES

Procedure isCandidate(C, s, P)

return 3M € MaxConf(P):C c M Ak(s) < GW (M)

Procedure updateMatches (C, s)

if k(s) <GW(C) then
MATCHES[C] <~ MATCHES[C]u{s}
dGW[C] <~ Kk(s)

113

5.2.2 Identifying differences

The partial synchronized product is a rich structure that represents the
hide and match operations, which lead to some partial matches (possibly
optimal or simply good, when determined with some heuristic approach).

In order to explain the behavioral differences, a possibility consists in
simply verbalizing the hide operations. Note that differently from a purely
syntactical approach this will captures how early a discrepancy can arise
during the execution of the processes. In other words, the closer a hide
operation is from the “initial” node (&, @, @), the sooner the discrepancy
can occur.

The partial synchronized product explicitly represents the state (par-
tial match) where a discrepancy occurs, hereinafter called the context.
Then, a hide operation can be expressed as an event that occurs in one
model but not in the other. For instance, in Figure 5.9 there is an
edge representing the hide operation ({a1},§ = [a1 ~ az2],{az2}) hade
({a1,c1}, €, {az}) and another representing the hide operation ({a1,b1},& =
E[b1 — ba], {a2,b2}) fide e, ({a1,b1,c1},&,{az,b2}). The behavioral differ-
ence represented by these two nodes is the same, namely: “In model 1,
there is a state where c occurs, whereas in the matching state in model 2,
it cannot occur”. These two differences however differ in terms of the state
where the difference is observed. In the first case, the state in question is
the one reached immediately after we execute activity a, whereas in the
second case, it is the state reached immediately after we execute activity
b. We can therefore see that if we map each hide operation in the partial
synchronized product into a difference diagnostic statement, the resulting
statements can be largely redundant and difficult to interpret.

For this reason a more abstract explanation of the differences, e.g.,

in terms of behavioral relations that hold in one process and not in the

other, can be more convenient and understandable for the user. Thus, we

114

next present an approach for expressing the hide operations in the partial
synchronized product as behavioral relations of an event structure.

In this approach, the behavioral difference between the PESs in Fig-
ure 5.9 can all be expressed using one single diagnostic statement, that
is: “In model 1, b and c are in parallel, whereas in model 2, b and c are
mutually exclusive”.

To implement this latter approach, we have to select the set of behav-
ioral relations that best helps with the verbalization of the discrepancies
captured by a given hide operation. To this end, we observe that a partial
matching (C1,&,Cs) can be seen as a partially filled matrix of behavioral
relations, denoted as W¢. In this alternative representation, the columns
represent the matched events in & and the rows represent the hidden (un-
matched) events. For instance, the matrix representation of the matching
({a1,b1,c1}, €, {a2,ba}) (Figure 5.9) is displayed in Figure 5.10a.

| (a1,02) (b1,02) | (a1,02) (b1, b2)
(Cla) ‘ (<>) (Hv) (61702) ‘ (<a<) (”7#)
(a) Ve (b) W,
Figure 5.10: (a) Matrix representations for (a) partial match

({a1,b1,¢1},€,{as,b2}) and (b) extended partial match ({a1,b1,c1},¢ =
5[61902],{%,5)2})

The overall idea in order to diagnose the differences in terms of behav-
ioral relations is the following. Given a partial match £, we aim at extending
the mappings (even outside the configurations) for the unmatched events.
The matching for an unmatched event shall have the same label, so that
they can be seen as an instance of the same action, and their dependencies
with the events in £ shall be as similar as possible. The extension of a
partial match renounces to the requirement that the match should respect
the order in the pomsets, but still tries (following some heuristic) to match
events which are alike. The formal definition of an extended partial match

is presented below.

115

Definition 5.16 (extended partial match). Let Py = (Eq, Conf(P1), A1)
and Py = (Es, Conf(P2),A2) be families of pomsets and let £ : O +» Co
be a partial match between configurations C and Cs. An extended partial
match for £ is an injective partial function ¢ : Ey + Fs such that (i) £ c ¢,
(ii) for any e; € Cq such that ((e1) # L it holds A2({(e1)) = A1(e1) and (iii)
for any e; € Ey if ((e1) # L then either e; € Cy or ((e1) € Cs.

Intuitively, the extension of a partial match £ is any label-preserving
partial function extending £. Condition (iii) states that extensions are only
allowed when they match previously unmatched events either in C or Cs.

Let us introduce some measure of the “quality” of an extension.
Roughly, we try to minimize the number of dependencies on which the
matched events differ. The next definition uses a generic set of relations
Z, which is concretely defined depending on the type of event structures
used. IL.e., in the case of PES % = {<,#}, in the case of AES #Z = { ~*, <}
and in the case of FES Z = {<, #}.

Definition 5.17 (cost of extensions). Let ¢ : E1 + F3 be an extension of
the partial match £ between configurations C and Cy, and let Z be the

set of relations in the event structure. The cost of (is defined as

K(¢) =l{((er,e2),rel, (e1,€5)) = rel e Z A ((e1) =ea A ((e]) = e A

—(e1 rel € < eg rel €))}]

We are interested in maximal extensions ¢ of a partial match (namely
extensions where all pairs of events with the same labels have been
matched), which minimize the cost K({). If the explicit computation of
a maximal extension with least cost is computationally too expensive, one
can use a local search criteria, i.e., start from a partial match £ and add a
single pair of events each time (thus applying the rule in Figure 5.11, where
either e € Cq or eg € Cy, minimizing the cost at each step).

Consider for example the optimal matching ({a1,b1,c1}, &, {az2,b2})

(Figure 5.9). The corresponding optimal maximal extension is shown in

116

C(e1) =1=C""(e2) Ai(er) = Aa(e2)

Cle1 — e2]

synthetic match ey, e

Figure 5.11: Synthetic matching operation

Figure 5.10b, i.e., ({a1,b1,¢1},(= &[c1 — c2],{az,b2}). This example is
very simple because there is only one possibility to match the event c¢; in
Pg (with event c).

The partial synchronized product may contain more than one optimal
match for a maximal configuration (and also more than one extended partial
match), each of which leads to the same number of differences. In the
absence of any other intuitive criteria for distinguishing optimal matches,
we select any such matching to generate a verbalization of differences. The

following section describes the verbalization step.

5.2.3 Verbalizing differences

We propose to verbalize each discrepancy by means of a statement consist-
ing of two parts: a description of the context where the discrepancy occurs
and a description of the difference itself.

The context describes the state s in the partial synchronized product
where a given discrepancy (hide operation) occurs. A full representation
of the context consists of the set of events matched in s leading to the dis-
crepancy. In the case of visual feedback, this can be visually represented by
animating the process model in order to show to the user an execution path
leading to the state in question. On the other hand, listing all the events
leading to a given state is arguably less readable in textual form. Instead,
when verbalizing a context in textual form, it may be more convenient to
refer only to a partial description of the context, consisting only of the last
event (i.e., last activity) executed before the hiding operation to be verbal-

ized is reached. In the examples given below we opt for this latter (highly

117

abbreviated) verbalization approach for the context. The problem of accu-
rate abbreviation of execution paths leading to a given state (configuration)
in a process model is further studied in [Lohm 14].

The difference itself is described by referring to either a behavioral re-
lation in one model that is not present in the other, or by stating that the
multiplicity of an activity in one model differs from the multiplicity of the
same activity in the other model. Given that the comparison technique
presented in this section is applicable to either AESs, PESs of FESs, below
we provide the verbalization of the different possible behavioral relations
between activities a and b:

e Causality (<): “a has to occur before activity b”.

e Asymmetric conflict (): “a can occur before b or a can be skipped”.

e Flow (<): “a can occur before activity b”.

e Conflict (#): “a and b are mutually exclusive”.

e Concurrency (||): “a and b are parallel”.

The multiplicity of an activity is verbalized as follows:

e 0..1: “occurs at most once”,

e +: “occurs at least once”, and

e *: “occurs 0,1 or more times”.

Whereas, for safe and sound free-choice workflow nets, the multiplicity of
an activity is verbalized as follows:

e +: “occurs any number of times, but at least once”, and

e *: “occurs any number of times”.

Based on the above verbalizations of context, behavioral relations and
multiplicity, we use the following templates to verbalize a given discrepancy

between two models M1 and M2:

1. Case of unmatched event: “In M1, there is a state after < _context_>
where < _activity_ > always occurs, whereas it cannot occur in the

matching state in M2”

118

2. Case of mismatching relations. “In M1, there is a state after
< _context_ > where < _verbalization of relation 1_ >, whereas in the

matching state in M2, < _verbalization for relation 2_>”

3. Case of mismatching multiplicity: “In M1, < _activity. > <
verbalization of multiplicity in M1 >, whereas in M2, it <

verbalization of activity multiplicity in M2>.

As an example, Figure 5.12 shows a pair of PES and their partial syn-
chronized product. The differences, with the approximate context, can be
expressed with the following mismatching relations:
1. (b1,b2),(0],02) = (#,<): “In M1, there is a state after i where o and
b are mutually exclusive, whereas in the matching state in M2, b has
to occur before activity o”,

2. (a1,a2),(01,02) = (#,<): “In M1, there is a state after i where o and
a are mutually exclusive, whereas in the matching state in M2, a has
to occur before activity o”

3. (b1,b02)(01,092) = (#,<): “In M1, there is a state after a where o and
b are mutually exclusive, whereas in the matching state in M2, b has
to occur before activity o”, and

4. (a1,a2),(0}",02) = (#,<): “In M1, there is a state after b where o

and a are mutually exclusive, whereas in the matching state in M2, a
has to occur before activity o”.

Observe that, even though there are six hiding operations in the
partial synchronized product, there are only four sentences explaining
the differences between both PES. It is due to the fact that ({i1},£ =
[in > o) {i2}) == ({01}, {iab}) amd ({i1},&, {iz,a0}) —
({i1},€&, {i2,a2,b2}) are representing the hiding of b with the same context

&, similarly for hide as in &.

119

soyojewr Tewrpdo o) yim jonpoid pozruoIyduds [erred Iy pue s§HJ :g1°G 2InSrg

84 pue Lq 10} jonpoid paziuoryouds [errred (2)

({0°8q &v @} “[20 = Jo]e3 {

a~ 1o¢Tq 11}) ({Z0‘Tq‘Tv T} ‘[T0 « Lo]€3{ Lo 1q In‘T2}) ({T0‘Eq‘Tn‘T1} [0 «t Lo]3{T0 T1}) ({T0‘Tq‘Tn T2} ‘[T0 « T0]T3*{T0o TIn Ts})

i

YIIDUL YOIDUL YoDUL HNUNQE_
({eq‘Tp T} T3 {Tq‘T2}) ({2q‘en T} e3n I3 = €3{Tq‘TIp ‘T2}) ({%q¢ep T} 3{T2}) ({%qTpT1} ‘13¢{Tp ‘T1})
Yo DUL
({eq 21} [2q < 1q]3 = ¢3*{1q e}) ({eo e} t3{11}) ({en e} [e0 o]z = 13{In 12}) ({eq e} 3{1e})

YorDUW
% \

({Z2} [Br = Ta] = 3{Ts})
:des_

(2@ ‘D)

s (q)

<o

N

m@)

N/

[4)

120

5.3 Discussion

The use other types of event structures can lead to more compact repre-
sentations and, by the same token, diagnosis. For instance, Figure 5.13
shows an AES that is equivalent to the PES in Figure 5.12a, i.e., history
preserving bisimilar. In this example, the interpretation of the differences
using AESs instead of PESs can be expressed only in two sentences:
1. (b1,b2),(01,02) = (,<): “In M1, there is a state after i where b can
occur before o or b can be skipped, whereas in the matching state in
M2, b has to occur before activity o”, and
2. (a1,a2),(01,02) = (,<): “In M1, there is a state after i where b can
occur before o or b can be skipped, whereas in the matching state in

M2, b has to occur before activity o”.

/N
a b

N .
\\ 7
4 U

01

1

Figure 5.13: AES equivalent to P7 in Figure 5.12a

Many different kinds of event structures have been proposed, relying on
more expressive dependency relations. In this work, we focus on two basic
extensions of prime event structures, namely asymmetric event structures
(AESs) [Bald 01], where conflict is allowed to be non-symmetric, and flow
event structures (FESs) [Boud 89], which provide a form of disjunctive
causality (the causes of an event can be chosen from a set of conflicting
events).

Interestingly, it can be seen that the three event structures depicted
in Figures 5.14(a)-(c) represent the same set of computations, but with
different numbers of events. This happens because AESs and FESs can

take advantage from their relations and semantics in order to avoid some

121

P
vl T
SRR
Co 1 ‘\\ l v v
e oo

(a) PES (b) AES (c) FES

Figure 5.14: Three history preserving bisimilar event structures

duplication of events representing activity c. Also, it should be noted that
PESs can be seen as special AESs, where asymmetric conflict is actually
symmetric, and as special FESs, where the flow relation is transitive and
potential causes do not contain conflicts.

The next chapter identifies suitable transformations which reduce the
size of AESs and FESs, without altering the original behavior. The method
is based on the identification of sets of events that intuitively represent
occurrences of the same activity in different contexts and can be safely
folded into a single event. As a reference notion of behavioral equivalence
we consider history preserving bisimilarity [Rabi 88, Glab 89, Best 91], one
of the classical equivalences in the true concurrent spectrum. Indeed, the
three event structures in Figure 5.14 can be shown to be history-preserving
bisimilar. The AES in Figure 5.14b can be seen as a reduction of the PES
in Figure 5.14a that was obtained by “folding” the events ¢y and c; into
a single event cp;. Similarly, the FES in Figure 5.14c can be seen as a

reduction of the PES that was obtained by “folding” events ¢; and cs into

C12.

122

Chapter 6

Reduction of event

structures

Ve SN
I Asymmetric) Canonical

———————————————— I I e
v v Event |, \

[I

[I

[I

[|

N ST, T
Partial I (X L N
Synchronized } | Detection of | | Verbalization |

Product | | differences | | of differences |
AN

Prefix | \Structures /s | Fo:/:‘:t‘)f

N
[Flow 11 structures |
\

Visible pomset
equivalence

,m———=

I |
_Structures

Chapter 5 shows an example where smaller event structures can lead
to more compact diagnostics during the comparison and verbalization of
differences. Two types of event structures that can avoid some of the event
duplication inherent to PESs are Asymmetric Event Structures (AESs) and
Flow Event Structures (FESs). This chapter proposes behavior-preserving
(w.r.t. hp-bisimulation) reduction techniques for AESs and FESs, which
aim at finding sets of events that can be replaced with a single event while
keeping the behavior unchanged. Section 6.1 presents an abstract notion
of folding of event structures. Sections 6.2 and 6.3 presents the folding
techniques for AESs and FESs, respectively. Section 6.4 defines a deter-
ministic order on the reduction operations, such that the folded version of
an event structure is always the same. Final discussions are presented in

Section 6.5.

123

6.1 Foldings

We next introduce the notion of folding, which is intended to formalize the
intuition of a behavior-preserving quotient for an event structure. In the
next sections we will provide some concrete folding techniques for AESs
and FESs. The following definition uses E to denote AES and FES indis-

tinctively.

Definition 6.1 (folding). Let E; and Egz be event structures. A folding
morphism is a surjective function f: 1 — Fy such that the relation Ry =
{(Cn, fiey, f(C1) | C1 € Conf(E1)} is a hp-bisimulation. A folding is called
elementary if there is a set X; ¢ F; such that for all e1, €] € Ey, e; # €] and
f(er) = f(e}) iff e1,e] € X;.

In words, a folding is a mapping that “merges” some sets of events of
an event structure into single event keeping the behavior unaltered. It is
elementary if it merges only a single set of events.

Sometimes, with abuse of terminology, we will refer to E9 as the folding
of £1. It can be seen that under mild conditions, the target event structure
is completely determined by the folding map, hence it can be seen as a sort

of quotient along the map.

6.2 Reduction of AESs

The technique for behavior preserving reduction of AESs consists in iter-
atively identifying a set of events carrying the same label, i.e., intuitively
referring to the same activity, and replacing all the events in the set with a
single event. This quotient operation is shown to induce an elementary fold-
ing, i.e., it leaves the behavior unchanged with respect to hp-bisimilarity.
The prototypical example of folding in AESs, which exploits the expres-
siveness of asymmetric conflict, is provided in Figure 6.1. The right AES
is obtained by merging the two conflicting b-labelled events by and by (the

conflict bo#by is inherited from a#b1). Event a is in asymmetric conflict

124

a<-- b a
I
v

!

bo bo1

(a) A (b)
A”

Figure 6.1: AES A’ and a folding A".

with the event bg; resulting from the merge, thus hist(bp1) in A” includes
{a,bo1} and {bg1}, which corresponds exactly to the histories of by and by,
respectively, in the AES A’. The function mapping a identically and by, by
to bp1 can be easily shown to be a folding.

More generally, the rough idea is that a folding will merge events in
conflict, with the same label and different sets of causes, into a single event
having such sets of causes as possible histories. However, events to be
merged have to be chosen carefully. Consider, for instance, the AESs in
Figure 6.2. The AES A; can be thought of as a quotient of Ag obtained
by folding the two c-labelled events ¢y and cp, the first in conflict with
d and the second caused by d, into a single event cg;. The dependencies
d # co and d < ¢1 in Ag give rise to the asymmetric conflict d / ¢p1 in Aj.

Analogously, As is obtained from Ay by merging ¢y and co into a single

event cpa.
cfsd e d_ e d_ e
/" ! d \\ 7’ !
X L X L
C1 C2 Co1 C2 C1 ¢> Co2
(a) Ao (b) Al (C) AQ

Figure 6.2: AESs such that Ag =5, A1 but Ag #p,, Ao.

Figure 6.3 shows the sets of configurations of the AESs in Figure 6.2,
endowed with the extension order. Observe that the AESs Ay and A4

have isomorphic partially ordered sets of configurations. Instead, the poset

125

{e,d,c2} {e,d,c2} {e,d,co2}

{e,d} {d,c1} {e,d} {d,co1} {e,co2} {e,d} {d,c1}
I\ I\ \/\/
{e} {d} {co} {e} {d} {eor} {e} {d} {co2}
(%] (%] %]
(a) Conf(Ao) (b) Conf(A1) (c) Conf(A2)

Figure 6.3: Configurations of the AESs in Figure 6.2, ordered by extension

corresponding to Ag has an additional configuration {e,cg2} that does not
correspond to any configuration in Conf(Ag). Hence, even though A; and
Ao are obtained from Ag via an apparently similar procedure, the mapping
into A is a folding, while the one into Ay is not.

Events that can be merged, intuitively, should represent occurrences of
the same activity in different contexts (leading to different causal histories
for the events). Hence they surely need to have the same label and be
in conflict. Additionally they should relate to the remaining events, via
asymmetric conflict, essentially in the same way. This is formalised by the

notion of similar events.

Definition 6.2 (similar events). Let A = (E,<, 7, \) be an AES. We say
that X ¢ F is a set of similar events if for all x,2" € X, e€ E\ X:

1. M) =X(2') and a# 2’

2. ifx 7ethena’ 7e v e ux;

3.essx = e x.

Condition (1) requires that, as mentioned above, the events in X have
the same label and are conflict. By condition (2), given two events z, 2" € X,
if for an event e € E ~ X we have x ~ e then necessarily be also ' ~ e,
unless e ~ x, and thus x and e are in conflict. This last clause captures the

situation in which e is in the history of 2’ but not in that of x, and thus

126

x and e are in conflict. Finally, condition (3) requires that any direct ~-
predecessors of an event in X remains a /-predecessor for all other events
in X.

We next define the AES which results from the merge of a set of similar
events. For a relation r on events, we will denote by ¥ and r3 the relations
between events and sets of events defined in the expected way. For instance,
given an event e and a set of events X, by e 7’ X we mean that e r z holds

for all € X, and by X r? e we mean that z r e holds for some z € X.

Definition 6.3 (quotient of an AES). Let A = (F, <, #,\) be an AES and
X be a set of similar events. The quotient of A with respect to X, denoted
Ajx, is the AES A/x =(E)x, </x, 7/x;)/x) defined as follows

E/X = (E\X)U{ex}

</x = (EX) u{(e,ex) le<” XIu{(ex,e)| X < e}
X = ABX) u{(e,ex) e 27V XY u{(ex,e)| X ~¥ e}
Nx = Alex = A(z)] for an event x € X.

The quotient map fx : A - A x is defined by fx(z) = ex for z € X and
fx(e)=eforee Ex\ X.

In words, the quotient of A is obtained by replacing the set X of events
with a single event ex, with the same label as those in X. The causes of
ex are the common causes of the events in X. Any event originally caused
by at least an event in X is now caused by ex. This can be understood
by recalling that the quotient map, in order to be a folding, must be in
particular a simulation. Hence, on the one hand, in any computation, a
common cause of all the events in X will surely occur before ex and, on
the other hand, ex will occur before any causal consequence of an event in
X. The asymmetric conflicts for ex are exactly the common asymmetric
conflicts of the events in X. This is explained by the fact that, in order
to be a folding, the quotient map must preserve and reflect the local order
of configurations which is given by (the transitive closure of) asymmetric

conflict.

127

We can prove that, according to the intuition above, the quotient map is
a simulation, in the sense that it preserves configurations and the extension
relation on configurations. We start with a technical lemma, identifying
some relevant properties of the quotient map. This will be used also to
prove that A x is a well-defined AESs, a fact which has not be showed
formally yet. It could be proved that the quotient map is an AES morphism

in the sense of [Bald 01], but this has not a relevant use in this context.

Lemma 6.4 (properties of the quotient map). Let A = (E, <, #,\) be an
AES and let X € E be a set of similar events. Then for alle€ E, z € E/x

1. if z</x f(e) then there exists €’ € E such that e’ <e and f(e') = z;
2. if f(e) 7~ /x f(e') thene 7 €';

3. ife 7s5¢e’ then f(e) 7/x f(e') or e#te’;

4. if e<e’ then fx(e) 7 /x fx(e').

Proof. 1. Let z € E/x and e € E be such that z </x f(e). We distinguish

various cases:

o If z = ex then, by Definition 6.3, there exists x € X such that = < e.

Since f(z) = ex and f(e) = e, this is the desired conclusion.

e If e € X (and thus f(e) = ex) then by Definition 6.3, z = ¢’ <" X, i.e.,

e’ <z for all x € X. Therefore, in particular, €’ < e, as desired.

e If none of the above apply, then z = ¢’ € E and f(e) = e, hence the
result trivially holds.

2. Let e,e’ € E and assume f(e) 7/x f(€'). If e € X and thus f(e) = ex
then, by Definition 6.3, X ~" ¢/ and thus, again, e ~ ¢’. If instead, e’ € X
and thus f(e’) = ex then, by Definition 6.3, ¢ #¥ X. Thus in particular,
e » ¢ as desired. Finally, if e,e’ ¢ X then fy is the identity on e, e, and
thus the result trivially holds.

3. Let e,e’ € E and assume e ~5¢’. We distinguish three cases:

128

e If e € X then, by Definition 6.2(2), either ¢ ~ e and thus e#e’ and
we are done, or for all € X we have z ~ ¢/, namely X ~" ¢’. In the
last case, according to Definition 6.3, we thus have f(e) = ex 7/x

e/ = f(e'), as desired.

e If ¢/ € X then, by Definition 6.2(3), for all x € X we have e / z,
namely e #" X. Thus, by Definition 6.3, f(e) = e 7 1x ex = f(e'), as

desired.

e Otherwise, neither e nor e’ are in X and thus the thesis trivially

follows.

4. Let e,e’ € E and assume that e < e’. If e,e’ ¢ X then the relations
between the two events are left unchanged. Since e < ¢’ and thus e # ¢’
we have that fx(e) #,x fx(e'). If e € X then by Definition 6.2(2) either
'~ € for all ' € X or ¢ ~ e. The second possibility would lead to
a contradiction, since we would have e#e’ and e < e’. Hence the first
possibility must hold and thus X 7 ¢, thus fx(e) = ex 7/x fx(€).
Finally, if ¢’ € X, from e < ¢/ we know that e < €’ <5¢’, for some e”. By
Definition 6.2(3), since e <5e’ and thus ¢’ 75¢’ we have that e » z, for
all z € X. Recalling that e < ¢, we have e » z, for all x € X, namely
e 2V X. Therefore fx(e) /x ex = fx(€'), as desired. O

a a
l l
be--0C1 b
l :
Co o1
(a) As (b)
Az

Figure 6.4: AES and its quotient

Note that the converse of (2) above, i.e., if e 7 €' then fx(e) 7,x
fx(e"), does not hold. For instance, consider the AES in Figure 6.4. If

129

we merge co and c1, we get that a # co but it is not true that fx(a) 7 /x
fx(co) = co1. Moreover, note from (4) and the definition of < in the quotient
(Definition 6.3), it follows that the causes of some event in X which are

not common to all events are turn into (proper) asymmetric conflicts.

Lemma 6.5 (A/x is well-defined). Let A = (E,<, #,)) be an AES and
let X € E a set of similar events. Then A;x = (E/x,</x, 7 /x,\/x) i an
AES.

Proof. Let A/x = (E/X,S/X, /'/X,)\/X) be defined as in Definition 6.3 and
Let fx : A > A x be the quotient map. We first note that < is a partial
order. Antisymmetry is obvious. Transitivity of <,x follows immediately
by transitivity of < in A. Moreover, for any event z € E,x, we have that
| z] is finite. In fact, let e be any fy-counterimage of z, i.e., e € E such that
fx(e) = z. For any 2’ € Ex, if 2’ </x z, by Lemma 6.4(1), there exists
e’ < e such that fx(e’) = 2’. This means that |z] ¢ fx(|e]). Since |e] is
finite, we deduce that also | z] is finite.

Concerning asymmetric conflict ~,x, conditions (1)-(4) in Defini-
tion 3.31 are easily inherited from those of ~ in A. More explicitly, let
z,2',2" € E/x. Then we have

L If 2 </x 2’ then z 7 /x 2".

We distinguish various cases:

e if 2 = ex and 2’ = fx(e'), for an event ¢/ € E\ X then X <3 ¢/,
namely, there exists x € X such that z < ¢’. This implies that x 7 ¢
and thus, by the notion of similar events (Definition 6.2) either 2’ ~ ¢’
for all 2’ € X or ¢ ~ x. The latter possibility would lead to z#e’,
contradicting the fact that x < ¢/. Hence it must be 2’ # ¢’ for all

2’ € X, namely X <" ¢/, and thus ex 2 1x fx(e') =2

o if z = fx(e), for an event e € E\ X, and 2’ = ex then e <Y X. This
implies that e #7 X and thus e 7 X €X-

e if both e,e’ € E\ X, the desired consequence is trivial since the rela-

tions between e and e’ are not modified by the quotient operation.

130

2. if z 7)x 2" </x 2" then z 7/ 2"

We distinguish various cases.

o If 2 =ex and thus 2’ = fx ('), 2" = fx(e"), for events e’,e" ¢ E\ X
then by Definition 6.3, we have X ~" ¢/ in A, and thus z ~ €’ < e
for all z € X. Therefore, ~ €” for all € X, namely X ~¥ ¢ and

thus z =ex ~ 2" = fx(e").

o If 2" = ex and thus z = fx(e), 2’ = fx(¢'), for events e,e’ € E~ X,
then by Definition 6.3, we have e < X. Thus for all 2 € X it holds
e 7 e <z, hence e » z. This means that e 2" X and thus z =

fx(e) 7)x 2" = fx(ex), as desired.

e If 2’ = ex and thus z = fx(e), 2" = fx(e"), for events e, e’ € E\ X,
then by Definition 6.3 there exists e’ € X such that ¢’ < e”. Moreover,
e » ¢ and thus e ~ €’ in A. Since e,e” are left unchanged by the

quotient, z = fx(e) 7 fx(e"’)=2"in A/x.

e Ifnone of z,2’, 2" € X then the thesis trivially holds since the relations

between such events are not modified by the quotient operation.

3. /[IJA/X is acyclic for all z € £ x

Let z € E/x be an event and suppose that | 2| contains a cycle z; # /X
zy /x --- 7jx #1. By surjectivity of fx we can find e € E such that
z = fx(e). By Lemma 6.4(1), there are events eq,...,e, € |e] such that
fx(ei) = z; for any i € {1,...,n}. By point (2) of the same lemma, e; ~
ez /... 7 er. This contradicts the property of 7|.j€ A being acyclic for

any event e € A.

4. if 71X |l]ol2] is cyclic then z 7y 2".

Let e,e’ € E such that fx(e) =z and fx(e') = 2’. As observed in the proof
of point (1), we have that |z] = |fx(e)] € fx(le]) and |2'] = | fx(e')]|
fx(l€']). Therefore if ~/x is cyclic over [z] u |2], it is cyclic also over
Ix(leh)u fx(le']) = fx(le]u|€']). Since, by Lemma 6.4(2), fx reflects
asymmetric conflict, this implies that ~ is cyclic on |e]| U |e’|. Therefore

e ~ €'. Since this holds for any e, e’ such that fx(e) =z and fx(e') =2/, a

131

case distinction similar to that in the previous points, allows us to conclude
z 2. O

We can now show that quotient map preserves configurations and the

extension order.

Lemma 6.6 (quotient preserves configurations). Let A = (E,<, #,\) be
an AES, X € E a set of similar events and let fx : A — A x be the
quotient map. Then for any configuration C € Conf(A) it holds that
fx(C) € Conf(A)x) and fxic : (C,7¢) —~ (fX(C),/'}X(C)) is an iso-

morphism of configurations.

Proof. Let C' € Conf(A) be a configuration. We first observe that fx(C') is
a configuration in Conf (A, x). For proving causal closedness, take e € C' and
consider the event fx(e) € fx(C). If z </x fx(e) by Lemma 6.4(1) there
exists ¢’ € E such that €’ < e and fx(e') = 2. Since C is a configuration,
necessarily e’ € C' and thus z = fx(€’) € fx(C).

Moreover, /,x is acyclic on fx(C). In fact, if there were a cy-
cle in fx(C) it would be of the kind fx(e1) 7,x fx(e2) 7/x - 7/x
fx(en) 7/x fx(e1), for e1...,e, € C. Then by Lemma 6.4(2), we would
have ey 7 ey 7 ... 7 e, 7 e1, contradicting the fact that C' is a configura-
tion.

In order to prove that fx|c: (C, 7¢) > (fx(C), /’}X(C)) is an isomor-
phism of configurations, it suffices to observe that for all e,e’ € C' we have
that

1. if fx(e) 75 fx(€') then e 7~ €';
2. if e #5¢e then fx(e) » fx(e).

Point (1) is a special case of Lemma 6.4(2). For point (2), let e /5 €’. Then
by Lemma 6.4(3), either fx(e) ~ fx(e') or e#¢e’. Since the latter cannot
hold, because e, e’ € C' which is a configuration, necessarily fx(e) 7 fx(€'),

as desired. O

As an immediate consequence of the above result, we can prove that

the extension order is preserved and reflected by the quotient map.

132

ap ¢» aq b

(a) As (b) Al
aoi

b ao1 b
(c) (d) Ayx
Ag/x

Figure 6.5: Quotients with respect to a set X = {ag,a1} of non-similar
events

Corollary 6.7. Let A = (E,<, #,\) be an AES, X ¢ E a set of similar
events and let fx : A — A, x be the quotient map. Then for all configuration
C,C" e Conf(A) it holds that C = C" iff fx(C)c fx(C").

Observe that conditions (2) and (3) in Definition 6.2 are necessary for
the simulation result. For instance consider the AESs in Figures 6.5a
and 6.5b, and their quotients A4,y and A /X with respect to the set
X ={ag,a1}, in Figures 6.5¢ and 6.5d. In both cases, the quotients do
not simulate the original AES.

More in detail, for the AES A4, we have ag . b while neither a; # b nor
b 7 ayp, thus violating condition (2). Indeed A4 has the configuration {a1, b}
with a1 and b concurrent, which is not in the quotient. In the AES A/ of
Figure 6.5b, b 75ag while it is not the case that b ~ ay, thus violating
condition (3). In this case A} has the configuration {b,a¢} with b < ao,
which is not in the quotient.

However, quotienting an AES on a set of similar events X still can alter
the behavior. Consider for instance the AESs Ay and As in Figure 6.2.
We have that Az = Ag/f¢, e,y and {co,c2} set of similar events. We already

noted that Ay and As are not hp-bisimilar since Ay admits a configuration

133

{e, cp2}, which has no counterpart in A: it represents a new history for a c-
labelled event. The problem resides in the fact that the causes of some event
x € X, which are not causes for all events in X will become asymmetric
conflicts in the quotient, hence they can either appear or not in the histories
of ex. The same applies to ~-predecessors of such causes. The (consistent)
combinations of these events will lead to different possible histories for the
merged event ex. Such histories must be already histories of some event
in X in the original AES, otherwise they will represent newly generated
behaviors.

In order to formalise this fact given an AES A and a set X of similar
events A we introduce the set of possible events for X which intuitively are
those events which, in the quotient, can either occur or be omitted in the

histories of ex.

Definition 6.8 (possible events). Let A = (E, <, 7, \) be an AES and let

X € F a set of similar events. The set of possible events for X is
p(X)={eeE|~(X 7" e)n-(e<" X) A e ? X}

According the way in which ~,yx and <;x are introduced in Defini-
tion 6.3 the requirement —(X ~" e) implies ~(ex 7 /x €) (and thus ex and
e are not in conflict) and the requirement —(e <" X) implies —(e < /X €x)-
Finally, concerning the requirement e ~7 X, namely e ~ x for some x € X,
there are two possibilities. If e 752 then by Definition 6.2(3), e /¥ X and
thus e 7,y ex in the quotient. Otherwise, e e’ < x for some event €', and
thus e 7, x ¢’ #/x ex in the quotient (since as observed above, causalities
either remains unchanged or become asymmetric conflicts). In both cases,
according to the informal explanation above, they can be either included
or not in the history of ex.

Marginally, we observe that the set p(X) can include events that are not
in the history of any event in X. This happens for the AES in Figure 6.6,
taking X = {co,c1}.

134

a--p

~ EN
! 1
v v

Co ¢«» C1

Figure 6.6: The set p({co,c1}) = {a,b}, includes a which is neither in the
history of ¢y nor of ¢;

As mentioned above, in order not to modify the overall behavior, all
consistent subsets of p(X) should match some possible history of an event
in X in the original AES. For instance, in Figure 6.2, in Ay we have that
p({co,c1}) = {d} while p({c1,¢2}) = {d,e}. While in the first case for any
(consistent) subset of p({cp,c1}) (namely @ and {d}) there are c-labelled
events (namely ¢g and ¢1) having these subsets as histories; in the second
case the possible consistent subsets of p({c1,c2}) = {d, e} include {e} which
is not the history of any c-labelled event. Hence the first quotient A; =
A0/{cy,e,) Preserves the behavior, while the second Ag = Ag/(, c,) does not.

The above considerations lead to the notion of combinable set of events.

Definition 6.9 (combinable set of events). Let A = (F, <, 7, \) be an AES.
A set of events X ¢ E of similar events is combinable if for all Y ¢ p(X),
consistent and causally closed (namely if e € Y and e’ € p(X), ¢’ < e then
e’ €Y) there exists e € X and H € hist(e) such that Hnp(X) =Y.

We finally now show that the quotient with respect to a combinable set
of events is a folding, i.e., the corresponding quotient map can be seen as

a hp-bisimilarity between A and A /x.

Theorem 6.10 (quotient map is a folding). Let A = (E,<, 7, \) be an
AES and let X be a combinable set of events. Then the quotient map
fx A= Ajx is a folding.

Proof. Let A be an AES, let X be a combinable set of events and let
fx A — Ajx be the quotient map, where A/x = (E)x,</x, 7 /x;A/x)
We prove that

R={(C1, fic,, fx(C1)) | C1 € Conf(A)}

135

is a hp-bisimulation.
First of all notice that for any Cy € Conf(A), if we let Cy = fx(C1), then
by Lemma 6.4, fic, : (C1, #*) = (C2, #*), is an isomorphism of pomsets.

In order to conclude, we next prove that
1. if there is e € E such that C; c Cy U {e} € Conf(A) then Cy c Cy U
{fx(e)} e Conf(Ax);

2. if there is z € E/x such that C3 £ Ca U {2} € Conf(A,x) then there is
e € I such that fx(e) =z and C1 £ C1u{e} € Conf(Ax).

which corresponds to conditions (a) and (b) in Definition 3.42.

1. Note that Co U {fx(e)} = fx(Ciu{e}) is a configuration by
Lemma 6.6. Moreover Co © Cy U {fx(e)}, namely there is no e’ € C;
such that fx(e) 7;x fx(e’), otherwise by Lemma 6.4(2) we would have
e ~ €', contradicting Cy € C1 U {e}.

2. Assume that Cy © Cy U {z} € Conf(A x) for some 2 € E;x. We

distinguish two cases.

2.a) ze ENX
Take the (unique) fx-counterimage of e of z, namely fx(e) =z. A key

observation is that
there is no e’ € C; such that e ~ €'. (1)

In fact, we can show that given e’ € Cy such that e ~ ¢’ then there exists
" € Cy such that z = fx(e) 7/x fx(e"), contradicting the fact that Cy c

Cyu{z}. In order to prove this, we distinguish two cases.

e First assume that e #5¢’. If e’ ¢ X then clearly fx(e) 7,x fx(e'). If
e’ € X then by Definition 6.2(3) e » x for all x € X, namely e /¥ X.
Thus also in this case, by Definition 6.3, fx(e) =e 7 ex = fx(€').

Hence the desired result holds taking e” =€’

e If instead the asymmetric conflict is not direct, then there exists e’
such that e 75e”” < ¢e’. Since ¢’ € Oy by causal closure also e”’ € C,

and thus the same argument of the previous case allows to conclude.

136

Now we can easily prove that Cy U {e} € Conf(A). For thus, we need
to show that |e| € Cy Take any e’ < e. Since e ¢ X, by Definition 6.3, we
have fx(e') </x fx(e) and thus fx(e’) € fx(C1). Take ¢” € Cy such that
Ix(e") = fx(e'). We observe that it must necessarily be e’ = ¢”. In fact, if
e’ # e it should be €’,e” € X and thus e’#¢”. By inheritance of conflict,
this would lead to e#e” and hence e ~ € violating (f) above. Hence it
must be e’ = e” € (4, as desired. The absence of cycles of asymmetric
conflict in C7 u {e} follows immediately by the same property in C7 and
property (1) above.

Also the fact that C1 & Cy u{e} is an immediate consequence of (f)

above.

2.b) z=ex
Consider the set

Y:Clﬂp(X)

Clearly Y ¢ p(X). Moreover, it is consistent and causally closed. In
fact, Y is consistent since it is a subset of C'1. It is also causally closed. In
fact, if e€ Y and e’ € p(X), €’ < e, since e € Y ¢ Cy and configurations are
causally closed, we deduce e’ € C and thus ¢’ € Y.

Hence, by Definition 6.9, there exists x € X and H € hist(x) such that
Hnp(X)=Y.

As in the previous case we observe that
there is no e € C; such that x ~ e. (1)

In fact, given e € Cy such that ~ e then, according to Definition 6.2(2),
we have that either ' ~ e for all 2’ € X or there exists ' € X such that
~(2' 7 e) and z#e. In the first case, we would have X ~" e and thus
z=ex 7 /x fx(e) € Ca, contradicting the fact that Cy € Co U {z}. In the
second case, from x#e we have e » x and, additionally, there is ' ¢ X
such that —(z’ ~ e). Hence e /3 X and (X ~" €). Moreover it cannot
be e < z, since e#x, thus ~(e <¥ X). This means that e € p(X). Recalling
e € (1, we deduce that e € Y. Since by construction Y € H, in turn, we get
e € H which leads to a contradiction since H is an history of x, and thus it

cannot include events in conflict with z.

137

Now observe that |z] ¢ Cy. In fact for any e < z either fx(e) < fx(x) =
ex or, by Lemma 6.4(4), fx(e) » fx(z) = ex. In the first case, since
fx(e) < ex necessarily fx(e) € Cy and thus, since fx is the identity on
e, we deduce e € C7. In the second case, by Definition 6.3, it must be
-(e <" X). Additionally, since e < z he have that e 7 X and —~(X ~" ¢)
(in particular, —-(x ~ e)). Hence e € p(X) and, since e < x, necessarily
ee€ H. Thus eeY = Hnp(X) and therefore e € C1.

By above and () Cy u{z} is a configuration and C; c Cy U {z}. By
Lemma 6.6, since f(Cqu{x})=Cyu{ex}, they are isomorphic. O

By iteratively applying the quotient to a given finite AES we can thus
obtain an AES which is hp-bisimilar to the original one and not further
reducible. Unfortunately, this does not provide a canonical minimal repre-
sentative of the behavior. For instance, consider the AES in Figure 6.2(a).
There exist two possible quotiented AESs, presented side-by-side in Fig-

ure 6.7, which are cannot be further reduced using the quotient operation.

d e coésqg *

e
1 R 1
R AW
Co1 Co C12
(a) A5 (b) Aﬁ

Figure 6.7: Foldings for the AES in Figure 6.2

Observe that this is not due to a limitation of our quotient technique,
but rather it is intrinsic in the nature of AESs and their foldings. In fact,
one can see that for these two AESs there are no non-trivial foldings (i.e.,
the only foldings are isomorphisms). This fact can be shown just by inspect-
ing all the possible label preserving surjective mappings. In this regard, we
address the problem of the non-canonical minimal representation in Sec-
tion 6.4, where we present a way to define a deterministic order on the
folding operations. Still, the question remains as to whether our quotient

technique is in some sense complete, i.e., if it generates all the possible

138

foldings. We will come back to this question in the discussions at the end

of this chapter.

6.3 Reduction of FESs

The technique for behavior preserving reduction of FESs, as in the case of
AESs, consists in iteratively identifying a set of conflicting events with the
same label that, when replaced by a single event, induces an elementary
folding. As observed in the introduction, the way in which FESs generalizes
PESs is somehow orthogonal to that of AESs: the latter allow a non-
symmetric form of conflict, while the former introduce a form of disjunctive
causality. As a consequence, at a technical level the conditions defining the

sets of events that can be merged are quite different.

a - # b Q - H o b
bord N/
Co # C1 €o1
b 4N
d e d e
(a) F (b) F

Figure 6.8: FES F and a folding F’

A prototypical example of folding in FESs, which exploits the possibility
of modelling disjunctive causality, is provided in Figure 6.8. The FES F’ is
obtained from F by merging the two conflicting c-labelled events ¢y and ¢ .
The resulting merged event cp; has @ and b as <-predecessors, and d and e
as <-successors. Since a and b are in conflict, exactly one of them will be in
a configuration including cg;. The function mapping a, b, d, e identically,
and cg, ¢ to ¢o1 can be easily shown to be a folding.

Now consider a more complex example in Figure 6.9a. First, if we take

events ¢y and c¢; and try to merge them into a single event ¢y, there would

139

Figure 6.9: Sample FESs

be no way of updating the dependency relations while keeping the behavior
unchanged (since b excludes ¢y and precedes cj, the resulting dependency
between b and the merged event cg; would be an asymmetric conflict that
cannot be represented in FESs). Instead, we can merge events ¢; and c
in F; into a single event cj19, thus obtaining the FES in Figure 6.9b. In
this case, the merge is possible because the original events c¢; and co are
enabled by {b} and {d, e}, respectively, and since b#d, b#e, after the merge
the same situation is properly represented as a disjunctive causality.

In order to define sets of events that can be safely merged we need some
further notation. Given a set of events Z, we denote by mc(Z) the set of
maximal and consistent (i.e., conflict free) subsets of Z. Additionally, as in

the case of AESs, we need to single out conflicts that are direct.

Definition 6.11 (direct conflict). Let F be a FES and let e,e’ € E. We say
that e is a direct conflict for €', denoted as e #s¢€’, if e#te’ and IY € me(%)

such that Y u{e’} is consistent.

Intuitively, a conflict e#t¢’ is direct when there is a way of reaching a
configuration where e is enabled, without disabling e’. Note that direct
conflict is not symmetric in FESs. For instance for the FES depicted in
Figure 6.10, we have a #;d while it is not the case that d #;a.

We use the extensions of relations # and < to relations between sets

and events, as already done for AESs. For instance, given X € F and e€ F

140

Figure 6.10: Example of direct conflict in FES, a#sd and -(d #5a)

we write X#" e whenever for all z € X, we have z#e, or X <3 e when there
exists z € X such that z <e.

We can now define the notion of combinable set of events for FESs.

Definition 6.12 (combinable set of events). Let F be a FES. A set of
events X ¢ F is called combinable if for all z,2" € X and e,e’ € E\ X the
following holds
1. M) = X(z') and z#a’,
T #se = ' H#e,
r<e=12'<e v a'#e,
e<x=>%"+a A (e<a’ v (Ve <z’ ne ¢ x. e#te)),
el e%e A x#e A (XN {x}#7e)
(xeY =3 eY ~{z}. e"#e)A
(XnY =g=3" €Y. X#e")

Gk W

= VY e me(%e).

Roughly speaking, condition (1) requires that the events in X are oc-
currences of the same activity (they have the same label and they are in
conflict). Condition (2) requires that events in X have the essentially the
same conflicts: for any = € X, if x is in direct conflict with an event e
(hence this conflict is not derivable from the <-predecessors) then all events
in X must be in conflict with e. Conditions (3) and (4) state that predeces-
sors and successors are preserved among events in X or they can become
conflicts. The rough intuition is that events whose causes are in conflict
can be possibly merged thus getting a single event having the conflicting
causes as <-predecessors and the conflicting consequences as <-successors.
More in detail, by condition (4), if an event x € X has a non-empty set of

<-predecessors, then the same must be true for all events in X. Moreover,

141

if e is a <-predecessors of some x € X then for any other z’ € X, either e is
a <-predecessor of 2’ or it is in conflict with all the <-predecessors of 2’ not
in common with z (namely with the events in ®z’ \ *z). This ensures that,
whenever we merge the events in X thus joining their <-predecessors, the
maximal consistent subsets of <-predecessors will remain unchanged (see
Lemma 6.13, where the role of condition (4) emerges formally).

Finally, condition (5) takes into account the situation in which events
z € X and ¢’ € Ex X are conflicting <-predecessor of an event e, but not all
events in X are in conflict with e’. This is problematic because, after the
merging, the conflict between x and e’ will be lost, thus possibly changing
the maximal subsets of <-predecessors. The condition indeed says that
merging is still allowed if the conflict z#¢’ is not essential when forming
the maximal consistent sets of <-predecessors for e. In detail, it is required

that for any Y € mc(%)

e if x € Y then z is not the only event in Y which is in conflict with
€', so that losing the conflict z#e’ would not be problematic and Y

would remain a maximal consistent set;

e if none of the events of X occur in Y then this is due to the presence in
Y of an event ¢’ in conflict with all events in X (which, in particular,
is not €’ and thus this will remain a maximal set even if the conflict

x#e’ is lost).

For example, consider the FES Fo in Figure 6.11a. If we take X =
{ay,a,} then condition (5) fails. Please note that events corresponding
to those in condition (5) have a subscript which should suggest their role.
We have °c. = {ay,a,be} and thus me(%ce) = {Y,Y'} with Y = {a,} and
Y’ ={a,,be}. Observe that a, € Y but clearly there isno ¢’ e Y\{a,} =@
satisfying e”#b.. The quotient of Fy with respect to X (formally defined
later in Definition 6.14) would lead to the FES F3 in Figure 6.11b, which

is not behaviorally equivalent to F3. In particular, observe that c. is no

142

......... # Ce
(a) F» (b) Fs
sty # #o L

Ce
........ # -
(c) Fa (d) Fs

Figure 6.11: Example FESs to illustrate Condition 5 in Definition 6.12

longer executable after the occurrence of e since it would require the prior
execution of a;, and by, which instead cannot be in the same computation
since bes#e. This means that a,. #sber, i.e., the two events are in semantic
conflict, although it is not the case that a,, #be (hence the quotient FES is
not faithful). Note that saturating the conflict would not solve the problem.
In fact, if in the quotient FES F3 we enforced the conflict @y, #be, then
a configuration corresponding to {d, a,be } € Conf(F3) would be missing.
A situation in which condition (5) is satisfied is instead illustrated by the
FES F4 in Figure 6.11c. Again we take X = {a;,a,7}. We have ‘c,
{ferr, az,azr,ber } and thus me(®%ce) = {Y,Y'} with Y = {fer,a,} and Y’
{ay7,ber}. Note that a, € Y and there is indeed for € Y such that fer#ber.

143

The condition is satisfied also exchanging the roles of a, and a,s. Indeed, in
the resulting quotient FES F5, depicted in Figure 6.11d, after the execution
of e or d, there are still two maximal and consistent set of <-predecessors
for the event c., namely {az,, fer} and {azyr,ber}.

We prove a technical lemma which shows that for a combinable set of
events X, the maximal consistent sets of the <-predecessors of X and those
of single events in X coincide. This clarifies the role of condition (4) in the
definition of combinable set of events and will be useful later, for proving

that the quotient does not alter the behavior.

Lemma 6.13 (preservation of consistent sets). Let F = (E,#,<,A) be a
FES and let X € E be a combinable set of events. Then for any consistent
set' Y € E it holds that Y < °X iff there exists x € X such that Y ¢ *r.

Hence:
Y e me(*X) iff there exists x € X such that' Y € me(%x).

Proof. Let Y € F be consistent. Let us assume that Y € °X = Uzex " and
prove that there exists z € X such that Y ¢ *x. If Y = & the assert is trivial.
Otherwise, take ¢’ € Y. By the assumption Y ¢ *°X there must be 2’ € X
such that e’ € *z’. We show that Y ¢ *z’. In fact, for any e € Y there must
exists x € X such that e € ®z. Since e < z, by Definition 6.12(4), either
e <z’ or we should have e#e¢’. The latter possibility would contradict the
consistency of Y. Hence it must be e < x’, namely e € *z’. Therefore Y ¢ %2/,
as desired. The converse implication is trivial since *X = Uyex *r.

Now, the second part of the lemma, namely the fact that Y € me(°X)
iff there exists x € X such that Y € me(®x) is an immediate consequence of
the first. In fact, let Y € me(®X). Then, by the first part of the lemma we
know that there is x € X such that Y ¢ ®z. Again by the first part of the
lemma Y is maximal among the consistent subsets of *z, since these are also
consistent subsets of *X. Hence Y € mc(®x). Vice versa, let Y € mc(®r).
Clearly Y ¢ °X. Moreover, Y is maximal among the consistent subsets of
*X. To see this, take any Y’ ¢ *X consistent and assume that Y ¢ Y.
By the first part of the lemma, there is 2’ € X such that Y ¢ °z’. Then

144

necessarily Y = Y’ otherwise, by Definition 6.12(4), given y' € Y/ \Y we
would have y'#y for any y € Y, which is absurd since Y ¢ Y’ and Y’

consistent. O

We next formally define the quotient of a FESs with respect to a com-

binable set of events.

Definition 6.14 (quotient of FESs). Let F = (E,#,<,A) be a FES, X be
a combinable set of events. The quotient of F with respect to X, denoted
by F/x, is the FES F/x = (E/x,#/x,</x,A;x) Where

E/X = (E\X)U{ex}

#1x = e ileex) | e# XY

<x = <ex) Yleex) le<? Xu{(ex,e) | X <7 e’}
A/x =)\/X[eXHA(m)] for an event z € X.

The quotient map fx : F — F/x is defined by fx(z) = ex for x € X and
fx(e)=eforee BN X.

The rest of the section is dedicated to showing that the quotient op-
eration on FESs induces a (elementary) folding, namely it preserves hp-
bisimilarity.

The idea underlying the proof for AESs was that events that are merged
are occurrences of the same activity with different histories. They could
be merged if the histories were compatible and after merging, the possible
histories remained the same. For FESs the intuition of the proof is similar,
but now events can occur after a maximal consistent set of <-predecessors
which roughly play the role of histories in AESs. By Lemma 6.13, after
merging a set of combinable events this maximal subsets of consistent events
remains unchanged. This will be a core ingredient in the proof that the
quotient does not alter the behavior.

We start by showing some properties of the quotient map which will be
used later for showing that it transforms configurations of the original FES

into isomorphic configurations of the quotient FES. We do not rely on the

145

notion of FES morphism from [Cast 97], which would be too strong for our
needs (in particular, condition (iii) of [Cast 97, Definition 4] is not satisfied

by our quotient map).

Lemma 6.15 (properties of the quotient map). Let F = (E,#,<,\) be a
FES, X ¢ E be a combinable set of events let fx :F —F,x be the quotient
map. Then for all e,e’ € E:

1 if fx(e)#x fx(€') then ete’

2. if e<e then fx(e) </x [x(e);

3. if fx(e) <)x [x(€') thene<e' v efte’

4. if fx(e) = fx(e') thene=¢" v efte.

Proof. 1. Let e,e’ € E and assume fx(e)#,x fx(e’). Notice that at least
one between e and €’ is not in X, otherwise we would have fx(e) = fx(e’)
that is a contradiction since, by construction, #,x is irreflexive. We distin-
guish various cases. If e € X and thus fx(e) = ex, then by definition of con-
flict in the quotient FES (Definition 6.14), since fx(e) = ex#/x fx(€'), it
must be X#" ¢, and thus in particular e#te’, as desired. The case in which
e’ € X is analogous, since conflict is symmetric. Otherwise, if e,e’ ¢ X the
property trivially holds, since fx is the identity on e,e’ and their mutual

relations are not changed by the quotient operation.

2. Let e, e’ € E be such that e < ¢/. Note that it cannot be e, e’ € X,
otherwise, we would have e < ¢’ and, by Definition 6.12(1), e#e¢’, violating

the disjointness of < and #. Hence we distinguish the following cases:

e Ifee X and €' ¢ X, by Definition 6.14, ex = fx(e) </x fx(¢') = ¢ as

desired.

e If ¢’ € X and e ¢ X, by construction, e = fx(e) </x fx(e’) =ex.

e If e,¢/ ¢ X then fx is the identity on e,e’ and the result trivially
holds.

3. Let e,e’ € E be such that fx(e) </x fx(e'). Note that it cannot be
e,e’ € X, otherwise, we would have fx(e) = ex </x ex = fx(e’), while by

construction <,x is irreflexive. Hence we distinguish the following cases:

146

e If e € X and ¢’ ¢ X, by construction, there exists 2’ € X such that
x' < e’. Then, either 2’ = e and thus e < €, or, by Definition 6.12(3),

e'#e as desired.

e If ¢/ € X and e ¢ X, by construction, there exists x € X such that
e < x. Then, either 2 = ¢’ and thus e < €', or, by Definition 6.12(4),

e'#e as desired.

e Otherwise, if e,e’ ¢ X then fx is the identity on e, e’ and hence e < €.

4. Let e,e’ € E such that fx(e) = fx(e'), with e # ¢/. This means that
e,e’ € X and thus, since the events in X are pairwise conflicting, we have
that e#te’. O

We can now show that the quotient map transforms any configuration

of the original FES into an isomorphic configuration of the quotient.

Lemma 6.16 (quotient preserves configurations). Let F = (E,#,<,\) be
a FES, X ¢ E be a combinable set of events and let fx : F — F/,x be the
quotient map. For any configuration C' € Conf (F) then fx(C) € Conf(F,x)
and, additionally, fxc: (C,<g) — (fX(C),<}X(C)) s an isomorphism of

configurations.

Proof. We first prove that fx(C) is a configuration.

1. fx(C) is conflict free.

This follows directly from Lemma 6.15(1). In fact, for e,e’ € C, if it
were fx(e)#,x fx(e") then we would deduce e#e’, contradicting the

fact that C' is a configuration.

2. fx(C) has no <-cycles.

Observe that, by Lemma 6.15(3), fx reflects the flow relation over
events of a configuration, namely for e,e’ € C, if fx(e) </x fx(e’)
then e < €' (since the case e#e’ would contradict the fact that C
is a configuration). As a consequence, a <-cycle in fx(C) would be
reflected in C.

147

3. For all z € fx(C) and 2" ¢ fx(C) s.t. 2’ < z, there exists 2" € fx(C)
such that z'#2z" < z.

Let z € fx(C), 2’ ¢ fx(C), such that 2z’ < z. Therefore, there are
e € C such that z = fx(e) and, by surjectivity of fx, ¢’ ¢ C such that
2" = fx(€).

By Lemma 6.15(3) either (i) e’#e or (ii) €’ < e. Below we treat the

two cases separately.

(i) If e'#e, the fact that —(e’ < e) while fx(e) </x fx(e), the con-

struction in Definition 6.14, implies that one of the following holds:

e ¢ ¢ X and there exists x € X such that e’ < x.
Note that the conflict e#£e’ cannot be direct, otherwise, by Def-
inition 6.12(2), one should have also z#e¢’. Hence, since by def-
inition of configuration, the set *e n C € me(%), there must be
e’ € e n C such that e¢'#¢e”. Hence ¢’ € C and €’ < e. There-
fore by Lemma 6.15(2), fx(e") </x fx(e) = z. Moreover, since
e',e ¢ X, we have fx(e")#/,xfx(e') =2', as desired.

e ¢’ ¢ X and there exists 2’ € X such that 2’ <e.

In this case note that fx(z') = fx(€e’) = ex and thus we can take

x’ instead of €/, and proceed as in case (ii).

(ii) Let us focus on the other case, in which e’ < e. Since C is a
configuration, there exists e” € C' such that €’ < e and e”#¢’. By

Lemma 3, fx(e") < fx(e) = z. We distinguish various subcases:

(a) {€/,e"”} ¢ X. This simply cannot happen as it would imply
fx(e") = fx(e") € fx(C), while we are assuming fx(e') ¢
fx(C).

(b) ¢ € X" ¢ X. Let Y € mec(%e) be the set of maximal and
consistent set of predecessors of e in C. Obviously, ¢’ € Y and,
by Lemma 6.15(2), for all e; € Y we have fx(e1) < fx(e) =
z and fx(e1) € fx(C). Clearly, there is no ez € Y n X such
that eg € O, otherwise fx(e2) = fx(€') = 2 € fx(C) and this

148

would contradict the assumptions. Therefore, Y n X = & and,
by Definition 6.12(5), there exists e/ € Y such that ef#"X.
In this case, by construction, fx(ey)#,xfx(e') = 2" = ex and,
since fx(ef) € fx(C), this gives the desired result.

(c) e ¢ X,e" € X. By Definition 6.12(5), for all Y € mc(%), with
e €Y there is e; € Y \ {€"} such that e;#e¢’. Since neither e’
nor e; are in X, this conflict is preserved by the quotient map
and thus fy(e1)#fx(e') = 2. Since, fx(e1) € fx(C) and, by
Lemma 6.15(2), fx(e1) < fx(e) = z, we get the desired results.

(d) {e',e"} ¢ X. Since {€,e"} ¢ X and e'#e” then, by
Lemma 6.15(1), fx(e")#fx(e'), as desired.

Concerning the last assertion, note that the fact that fxo: (C,<g) —
(fx(O), <l C)) is an isomorphisms follows immediately by items (2) and
(3) of Lemma 6.15. O

Recall that FESs are assumed to be faithful, full and disjoint. We next

prove that the quotient preserves this properties.

Lemma 6.17 (quotient is full and faithful). Let F = (E,#,<,\) be a FES,
X a combinable set of events and let fx : F — F,x be the quotient map.
The FES Fx is 1) faithful, 2) full and 3) disjoint.

Proof. 1. Let z,2" € E/x be events in)y such that ~(z#2'). We need to
prove that there exists a configuration C; € Conf(F,x) such that {z,2'} ¢
.

Take e, e’ € FE such that fx(e) = z and fx(€’) = 2’ (they exist since fx is
surjective). If =(e#e’) then, by faithfulness of IF, there exists Cy € Conf (F)
such that {e, e’} ¢ Cp. By Lemma 6.16, fx(Co) € Conf(F,x) is the desired
configuration, since {z,2"} = {fx(e), fx(e')} € fx(Cp).

If instead e#te’, it means that one of the two events is in X (oth-
erwise their dependencies would not be changed by the quotient). As-
sume without loss of generality that e € X, hence z = ex, and ¢’ ¢ X.
The fact that —(fx(e)#fx(e’)) means that there is ¢ € X such that
—(e"#te"). Therefore, again by fullness there exists Cy € Conf (F) such that

149

{e/",¢'} ¢ Cp and we conclude as above. In fact, fx(e”) = fx(e) = z,
hence {z,2'} = {fx(e), fx(e)} ¢ fx(Cp), which is a configuration by
Lemma 6.16.

2. By Lemma 6.15(1) and surjectivity of fx, a self-co