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Abstract

Mushroom genera determination using machine learning

Mushroom determination using classification manuals is a tedious and time-consuming task for

mycologists and mushroom hunters. Machine learning provides a tool to automate this process

based on mushroom images using a small dataset. Since mushroom genera level classification

has been understudied, it is important to direct attention to this matter. In this study, advanced

machine learning algorithms were used in order to classify Cantharellus, Coprinus, Pholiota and

Russula mushroom genera that are widely spread in Estonia. The classification was done based

on the image grayscale pixels. To improve the classification accuracy, majority voting and mean

rule methods from the ensemble-based classification were applied to the dataset. The highest

accuracy obtained was 75.38%, with the majority voting method fusing five high performing

classifiers. This study showed that ensemble methods improve the mushroom genera classifica-

tion accuracy compared to individual classifiers. In addition to a novel approach of classifying

mushrooms on the level of genera, a new labelled mushroom image dataset was collected that

can be used in the future for similar studies.

CERCS:

T111 Imaging, image processing

Keywords:

Machine learning, Ensemble learning, Mushroom genera classification, Image classification
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Kokkuvõte

Seente perekondade määramine masinõpet kasutades

Seente määramine klassikalisi määramismeetodeid kasutades on tülikas ja aeganõudev ülesanne

nii mükoloogidele kui ka seenekorjajatele. Masinõppe abil on võimalik seente määramise prot-

sess piltide põhjal automatiseerida, kasutades suhteliselt väikest seenepiltide andmekogumit.

Kuna perekonna tasemel seente määramist on eelnevalt vähe uuritud, siis on tähtis sellele

teemale tähelepanu pöörata. Eestis laialt levinud seeneperekondade Cantharellus, Coprinus,

Pholiota ja Russula klassifitseerimiseks on kasutatud kõrgema taseme masinõppe algoritme.

Klassifikatsioon on tehtud pildi halltooni pikslite põhjal. Ansambelõppe meetoditest kasutati

häälteenamuse ja keskmise reegli võtet, et klassifitseerimistulemust parandada. Kõrgeim tule-

mus 75.38% saadi häälteenamuse võttega, kus kasutati viie algoritmi väljundit. Selle töö tu-

lemused näitasid, et ansambelõppe meetodid parandavad seente perekondade klassifikatsiooni

võrreldes individuaalsete masinõppe algoritmidega. Lisaks uudsele seene perekondade määramise

käsitlusele koguti antud töö käigus ka uus sildistatud seenepiltide andmekogum, mida on võimalik

tulevastes sarnastes töödes kasutusele võtta.

CERCS:

T111 Pilditehnika

Märksõnad:

Masinõpe, Ansambelõpe, Seente perekondade klassifitseerimine, Piltide klassifitseerimine
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List of Figures 6

List of Tables 7

Abbreviations, definitions 8

Introduction 10

1 Literature review 12

1.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Supervised machine learning . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.2 Unsupervised machine learning . . . . . . . . . . . . . . . . . . . . . 14

1.1.3 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.4 Ensemble learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Machine learning in image classification . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2 Classification algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.3 Related work in image classification . . . . . . . . . . . . . . . . . . . 22

1.3 Mushroom classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Mushroom classification based on images . . . . . . . . . . . . . . . . 24

1.3.2 Mushroom classification based on physical description . . . . . . . . . 25

1.3.3 Importance of mushroom image classification . . . . . . . . . . . . . . 26

4



2 Dataset 28

2.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Data preparation and feature selection . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Data downsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Methods 33

3.1 Adopted classification algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Classification of Cantharellus, Coprinus, Pholiota and Russula genera . . . . . 35

3.3 Ensemble based decision making . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Majority voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Mean rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Majority voting using linearSVC, logistic regression and random forest 38

4 Experimental results 40

4.1 Classification of all genera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Classification of Cantharellus, Coprinus, Pholiota and Russula genera . . . . . 42

4.3 Ensemble based decision making . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Discussion 47

Conclusion and future work 52

Acknowledgement 55

References 56

Non-Exclusive licence to reproduce thesis and make thesis public 62

5



List of Figures

1.1 Machine learning paradigms and their further approaches. . . . . . . . . . . . . 14

1.2 Types of classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Image classification flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 A selection of images from the mushroom dataset. . . . . . . . . . . . . . . . . 28

2.2 Examples of the chosen profile mushroom images. . . . . . . . . . . . . . . . 31

2.3 Mushroom images after the conversion to grayscale. . . . . . . . . . . . . . . . 31

3.1 Majority voting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Mean rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Confusion matrices of classifiers on the whole dataset. . . . . . . . . . . . . . 41

4.2 Confusion matrices of classifiers on the downsampled dataset. . . . . . . . . . 43

5.1 Cantharellus genus species examples. . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Amanita genus species examples. . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Lactarius genus species examples. . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Pluteus genus species examples. . . . . . . . . . . . . . . . . . . . . . . . . . 49

6



List of Tables

2.1 An example of the created dataset table with selected samples. . . . . . . . . . 30

3.1 Multi-class classification algorithms chosen for this study and their description. 34

4.1 The average class accuracies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Classifier accuracies for dataset with ten classes. . . . . . . . . . . . . . . . . . 42

4.3 Classifier accuracies for dataset with five classes. . . . . . . . . . . . . . . . . 44

4.4 Confusion matrices of majority voting method fusing linearSVC, decision tree,

extra tree, logistic regression and random forest. . . . . . . . . . . . . . . . . . 45

4.5 Confusion matrices of mean rule method fusing linearSVC, logistic regression

and random forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Confusion matrices of majority voting method fusing linearSVC, logistic re-

gression and random forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 The improvement introduced by ensemble techniques. . . . . . . . . . . . . . . 46

7



Abbreviations, definitions

AI - artificial intelligence

ANN - artificial neural network

CAD - computer aided diagnostic

CNN - convolutional neural network

FN - false negative

FP - false positive

GA - genetic algorithm

gcForest - multigrained cascade forest

HOG - histogram of oriented gradients

JPG - joint photographic group, lossy digital image compression format

KNN - k-nearest neighbour

MDAS - mushroom diagnosis assistance system

MLP - multi-layer perceptron

MR - magnetic resonance

PCA - principal component analysis

PNG - portable network graphics, lossless digital image compression format

RGB - red, green, blue colour channels in digital images

SROI - segmented regions of interest

8



SVM - support vector machine

TN - true negative

TP - true positive

9



Introduction

Mushrooms are fungi used by humans for food and medicinal purposes for hundreds of years

due to their high nutrient and vitamin levels [1]. The species range of fungi is wide, estimated

at around 2.2 to 3.8 million species [2] around the world and 5500 in Estonia [3], containing

toxic as well as non-toxic mushroom species. Classification of mushrooms is usually done by

mushroom classification manuals as paperback books or e-books. This, however, is a tedious

and time-consuming way for real-time mushroom classification. In addition, as many mush-

room species even from different genera can be similar, humans can be prone to misclassifying

them, which may have serious health consequences when eaten.

Machine learning is an essential tool to learn a classification model [4] and has been re-

searched for over 60 years [5], proving to be a valuable method for scientists to get insights

from the data. Machine learning provides the means of automating the image-based classifi-

cation of mushrooms on the level of toxicity, genera and species. Previously using machine

learning to classify mushrooms on the level of toxicity has been mainly studied [6] [7]. How-

ever, classification based on toxicity is only beneficial for food purposes. Mycologists need to

classify mushrooms on the level of species and genera. Nevertheless, only a few studies are

done in order to develop a classification model to classify mushrooms based on images on the

level of species [8] [9] and even fewer studies on the level of genera [8]. Those few works done,

however, are based on deep learning, requiring big labelled datasets to work with. As large

labelled mushroom datasets are difficult to find, there is a need for machine learning models

that could obtain reliable results with smaller datasets. Considering these reasons, developing

a method using machine learning to determine mushroom genera based on their images is an

important task to tackle.

This thesis aims to utilise advanced machine learning methods in order to automate the clas-

sification of Cantharellus, Coprinus, Pholiota and Russula mushroom genera. These mushroom

genera are widely spread in Estonia [10] [11] [12], and the automation of the determination of
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these genera would benefit the mycologists in Estonia to classify mushrooms faster and easier.

Due to the lack of data, no deep learning algorithms could be used in the current study. How-

ever, in order to improve the robustness and accuracy of the mushroom genera determination,

several ensemble techniques, such as majority voting and mean rule, have been utilised.

The thesis is structured into five main parts. Chapter 1 gives an overview of the literature

and is divided into three smaller sections. Section 1.1 explains machine learning and its ap-

plications in general, Section 1.2 provides an overview of the usage of machine learning in

image classification, and Section 1.3 focuses on the previous work done on mushroom classifi-

cation using machine learning. Chapter 2 describes the collected dataset. Chapter 3 outlines the

methods used in the study and is divided into three part according to the experiments carried

out. Chapter 4 brings out the results of each experimental phase which are further discussed in

Chapter 5. The thesis ends with conclusions and future work.
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1 Literature review

1.1 Machine learning

Human beings are able to observe, acquire new knowledge and skills but also modify the ex-

isting. In other words, they can learn by themselves. On the other hand, machines rely on data

that is given to them; they can learn from past experience [5]. Machine learning is a core of

artificial intelligence (AI), helping to overcome the bottlenecks of data acquisition [13] arising

from the phenomenon of “Big Data” [4], where computing systems are able to gather and trans-

port huge amounts of data. It enables the computers to learn from data, examples and previous

experience, as well as modify their actions and improve the accuracy over time [5]. In machine

learning, the goal is to learn a classification or prediction model. This way, machine learning

proves to be a valuable tool for scientists to get insights, predictions and decisions from this big

data [4].

The terms artificial intelligence and machine learning are known and researched for over

60 years [5]. The development of machine learning started with Alan Turing [14], who posed

the question, “Can computers think?”. In order to check the intelligence of the computer, he

created a test called the Turing Test, where the machine should convince the human that they

are talking to another human, not with a machine. Arthur Samuel [15] was the first to actually

formulate the phrase ”machine learning” in 1959, defining it as a field in which it should be easy

to program computers to learn from experience, eventually eliminating the need for detailed

programming effort completely. In his research, Samuel built a basic machine learning program

to play checkers by looking ahead some moves and evaluating the positions on the board. He

claimed that a computer could be programmed to learn to play checkers better than the person

who created the program. A modern machine learning explanation by Tom Mitchell [16] from

1997 says that “A computer program is said to learn from experience E with respect to some

class of tasks T, and performance measure P, if its performance at tasks in T, as measured by P,

12



improves with experience E”.

Machine learning uses computational methods to recognise the patterns occurring in the

data, make accurate predictions, and improve performance [17]. It uses past information that

can be either human-labelled training sets or information obtained via interaction with the envi-

ronment. The crucial factors in the final prediction accuracy are the quality and the size of the

data [18].

The basis of machine learning is the design of efficient and accurate prediction algorithms

with time, space and sample complexity. The success of the algorithm depends on the data

used, making machine learning intertwined with statistics and data analysis. Therefore, ma-

chine learning combines fundamental concepts in computer science, statistics, probability and

optimisation to learn from data iteratively and search for hidden patterns [18]. A diverse array

of machine learning algorithms has been developed to solve different data and problem types,

such as labelled or unlabelled data, speech recognition or computer vision tasks. As stated by

Jordan and Mitchell [4], function approximation is the focus of many algorithms. In this case,

the task is expressed in a function, and the accuracy is increased through learning. The func-

tion generally depends on the parameters and tunable degrees of freedom. During the model

training, the best values are found to optimise the performance.

Machine learning can be divided into different categories depending on the data available,

the way training data is received, and the test data used to evaluate the learning algorithm [18].

Most commonly, machine learning algorithms fall into three more significant categories [19]:

1. supervised learning,

2. unsupervised learning,

3. reinforcement learning.

This categorisation, however, is not the only way of classifying machine learning algorithms.

Nowadays, the research has blended over these three categories [4], giving rise to other cate-

gories, such as active learning, semi-supervised learning, ensemble learning etc. In Figure 1.1,

machine learning paradigms and their further approaches are presented.

1.1.1 Supervised machine learning

The most common approach in machine learning is supervised learning [20] [17] [4], also called

predictive learning, which requires labelled data. It takes advantage of the function approxima-
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Figure 1.1: Machine learning paradigms and their further approaches.

tion in which the training set D consists of input-output pairs D = {(xi, yi)}Ni=1), where N

is the sample size or the number of training samples. The input x is called the feature, also

named as the covariate or predictor. Features are often fixed dimensional vectors of numbers,

for example, the pixels of an image. The output y is called the label, target or response. The

predictions in supervised learning are formed via a learned mapping f(x) from inputs x ∈ χ to

outputs y ∈ γ. Supervised learning can be subcategorised as classification and regression [21],

where classification has discrete labels while regression has continuous.

1.1.2 Unsupervised machine learning

Unsupervised learning [20] [17] [4] or descriptive learning algorithms do not need labelling of

the data, avoiding the need for collecting large labelled datasets. In this case, only the inputs

D = {(xi}Ni=1) are known and observed without corresponding outputs. Unsupervised learning

allows the model to explain the inputs and find interesting patterns in the data. Clustering and

dimension reduction are two categories of unsupervised learning.
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1.1.3 Reinforcement learning

Reinforcement learning [20] [17] [4] is the third large class of machine learning. It is an in-

termediate type between supervised and unsupervised learning. Although the algorithm is not

provided with the correct output, the training data indicates whether the output is correct or not.

It is encoded by the policy a = π(x), specifying the action in response to each possible input x.

A reward signal is received in response to correct actions, and punishment signals in response

to wrong actions. Compared to supervised and unsupervised learning, it is more challenging to

make reinforcement learning work as the reward signal can only be given occasionally, there-

fore, resulting in a minimal amount of information.

1.1.4 Ensemble learning

Ensemble learning [22] [23] [24] is a state-of-the-art method in machine learning. It combines

predictions of several individual machine learning algorithms of supervised and unsupervised

learning in order to increase overall prediction accuracy. Each of the algorithms is trained on the

same training data followed by the fusion of the output using one of the available methods, such

as majority voting. Ensemble learning proves to be efficient in many ways. Firstly, it avoids

overfitting as averaging different hypothesis made by several algorithms reduces the risk of

choosing the wrong hypothesis. Secondly, by decreasing the risk of obtaining a local minimum

and getting stuck there, it shows a great computational advantage. And last, a combination of

different models extends the search space, and, therefore, a better fit is achieved.

1.1.5 Applications

Being a multi-disciplinary field, machine learning has many areas of applications in research,

commerce as well as everyday life [5]. In biomedicine, machine learning has shown a great

promise to revolutionise diagnostics and treatment by providing continuously adapted improved

detection, diagnosis and treatment strategies [25]. McKinney et al. [26] presented an AI system

that was able to increase the accuracy and efficiency of breast cancer screening compared to

human experts. The system was based on image classification and trained to identify cancer. In

the concept of smart cities, Alrashdi et al. [27] proposed an Anomaly Detection-IoT (Internet

of Things) system based on a random forest machine learning algorithm. The system effec-

tively detects IoT cyberattacks in a smart city. These are just a few examples of the endless
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opportunities of utilising machine learning.

1.2 Machine learning in image classification

Classification belongs to the supervised learning category [5], where the output labels are dis-

crete. It aims to predict a discrete class label from given input [20], in other words, to recognise

and group objects into distinct categories. Classification is done by classifier algorithms that

learn from the training data and assign new data to a particular class or category. The valid

mapping function [28] f : x −→ y is drawn, and class prediction is made by the classification

model. The classification model is made more accurate with the help of features - parameters

in the given task set.

The output is a set of L labels that are unordered and mutually exclusive [20], also known

as classes y = {1, 2, ..., L}. There are four types of classification [4] (Figure 1.2). (1) Binary

classification [17] has only two classes, meaning L = 2 and it is denoted by y ∈ {0, 1}. In case

there are more than two labels, L > 2, the classification is (2) multi-class [17] where y takes

one of L labels, denoted by y ∈ {0, 1, ..., L}. (3) Multi-label classification [29] occurs when

y can simultaneously be labelled by several L labels. It is viewed as a prediction of multiple

related binary class labels, also called multiple output model. Lastly, when classification is (4)

imbalanced [30], the sample sizes in different classes vary significantly.

Figure 1.2: Types of classification. Here L corresponds to the number of labels and K corre-
sponds to the number of labels one class may have.
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Image classification [20] is a supervised learning task where the input set X is a set of

images with high dimensionality. In the case of RGB images, there are three colour channels

C = 3, red, green and blue, and D1 × D2 pixels, resulting in an input X = RD, where

D = C×D1×D2. Grayscale images have only one colour channel C = 1. Each pixel intensity

is represented with an integer from range {0, 1, ..., 255}. Therefore, the image is represented by

an array of numbers.

1.2.1 Workflow

The image classification model is built according to the general classification model steps.

There are five main steps in creating an image classification model:

1. data collection,

2. data preparation and preprocessing,

3. feature selection,

4. classification algorithm selection and training,

5. evaluation.

Figure 1.3 visualises the overall classification workflow.

1.2.1.1 Data collection

Data collection consists of data acquisition, data labelling and improvement of existing data

[31]. Techniques for data acquisition depend on the data wanted. Data discovery is used when

new datasets are wanted. Data augmentation is complementing discovery by adding more ex-

ternal data to the existing datasets. Data generation creates synthetic or crowdsourced data

when no external datasets are available. Data labelling can be done simultaneously with data

acquisition or after data acquisition.

1.2.1.2 Data preparation and preprocessing

There can be many errors in the initial data, such as impossible, unlikely or missing values

or irrelevant features [32]. Therefore, data preparation and preprocessing need to be carried

out. Data preprocessing can be done either manually (in the case of smaller datasets) or with

17



Figure 1.3: Image classification flowchart.

numerous methods. Missing data, for example, can be handled with methods introduced by

Batista and Monard [33]. For outliers or noise detection, there are several techniques described

by Hodge and Austin [34]. In the case of huge datasets, data sampling [32] may be carried

out. Random sampling selects a subset of instances randomly from the whole dataset. If class

values are distributed unevenly, other sampling techniques need to be used. Imbalanced data

can cause models to favour over-represented class over other classes, causing misclassification

[35]. Two methods for sampling imbalanced data are random undersampling (RUS) and random

oversampling (ROS). In RUS, samples are randomly removed from the majority class, while in

ROS, samples are randomly added to the minority class. In image classification, resizing and

image processing are often carried out to bring out objects of interest or enhance the image.
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1.2.1.3 Feature selection

In feature selection [32], relevant features are selected while irrelevant and redundant are re-

moved in order to reduce the number of input variables. Feature selection algorithms have

two parts where the selection algorithm generates a proposed subset of features and tries to

find an optimal subset while the evaluation algorithm determines the performance. One of the

commonly used techniques is principal component analysis (PCA). Relevant features for image

classification include pixels, histogram of oriented gradients (HOG) or frequency domain, to

name a few.

1.2.1.4 Classification algorithm and training

The critical step is to choose the classification algorithm [32] that performs the best as the

evaluation step is usually based on the prediction accuracy. That depends largely on the input

data and how many classes it has (is it a binary or multi-class classification problem). Then the

training data is given into the classification algorithm in order to train the model [28]. Some of

the most commonly used image classification algorithms are support vector machine, decision

tree, random forest and logistic regression.

1.2.1.5 Evaluation

The evaluation step is important to get feedback on how well the trained classifier model per-

formed and, according to that, optimise the parameters and choose the best performing model.

For that test data set is given as input to the model, and the performance is calculated. There are

different evaluation metrics [36] suitable for classification. A visually most detailed evaluation

method is a confusion matrix that shows all correct and incorrect classifications for each class,

rows corresponding to true labels and columns to predicted labels. From the confusion matrix,

it is easy to calculate the prediction accuracies. Accuracy is the most popular method measur-

ing the frequency at which the classifier makes the correct prediction and is calculated by the

following formula:

accuracy =
TP + TN

TP + TN + FP + FN
, (1.1)

where TP, TN, FP and FN are true positive, true negative, false positive and false negative,

respectively. In the case of multi-class data, the following formula is used for calculating clas-
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sification accuracy for each class:

class accuracy =
TP

TP + FP
(1.2)

Two useful metrics are precision and recall showing the quality of the model (i.e., how many

positive class predictions actually belong to the positive class) and the quantity (i.e., the number

of positive predictions out of all positive items), respectively. The formula for precision is

precision =
TP

TP + FP
, (1.3)

while recall is calculated by the formula

recall =
TP

TP + FN
(1.4)

Precision and recall metrics are often combined via their harmonic mean, also called the F1-

score or f-score where

F1− score = 2× precision× recall
precision+ recall

(1.5)

The model is considered perfect if the F1-score is one and failure if the F1-score is zero.

1.2.2 Classification algorithms

There are many well-studied algorithms for classification that are widely used for image classi-

fication. Which classification algorithm to use depends on the dataset it has to work on [37], i.e.,

whether it is a binary or multi-class classification problem. It is essential to compare the clas-

sifier accuracies and choose the best predictive one. Known algorithms include support vector

machine, decision trees, random forest, k-nearest neighbours, naive Bayes, logistic regression

and linear regression, to name a few.

1.2.2.1 Support Vector Machine

Support vector machine (SVM) algorithm [38] [39] [40] [41] [42] is a supervised learning

algorithm proposed by Vapnik in 1995. This model is primarily used for classification by aiming

to find an optimal hyperplane in order to segment the samples. The optimal hyperplane is the

plane that correctly separates the classes while maximising the distance between them. SVM
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can be divided into linear and non-linear models depending on whether the data domain can be

linearly divided or not. The equation corresponding to the linear classification hyperplane for

input data x is

w · x+ b = 0, (1.6)

where w is the weight vector and b is the bias.

The optimal classification function is

f(x) = sgn[w∗ · x+ b] = sgn[
n∑
i=1

a∗i yi(xi · x) + b∗], (1.7)

where sgn() is a sign function, w∗ is optimal weight coefficient vector, n is the number of

training samples, a∗ is optimal Lagrange multiplier, yi is the label value of sample i and b∗ is

optimal bias.

For linearly non-separable data, transformations need to be performed to map the original

data into a linear classification problem in high-dimensional space by using kernel function

K(xi, xj), such as linear or radial based kernel function. Then the optimal hyperplane is found

similarly to the linear SVM method, and the optimal classification function is

f(x) = sgn[
n∑
i=1

a∗i yiK(xi, x) + b∗] (1.8)

1.2.2.2 Decision Tree

A decision tree [28] [38] [43] is a logic-based supervised learning algorithm generating a set of

decisions that will lead to the prediction of the class. The decision tree consists of nodes and

branches. The node represents the feature in an instance that will be classified, and the branch

represents the value of the node. The root node is the feature that best divides the training data.

Although the decision tree method is simple, fast, easy to visualise and does not require much

data preprocessing, it may result in very complex tree structures that are not generalised enough.

1.2.2.3 Logistic Regression

Logistic regression [20] [43] is another supervised learning algorithm to implement linear clas-

sification models. The core of the algorithm is a logistic function used to learn the parameters
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of the model and predict the instances. The logistic function is

f(z) =
1

1 + e−z
, (1.9)

where z := θ0 + θ1x1 + θ2x2 + ... + θnxn and x1, x2, ..., xn are independent input variables.

The dependent output variable y = f(z). In case L = 2, we deal with binary logistic regression

while in case L > 2 multinomial or multi-class logistic regression task.

1.2.2.4 Random Forest

Random forest algorithm [5] [20] [44] is a combination of decision trees. It is an ensemble

learning technique. First, many decision trees are generated, and then the most popular class

is chosen based on voting. It uses a bagging technique that involves training several classifiers

resulting in ensemble output from the mean or majority voting of the decision trees.

1.2.3 Related work in image classification

Image classification is an important method in many fields, from biomedical imaging to robot

sensing to the entertainment business and is actively used to solve problems in many research

areas.

Sachdeva et al. [45] proposed a computer-aided diagnostic (CAD) system to segment and

classify brain tumours from magnetic resonance (MR) images. Their system has four modules

starting with the marking of tumour regions and saving them as segmented regions of interest

(SROIs). The feature extraction is carried out in the second module, in which the intensity and

texture features are extracted from SROIs. The third module consists of feature selection using

a genetic algorithm (GA). Lastly, the selected features are given as inputs to the classification

module that consists of SVM and artificial neural network (ANN), resulting in hybrid classifiers

GA-SVM and GA-ANN using the standard multi-layer perceptron (MLP). The experiments

were done on two brain tumour MR image datasets and compared with SVM and ANN classifier

performances. Developed hybrid classifiers with GA showed higher prediction accuracy than

that of classifiers without optimising GA. Also, the GA-ANN classifier showed greater overall

accuracy on both datasets, 94% and 94.1%, respectively, while GA-SVM accuracy was 91.7%

and 89%, respectively. The authors proposed using GA-SVM to find preliminary probability in

identifying tumour class, and GA-ANN for accuracy confirmation.

In another study Shukla et al. [46] developed a framework to recognise six developmental
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disorders from facial images of patients. This model can be used in order to make an initial

diagnosis of these disorders. The model of Shukla et al. relies on a convolutional neural network

(CNN) to extract the representations of the faces from the images. A machine learning algorithm

linear SVM is then used for classification. They trained the SVM to classify the images as

positive or negative classes according to the decision formed after training the feature vector

obtained from the CNN. Their proposed method gave 98.8% accuracy, which exceeded other

techniques.

In biological research fields, machine learning offers great opportunities for automating oth-

erwise time-consuming, tedious work. Popescu and Sasu [47] presented machine learning based

classification techniques for the field of palynology - a study of pollen and spores [48]. They

investigated 12 classifiers, including naive Bayes, k-nearest neighbours (KNN) and random for-

est, on a public pollen dataset with a small number of images available. The traditional image

classification workflow was followed where they first separated the pollen from the background

and carried out image enhancement. They then extracted and selected the features, followed by

training the classification models, tuning some of the hyperparameters based on trial and error.

The authors compared all 12 classifiers, took naive Bayes as the baseline model, and found that

the best performing models build predictions based on data clustered together. The best results

were obtained by the KNN algorithm, receiving 83.43% classification accuracy.

Machine learning based image classification methodologies are utilised considerably in

smartphone application development. Zhu and Spachos [49] built and evaluated traditional

machine learning, deep learning and transfer learning methodologies to determine the opti-

mal model for an Android application for butterfly classification. In the conventional machine

learning field, they tested SVM and random forest, obtaining 52.5% and 72.3% accuracy, re-

spectively. In comparison with deep learning and transfer learning methods which obtained

the highest accuracies of 98.3% and 98.4%, respectively, SVM and random forest algorithms

remained relatively simple. A recent study by Foysal et al. [50] was carried out to propose a

smartphone application detecting costumer’s body shape to provide them with optimal fitting

clothing recommendation. Their proposed body shape detection algorithm combines image

processing and machine learning to classify body shapes using KNN, giving an overall 87.5%

accuracy.

As the examples showed, machine learning has proven to be an excellent tool for image

classification tasks. Although the previously described accuracies of the models are relatively

high, the classification model can be optimised, and the performance further improved. In
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addition, the high-performing models were built on deep learning algorithms requiring large

datasets. In the case of smaller datasets, machine learning models should be employed.

1.3 Mushroom classification

Mushrooms are fungi that have humans have consumed for food as well as medicinal purposes

[1]. Mushrooms are low in energy but provide a high source of nutrients, vitamins and bio-

logically active compounds believed to have an antitumour effect. The range of fungi species

is broad, estimated at around 2.2 to 3.8 million [2] in the world, about 5500 in Estonia [3], in

which there are edible as well as poisonous mushroom species. Lots of people go mushroom

hunting by themselves, knowing little about mushrooms and how to differentiate them. Thus,

the classification of mushrooms is vital to prevent accidental poisoning by eating the wrong

type. Especially important would be developing an automatic mushroom classification appli-

cation for smartphones to be used while mushroom hunting. There are previous studies done

on mushroom classification, however, mainly on classifying whether the mushroom is edible

or non-edible, only a few works on classifying mushroom genera or species. Also, most of

the works done prior are based on the physical description of mushrooms rather than images.

Therefore, developing machine learning models for mushroom genera and species classification

based on images is an important task to tackle.

1.3.1 Mushroom classification based on images

Images provide several means of features to be extracted and used as input for the classification

model. Maurya and Singh [6] proposed a machine learning based method for mushroom classi-

fication as edible or non-edible using texture features extracted from images. They started with

preprocessing by resizing the mushroom images and converting them to grayscale. In the feature

extraction step, colour and grayscale features are extracted to derive new features and reduce the

dimensionality. For classification, the authors used SVM, KNN, decision tree, ensemble train-

ing and discriminant analysis to classify the mushrooms as edible or poisonous. Their dataset

had 250 publicly available mushroom images. The authors concluded that the SVM classifier

performed better with respect to other classifiers obtaining 76.6% accuracy. They claimed that

the performance would be increased if the image background is removed in all images, so all

extracted features would contain only mushroom features and not include background features.
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Machine learning techniques to classify mushrooms as poisonous or non-poisonous were

also studied by Ottom et al. [7]. They implemented several machine learning methods such

as SVM, neural network, decision tree and KNN on mushroom images. After resizing the im-

ages, the authors extracted Eigenvalues with cap diameter, stem height and diameter, HOG and

parametric features. They gave the features as inputs into the four machine learning classifica-

tion models and compared the results. KNN showed the highest accuracy on real dimensions,

reaching 94.4% precision on Eigen features. When real dimensions were replaced with virtual

dimensions, SVM reached the highest accuracy of 87.6% on combined Eigen and parametric

features. When the image background was removed, the best performing method was neural

network on combined Eigen and histogram features with an accuracy of 84.1%.

Other studies on mushroom image classification have been done using neural network ar-

chitectures which, however, require much bigger datasets for training. Hidalgo [8] presented a

smartphone application MushroomApp to identify mushrooms from an image taken using an

ANN classifier. In contrast to previous works described, Hidalgo’s model classifies mushroom

species from seven genera, not only if they are poisonous or not. The process occurs in two

steps. First, the genus is predicted and then the species. The output of the ANN model is bi-

nary, meaning it will tell if it is the given class or not. For genus, the author tested the model

with 27,000 and 10,000 images and, as expected, obtained higher performance with more im-

ages, resulting in an f-score of 0.68. For mushroom species, the model was tested with 7000 and

5000 images and four genera where again higher performance was obtained with more images,

resulting in f-scores of 0.36, 0.47, 0.3 and 0.42. As a result of Hidalgo’s work, a prototype of

MushroomApp was developed. Sulc et al. [9] developed a fungi species recognition system

based on deep convolutional neural networks. Deep learning, however, is out of the scope of

the present study and will not be discussed further.

1.3.2 Mushroom classification based on physical description

There are more studies done on mushroom classification based on the description of mushroom

physical attributes such as cap, odor, gills, stalk, veil, ring, spore, habitat, etc., mostly to classify

if mushrooms are poisonous or non-poisonous. Based on those visual features Wang et al. [51],

proposed a mushroom toxicity classification method using multigrained cascade forest (gcFor-

est) and compared it with logistic regression and SVM classifiers. gcForest is a decision tree

ensemble method that consists of multigrained scanning and cascade forest. gcForest resulted

25



in the highest average accuracy of 98.35% with fluctuation of less than 8%, therefore, proving

to be the best classifier out of the three. However, the stability needs to be improved in the

future, which will result in even higher accuracy.

Another ensemble-based mushroom classification method was proposed by Yildirim and

Bingöl [52]. They employed and compared five different ensemble classification algorithms

(subspace discriminant, RUSBoosted trees, subspace KNN, bagged trees and boosted trees) in

order to predict if the mushroom is edible or not. The results showed that the best performing

method was bagged trees resulting in 100% accuracy over four other classifiers.

Shaheed and Abd [53] developed a Mushroom Diagnosis Assistance System (MDAS) for

smartphones in which two machine learning classifiers, naive Bayes and decision tree, are used

to determine if the mushroom is edible or poisonous. They tested the classifiers without and

with feature selection. The results showed that the decision tree performed better on both cases

obtaining 98.96% and 99.99% accuracies, respectively, while naive Bayes showed results of

95.83% and 98.46%, respectively. Therefore, the authors concluded that feature selection im-

proves the accuracy and, although the decision tree took a bit longer time to train, it resulted in

higher accuracy.

As in image-based mushroom classification, also in physical description based classifica-

tion, neural networks are a common approach. Alkronz et al. [54] proposed a multi-layer ANN

to classify mushrooms as edible or poisonous. The architecture had one input layer, three hid-

den layers and one output layer, and it reached an accuracy of over 99%. As this is again out of

the scope of current work, this will not be discussed further.

1.3.3 Importance of mushroom image classification

The works on mushroom classification brought out in the previous sections show that the stud-

ies have mainly focused on classifying mushrooms as poisonous or non-poisonous. However,

this is not a sufficient level of classification for mycologists and people interested in the higher

level of mushroom classification, such as genera or species level. Moreover, classifying mush-

rooms based on images is not as widely studied as image-based classification. However, images

provide the classifier with visible features rather than merely a verbal description that can be

misleading. Therefore, image-based classification can provide higher accuracy, especially if

combined with a verbal description of the features not visual on the picture, such as distinct

smell or colour of spores. Finally, although there are a few deep learning models done to
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classify mushrooms on the species level, there are no studies on the level of genera. Therefore,

developing machine learning classification models to classify mushrooms on the level of genera

is important.

27



2 Dataset

2.1 Data description

The mushroom dataset (Figure 2.1) used was collected specifically for the current study. It con-

sists of 1118 labelled images of ten mushroom genera: Agaricus, Amanita, Cantharellus, Co-

prinus, Cortinarius, Lactarius, Mycena, Pholiota, Pluteus and Russula. The classes are slightly

imbalanced. The dataset includes images taken of mushrooms in the wild as well as after pick-

ing. There are images with and without background. The pictures of the mushrooms are taken

either from the upper part of the cap, bottom part of the cap, profile or sectional cut. The final

models use downsampled dataset consisting of five classes: mushroom genera Cantharellus,

Coprinus, Pholiota, Russula, and merged class others (i.e., an equal amount of images from

every other six genera).

Figure 2.1: A selection of images from the mushroom dataset. The images are resized to
200× 200 pixels.
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2.2 Data collection

Mushroom images were collected during July, August and September 2020 by Eduardo Fabian

Garza Garza. A dataset with six genera and 700 images was collected and uploaded to the

Google Drive folder, each genus into a different folder during July. More images were added

during August, and the last 273 images were uploaded on September 3rd. The images were

collected from three sources:

1. Mushrooms by Phillips [55],

2. Field guide to common macrofungi in eastern forests and their ecosystem functions [56],

3. MushroomExpert website [57].

All images in JPG format were converted to PNG format in order to keep the lossless compres-

sion and quality.

A two pixels wide rectangle was drawn around each mushroom on the image, one rectan-

gle per image and one mushroom per rectangle, to localise the mushroom on the image. The

rectangle separated the mushroom from the background of the image, making it easier for the

classifier to recognise the pixels of the mushroom. The colour of the rectangle was chosen as

unnatural as possible, in this case, neon green (with code 4CFF00, consisting 29.8% of red,

100% of green and 0% of the blue channel), to be separable from the image and mushroom

itself.

Each mushroom genera was stored in a separate folder, which is considered a way of la-

belling. A table with information about the images was created (Table 2.1). The table contained

the genera of the mushroom on the image (numbered from 0 to 9), the name of each image,

which side the image was taken from (up, down, profile or sectional, numbered from 0 to 3),

and whether the image had a background or not (numbered 1 or 0).

In addition, Eduardo Fabian Garza Garza compiled a table with the features of each mush-

room genera. The table specifies the major group the genus belongs to. The cap of each genus

is described in the means of its shape, surface, stickiness and colour. Hymenium type and gills

are brought out, reporting the gills attachment, spacing and colour. The stalk shape and po-

sition, annulus and annulus colour are described together with veil, veil type and colour. The

substrate (soil or wood) and lactation of the mushrooms were indicated, and whether the genus
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is gregarious or not. This table was later used to identify the distinct features of the best and the

worst classified genera.

Each genus was assigned an abbreviation for the use in confusion matrices. The abbrevia-

tions are as follows: C1, C2, C3, C4, C5, C6, C7, C8, C9 and C10, corresponding to Agaricus,

Amanita, Cantharellus, Coprinus, Cortinarius, Lactarius, Mycena, Pholiota, Pluteus and Rus-

sula, respectively. These abbreviations will be used in figures and tables throughout the study.

Table 2.1: An example of the created dataset table with selected samples. In the column ”Gen-
era”, the numbers 0-9 correspond to genera Agaricus, Amanita, Cantharellus, Coprinus, Corti-
narius, Lactarius, Mycena, Pholiota, Pluteus and Russula, respectively. The name of the image
file is in the column ”Image name”. Column ”Mushroom side” indicates whether the image is
taken from the upper part of the cap, bottom part of the cap, profile or sectional cut, numbered
0-3, respectively. The ”Background” column shows if the image has a background or a uniform
colour behind the mushroom, 0 indicating no background and 1 the presence of background.

Genera Image name Mushroom
side Background

0 Agaricus4-3.png 1 0
0 Agaricus32agaricus auricolor 01-1.png 0 1
1 Amanita1-1.png 2 0
1 Amanita6-5.png 1 0
2 Cantharellus4-4.png 0 0
2 Chantarellus19cantharellus cf cibarius 01-1.png 2 1
3 Coprinus1-1.png 3 0
3 Coprinus14-3.png 0 1
4 Cortinarius2-3-1.png 2 0
4 Cortinarius19-2.png 1 0
5 Lactarius26-1.png 2 1
5 Lactarius55-1.png 0 1
6 Mycena7-2.png 3 0
6 Mycena32-5-2.png 2 0
7 Pholiota1-1.png 1 0
7 Pholiota32pholiota limonella 03-3.png 2 1
8 Pluteus7-1.png 1 0
8 Pluteus53pluteus longistriatus 03-1.png 0 1
9 Russula48-3.png 1 0
9 Russula63-1.png 2 0

2.3 Data preparation and feature selection

Only profile images (Figure 2.2) from the dataset were chosen for further testing for the current

study since this simplified the classification process. For that, the dataset was sorted, and profile
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picture images were extracted. As the initial dataset was slightly imbalanced (i.e., each class

had a slightly different number of samples), data sampling needed to be carried out. From

each class, 65 random samples were chosen. Then the dataset was split into initial training and

testing datasets where 80% of the images were reserved for training (52 images from each class)

and 20% for testing (13 images from each class). These training and testing datasets were used

throughout the study.

The images in the training and testing datasets were preprocessed. Each image was resized

to 200 × 200 pixels and converted to grayscale (i.e., the image has only one colour channel

instead of three R, G and B channels) (Figure 2.3). The images were flattened into an array

containing pixels that were selected as features and input to the classification models. The

labels of each corresponding image were saved in another array.

Figure 2.2: Examples of the chosen profile mushroom images. Images are resized to 200× 200
pixels.

Figure 2.3: Mushroom images after the conversion to grayscale. Images are resized to 200×200
pixels.
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2.4 Data downsampling

In the later phases of the classification, only four genera out of all ten genera (here and after

genus is interchangeably used with class) were utilised. That required downsampling of the

original training and testing datasets. Four chosen genera (Cantharellus, Coprinus, Pholiota and

Russula) were extracted from the datasets, and the other six genera were merged to form one

class called “others”. As the new datasets were very imbalanced where the class called “others”

was highly dominating, data downsampling needed to be carried out in order to balance all

the classes. Cantharellus, Coprinus, Pholiota and Russula genera each contained 52 samples

in the training set and 13 samples in the testing dataset. Class “others” had 6 × 52 samples in

the training and 6 × 13 samples in the testing dataset. From every six genera present in the

previously mentioned class, an equal number of samples were randomly selected in order to

have 52 samples from the class “others” in total in the training dataset and 13 samples in the

testing dataset. The new downsampled training dataset contains 5× 52 samples, and the testing

dataset 5× 13 samples.
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3 Methods

3.1 Adopted classification algorithms

A list of 17 machine learning multi-class classification algorithms was chosen (Table 3.1) ac-

cording to their compatibility to classify multi-class datasets. The grayscale pixel features and

labels of the prepared training dataset of ten classes were converted into Pandas dataframe and

given as an input to each of the classifiers. The testing dataset features and labels were con-

verted to dataframe the same way. The feature dataframe was given as input to the trained

models to obtain the predicted labels and classification accuracy. Predicted classes of each clas-

sifier were saved in a list. Confusion matrices of each classifier were saved on an Excel file, and

the accuracy of each class prediction was calculated according to Equation 1.2. The columns

on the confusion matrix tables represent the predicted classes,labelled orange, while the rows

represent the true classes, marked yellow. The accuracies for each class are indicated on the last

column of each table, labelled green, and total accuracy represents the accuracy of the overall

classification model, i.e., the average of the class accuracies is calculated to obtain the model

accuracy. The confusion matrix indicates how many samples the classifier classified as true

positives (TP) and how many it classified as false positives (FP).

For each class, the average class accuracy amongst all classifiers was calculated. This was

done separately for each class by summing up the class accuracies provided by all 17 classifiers

and divided by the number of classifiers (i.e., 17). From the average class accuracies, the best-

classified mushroom genera were chosen, and data downsampling was carried out (described in

more detail in Section 2.4). The best-classified genera were Cantharellus, Coprinus, Pholiota

and Russula, which were chosen to be tested further and be the basis of this study. Other

mushroom genera were merged to a class named ”others” and downsampled to 65 samples

where each genus had an equal number of samples presented. The same number of samples

was maintained for each mushroom genera (65 samples) as in the previous experiment, the
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same 80% of it going for the training set and 20% for the testing set.

Table 3.1: Multi-class classification algorithms chosen for this study and their description. Clas-
sifiers marked in bold were selected for ensemble-based classification in the later phases of the
study.

Algorithm Description
Decision tree More details in Subsection 1.2.2.2.
Extra tree classifier Extremely randomised decision tree classifier, should be used within

ensemble methods.
Extra trees classifier It uses averaging to improve the predictive accuracy of extra tree clas-

sifiers and reduce over-fitting.
Gaussian Naive Bayes Assumes the likelihood of the features to follow Gaussian distribu-

tion and is based on Gaussian Naive Bayed algorithm P (xi | y) =
1√
2πσ2

y

exp(− (xi−µy)2
2σ2

y
), where x is the feature, µy is the mean of values

in x and σ2
y the Bessel corrected variance.

KNN Finding a predefined number of training samples closest to the sample
to be predicted and predict the label based on these samples. The value
of k is specified by user and stays constant, in the scope of this study
k = 3.

Label propagation Semi-supervised learning algorithm where a small subset of samples
have labels which are propagated to the unlabelled points. A KNN ker-
nel was used with k = 3.

Label spreading Semi-supervised learning algorithm similar to label propagation, how-
ever, it is more robust to the noise present in the data. In this study a
KNN kernel with k = 3 was used.

Linear discriminant analysis Linear supervised classification algorithm using Bayes’ rule to find a
linear combination of features characterising/separating the classes.

LinearSVC Implementation of SVM (Subsection 1.2.2.1) with linear kernel. Hinge
loss and multi-class strategy crammer singer optimising a joint objective
over all classes were used in this study.

Logistic regression More details in Subsection 1.2.2.3. In this study multi-class option was
set to multinomial.

Logistic regression with CV Implementation of logistic regression using K-fold cross validation to
get improved accuracy. The number of folds used in this study was
cv = 5.

MLP classifier A neural network classifier having input layer, output layer and hidden
layers inbetween. The architecture of MLP classifier for the first exper-
imental phase had three hidden layers with 100, 100 and 150 nodes, and
for the second experimental phase 200, 150 and 100 nodes, respectively.

Nearest centroid Similar to KNN classifier. Here every class is represented by a centroid
and a class of a sample is predicted based on the nearest centroid.

Quadratic discriminant analysis A variant of linear discriminant analysis allowing non-linear classifica-
tion of data.

Random forest More details in Subsection 1.2.2.4. Maximum depth of the trees were
chosen to be 15.

Ridge classifier Classifier converting target values to -1 and +1 to treat them as regres-
sion task.

Ridge classifier with CV Implementation of Ridge classifier using K-fold cross validation for im-
proved accuracy.
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3.2 Classification of Cantharellus, Coprinus, Pholiota and Rus-

sula genera

After choosing the best-classified mushroom genera (Cantharellus, Coprinus, Pholiota and Rus-

sula) out of all genera, the previous classification steps were repeated with the new downsam-

pled training and testing datasets. Five classes instead of ten classes were classified (other

mushrooms, Cantharellus, Coprinus, Pholiota and Russula). The same 17 classifiers were used

(Tabel 3.1), and trained classification models were saved for further testing. The predicted la-

bels of the testing dataset were saved in a list. Confusion matrices, described in Section 3.1,

were saved on an Excel file, and performance accuracy of each class prediction was calculated

according to Equation 1.2. The overall model accuracy was obtained, taking an average of

class accuracies of one model. From the obtained results, five high performing classifiers (lin-

earSVC, decision tree, extra tree classifier, logistic regression and random forest) were chosen

for the classification by ensemble learning (Table 3.1 classifiers marked in bold).

3.3 Ensemble based decision making

For ensemble learning based classification, five high accuracy classifiers (linearSVC, decision

tree, extra tree classifier, logistic regression and random forest) were chosen. Downsampled

testing dataset was used where each sample was given to each previously saved classifier at the

same time one by one. The pixel features were converted into Pandas dataframe and given as

input to each of the classifiers. The results were saved in a list, each classifier having a separate

list for predictions.

3.3.1 Majority voting

The first ensemble technique tested was majority voting using five classifiers. The majority

voting method [58] takes the predictions of each classifier and considers each of them as a vote.

The majority of the votes will declare the final prediction for the ensemble technique. The

decision is described by the following equation:

T∑
t=1

dt,J = maxCj=1

T∑
t=1

dt,j, (3.1)
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where d is the decision of the tth classifier, t = 1, . . . , T and j = 1, . . . , C, where T is the

number of classifiers and C is the number of classes. The probability of the success of the

ensemble method is found by the equation

Pens =
T∑

k=(T/2)+1

(Tk )pk(1− p)T−k, (3.2)

where each classifier has a success rate of p.

The results of mushroom classification using linearSVC, decision tree, extra tree, logistic

regression and random forest classifiers were combined by majority voting (Figure 3.1.). For

every sample, the prediction of each classifier was checked. The number of times that the

classifiers predicted each class was counted, and the class obtaining the majority of the votes

was declared as the final class. The predictions were visualised on a confusion matrix, described

in Section 3.1. The accuracy of each class prediction was calculated according to Equation

1.2. The overall model accuracy was obtained, taking an average of class accuracies of one

model. In order to show the improvement introduced by the majority voting technique using

five classifiers, an average of all class accuracies of the five classifiers was taken. The averaged

class accuracies were compared to the corresponding class accuracies of the majority voting

technique. The same comparison was made for the overall ensemble model accuracy and the

average of the classifiers model accuracies.

3.3.2 Mean rule

Another ensemble technique next to the majority voting based ensemble method used was the

mean rule [58], a simple algebraic combiner with a normalisation factor. In order to obtain the

final prediction, the average of all classifier jth outputs is calculated using the formula

µj(x) =
1

T

T∑
t=1

dt,j(x), (3.3)

where µj(x) is the final class of the sample.

In the case of the mean rule, however, only classifiers providing confidence score can be

used. A confidence score is a value from zero to one showing the probability of the sample

falling into each class. The higher the probability, the higher the confidence. In this study

linearSVC, logistic regression and random forest classifiers could be used as these classifiers

provided confidence scores. The decision tree and extra tree classifier only provided binary
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Figure 3.1: Majority voting. The workflow of the majority voting technique presented by sam-
ple i. The predictions on sample i from each classifier are combined by majority voting, and
the majority of the votes declares the final class of the ensemble method.

results, i.e., one for the predicted class and zero for all the other classes.

The random forest provided confidence scores for each sample in a list, while the outputs

for linearSVC and logistic regression were distances to which the predicted sample lies from

the hyperplane, also saved in a list for each sample. From those distances, confidence scores

can be calculated for each sample by using the formula

confidence score =
l −min(l)

Σl
, (3.4)

where each distance l in the list is subtracted by the minimum distance l in the list and then

divided by the sum of all distances l. The obtained confidence values were saved in a new list

for the mean rule ensemble technique.

The mean rule formula (Equation 3.3) was applied to linearSVC, logistic regression and

random forest classifier outputs (Figure 3.2). From the obtained list of new confidence val-

ues, the maximum value was declared as the predicted class. A confusion matrix, described

in Section 3.1, was compiled, and each class prediction accuracy was calculated according to

Equation 1.2. The overall model accuracy was obtained, taking an average of class accuracies

of one model. In order to show the improvement introduced by the mean rule technique fusing

three classifiers, an average of all class accuracies of the three classifiers was taken. The av-
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eraged class accuracies were compared to the corresponding class accuracies of the mean rule

technique. The same comparison was made for the overall ensemble model accuracy and the

average of the classifiers model accuracies.

Figure 3.2: Mean rule. The workflow of the mean rule technique presented by sample i. The
mean rule equation is applied to the outputs in the form of confidence scores of all classifiers.
The class with the highest calculated confidence score (marked in bold in the final prediction
section) is the predicted class of the ensemble classifier.

3.3.3 Majority voting using linearSVC, logistic regression and random

forest

The majority voting method, described in Subsection 3.3.1, was applied to the three classifiers

used in the mean rule based ensemble method. This was carried out in order to test which

method, majority voting or mean rule, will give better results when the same number of classi-

fiers is used. Also, testing the majority voting method fusing three classifiers gave the possibil-

ity to compare this method against the same ensemble method fusing five classifiers in order to

learn which one shows higher results.

The workflow followed was the same as in Subsection 3.3.1, where classification results

of each classifier (linearSVC, logistic regression and random forest) were checked, and the

frequency of each class prediction occurrence was counted. The class with the majority of

the votes was declared as the final class. The results were visualised on a confusion matrix,
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described in Section 3.1, and the accuracy of each class prediction was calculated according to

Equation 1.2. The overall model accuracy was obtained, taking an average of class accuracies

of one model. In order to show the improvement introduced by the majority voting technique

using three classifiers, an average of all class accuracies of the three classifiers was taken. The

averaged class accuracies were compared to the corresponding class accuracies of the majority

voting technique. The same comparison was made for the overall ensemble model accuracy and

the average of the classifiers model accuracies.
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4 Experimental results

4.1 Classification of all genera

The results of the first experiment where all 17 classifiers were trained on all ten classes of

the grayscale mushroom dataset are presented in Figure 4.1. From the results, the highest

classified genera were chosen. This was done by taking an average of the class accuracies for

each class (Table 4.1). Four genera with the highest average accuracies were selected. The

best results were obtained for the Cantharellus genus, where the average accuracy obtained was

67.87%, followed by Coprinus, Russula and Pholiota, with average classification accuracies of

55.66%, 54.33% and 51.13%, respectively. The worst classified genera were Amanita, Pluteus

and Lactarius with classification accuracies of 17.65%, 24.89% and 25.21%, respectively.

As for the classification model results, the accuracies are displayed in Table 4.2. The highest

performing classifier was random forest, reaching 53.08% classification accuracy. Four other

classifiers (extra trees, logistic regression, logistic regression with CV and linearSVC) obtained

accuracy higher than 50%, while all other classification models had prediction accuracy staying

under 45%.

Table 4.1: The average class accuracies.

Class Accuracy (%)
Cantharellus 67.87
Coprinus 55.66
Russula 54.33
Pholiota 51.13
Mycena 49.77
Cortinarius 30.32
Agaricus 28.96
Lactarius 25.21
Pluteus 24.89
Amanita 17.65
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Figure 4.1: Confusion matrices of classifiers on the whole dataset. C1, C2, C3, C4, C5, C6, C7,
C8, C9 and C10 correspond to mushroom genera Agaricus, Amanita, Cantharellus, Coprinus,
Cortinarius, Lactarius, Mycena, Pholiota, Pluteus and Russula, respectively. The columns (or-
ange) represent the predicted classes, the rows (yellow) true classes and the accuracy column
(green) the accuracy of each class. The intensity of the red colour helps to visualise the results
of the confusion matrices.
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Table 4.2: Classifier accuracies for dataset with ten classes.

Classifier Accuracy (%)
Random forest 53.08
Extra trees classifier 52.31
Logistic regression 51.54
Logistic regression with CV 51.54
LinearSVC 50.77
Ridge classifier 44.62
Ridge classifier with CV 44.62
Extra tree classifier 40.77
Linear discriminant analysis 40.77
KNN 38.46
Label propagation 38.46
Decision tree 36.92
Label spreading 36.92
Gaussian Naive Bayes 33.85
Nearest centroid 33.85
MLP classifier 24.62
Quadratic discriminant analysis 21.52

4.2 Classification of Cantharellus, Coprinus, Pholiota and Rus-

sula genera

The results of the second experiment phase (Figure 4.2) were obtained by training 17 classifiers

on the downsampled dataset with five classes. Downsampled dataset contained the four genera

chosen from the results of the previous experimental phase (Cantharellus, Coprinus, Pholiota

and Russula) and a class class called ”others” where the other six genera were merged. The

confusion matrix description is brought out in Section 4.1.

The highest performing trained models were random forest, linearSVC, extra tree and logis-

tic regression with accuracies of 70.77%, 69.23%, 69.23% and 69.23% (Table 4.3), respectively.

From the results of this experiment, classifiers for ensemble-based decision making were cho-

sen. Four highest performing classifiers were included. Also, a decision tree model with the

accuracy of 63.08% as a fifth classifier was added as for the majority voting based ensemble

technique used in the later step, it was beneficial to have an odd number of classifiers. A deci-

sion tree classifier was chosen because it is a known and widely used algorithm which in this

study also produced good results. The selected classifiers for ensemble-based classification are

marked with a blue caption in Figure 4.2. Each classifier trained on the downsampled dataset
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Figure 4.2: Confusion matrices of classifiers on the downsampled dataset. C3, C8 and C10
correspond to mushroom classes Cantharellus, Coprinus, Pholiota and Russula, respectively.
”others” class consists of a mix of all other mushroom genera. Classifiers chosen for ensem-
ble classification are marked with blue caption. The columns (orange) represent the predicted
classes, the rows (yellow) true classes and the accuracy column (green) the accuracy of each
class. The intensity of the red colour helps to visualise the results of the confusion matrices.

has introduced an increase in classification accuracy. The greatest increase occurred with the

MLP classification model that showed 41.53%. Extra tree classifier increased 28.46% compared

to training on the whole dataset and decision tree 26.16%. The increase in other classification

models was between 12.30-23.08%.
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Table 4.3: Classifier accuracies for dataset with five classes.

Classifier Accuracy (%)
Random forest 70.77
Extra tree classifier 69.23
LinearSVC 69.23
Logistic regression 69.23
Extra trees classifier 67.69
Logistic regression with CV 67.69
Ridge classifier 67.69
Ridge classifier with CV 67.69
MLP classifier 66.15
Decision tree 63.08
Linear discriminant analysis 61.54
KNN 58.46
Label propagation 58.46
Label spreading 50.77
Gaussian Naive Bayes 49.23
Nearest centroid 46.15
Quadratic discriminant analysis 44.62

4.3 Ensemble based decision making

The results of the majority voting method using five classifiers, mean rule using three classi-

fiers and majority voting using three classifiers are indicated in Table 4.4, Table 4.5 and Table

4.6, respectively. The specifics of the confusion matrices are described in detail in Section 4.1.

The results of the chosen classifiers for ensemble-based classification were obtained by training

them on the downsampled dataset of five mushroom classes (Cantharellus, Coprinus, Pholiota,

Russula and others). The results for majority voting using five classifiers were obtained by

combining the output of chosen five classifiers (linearSVC, decision tree, extra tree, logistic

regression, and random forest) according to Subsection 3.3.1. The mean rule based ensemble

method results were obtained by fusing the output of three classifiers (linearSVC, logistic re-

gression and random forest) described in Subsection 3.3.2. Lastly, majority voting results with

three classifiers were obtained by fusing the output of three classification models (linearSVC,

logistic regression and random forest) according to Subsection 3.3.3.

The majority voting technique based ensemble classification yielded the highest, 75.38%

accuracy. The best-classified genus was Cantharellus, obtaining 92.31% prediction accuracy,

followed by Russula 84.62%, Pholiota 76.92% and Coprinus 69.23% accuracies. The lowest

accuracy was observed in the merged class “others”, with a prediction accuracy of 53.85%.
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The mean rule based method using three classification models achieved an overall accuracy of

73.85%, where the genera Cantharellus, Pholiota and Russula obtained an equal prediction ac-

curacy of 84.62%, followed by Coprinus 69.23%. Also, in this method, the lowest accuracy was

observed in the class ”others”, reaching 46.15%. Lastly, the majority voting method fusing the

same three classifiers as for the mean rule method (linearSVC, logistic regression and random

forest) yielded the lowest classification model accuracy, reaching only 69.23%. That is 4.62%

lower than the mean rule based ensemble classification model and 6.15% lower than the major-

ity voting based ensemble model using five classifiers. The best-classified genus was Pholiota

84.62% followed by Cantharellus and Russula, both with prediction accuracy of 76.92% and

Coprinus 69.23%. The lowest prediction accuracy was again observed on the class ”others”

with 38.46% accuracy.

Table 4.7 shows the change in the accuracy of each class compared to the average accuracy

and the ensemble model accuracy change compared to the average of the individual classifi-

cation model accuracies fused for the ensemble technique. Significant increases in the classes

were observed in the majority voting technique using five classifiers. The highest rise in accu-

racy was observed in class ”others” in the majority voting method using five classifiers, giving

an increase of 18.47%. The mean rule based method obtained an increase of 12.82% and ma-

jority voting using three classifiers 5.13%.

Table 4.4: Confusion matrices of majority voting method fusing linearSVC, decision tree, extra
tree, logistic regression and random forest. C3, C8 and C10 correspond to mushroom classes
Cantharellus, Coprinus, Pholiota and Russula, respectively. ”others” class consists of a mix
of all other mushroom genera. The columns (orange) represent the predicted classes, the rows
(yellow) true classes and the accuracy column (green) the accuracy of each class. The intensity
of the red colour helps to visualise the results of the confusion matrices.

Class others C3 C4 C8 C10 Accuracy (%)
others 7 1 0 2 3 53.85
C3 0 12 0 1 0 92.31
C4 2 0 9 0 2 69.23
C8 0 1 1 10 1 76.92
C10 1 0 1 0 11 84.62
Total 75.38

45



Table 4.5: Confusion matrices of mean rule method fusing linearSVC, logistic regression and
random forest. C3, C8 and C10 correspond to mushroom classes Cantharellus, Coprinus, Pho-
liota and Russula, respectively. ”others” class consists of a mix of all other mushroom genera.
The columns (orange) represent the predicted classes, the rows (yellow) true classes and the
accuracy column (green) the accuracy of each class. The intensity of the red colour helps to
visualise the results of the confusion matrices.

Class others C3 C4 C8 C10 Accuracy (%)
others 6 2 0 2 3 46.15
C3 0 11 0 2 0 84.62
C4 2 0 9 0 2 69.23
C8 0 1 0 11 1 84.62
C10 1 0 1 0 11 84.62
Total 73.85

Table 4.6: Confusion matrices of majority voting method fusing linearSVC, logistic regression
and random forest. C3, C8 and C10 correspond to mushroom classes Cantharellus, Coprinus,
Pholiota and Russula, respectively. ”others” class consists of a mix of all other mushroom
genera. The columns (orange) represent the predicted classes, the rows (yellow) true classes
and the accuracy column (green) the accuracy of each class. The intensity of the red colour
helps to visualise the results of the confusion matrices.

Class others C3 C4 C8 C10 Accuracy (%)
others 5 2 1 2 3 38.46
C3 0 10 0 3 0 76.92
C4 2 0 9 0 2 69.23
C8 0 1 0 11 1 84.62
C10 1 1 1 0 10 76.92
Total 69.23

Table 4.7: The improvement introduced by ensemble techniques. The accuracies of each class
in the ensemble techniques and the ensemble model accuracy were compared to the average of
the corresponding class accuracy of corresponding classifiers and the average of the individual
classification model accuracies.

Class
Majority voting

(5 classifiers)
accuracy difference (%)

Mean rule
(3 classifiers)

accuracy difference (%)

Majority voting
(3 classifiers)

accuracy difference (%)
Others 18.47 12.82 5.13
Cantharellus 10.77 2.57 -5.13
Coprinus 0 0 0
Pholiota 0 5.13 5.13
Russula 6.16 0 -7.70
Model 7.07 4.11 -0.51
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5 Discussion

As indicated in Section 4.1, the best-classified genera chosen for further classification in this

study were Cantharellus, Coprinus, Pholiota and Russula, with average accuracies 67.87%,

55.66%, 54.33% and 51.13%, respectively. The prediction accuracy of the Cantharellus genus

was over 12% better than the accuracies of the following three best genera. Cantharellus genus

(Figure 5.1) has some very distinct features making the classification of the mushrooms belong-

ing to this genus easier [59]. Cantharellus is the only genus out of ten genera with funnel or

trumpet-shaped cap and decurrent gills (extending downward and partially wrapping the stalk)

that are usually also visible on the image, explaining the significantly better classification accu-

racy. Moreover, the species within the Cantharellus genus are visually very similar, which also

benefits the classification at the level of genera.

(a) First example of a species from
Cantharellus genus mushroom.

(b) Second example of a species
from Cantharellus genus mush-
room.

Figure 5.1: Cantharellus genus species examples.
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The worst classified genera are Amanita, Pluteus and Lactarius, with classification accu-

racies of 17.65%, 24.89% and 25.21%, respectively. Amanita genus images in the mushroom

dataset have several very different looking species [60], differing by colour and features such as

visible gills (if they are also visible on the image), flaky cap, the shape of the cap and so on. An

example of images of the Amanita genus but that of different species are shown in Figure 5.2.

Also, in the case of Lactarius and Pluteus genera, the dataset has images of different species of

Lactarius [61] and Pluteus [62] with distinctly different features such as the colour, the shape of

the cap and whether the gills are visible on the image. Figure 5.3 shows two different species

of Lactarius genus, while in Figure 5.4, two species of Pluteus genus are shown. High misclas-

sification of these genera might be caused by species exhibiting very different features within

each genus. In addition, in this study, the Pluteus genus is mostly misclassified with the Can-

tharellus genus. The reason might be because some species within the genus are similar to the

Cantharellus genus, taken into account the colour and the cap shape.

(a) First example of a species from
Amanita genus mushroom.

(b) Second example of a species
from Amanita genus mushroom.

Figure 5.2: Amanita genus species examples.
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(a) First example of a species from
Lactarius genus mushroom.

(b) Second example of a species
from Lactarius genus mushroom.

Figure 5.3: Lactarius genus species examples.

(a) First example of a species from
Pluteus genus mushroom.

(b) Second example of a species
from Pluteus genus mushroom.

Figure 5.4: Pluteus genus species examples.
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The results of the second experiment brought out in Section 4.2 show that downsampling

the dataset from ten mushroom classes to five classes (Cantharellus, Coprinus, Pholiota, Rus-

sula and merged class “others”) significantly increases the prediction accuracy of each model.

Downsampling the dataset to fewer classes decreases the complexity of the computations done

by the classification model [63], hence leading to higher accuracy in prediction. The algorithms

performing the best are one of the most known and commonly used ones in machine learning

tasks (Table 4.3), justifying these algorithms to be widely used.

The results of ensemble-based classification brought out in Section 4.3 indicate that by

fusing different high performing classifiers, the classification results are higher than that of

individual classifier results. The accuracies of the individual classifiers linearSVC, decision

tree, extra tree classifier, logistic regression and random forest are 69.23%, 63.08%, 69.23%,

69.23% and 70.77%, respectively (classifiers marked with blue caption in Figure 4.2). As seen

from Table 4.4, combining these five classifiers with the majority voting method improves the

classification accuracy, giving the final accuracy 75.38%. That is 4.61% higher than that of

the best performing individual classification model random forest and 7.07% higher than the

average of the accuracies of all individual classifiers, proving that this ensemble method does

improve the prediction accuracy.

The mean rule based ensemble learning method fusing linearSVC, logistic regression and

random forest algorithms gives an accuracy of 73.85% (Table 4.5). That is significantly higher

than the accuracies of any of the three classifiers alone (linearSVC, logistic regression and ran-

dom forest classifiers marked with blue caption on Figure 4.2). Although the accuracy is slightly

lower (1.53%) than in the case of the majority voting based method fusing five classifiers, the

computational cost of using three classifiers is cheaper. Additionally, the excluded classifiers,

namely, decision tree and extra tree classifiers, have several downsides: they tend to overfit the

data, and the calculations get very complex [64]. The mean rule method combining three clas-

sifier outputs results in slightly lower accuracy than the majority voting method combining five

classifier outputs as more classifiers will provide the ensemble technique with more values to

fuse.

The majority voting technique combining three classifiers used for mean rule based ensem-

ble classification, however, results in lower accuracy than the mean rule based classification as

it is a simpler method of ensemble learning. The prediction accuracy stays around the same

level of each three classifier performances individually, reaching 69.23% (Table 4.6). Although

using three classifiers is better, it can be deduced that it must be taken into account the method
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of ensemble technique to compensate for the fewer number of classifiers. Furthermore, it can

be said that the mean rule based method performs better compared to the majority voting tech-

nique, achieving higher accuracy when the same number of classifiers are used. The use of

mean rule based classification has grown over time due to its simplicity and wide availability of

applications [58].

Overall, the results of Section 4.3 indicate that ensemble techniques improve the classifica-

tion accuracy as they reduce the variance of the model compared to individual models. There

are several reasons behind it [22]. First, fusing three or five classifiers allow reducing the error

made by each classifier as the error is compensated by the other classification models. Second,

ensembling extends the search space; therefore, better fitting the data space, which is positive if

the optimal class lies outside the space of any individual classification model.
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Conclusion and future work

The aim of this study was to classify mushroom genera Cantharellus, Coprinus, Pholiota and

Russula using different machine learning algorithms and techniques. Several individual ma-

chine learning classifiers were utilised, and the best performing models were fused in ensemble-

based classification in order to learn if this technique improves the classification accuracy. The

results of individual classifiers and different ensemble classification techniques were compared

and analysed.

The results show that the best-classified genera are Cantharellus, Coprinus, Pholiota and

Russula. Due to its distinct features from all other genera, Cantharellus achieves the high-

est classification accuracy amongst all mushroom classes. By downsampling the dataset of

ten mushroom genera to five classes (Cantharellus, Coprinus, Pholiota, Russula genera and

merged class others consisting of other six genera), the prediction accuracies of each classifica-

tion model as well as each class are improved significantly. This is consistent with the idea that

the fewer classes the dataset has, the better classification accuracy is achieved.

Throughout the experiments, it is shown that the best performing classifiers are the most

known and commonly used algorithms, such as random forest, logistic regression, extra tree and

linearSVC (based on SVM), proving that the usage of widely known algorithms is reasonable.

By applying ensemble-based techniques and fusing the outputs of individual classifiers, the

performance of classification is improved, supporting the idea of ensemble learning to produce

better results than individual classification models. Also, when comparing different ensemble

techniques, such as majority voting and mean rule, when the majority voting method fuses

more classifiers then the mean rule method, it achieves higher results. However, when the same

number of classifiers is used for both methods, the mean rule based method performs better than

majority voting. These results are consistent with the suggestions from previous researchers to

use the mean rule ensemble classification, as in addition to its good results, it also provides

simplicity and is widely applicable.
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It can be concluded that the majority voting based method using five classifiers improves

the classification accuracy the most due to the use of more classifiers. However, the mean rule

based method still obtains higher results if the same number of classifiers is used compared to

majority voting. In this work, the majority voting technique using five classifiers is selected as

the best performing method.

The most important findings of this study are the following:

• The best four classified genera are Cantharellus, Coprinus, Pluteus and Russula; however,

the classification accuracy of Cantharellus exceeds all other genera significantly due to its

very distinct features;

• By downsampling the dataset from ten classes to five classes, the accuracies of each

classification model as well as each class are improved significantly;

• The best performing classifiers are the most known and commonly used algorithms, such

as random forest, logistic regression, extra tree and linearSVC;

• Classification accuracy is improved by ensemble-based techniques, such as majority vot-

ing and mean rule;

• Using the same number of classifiers, the mean rule based method performs better than

the majority voting method.

This study provides a basis for mushroom genera determination methods using machine

learning. Although classifying mushrooms on the level of genera and species is essential to

provide faster and easier determination for mycologists and mushroom hunters, it has been un-

derstudied in the past. Therefore, it is crucial to bring attention to the topic and give a starting

point for other researchers in the field. By testing different machine learning algorithms and

comparing them, this thesis has provided a foundation for researchers to conduct further stud-

ies on classifying mushrooms on another level rather than merely based on their edibility and

toxicity. This thesis proved that using advanced machine learning algorithms and methods,

such as ensemble-based classification, achieves good classification results on smaller datasets.

Therefore, this work is an important addition to the studies on the field. In addition to the ex-

perimental results obtained, a new mushroom dataset with 1118 labelled images was collected

during this study which can be used in the future in similar studies.

Further studies to improve the classification accuracy of mushroom genera need to be car-

ried out. The experiments of the current study were based on grayscale pixels as input to the
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algorithms. The next step is to utilise RGB three colour channels as input features to the clas-

sifiers in order to improve prediction accuracy. Choosing RGB pixels as features will provide

the classification models with more information, such as the specific colour of the cap, stalk

and gills, rather than simply the grayscale intensities. Future studies should focus on extracting

different features from the mushroom images, such as HOGs and frequency domain. Results of

classification models given different feature inputs can be compared to select the best perform-

ing ones. Extracting several features also allows combining the result of models with different

feature inputs in order to improve the classification workflow. Furthermore, different ensemble

methods could be tested on the dataset. In this study, majority voting and mean rule methods

were utilised. However, an investigation into other techniques, such as weighted majority voting

or median rule, could be carried out. Different ensemble learning methods may provide higher

results.

In future research, based on this thesis, it is recommended to carry out background estima-

tion before extracting the features from the images. Background estimation will remove the

background making the mushroom more distinguishable, thus, better classifiable. In addition,

as the data collection would continue and the sample size grows, machine learning will not be

sufficient to handle the amount of data. Therefore, a deep learning framework for mushroom

genera classification should be developed. This would also allow to further improve the classi-

fication performance as deep learning based architectures usually achieve higher performance

due to their higher complexity.
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