
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Karl Veskus

Ethereum versus Fabric – A comparative
analysis

Bachelor’s Thesis (9 EAP)

Supervisor: Fredrik Payman Milani, PhD

Supervisor: Luciano García-Bañuelos, PhD

Tartu 2018

2

Ethereum versus Fabric - A Comparative Analysis

Abstract:

The aim of this bachelor’s thesis is to introduce the blockchain technology and its two dif-

ferent platforms, Ethereum and Hyperledger Fabric, that are made to create very different

blockchain based applications. Then, both of these platforms are used to create similar ap-

plications. It is followed by the comparison of these platforms while covering different as-

pects such as architecture and user friendliness. It also compares the development processes

as well as applications built for the comparison

Keywords:

Blockchain Technology, Ethereum, Hyperledger Fabric

CERCS: P170 - Computer science, numerical analysis, systems, control

Ethereum versus Fabric – võrdlev analüüs

Lühikokkuvõte:

Käesolevas bakalaureusetöös tutvustatakse plokiahela tehnoloogiat ning selle kahte erinevat

platvormi, Ethereum ja Hyperledger Fabric, mis on loodud väga erinevate rakenduste

loomiseks kasutades just plokiahela tehnoloogiat. Peale selle luuakse mõlemat platvormi

kasutades sarnane rakendus, millele järgneb võrdlus. Esiteks, annab võrdlus lugejale

ülevaate, kuidas antud platvormid üksteisest arhitektuuri ning kasutajamugavuse poolest

erinevad. Teiseks näitab, kuidas erineb nende platvormide abil rakenduste loomine ning

mille poolest erinevad lõputöö raames loodud rakendused.

Võtmesõnad:

Plokiahela tehnoloogia, Ethereum, Hyperledger Fabric

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

3

Table of content

1. Introduction ... 4

2. Background ... 5

2.1 Distributed ledger technology ... 5

2.1.1 Centralized ledger versus distributed ledger ... 6

2.2 Blockchain ... 7

2.3 Smart contracts .. 8

2.4 Decentralized application .. 8

3. Related work ... 9

4. Use case ... 10

4.1 Pet Shop .. 10

4.2 Selected distributed ledger technologies ... 11

4.2.1 Ethereum ... 11

4.2.2 Hyperledger Fabric .. 13

5. Implementation ... 16

5.1 Ethereum application .. 16

5.1.1 Writing the smart contracts ... 16

5.1.2 Compiling and migrating smart contracts ... 17

5.1.3 Front-end ... 18

5.1.4 Interacting with the application using a MetaMask 20

5.2 Hyperledger Fabric application ... 21

5.2.1 Network ... 21

5.2.2 Chaincode .. 21

5.2.3 Client application .. 26

6. Comparison ... 27

6.1 Architecture ... 27

6.2 Consensus Algorithm .. 27

6.3 Ecosystem ... 27

6.4 Main use cases ... 28

6.5 Language ... 28

6.6 Collateral case ... 29

7. Conclusion ... 30

8. References ... 31

Licence .. 33

4

1. Introduction

Shortly after the Financial Crisis of 2008, where many financial institutions went bankrupt,

people who lost their money started to look for alternative ways to store their funds. Partic-

ularly, a currency that would not be controlled by any central authority, such as bank or

government [1]. Then, a new financial system was introduced - bitcoin1, an online payment

system using a peer-to-peer network to allow payments to be sent directly from one party to

another without the need for a trusted third party [2].

Soon after that, it was discovered, that the blockchain technology behind bitcoin is really

powerful and can be used separately for other applications as well as it effectively solves

the double spending problem [3]. This has led to a situation in which a lot of organizations

such as IBM, Ethereum Foundation, etc. have built platforms that help to build decentralized

applications on top of the blockchain. However, as every platform is designed for a specific

business use case, their concepts are usually considerably different.

The main goal of the thesis is to give an overview of the blockchain technology and compare

its different platforms, namely Ethereum2 and Hyperledger Fabric3. The comparison is

based on the conceptual design and is supported by identical implementations of one possi-

ble use case to cover additional development aspects.

Chapter 2 describes the background and terms used in the thesis. Chapter 3 gives an over-

view of related work done about the comparison of Ethereum and Hyperledger Fabric plat-

forms. Chapter 4 starts by describing the use case for practical comparison and then it ex-

plains the concepts behind the chosen platforms. Then, chapter 5 describes the implementa-

tions and chapter 6 compares the platforms and gives results.

1 https://bitcoin.org/en/
2 https://www.ethereum.org/
3 https://www.hyperledger.org/projects/fabric

5

2. Background

This chapter gives an overview of terms and technologies covered in the thesis. It explains

the idea behind distributed ledger technology and blockchain and how they differ from each

other. Then it shows, what makes them different from widely used centralized solutions.

2.1 Distributed ledger technology

Distributed ledger is a type of data structure that is shared and replicated over multiple lo-

cations [4]. All the parties participating in this kind of data storage form a network of so-

called nodes where every participant holds the exact copy of the ledger [5].

These ledgers are categorized into two groups - unpermissioned and permissioned. Unper-

missioned ledgers have no single owner and therefore let anybody participate in the network,

no permission is required [4]. A good example of the unpermissioned ledger is Ethereum,

which is covered in depth in the fourth and fifth chapter.

Permissioned ledgers, on the other hand, may have one or many owners and its network

participants are preselected [4]. So, the whole network is limited only to the restricted set of

users. This is true for Hyperledger Fabric which is covered in depth in the fourth and fifth

chapter.

Participating in the network means that nodes are permitted to contribute to the ledger man-

agement [6]. But as all the data is distributed across the network, it is important to ensure

that all the nodes agree upon a common truth, since the changes made by one node are

propagated to all other nodes. The common truth agreed upon nodes is called consensus and

it is found using various algorithms like proof of work, proof of stake, etc. [5].

The ledgers are categorized even further, public and private, depending on whether every

actor can access the ledger or is it limited only to participating nodes. The whole taxonomy

of the ledgers is illustrated in Figure 1.

6

Figure 1. Distributed Ledger Taxonomy [4]

2.1.1 Centralized ledger versus distributed ledger

In the classical centralized model (Figure 2), there is a central authority who controls the

ledger and multiple actors who want to gather some data from it or change it. This brings us

multiple problems. First, all the data is stored and changed by the central authority and since

no actor can be sure that the data has not been changed, they have to blindly trust it. Second,

if something goes wrong, there is a few if any methods to check its correctness as actors do

not have access to original data.

Figure 2. Centralized ledger

In contrast with a centralized model, the distributed model (Figure 3) has no central author-

ity and all the data is stored in the distributed ledger where every node has the exact copy

of it and changes to the ledger state are based on a consensus of permitted participants.

7

Figure 3. Distributed ledger

2.2 Blockchain

A blockchain is a type of data structure that is used in many distributed ledger technologies.

It bundles all the changes made to the ledger (transactions) into packages called blocks and

chains them together, using cryptographic hashing, providing an immutable record of all

transactions from the genesis (first) block [7]. The structure is presented in Figure 4.

Figure 4. Blockchain structure

However, the hash of the block is calculated using all the transactions and the hash of a

previous block. So, the hash of the last block represents the whole blockchain as one value,

which makes comparing two chains really easy. As a result, if some transactions in the

blockchain are sensitive we do not have to share the whole chain to make the comparison

but only the last hash.

As described, blockchain is immutable record of all transactions. It means that changing any

transaction in the chain results in a completely new chain. Let us assume that we chance one

transaction in the block 3. Now its hash is changed and therefore the hash in the block 4 is

chances as well as it includes the previously updated hash.

8

2.3 Smart contracts

A smart contract is a virtual contract that is stored and executed by the blockchain like any

other transaction. It acts as a regular contract between multiple parties but differs from the

latter by not being approved by any central authority, such as notary or government, but by

the network itself. It may contain any rules and therefore form any business logic that gets

validated by every node [8]. Basically said, it is a code, stored in the blockchain, that stipu-

lates the conditions and waits for certain input to execute. For example, it is possible to set

the code in smart contract to be executed at a certain time only.

To illustrate the idea behind the smart contracts, let us assume that parties A and B want to

make a bet for the upcoming football match but they do not trust each other. For example,

what happens, if the loser decides not to send the money to the winner? For that reason, we

create a smart contract, that first collects a stake from both parties and then, after the match

is finished, sends collected stakes to the party, that made a right bet. In case of a tie, it simply

returns the stakes. Now, where the contract is made, it is up to the network to check who

actually won the bet and therefore reward the winner. The result is a fast and secure contract

that is confirmed by all the nodes to ensure security.

2.4 Decentralized application

Decentralized application, also known as dapp, is an application that connects users and

providers directly [9]. It runs in distributed network and uses blockchain to store its data.

These applications are divided into three main categories. First, financial applications, that

are purely designed to manage digital money and can be used to pay for other users or man-

aging loans. Second, semi-financial applications, that mixes money with the outside infor-

mation. A good example to illustrate would be the insurance application that according to

the verified accidents pays the money. Third, other application such as online voting and

governance applications [8].

9

3. Related work

Blockchain technology has gained a lot of attention over past several years. It is really pop-

ular and widely researched area in both, academic and business area. A lot of research papers

have been released and comparisons between multiple blockchain platforms have been

done. Even between Ethereum and Hyperledger Fabric which are compared in the given

thesis. The comparisons between these platforms have been done multiple times, but most

of them have been more theoretical and therefore do not cover development aspects that are

critical for developers.

One example, that compares Ethereum and Hyperledger Fabric, is directed to the decision

makers new to the blockchain [5]. It gives a brief analysis of key differences of named plat-

forms to get an overview of the blockchain technology and possible use cases. The general

comparisons between the platforms have been done more [10]. In contrast to the previous

report, this one explains concepts more in depth, but still does not cover any other develop-

ment aspects but supported programming languages.

Another one complements these as it provides the performance analysis [11]. It shows

clearly that Fabric constantly surpasses Ethereum in case of execution time, latency and

throughput. This fact is also supported by another performance analysis [12] that in addition

to the performance compares smart contract systems and many consensus algorithms.

As they all provide mostly theoretical analysis of the biggest differences, this thesis com-

plements them with practical differences while covering the implementations of sample use

case.

10

4. Use case

This chapter gives an overview of the use case selected for the comparison. After this, we

explain why Ethereum and Hyperledger Fabric were selected and give a theoretical over-

view of these platforms.

4.1 Pet Shop

The use case itself comes from Truffle framework tutorials and it is called a Pete’s Pet Shop

[10]. Pete is the pet shop owner who needs a blockchain based web application where he

can give away his pets. On the webpage, the clients should be able to see a picture and

description of every single pet that Pete has. And, if they have chosen the pet they want to

get, they should able do it using the “Adopt” button below the image. Then, the adoption

should be recorded on the blockchain, saving the client information, to see later who made

these adoptions.

For that reason, we need to build a blockchain application to store all the data about the pets

and a smart contract to read and write data from the blockchain (business logic). Then, to

interact with the blockchain application, we need to build a front-end application that lists

pets as in Figure 5.

Figure 5. Pete’s Pet Shop web client

11

4.2 Selected distributed ledger technologies

4.2.1 Ethereum

Ethereum was created as a response to Bitcoin which is only focused on transferring mone-

tary value between parties and has a limited programming language. Ethereum is not just a

digital currency, but a largest and most well-established decentralized software platform that

enables developers to build decentralized applications on top of the blockchain using built-

in Turing complete programming language Solidity4 [13]. Ethereum has, similarly to

Bitcoin, its own crypto-currency and it is called Ether.

As Ethereum uses its own decentralized public blockchain [14], all the transactions, data

and smart contracts for applications using Ethereum are public and can be accessed using

any Ethereum blockchain explorers such as Etherchain5 and Etherscan6.

Accounts

In the Ethereum blockchain, there are two types of accounts: externally owned Account

(EOA) and contract accounts. Externally owned accounts are controlled by private keys and

they are being created automatically. Contract accounts, on the other hand, are controlled

by their contract code [15].

Architecture

Ethereum is a peer-to-peer network where every node runs under Ethereum Virtual Machine

(EVM) to execute the smart contracts code and transactions. If the user wants to make a

change in the blockchains state, he can do that by publicly announcing transaction. Then, it

is up to the network to verify the transaction using consensus mechanism described below

[16].

For anti-denial of service model, Ethereum transactions contain two extra values - START-

GAS and GASPRICE, where gas stands for the fundamental unit of computation. START-

GAS is the maximum number of computational steps for the transaction and GASPRICE is

the fee that sender pays per computational step [8]. So, the total transaction fee can be cal-

4 https://solidity.readthedocs.io/en/v0.4.23/
5 https://www.etherchain.org/
6 https://etherscan.io/

12

culated as STARTGAS * GASPRICE. Then, this fee is subtracted from the sender’s ac-

count. If the fee exceeds the sender’s balance, then the transaction is reverted. However, the

gas is not returned, it will be sent to the miner.

Consensus mechanism

Currently, Ethereum uses mining based consensus algorithm called the Proof of Work. It is

designed so, that creating a new block is computationally hard and therefore prevents Sybil

attacks. To make it hard, all blocks must contain a nonce, a meaningless value, that is used

to calculate the hash of the block. So, what miners do, is they repeatedly change the nonce

to match the proof of work conditions. To motivate nodes to participate in the mining pro-

cess, the miner that produces a new valid block gets rewarded with a certain number of

coins. After the new block is made, the whole process of guessing the nonce starts again [8].

Longest chain rule

To illustrate the purpose of mining better, let us use the sample from Ethereum White Paper

[8], where attacker’s plan is as follows:

1. Send 100 Ether to a merchant to buy some product that is instantly delivered

2. Wait for the delivery

3. Make a new transaction sending the same 100 Ether back to himself

4. Convince the network to use the second transaction instead of the first one

Let us suppose that the first transaction is done and added to the block number 100 and 5

more blocks are created after that, so the last block would be number 105. At this moment,

the merchant sends out the product and, as it is delivered instantly, the attacker receives it

immediately. Now, the attacker takes the block number 100 and chances the previously

made transaction so that the money would have been sent to himself instead. If the attacker

would broadcast it to the network, then it would be ignored since the coins are spent already.

To prevent it, the attacker has to fork the chain and start mining from block 100. As the

transaction is changed, the proof of work has to be redone. Plus, since the original chain has

the 105 blocks already, the attacker has to redo the proof of works for blocks from 101 to

105 as well. This is because all the following blocks have to refer to the previous blocks

13

which hashes have changed now. According to the longest chain rule, the honest miners

continue working on the original chain since it is the longest and attacker alone will work

on his new chain. To make the attacker’s new chain longest, the attacker needs more com-

putational power than the network together to catch up [8].

Figure 6. Forking the chain

4.2.2 Hyperledger Fabric

Hyperledger Fabric, or just Fabric, is an implementation of an enterprise-grade distributed

ledger platform that is private and permissioned. In contrast to public permissionless block-

chains that allow anyone to join the network, Fabric requires its participants to be enrolled

through trusted Membership Service Provider (MSP). It allows for modular architecture,

which means that the consensus mechanisms and MSPs can be swapped in and out [17].

That results in a universal architecture, that can be applied to most industries.

Channels

In contrast to public permissionless blockchains where all the transactions are stored in one

public ledger, Fabric allows multiple private ledgers to be created using channels. Channel

is a completely separate and independent “subnetwork” that defines its members and a

ledger of transactions. However, its data is visible and accessible only to its participants.

That makes it an important option in networks where participants are competitors and there-

fore cannot share all the data [18].

They can be effectively used for businesses that want to share confidential data with trusted

nodes without other nodes noticing it. Let us assume that we have a farmer John who usually

sells apples for 10 coins per kilogram to Mia, Tony and other shop owners. However, John

agrees to give Tony a special price of 6 coins per kilogram. He does not want the special

price to be available to everyone in the node, but still have every node be able to view the

14

details about the apples he is selling. Using channels, John and Tony can privately agree on

the terms of the special deal.

Chaincode

The smart contract, in Fabric, is referred to as a chaincode. It is installed and instantiated on

the channel’s peers who provides a way for the end users to invoke it through a client-side

application. However, while the instantiation, the endorsement policy may be defined. It is

used to refer to a set of endorsers that are necessary or sufficient for a valid transaction

endorsement [19].

Three main components of Fabric

Peer – the node that receives the ordered blocks from the ordering service and thereby main-

tains the ledger. There is also a special type of peer, an endorsing peer, also known as en-

dorser, whose task is to endorse transactions before they are committed [20].

Ordering service or Orderers – orderers form the ordering service. It first collects all the

endorsed transactions from the client, then it orders and bundles them into the blocks and

sends these blocks to every peer to commit it into the ledger. It is also responsible for the

endorsement policy verification. For example, if the policy requires 3 or more endorsements

but the orderer receives only 2, then these transactions are stored only locally and will not

be broadcasted to the peers [20].

Certificate Authority – a tool that is used to issue signed certificates for the users to par-

ticipate in the network. Inside these certificates, it is possible to attach additional attributes

such as account number, roles, etc. and it is propagated to the system so chaincode has an

access to it.

Transaction flow

Now, we explain the transaction flow (Figure 7) and steps done before the transaction is

committed to the ledger. In Fabric network, the transaction starts with client application

sending transaction proposal to one or many endorsing peers. Then, as endorsers have a full

copy of ledger, they can simulate the transaction and capture the set of Read and Written

data, called RW Sets (step 1). These RW contain the data that were read from and written

to the current state while simulating the transaction. Then, these RW sets are signed by

15

endorsers and returned to the client application. Then, the application collects the endorse-

ments (step 2) and submits the endorsed transaction and the RW sets to the orderer (step 3).

Now, the ordered has to confirm the policies and check if all the RW sets are equivalent. If

there are no issues, all the data is sent to every peer (step 4). Then these RW sets are applied

to the ledger, which results in every node having the same state (step 5). Lastly, the peers

notify the client of the success or failure of the transaction [20].

Figure 7. Fabric transaction flow. Blue square defines the moment of chaincode invocation

and black circle commit to the ledger.

16

5. Implementation

This chapter is about the pet shop use case implementations done using Ethereum and Hy-

perledger Fabric. It explains how the use cases were implemented, what tools where used

and what decisions were made.

5.1 Ethereum application

Ethereum application is following the same truffle framework tutorial as the use case itself.

The source code for this specific implementation is publicly available on GitHub7.

The application is running using the Truffle framework8 that makes developing Ethereum

applications easier providing smart contract compilation, deployment, binary management

and automated testing which are effectively used while developing given application.

It is possible to develop applications right on the Ethereum blockchain, but as every trans-

action has its fee, it would be cheaper to test it locally before releasing it to the main

Ethereum network. For that reason, we use the Ganache9 as it provides us a virtual Ethereum

blockchain with fake accounts for testing.

Since we are following the official Truffle tutorial, they have provided unfinished code for

this project. It includes initial project structure and partial code for the user interface. It can

be downloaded using the truffle unbox pet-shop command.

5.1.1 Writing the smart contracts

To be able to make changes to the ledger we need to write a smart contract. In Ethereum

they can be written using many languages like Solidity, LLL, Vyper, etc. We chose Solidity

in following reasons: it is used in the provided tutorial, it is the most popular and well doc-

umented.

To manage pet adoptions, we create the smart contract called Adoption (Figure 8), located

at contracts/Adoptions.sol. The first line of the code defines the minimum version of Solid-

ity and is used by the compiler. As the use case requirements include saving the transaction

senders we define the variable adopters, an array of addresses where keys represent the pet

ID’s and values corresponding client addresses. The address is a special type, in Solidity,

7 https://github.com/karlveskus/ethereum-pet-shop
8 http://truffleframework.com/
9 http://truffleframework.com/ganache/

17

that refers to Ethereum address and therefore stores a 20-byte value. As the variable is noted

as public, it has automatic getter methods.

As we now have an array of addresses, we can store the transaction senders there. We create

a function adopt, that takes pet ID as a parameter and returns it if adoption was successful.

In meantime, it gets the sender’s address using msg.sender and saves it to the adopters, using

the index provided as a petId. Then, we create the getAdopters function that simply returns

the adopters, an array of addresses, as the client needs to know, what pets are already

adopted.

Figure 8. contracts/Adoption.sol – Smart contract for adoptions

5.1.2 Compiling and migrating smart contracts

Next, as Solidity is a compiled language, we have to compile our Solidity code to bytecode

for Ethereum virtual machine to execute it [21]. To do that we use the truffle compile com-

mand provided by Truffle. Then, the compiled contracts have to be migrated to the block-

chain. For that, we create a new migration script, 2_deploy_contracts.js (displayed in Figure

9), where we import and deploy previously compiled smart contract.

Figure 9. migrations/2_deploy_contracts.js – Migration for smart contract

18

As mentioned, we use Ganache to run smart contracts on virtual Ethereum blockchain. After

starting it, the local blockchain running on port 7545 will be generated. To migrate the con-

tracts to the blockchain we run the truffle migrate command.

5.1.3 Front-end

As the use case requirements include building a web application where users can adopt pets

by clicking on the button, we need to build a separate front-end application. For that, we use

Bootstrap component library10 to easily add styles for the user interface and web3 JavaScript

library11 to interact with the Ethereum blockchain. The front-end code is located at src folder

and it contains CSS styles, fonts, pet images, JavaScript code for interactions and data about

the pets.

The JavaScript code for the front-end is located at the src/js/app.js. It has a global object

App with multiple functions and its init function invocation at the bottom. As init function

is the first one that gets invoked, it loads all the data about pets from the pets.json and then

uses provided DOM element, with id #petTemplate, as a template to insert all the data to the

web page.

To make the front-end application working as required, we implement initWeb3, initCon-

tract, markAdopted and handleAdopt, as in Figure 10, by taking the following steps:

1. We create a initWeb3 function (Figure 10) that checks if web3 instance is already

present. If yes, then we use its provider to create a new web3 object. Otherwise, we

create the new web3 object using the local provider as a fall back to Ganache. The

reason behind it is explained in depth in chapter 5.1.4.

Figure 10. initWeb3 function at the src/js/app.js

10 https://getbootstrap.com/
11 https://github.com/ethereum/web3.js/

19

2. We create an initContract function (Figure 11) that uses a truffle-contract library to

instantiate the smart contract so we know where to find it later. For that, we first get

the information about our contract. Then, we pass it to the TruffleContract function

to interact with it and set its provider to App.web3Provider set in the previous step.

After that, we call the markAdopted function to update our user interface described

in the next step.

Figure 11. initContract function at the src/js/app.js

3. We create a markAdopted function (Figure 12) to disable all the buttons where the

pet is already adopted. For that, we access the Adoption contract and use a call func-

tion on its getAdopters function to read the data without making a new transaction.

Then, we loop over all received adopters and disable every button where adopter

address is already set. However, if the address is not set, it is equal to an address

'0x00'.

Figure 12. handleAdopt function at the src/js/app.js

20

4. We create a handleAdopt function (Figure 13) to handle adoption requests (for ex-

ample “Adopt” button click). For that, we use web3.wth.getAccount function to get

all the accounts and save the first on as our account. Then, we access the Adoption

contract and use its adopt method to adopt a pet with an ID parsed from the click

event. This time, the transaction is sent instead. In case of a successful result, we

update the user interface using markAdopted function described in step 3.

Figure 13. markAdopted function at the src/js/app.js

5.1.4 Interacting with the application using a MetaMask

At this point, we can interact with a blockchain using created front-end application. We use

the lite-server library12 and start the server by using npm run dev command. After that, a

new browser tab with a web application opens.

Next step is to connect our browser to Ethereum network. Unfortunately, at the moment of

writing, regular browsers such as Chrome, Firefox, etc. does not work in such a way that it

could be possible to interact with distributed applications (dapps) directly without running

a full node on browser’s machine. For the solution to this problem, there are multiple appli-

cations such as Mist browser13, MetaMask14 extension, etc. that provide a way to interact

12 https://www.npmjs.com/package/lite-server
13 https://github.com/ethereum/mist
14 https://metamask.io/

21

with a network without running a full node. As the Chrome has the MetaMask extension

and it is really easy to use, the application was tested using this.

5.2 Hyperledger Fabric application

The Hyperledger Fabric network code is based on the basic-network project from the official

Hyperledger Fabric fabric-samples GitHub repository15. The client application, on the other

hand, is based on the tuna-app application16 used in the “Blockchain for Business - An In-

troduction to Hyperledger Technologies” course provided by the edX.org17. The source code

for the Fabric implementation of the Pet shop in publicly available at GitHub18.

We begin the implementation by providing a network with all the pre-defined participants

in the configuration. Then, we create a chaincode to interact with the ledger. After this, we

create a client application that acts as an end-user and therefore shows the pets and provides

a way to adopt them.

To run every peer independently and download Fabric binaries we use Docker19. To get the

latter, we run the bootstrap.sh script that pulls and tags docker images required for the pro-

ject.

5.2.1 Network

To make the network suitable for our requirements, we need the network configuration file

at the network/docker-compose.yml to contain at least certificate authority, orderer and peer.

There we define container name, docker image and port for each of these services. As a

result, running the network/start.sh script generates the docker containers, using the latter

configuration, for each of the services. Addition to that, it also creates a channel and con-

nects the peer to it.

5.2.2 Chaincode

To interact with a ledger, we have to create a chaincode. At the moment, Fabric supports

chaincode written using Node.js and Go, but as the Go language is more popular and easier

to use, we choose to write our chaincode in Go.

15 https://github.com/hyperledger/fabric-samples
16 https://github.com/hyperledger/education/tree/master/LFS171x/fabric-material/tuna-app
17 https://courses.edx.org/courses/course-v1:LinuxFoundationX+LFS171x+3T2017/course/
18 https://github.com/karlveskus/hyperledger-fabric-pet-shop
19 https://www.docker.com/

22

We start out by creating the pet-shop chaincode at chaincode/pet-shop/pet-shop.go based

on the fabric-samples/chaincode/fabcar/go/fabcar.go provided in the fabric-samples repos-

itory. There, we first import all the required libraries and define the SmartContract and Pet

types as in Figure 14. To store all the data about the pet, we define it as a structs with fields

for name, picture location, breed, location, age and its owner.

Figure 14. Import libraries and define types for SmartContract and Pet at the pet-shop

chaincode at the chaincode/pet-shop/pet-shop.go

Then, we define init and invoke methods (Figure 15) for the chaincode. Init is the one, that

gets called when the chaincode gets instantiated by the network and invoke method gets

called as a result of client application request to run the chaincode. It has to be called with

a function and arguments specified. Then, depending on a function name passed in, we call

a new function.

23

Figure 15. Init and Invoke methods defined at the pet-shop chaincode at the

chaincode/pet-shop/pet-shop.go

After the Invoke method is defined we add methods that are described inside it. We start

with the initLedger (Figure 16) as it gets invoked right after the network and channel are set

up to insert the initial data. It first defines the array of pets and then puts them into the state,

one by one, using the PutState function. As a result, the state contains all the pets which

keys represent the pet ID’s and values corresponding pets saved as byte arrays.

Figure 16. initLedger method at the chaincode/pet-shop/pet-shop.go

24

Next, we create the adoptPet function (Figure 17) that takes in one parameter, a pet ID. If

this condition is not met, the error will be returned. Using the pet ID, we read the pet infor-

mation from the state using the GetState function. Then, we access the creator of the trans-

action using GetCreator function, parse its name from it and save it as a new pet owner. In

the end, we save the updated pet data to the state. Again, in case of error, we return it with

a corresponding description.

Figure 17. adoptPet function at the chaincode/pet-shop/pet-shop.go

The last task is to implement the queryAllPets function (Figure 18) that simply returns all

the pets. First, we define resultsIterator to loop over the pets in the state. Then we define the

buffer to store the data and start looping. In every iteration, we create a string representing

a JSON object with two properties, Key and Record, where Key refers to the pet ID and

25

Record to the corresponding pet data. Finally, we return generated list of objects as an array

of bytes.

Figure 18. queryAllPets function at the chaincode/pet-shop/pet-shop.go

To start the network, we use a pet-shop/startFabric.sh script that first executes the net-

work/start.sh script, described in chapter 5.2.1, and therefore launches the network, creates

a channel and joins the peer to this channel. Next, it launches the CLI container and uses it

in order to install and instantiate pet-shop chaincode and invoke its initLedger method to

insert the initial data about the pets to the ledger.

26

5.2.3 Client application

The client application is divided into two parts, server and front-end. In addition to that,

there are also registerAdmin.js and registerUser.js scripts that register and enroll the client

to get certificates that are necessary to interact with the network.

Server

As the Fabric requires every action in the network to be signed, we need a way to allow

clients to be able to store and use their certificates in their own machine. For that reason, we

use Node.js to build our server application, located at the pet-shop/server.js. It uses the Ex-

press.js framework20, which is designed for building web applications. Its routes are defined

at the pet-shop/routes.js. There, we define two endpoints, one for requesting an adoption

and the second for querying all the pets. Both of them use the same controller, located at the

pet-shop/controller.js, to connect with a Fabric network. This controller defines two meth-

ods, getAllPets and adoptPet, that both use fabric-client library21 to make requests to the

network. The library provides us a way to use locally stored certificates and send the query

proposals to the peers.

Front-end

Front-end code is located in the pet-shop/client folder. It uses AngularJS22 front-end frame-

work to connect HTML and JavaScript code easily. The code at the app.js is structured

similarly to the Ethereum front-end application described in chapter 5.1.3. There, we first

define a controller that is responsible for the user interface and then an angular factory that

reaches the endpoints defined in the server. We begin creating the controller by defining the

init function that gets called at the moment when the HTML is loaded. It queries all the pets

and then it inserts them into the web page. Next, we define the handleAdopt function, a click

event listener, that uses the latter factory and thereby reaches the ledger to request for the

adoption. MarkAdopted function is to disable buttons, where pets are already adopted.

20 https://expressjs.com/
21 https://github.com/hyperledger/fabric-sdk-node
22 https://angularjs.org/

27

6. Comparison

This section compares Ethereum and Hyperledger Fabric platforms. Sections 6.1 - 6.5 ex-

plain the overall differences and then section 6.6 compares the specific implementations

described in section 5.

6.1 Architecture

Ethereum and Hyperledger Fabric are designed keeping really different concerns in mind.

As the Ethereum idea is to be the public blockchain for any kind of applications, it is de-

signed to be permissionless and totally transparent. It means that all the data is stored in one

shared ledger that everyone has access to.

Fabric, on the other hand, provides modular and flexible solutions for private permissioned

blockchains to allow security and confidentiality. The latter is brought to the Fabric using

channels that provide independent ledgers accessible only to its users. So, it is possible to

create multiple channels and connect only some of the users to it. In this case, the ledger is

private (cannot be accessed by non-registered users) and it is possible to share confidential

data without all the network noticing it.

Another difference in the architecture is the currency. Because of the proof-of-work con-

sensus algorithm used by Ethereum, it has its own crypto-currency. In contrast to that, Fabric

does not have it.

6.2 Consensus Algorithm

Currently, Ethereum uses mining based proof-of-work consensus algorithm, where all the

nodes agree upon a common truth and thereby the ledger. Fabric, in contrast, is modular,

allowing different algorithms to be used. Fabric also has different types of nodes on the

consensus mechanism and these nodes are pre-defined on the network setup.

6.3 Ecosystem

Since Ethereum was one of the first blockchain platforms after Bitcoin, it has gained a lot

of popularity. With that, many organizations and developers have built many tools and

frameworks to make developing applications easier. For example, Truffle framework adds

command line interface through what it is easy to compile and test smart contracts. Then,

28

Ganache provides a virtual Ethereum network, with dummy accounts, that is created auto-

matically without any setup. Fabric, on the other hand, has less if any tools besides Docker

that simplify the whole development process.

A good example to illustrate it would be the simple network setup. In Ethereum, we just

need to run the Ganache and its done. In Fabric, however, the easiest way would be to use

sample-network code in GitHub and Docker to get it running. This is also the path we fol-

lowed to create the network as easy as possible.

However, as Fabric supports many general-purpose programming languages such as Go and

JavaScript, in contrast to Ethereum that supports less popular contract oriented languages,

it is important to mention the number of libraries deployed. More specifically, Go and Ja-

vaScript are more established and therefore have a lot of libraries built for a variety of needs.

Solidity, on the other hand, has a really limited set of libraries.

6.4 Main use cases

As Ethereum is public and totally transparent it could be effectively used for most of the

ownership storages such as real estate and crypto-currency. Currently, it is possible to use

Ethereum as a payment method in many ways such as grocery stores, coffee shop, online

store, etc. Another good use case for Ethereum could be online-gambling to make it more

transparent while removing the need for trusted third party.

Fabric, on the other hand, provides a way to store confidential data that is required for any

supply chain. It allows many applications to be built on top of private blockchain, for ex-

ample, electronic health records or insurance, where data cannot be shared across the net-

work but it should be accessible for specific participants so it cannot be totally private.

6.5 Language

One of the biggest differences is definitely the language support. Ethereum supports lan-

guages that are specifically designed to be used for writing Ethereum smart contracts, such

as Solidity and Vyper. Hyperledger Fabric, on the other hand, supports multiple popular

programming languages such as Go and JavaScript.

This brings us to a situation, where it is possible to write chaincode in Fabric without learn-

ing a new language. But, as Solidity is contract-oriented and designed specifically for

Ethereum, it can be more effective to use it.

29

6.6 Collateral case

The biggest difference between the Ethereum and Fabric implementation is its architecture.

In case of Fabric, we built a client using a Node.js runtime to handles certificates that are

required to interact with a network. Even the network part is completely different, since we

had to manually create and setup the network in case of Fabric but not for Ethereum. For a

result, Fabric application codebase is much bigger and more complex than Ethereum.

Smart contracts were deployed and managed in similar way but creating the Ethereum smart

contract took way less lines of code than Fabric while having the same methods. In case of

Ethereum, it took 19 lines of code, in contrast to Fabric where it took almost 200. However,

all the requirements were covered using one smart contract in both platform.

We also found out, that client libraries that are used in to connect to the network are similar.

30

7. Conclusion

In this thesis, an overview of distributed ledger and blockchain technology was given. The

goal of this thesis was to compare Ethereum and Hyperledger Fabric theoretically and then

practically using implemented applications.

We have managed to find out, that as Ethereum is public blockchain and therefore have all

the data public, it suits well for applications that are designed to interact with a whole world

such as insurance and peer-to-peer gambling. Hyperledger Fabric, on the other hand, is de-

signed for private use cases such as supply chain, where every chain participant should have

data only relevant for him. For example, it allows possibility to sell goods with different

prices without participants knowing about these deals.

We implemented same use case with Ethereum and Hyperledger Fabric. As a result, we

demonstrated how to build applications on top of these platforms and found out, that as

Ethereum is the most popular framework, its ecosystem is rich in different development

tools but the supported languages are not that well-established and are thereby really limited.

Hyperledger Fabric, in contrast, has only crucial tools but it supports popular languages that

have already a lot of libraries to make development easier.

The comparison was done using rather simple solutions, implementing one smart contract

and two methods for each of them. For the future work on the comparison, more complex

use cases can be chosen. For example, an application that requires multiple smart contracts

to be written for any asset management, not just storing but transferring ownership as well.

31

8. References

[1] S. Baghla, “Origin of Bitcoin: A brief history from 2008 crisis to present times,”

Analytics India, 2017. [Online]. Available: https://analyticsindiamag.com/origin-

bitcoin-brief-history/. [Accessed: 18-Mar-2018].

[2] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.

[3] V. Gupta, “A Brief History of Blockchain,” Harvard Business Review, 2017.

[Online]. Available: https://hbr.org/2017/02/a-brief-history-of-

blockchain?referral=03758&cm_vc=rr_item_page.top_right. [Accessed: 06-Apr-

2018].

[4] M. Walport, “Distributed ledger technology: Beyond block chain,” 2015.

[5] M. Valenta and P. Sandner, “Comparison of Ethereum, Hyperledger Fabric and

Corda,” 2017.

[6] N. Singh, “Ethereum or Hyperledger Fabric?,” Medium, 2018. [Online]. Available:

https://medium.com/quillhash/ethereum-or-hyperledger-fabric-259f3c9b8da6.

[Accessed: 02-May-2018].

[7] N. Harish, S. Krause, and H. Gradstein, “Distributed Ledger Technology (DLT) and

Blockchain,” 2017.

[8] H.-H. Buerger, “Ethereum White Paper,” Github.Com, 2016. [Online]. Available:

https://github.com/ethereum/wiki/wiki/White-Paper. [Accessed: 18-Feb-2018].

[9] A. Hertig, “What is a Decentralized Application?,” Coindesk, 2017. [Online].

Available: https://www.coindesk.com/information/what-is-a-decentralized-

application-dapp/. [Accessed: 14-May-2018].

[10] P. Sajana, M. Sindhu, and M. Sethumadhavan, “On Blockchain Applications:

HyperledgerFabricAnd Ethereum,” Int. J. Pure Appl. Math., vol. 118, pp. 2965–2970,

2018.

[11] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong, “Performance Analysis

of Private Blockchain Platforms in Varying Workloads,” in 2017 26th International

Conference on Computer Communication and Networks (ICCCN), 2017, pp. 1–6.

[12] D. T. T. Anh, M. Zhang, B. C. Ooi, and G. Chen, “Untangling Blockchain: A Data

Processing View of Blockchain Systems,” IEEE Trans. Knowl. Data Eng., pp. 1–1,

2018.

[13] P. Bajpai, “Bitcoin Vs Ethereum : Driven by Different Purposes,” Investopedia, 2018.

[Online]. Available:

https://www.investopedia.com/articles/investing/031416/bitcoin-vs-ethereum-

driven-different-purposes.asp. [Accessed: 02-May-2018].

[14] C. Jagers, “What is Ethereum?,” Investopedia, 2017. [Online]. Available:

https://www.investopedia.com/articles/investing/022516/what-ethereum.asp.

[Accessed: 02-May-2018].

[15] Y. N. Aung and T. Tantidham, “Review of Ethereum: Smart Home Case Study,”

2017.

[16] D. Vujičić, D. Jagodić, and S. Ranđić, “Blockchain Technology, Bitcoin, and

Ethereum: A Brief Overview,” 2018.

32

[17] “Hyperledger Fabric documentation, Introduction.” [Online]. Available:

http://hyperledger-fabric.readthedocs.io/en/release-

1.1/membership/membership.html. [Accessed: 09-May-2018].

[18] “Hyperledger Fabric documentation, Channels.” [Online]. Available:

http://hyperledger-fabric.readthedocs.io/en/release-1.1/channels.html. [Accessed:

06-May-2018].

[19] “Hyperledger Fabric documentation, Chaincode.” [Online]. Available:

http://hyperledger-fabric.readthedocs.io/en/release-

1.1/membership/membership.html. [Accessed: 09-May-2018].

[20] “Hyperledger Fabric documentation, Architecture Explained.” [Online]. Available:

https://hyperledger-fabric.readthedocs.io/en/release-1.1/arch-deep-dive.html.

[Accessed: 06-May-2018].

[21] “Ethereum Pet Shop.” [Online]. Available: http://truffleframework.com/tutorials/pet-

shop. [Accessed: 02-May-2018].

33

Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Karl Veskus,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Ethereum versus Fabric - A Comparative Analysis,

supervised by Fredrik Payman Milani and Luciano García-Bañuelos

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2018

