TARTU ÜLIKOOL Füüsika-keemiateaduskond TARTU OBSERVATOORIUM

lauri juhan liivamägi PARVESÕRMEDE REDUTSEERIMINE *WAVELET*-ANALÜÜSI ABIL

Magistritöö astrofüüsika erialal

Juhendaja: vanemteadur D.Sc. Enn Saar

Tartu 2005

Sisukord

1	Sissejuhatus	4							
2	Parvesõrmed								
	2.1 Parvesõrme geomeetria	8							
	2.2 Parvede otsimise meetodeid	10							
	2.3 Viriaali teoreem	11							
3	Wavelet-teisendus	13							
	3.1 Ülevaade	13							
	3.1.1 Pidev <i>wavelet</i> -teisendus	13							
	3.1.2 Diskreetne <i>wavelet</i> -teisendus	14							
	3.2 À trous wavelet-teisendus $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15							
	3.3 B_3 splain	17							
4	Parvesõrmede otsimine	20							
	4.1 Tihedusvälja moodustamine	20							
	4.2 Wavelet-teisendus	20							
	4.3 Olulisused	22							
	4.4 Parvede eraldamine	22							
	4.5 Parvesõrmede kokkusurumine	24							
5	Tulemused	26							
	5.1 Lähteandmed	26							
	5.2 Eraldatud parved	26							
	5.3 Kokkusurumine	27							
6	Kokkuvõte	37							
7	Summary 3								
8	Kirjandus 4								

9	Lisa	d		42
	9.1	Võrem	udelist	42
	9.2	Progra	ummist	43
		9.2.1	Wavelet-teisendus	43
		9.2.2	Olulisuse määramise funktsiooni leidmine N-keha ka-	
			taloogide abil	44
		9.2.3	Maksimumide otsimine	46
		9.2.4	Parvede eraldamine ning kokkusurumine	46
		9.2.5	Tehnilised üksikasjad	47

Sissejuhatus

Antud tööl on kaks eesmärki. Esiteks kirjeldada diskreetsel niinimetatud à trous wavelet-filtril (e. aukudega laineke) põhinevat meetodit parvesõrmedeks (inglisekeelses kirjanduses fingers-of-god ehk jumala-sõrmedeks) nimetatavate objektide uurimisel, nende ülesleidmisel, asukoha ja suuruse määramisel, ning seejärel galaktikate kataloogidest elimineerimisel. Väljatöötatav meetod peaks olema võimeline eraldama alamstruktuure galaktikaparvedes. Selle abil saame hierarhilise galaktikaparvede kataloogi.

Viimastel aastatel on kas valminud või tööle hakanud mitmed projektid (2dF GRS, SDSS) kaardistamaks esmakordselt ulatuslikke (kuni 600 Mpc/h) Universumi piirkondi. Kaardistamisel on parimaks ja levinuimaks meetodiks galaktikate kauguse hindamisel kasutada nende kosmoloogilist punanihet. Punanihkeks z nimetatakse galaktikate spektrijoonte nihkumist punase suunas:

$$z = \frac{\lambda - \lambda_0}{\lambda_0},\tag{1.1}$$

kus λ on vastava joone vaadeldud ning λ_0 laboratoorne lainepikkus.

Punanihked galaktikate spektris seostati Doppleri efekti kaudu nende eemaldumise kiirusega. Olles uurinud galaktikate eemaldumiskiirusi ja kaugusi, sõnastas Edwin Hubble 1929. aastal seaduse (1.2), mille järgi galaktika eemaldumise kiirus sõltub lineaarselt tema kaugusest:

$$v = cz; \qquad v = H_0 d, \tag{1.2}$$

kus v tähistab galaktika eemaldumise kiirust, d kaugust ja H_0 Hubble'i konstandi tänapäevast väärtust. Need seosed kehtivad eeldusel, et $z \ll 1$. Vaadeldav eemaldumiskiirus sisaldab peale paisumiskiiruse ka veel galaktika nn. omakiiruse radiaalsuunalist komponenti v_p :

$$v = H_0 d + v_p. (1.3)$$

Oma- e. pekuliaarseks kiiruseks nimetatakse galaktika liikumise kiirust ruumi üldise paisumise suhtes. Pekuliaarsetest kiirustest põhjustatud punanihkemoonutused jagunevad laias laastus lineaarseteks ja mittelinearseteks. Lineaarsete hulka kuuluvad suuremõõtmelised galaktikate hoovused. Mittelineaarsed moonutused tekivad galaktikate liikumisel rohkem või vähem tasakaalulistes parvedes. Parvesõrmed on üks silmatorkavamaid mittelineaarseid omakiirustest tulenevaid efekte ning see avaldub galaktikaparvede vaatesihi suunalise tugeva väljavenitatusena (joonis 1.1).

Joonis 1.1: Parvesõrmed SDSS (Sloan Digital Sky Survey) kataloogi kihis.

Punanihkemoonutuste teket galaktikaparvedes võib skemaatiliselt kirjeldada järgmiselt: parve, mille raadius on r, sees paiknevad galaktikad langevad

tsentri poole kiirusega v (joonisel 1.2). Suurtel mastaapidel on sellise sisselangemise kiirus väiksem, kui Hubble'i kiiruste vahe parve esi- ja tagaservas ($v < H_0 r$). Seega paistavad parved punanihete ruumis seega vaatesuunas kokku surutud. Seda nimetatakse Kaiseri efektiks ning see ei ole üldjuhul eriti silmatorkav. Kaiseri efekt on leitav statistiliste meetoditega. Alates teatud kiiruse väärtusest, nn. ümberpöördepunktist ($v = H_0 r$), on omakiirused suuremad paisumiskiirusest ($v > H_0 r$) ja parved pööratakse punanihete ruumis "pahupidi". Parve edasisel kollapseerumisel ning virialiseerumisel moodustub punanihete ruumis vaatesihis tugevalt välja venitatud parvesõrm (vt. nt. Martinez, Saar).

Joonis 1.2: Punanihkemoonutused: a) Kaiseri efekt $(v_p < H_0 r)$; b) ümberpöördepunkt $(v_p = H_0 r)$; c) parvesõrm $(v_p > H_0 r)$.

Sõrmede efekt on negatiivne mitmel põhjusel.

- Me ei näe galaktikate tegelikke asukohti.
- Sõrmed takistavad statistiliste meetodite rakendamist, näiteks korrelatsioonifunktsiooni ja võimsusspektri leidmist, mis on vajalikud universumi struktuuri uurimisel ja kosmoloogiliste parameetrite määramisel.

Eeldatavalt on reaalses ruumis parved siiski enam-vähem sfäärikujulised. Efekt moonutab vaid üksikute galaktikate kaugusehinnanguid ja paljudest objektidest koosnevate struktuuride kaugus tervikuna on siiski sõltumatu ning täpselt määratav. Seega peaks olema võimalik leida meetod sõrmede kokkusurumiseks.

Parvesõrmede kokkusurumise probleemiga on tegeletud ka varem (Gramann jt; Tegmark jt), ent mitte nii põhjalikult. Eesmärgiks on eelkõige olnud saada paremaid hinnanguid korrelatsioonifunktsioonile või võimsusspektrile. Tänapäeval kasutatavaid meetodeid ning saadud tulemusi on kindlasti võimalik märgatavalt parandada.

Parvesõrmed

2.1 Parvesõrme geomeetria

Kirjeldame parvesõrme kujunemist lähemalt. Parvesõrme täpne kuju punanihete ruumis sõltub sinna kuuluvate galaktikate kiiruste täielikust jaotusest, mida me ei tea. Tasakaalustunud süsteemides leidub igasuguseid kiirusi, ent enamus neist on siiski tsentrisuunalised, arvestades et parvede moodustumine toimub tumeda aine ning galaktikate langemisel masskeskme poole. Vaatleme lihtustatud juhtu, kui aine sisselangemise kiirus sõltub ainult kaugusest keskpunktist ning on sama kõikide antud kaugusel asuvate galaktikate jaoks. Samuti arvestame, et tasakaaluliste parvede galaktikate ei võta enam eraldi osa Hubble'i paisumisest. Kõikidele galaktikatele omistatakse parve kui terviku eemaldumiskiirus. Olgu meil sfäärikujuline parv raadiusega r, mille galaktikate sisselangemise kiirus äärel on v_r (joonis 2.1).

Leiame parvede kuju punanihete ruumis. Lihtsustatud juhul on mugav kasutada ristkoordinaadistikku. Punanihe z vaatleja tasandi suhtes:

$$z = \frac{1}{c} \left(v_p + H_0 d \right); \qquad v_p = v_r \cos \alpha,$$

kus v_p on kiiruse v_r vaatesihi suunaline komponent. Seega:

$$z(\alpha) = \frac{1}{c} \left(v_r \cos \alpha + H_0 d \right).$$

Kui $y(\alpha) = z(\alpha)$, saame vaatleja suhtes:

$$y(\alpha) = \frac{1}{c} \left(v_r \cos \alpha + H_0 d \right),$$

$$x(\alpha) = \frac{H_0 r}{c} \sin \alpha.$$
(2.1)

Joonis 2.1: Sõrme geomeetria: v_r on aine sisselangemise kiirus raadiusel r ja d parve kaugus vaatlejast. Vasakul: lihtsustatud skeem, mis kehtib vaatlejast suurel kaugusel asuvate parvede kohta. Paremal: detailsem joonis, mis kirjeldab lähedal asuvat süsteemi.

Võrrandid 2.1 kirjeldavad ellipsit, mille ekstsentrilisus e avaldub kujul

$$e = \sqrt{1 - \frac{v_r^2}{(H_0 r)^2}}.$$

Keerulisemal juhul on tarvis kasutada siinusteoreemi. Vastavalt saame:

$$\frac{r}{\sin\gamma} = \frac{a}{\sin\alpha} \Rightarrow \gamma(\alpha) = \arcsin\left(\sin\alpha\frac{r}{a}\right),$$

kus

$$a = \sqrt{d^2 + r^2 - 2dr\cos\alpha}.$$

Galaktika vaatesihisuunaline kiirus:

$$v_p = v_r \cos(\alpha + \gamma(\alpha)).$$

Teoreetiline punanihe:

$$z(\alpha) = \frac{1}{c} \left[H_0 d + v_r \cos(\alpha + \gamma(\alpha)) \right].$$
(2.2)

Võttes saadud tulemuse ristkoordinaatides kokku, saame:

$$y(\alpha) = \frac{1}{c} \left[H_0 d + v_r \cos(\alpha + \gamma(\alpha)) \right] \cos \gamma(\alpha),$$

$$x(\alpha) = \frac{1}{c} \left[H_0 d + v_r \cos(\alpha + \gamma(\alpha)) \right] \sin \gamma(\alpha).$$
(2.3)

Joonisel 2.2 on toodud parvesõrmede kuju sõltuvalt kaugusest, millelt on näha, et sellise lähenduse korral ei erine isegi lähedal asuvate suurte parvede kuju eriti ellipsist.

Joonis 2.2: Parvesõrme kuju sõltuvus kaugusest. Parve raadius r = 5 Mpc Galaktikate kiirus $v_r = 1000$ km/s. Vasakul: parv kaugusega vaatlejast d = 80 Mpc. Paremal: d = 25 Mpc. Võrdluseks on toodud ellipsid.

2.2 Parvede otsimise meetodeid

Levinumad parvede detekteerimise meetodid on tänapäeval matched filter (MF), adaptive matched filter (AMF) ning friend-of-friend (FOF).

MF on optimiseeritud signaali-müra suhtele. Eeldatakse, et on teada müra ning signaali spektrid. Filtrit kasutatakse galaktikaparvede leidmiseks vaatlusandmetest (kasutatakse objektide asukohti, heledusi ning kui võimalik, siis punanihkeid). Samuti on nad rakendust leidnud reliktkiirguse uurimisel, näiteks parvede otsimisel Sunjajev-Zeldovitš'i efekti kaudu. AMF'i korral on antud lisatingimus, mis nõuab, et detekteerimise tõenäosus oleks suurim just antud mastaabi juures (Barreiro jt). Parvede otsimisel lähtutakse parameetrilistest mudelitest, mida sobitatakse töödeldavale valimile. Hiljem analüüsitakse tekkinud tõenäosuste välja. Meetod on matemaatiliselt hästi põhjendatud, ent äärmiselt töömahukas. Samuti on ebaselge, kuidas arvestada alamstruktuure.

FOF on levinuim parvede eraldamise meetod. Iga punkti ümber fikseeritakse mingisuguse kujuga pind ja loetakse selle sisse jäävaid teisi punkte. Parv on valmis, kui mitte ühegi piirkonnas oleva punkti ümbruses ei asu enam uusi, st. igal punktil on naaber ("sõber") pinnaga määratud kaugusel. Parvesõrmede otsimisel kasutatakse vaatesihisuunaliselt väljavenitatud ellipsit (Eke jt; Tegmark jt). Niimoodi pole kahjuks võimalik leida alamstruktuure, samuti ei saa vahet teha parvesõrmedel ning näiteks piki vaatesihti asuvatel filamentidel. Kokkusurumisel ollakse sunnitud liigutama kõiki parve sisse jäävaid galaktikaid, mis võib tekitada parve ümbritsevasse keskkonda ebaloomulikke tühikuid.

2.3 Viriaali teoreem

Viriaali teoreem seob tasakaalulise vabalt graviteeruva süsteemi osakeste kineetilise ja potentsiaalse energia:

$$2K - U = 0. (2.4)$$

See võimaldab määrata parves asuvate galaktikate kiirusi, kui meil on hinnang parve massi kohta. See on vajalik, kui me soovime teada väljavenitatuse ulatust. Olgu meil virialiseerunud galaktikaparv massiga Mja raadiusega r. Galaktikate kiirused peavad sel juhul rahuldama seost

$$v^2 = \frac{GM}{r}.$$

Vaatesihisuunaline kiiruste dispersioon on hinnanguliselt $\sigma^2 \approx v^2/2$. Massi võime kirja panna kujul $M = 4/3\pi r^3 \delta_c \rho_c$, kus ρ_c on kriitiline tihedus, ning δ_c tähistab keskmist suhtelist tihedust kriitilise tiheduse suhtes parves. Sellest lähtudes saab hinnata kiiruste dispersiooni ja raadiuse suhet järgneva seose abil (Eke jt):

$$\frac{\sigma}{r} \approx \sqrt{\frac{2\pi G \delta_c \rho_c}{3}}.$$
(2.5)

Suurus δ_c on n
n. virialiseerumistihedus ja selle väärtus sõltub valitud kosmoloogilisest mudelist. Üldiselt kasutatakse väärtusi 100...180 (Bryan, Norman). Seost 2.5 kasutame hiljem parvesõrmede otsimise juures nende kuju hindamiseks.

Wavelet-teisendus

3.1 Ülevaade

Wavelet-teisendust on hakatud kasutama signaali- ja pilditöötluses viimasel kahel aastakümnel ning astronoomias pole see siiani kuigi laialt levinud. Wavelet-analüüs võimaldab saada informatsiooni nii signaalis esinevate struktuuride mastaabi kui ka nende asukoha kohta. Seda erinevalt näiteks Fourier' analüüsist, mis viimast ei võimalda. Wavelet-teisendust on nimetatud ka matemaatiliseks suurendusklaasiks. Sarnaselt Fourier' teisendusele jaotatakse Wavelet-teisendus diskreetseks ja pidevaks.

3.1.1 Pidev wavelet-teisendus

Pidev wavelet-analüüs toimub ühemõõtmelisel juhul funktsioonide $\Psi(a, b, x)$ abil, mis saadakse algsest funktsioonist ehk baas-wavelet'st (ingl. k. motherwavelet) $\Psi(x)$ selle laiuse muutmise ja ruumis nihutamise teel. Parameeter a > 0 tähistab wavelet'i laiust ja b asukohta:

$$\Psi(a,b,x) = a^{-n/2} \Psi\left(\frac{x-b}{a}\right), \qquad (3.1)$$

Funktsiooni Ψ jaoks peab koonduma integraal:

$$C_{\psi} = \int_{0}^{+\infty} \frac{|\hat{\Psi}(k)|^2}{|k|} \, dk < \infty, \tag{3.2}$$

kus

$$\hat{\Psi}(k) = \int_{-\infty}^{+\infty} e^{-ixk} \Psi(x) dx$$

on funktsiooni $\Psi(x)$ Fourier' teisendus. Valemist 3.2 järeldub, et $\hat{\Psi}(k)$ väärtus koordinaatide alguspunktis on null. Kui funktsioon $\Psi(x)$ on diferentseeruv,

siis järeldub, et $\int \Psi(x) dx = 0$. Kui funktsioon rahuldab samuti tingimust $\int \Psi^2(x) dx = 1$, siis on sellega võimalik otseselt hinnata struktuuride amplituudi. Wavelet'id on üldjuhul komplekssed funktsioonid. Signaali f(x) wavelet-teisendus antud punktis b ning laiusega a on defineeritud kui

$$W(a,b) = \int_{-\infty}^{+\infty} f(x)\Psi^*(a,b,x) \, dx.$$
(3.3)

Pöördteisendus vastavalt

$$f(x) = \frac{1}{2\pi C_{\psi}} \int \int W(a, b, x) \Psi(a, b, x) \frac{da \, db}{a^2}.$$
 (3.4)

Pidevad *wavelet*-funktsioonid on näiteks Morlet' ja Marr'i (*Mexican Hat*) *wavelet*'id.

3.1.2 Diskreetne *wavelet*-teisendus

Diskreetne *wavelet*-teisendus algandmetest f(x), mis on mingil moel diskretiseeritud vektoriks $c_0(k)$, avaldub ühemõõtmelisel juhul järgmiselt:

$$c_j(k) = \langle f(x), 2^{-j}\phi(2^{-j}x - k) \rangle,$$
 (3.5)

kus funktsiooni $\phi(x)$ nimetatakse skaleerimisfunktsiooniks ning $c_j(k)$ on jjärku teisenduse tulemus. Skaleerimisfunktsioon peab rahuldama tingimust:

$$\frac{1}{2}\phi\left(\frac{x}{2}\right) = \sum_{n} h(n)\phi\left(x-n\right). \tag{3.6}$$

Kahe teisenduse järgu vahelise seose punktis k võime kirja panna:

$$c_{j+1}(k) = \sum_{n} h(n-2k)c_j(n).$$
(3.7)

Nagu on näha valemist 3.7, piisab teisenduse sooritamiseks kordajatest h(n). Skaleerimisfunktsiooni $\phi(x)$ analüütilise kuju teadmine ei ole oluline, ning paljudel juhtudel seda ei eksisteerigi (nt. Daubechies' *wavelet*'id).

Wavelet-funktsiooni saab avaldada skaleerimisfunktsiooni $\phi(x)$ kaudu:

$$\frac{1}{2}\psi\left(\frac{x}{2}\right) = \sum_{n} g(n)\phi\left(x-n\right),\tag{3.8}$$

$$g(n) = (-1)^n h(N - n).$$
(3.9)

Teisendusel 3.7 väheneb andmete hulk igal sammul kaks korda. Teine pool informatsioonist, mis kirjeldab erinevust algsete ning teisendatud andmete vahel, säilitatakse *wavelet*-koefitsientidena

$$w_{j+1}(k) = \sum_{n} g(n-2k)c_j(n), \qquad (3.10)$$

mida saab kasutada edasiseks analüüsiks. Informatsiooni koguhulk on seega jääv.

Massiivid 3.7 ja 3.10 moodustavad koos kordajatega h(n) ning g(n) esialgsete andmete täieliku kirjelduse. Kõige lihtsam diskreetne waveletfunktsioon on Haar'i wavelet.

Uldjuhul saab *wavelet*-teisendust kasutada kõigeks, mida tehakse Fourier' analüüsiga. Samas on *wavelet*-analüüs mõnigi kord efektiivsem. Kasutusalad hõlmavad andmete pakkimist, struktuuride ja punktallikate otsimist, müra eemaldamist, andmete silumist, signaalide rekonstrueerimist ning mitmesugust filtreerimist. *Wavelet*-analüüsiks kasutatavaid funktsioone on praktiliselt piiramatul hulgal ning oluline on leida antud probleemi jaoks optimaalne.

Nii diskreetsel kui pideval teisendusel on omad head ning halvad küljed. Diskreetse teisenduse korral on filtri mastaap ja asukoht üksteise suhtes rangelt fikseeritud, mille tagajärjel ei sobi see hästi objektide otsimiseks. Pideva *wavelet*-teisenduse probleem on rohke informatsiooni lisandumine analüüsi käigus ehk liiasus. Teisenduse tagajärjel produtseeritakse liiga palju uusi andmeid, mille edasine analüüs võib olla väga kulukas. On võimalik kasutada nn. düaadilisi võresid, ent sel juhul kaotame suurte mastaapidel lahutusvõimes.

3.2 À trous wavelet-teisendus

Å trous wavelet-teisendus (Starck, Murtagh; Shensa) lahendab diskreetse wavelet-teisenduse probleemi madala ruumilise lahutusvõimega suurtel mastaapidel. Selle tagajärjel tekib küll andmete liiasus, ent mitte nii suur, kui pideva wavelet-teisenduse korral. Valemi 3.7 asemel on teisenduse eri järgud seotud

kus

omavahel järgmiselt:

$$c_{j+1}(k) = \sum_{n} h(n) c_j(k+2^{j-1}n).$$
(3.11)

Kordajad h(n) ja skaleerimisfunktsioon $\phi(x)$ on seotud valemiga 3.6. Vaadates valemit 3.11 näeme, et igal teisenduse järgul suureneb filtri läbimõõt kaks korda, samas kui andmepunktide arv jääb samaks. See tähendab, et teisenduse ruumiline lahutus on piiratud andmete diskretisatsiooniga. Sellest tuleb ka nimetus "aukudega", filtri rakendamisel eraldab kordajaid vahe $2^j - 1$. *Wavelet*-kordajad, mis iseloomustavad erinevust $c_j(k)$ ning $c_{j+1}(k)$ vahel, on määratud seosega:

$$w_j(k) = c_j(k) - c_{j+1}(k).$$
(3.12)

Wavelet-funktsiooni $\psi(x)$ saame avaldada skaleerimisfunktsiooni $\phi(x)$ kaudu:

$$\frac{1}{2}\psi\left(\frac{x}{2}\right) = \phi\left(x\right) - \frac{1}{2}\phi\left(\frac{x}{2}\right). \tag{3.13}$$

Massiivid c(k) ja w(k) täielikult esialgseid andmeid, mis antud juhul on esitatavad summana:

$$c_0(k) = c_N(k) + \sum_{j=1}^N w_j(k),$$
 (3.14)

kus $c_N(k)$ on viimasel teisendusel saadud tulemus. Seega kasvab informatsiooni koguhulk teisenduse käigus N korda.

Vaatame lihtsat näidet. Olgu meil algandmed $c_0(k)$ ning teisenduse kordajad $h = (h_{-1}; h_0; h_1)$. N-kordne à trous wavelet-teisendus näeb sel juhul välja järgmine:

$$c_{1}(k) = h_{-1} c_{0}(k-1) + h_{0} c_{0}(k) + h_{1} c_{3}(k+1),$$

...

$$c_{j+1}(k) = h_{-1} c_{j}(k-2^{j}) + h_{0} c_{0}(k) + h_{1} c_{j}(k+2^{j}),$$

...

$$c_{N}(k) = h_{-1} c_{N-1}(k-2^{N-1}) + h_{0} c_{N-1}(k) + h_{1} c_{N-1}(k+2^{N-1}).$$

À trous skeemi on lihtne üle viia kõrgema dimensionaalsusega ruumi. Kahemõõtmelisel juhul saab seos 3.11 kuju:

$$C_{j+1}(k,l) = \sum_{n,m} H(n,m) C_j(k+2^j n, l+2^j m)$$
(3.15)

Skaleerimisfunktsioon 3.6 ning *wavelet*-funktsioon 3.13 asenduvad vastavalt seostega (Rué, Bijaoui):

$$\frac{1}{4}\Phi\left(\frac{x}{2},\frac{x}{2}\right) = \sum_{n,m} H(n,m)\Phi\left(x-n,y-m\right)$$
(3.16)

ja

$$\frac{1}{4}\Psi\left(\frac{x}{2},\frac{y}{2}\right) = \Phi\left(x,y\right) - \frac{1}{4}\Phi\left(\frac{x}{2},\frac{x}{2}\right).$$
(3.17)

3.3 B_3 splain

Oma töös otsustasin skaleerimisfunktsiooni valikul B_3 splaini kasuks, mis on sarnane gaussiaanile ning millel on head interpoleerivad omadused. B_3 splain on analüütilisel kujul esitatav järgmiselt:

$$B_3(x) = \frac{|x-2|^3 - |x-4|^3 + 6|x|^3 - |x-4|^3 + |x-2|^3}{12}.$$
 (3.18)

Kordajad h(n) valemist 3.6 omavad B_3 splaini korral väärtusi (Rué, Bijaoui):

$$h(n) = \left\{\frac{1}{16}; \frac{1}{4}; \frac{3}{8}; \frac{1}{4}; \frac{1}{16}\right\}.$$
(3.19)

Joonisel 3.1 on toodud B_3 splain skaleerimisfunktsioon $\phi(x)$ ning valemi 3.13 järgi leitud *wavelet*-funktsioon. Jooniselt on näha, et *wavelet*-funktsiooni graafik on kuju poolest lähedane Marr'i *wavelet*'ile. Kahemõõtmelise skaleerimisfunktsiooni $\Phi(x, y)$ saan sõltumatute koordinaattelgede korral kahe B_3 splaini korrutisena:

$$\Phi(x,y) = B_3(x)B_3(y). \tag{3.20}$$

Kahemõõtmeline $\Phi(x, y)$ järgi tuletatud *wavelet*-funktsioon $\Psi(x, y)$ on toodud joonisel 3.2.

Joonis 3.1: B_3 splain skaleerimisfunktsioon $\phi(x)$ ning vastav wavelet-funktsioon $\psi(x).$

Joonis 3.2: Kahemõõtmeline B_3 splain wavelet-funktsioon $\Psi(x, y)$.

Kahemõõtmelisel juhul saab koefitsientidest h(n) konvolutsioonimaatriks H(u, v), mis moodustatakse h(n) otsekorrutisest iseendaga. B_3 splaini korral:

$$H(n,m) = h(n)h(m) = \begin{pmatrix} \frac{1}{256} & \frac{1}{64} & \frac{3}{128} & \frac{1}{64} & \frac{1}{256} \\ \frac{1}{64} & \frac{1}{16} & \frac{3}{32} & \frac{1}{16} & \frac{1}{64} \\ \frac{3}{128} & \frac{1}{64} & \frac{9}{64} & \frac{3}{32} & \frac{3}{128} \\ \frac{1}{64} & \frac{1}{16} & \frac{3}{32} & \frac{1}{16} & \frac{1}{64} \\ \frac{1}{256} & \frac{1}{64} & \frac{3}{128} & \frac{1}{64} & \frac{1}{256} \end{pmatrix}.$$
 (3.21)

 \acute{A} trous wavelet-teisendus on astronoomias kasutust leidnud peamiselt pilditöötluses: piltide puhastamisel mürast ning kujutiste rekonstrueerimisel (Rué, Bijaoui; Starck, Murtagh; Starck jt).

Parvesõrmede otsimine

Selles peatükis annan põhimõttelise ülevaate minu poolt välja pakutud lahendusest püstitatud probleemile. Selle jaoks kirjutatud kirjutatud programmi töö detailsem kirjeldus on antud lisas.

4.1 Tihedusvälja moodustamine

Esimeseks ülesandeks on moodustada galaktikate jaotusest tihedusväli, mida oleks võimalik eelmises peatükis kirjeldatud meetodil edasi töödelda. Lähteandmeteks valisin lõiked Sloani digitaalse taevaülevaate (York jt) galaktikate kataloogi kolmandast väljaandest (SDSS DR3). Tihedusvälja moodustamiseks töötasin välja originaalse võremudeli (vt. lähemalt lisast) ning interpoleerisin galaktikad sellele võrele, kasutades CIC (*Cloud-in-Cell*) meetodit (joonis 9.2). CIC korral interpoleeritakse galaktika bilineaarselt neljast lähimast võrepunktist moodustatud raku sõlmedesse.

4.2 Wavelet-teisendus

Tihedusvälja moodustamise järel teisendasin seda valemi 3.15 järgi soovitud arvu N kordi. Teisenduste koguarvu määrab võre tihedus ning otsitavate objektide mastaap. Uuritud lõigete suurimate parvesõrmede läbimõõt oli 5...6 Mpc/h. Seejärel moodustasin edasiseks analüüsiks wavelet-massiivi $W_j(k, l)$ (valem 3.12), kus j = 0...N - 1. Wavelet-amplituudide väli on võrreldes skaleerimisfunktsiooni omaga detailsem ning eri järgud on omavahel vähem korreleeritud.

Parvesõrmed on tugevalt väljavenitatud objektid, mis on suunatud vaatleja sihis ning seega peaks ka teisendus siduma radiaalsihis punkte tugevamalt. Filter 3.21 on aga isotroopne. Selle vastuolu ületamiseks olen moonutanud kasutavat võret. Radiaalsihiga risti olevas suunas on võre b korda tihedam. Sellega saavutatakse parvesõrmede otsimiseks sobiv filtri kuju. Suuruse b väärtus peaks vastama umbes parvesõrmede pikkuse ja laiuse suhtele. Kasutades valemit 2.5 ning võttes $\delta_c = 150$ (Eke jt) saame:

$$b = \frac{\sigma}{r} \approx 6$$

Selline väärtus tundus sobivat ka puhtvisuaalse hinnangu põhjal.

Joonisel 4.1 on toodud ühe töödeldud lõike *wavelet*-amplituudid W_3 ; W_4 ; W_4 ; W_6 . Teisenduse järkude $0 \dots 2$ mastaap on liiga väike ja need ei sisalda meie jaoks huvitavat informatsiooni.

Joonis 4.1: Wavelet-amplituudid järkudel 3, 4, 5 ja 6.

4.3 Olulisused

Järgmine etapp on arvutada kõikide tasandite *wavelet*-amplituudide statistilised olulisused. Selleks hinnatakse tavaliselt andmetes esineva müra iseloomu ja intensiivsust ning võrreldakse seejärel vaatlusandmete töötlemisel saadud väärtusi puhtast mürast saadutega. Antud juhul on selline meetod praktiliselt võimatu, sest galaktikate jaotuses on kuhjumine oluliselt suurem kui juhuslikes jaotustes (Gaussi, Poisson'i). Seetõttu kasutasin võrdluseks *N*-keha arvutustest (vt. lisa) saadud punktide jaotusi. Kõik *N*-keha kataloogid olid sama kuju ja suurusega kui vaatlusvalimid ning sisaldasid võrreldava arvu punkte.

Statistiliste olulisuste arvutamisel kasutasin järgmist meetodit. Moodustasin iga taseme *wavelet*-amplituudidest integraalse jaotusfunktsiooni (järjestatud rea). Seejärel omistasin väärtustele kumulatiivse tõenäosuse $P_i(w_i) = i/n_p$, kus n_p on amplituudide arv. Lõpuks võtsin kokku üheksa N-keha realisatsiooni tõenäosused ja moodustasin neist nn. olulisuste kõverad (joonis 4.2).

Arvutuste kiirendamiseks lähendasin igal järgul selliselt moodustatud kõveratele funktsiooni $s_j(x)$ (joonis 4.2) kasutades nn. veaintegraali funktsiooni (vt. lisa):

$$s(x) \propto \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$
(4.1)

Funktsiooni 4.2 abil teisendasin *wavelet*-amplituudid olulisusteks $S_j(k, l)$ (joonis 4.3).

$$S_j(k,l) = s(W_j(k,l)).$$
 (4.2)

4.4 Parvede eraldamine

Leitud olulisuste piltidelt S_j otsisin maksimume kui võimalikke parvede tsentreid. Iga maksimumi korral nõudsin, et antud pikseli olulisus oleks suurem ka naabertasandite samas kohas asuvatest väärtustest

$$S_{j-1}(k,l) < S_j(k,l) > S_{j+1}(k,l).$$

See tingimus põhineb mõistlikul eeldusel, et suure objekti täpselt samas kohas asuv alamstruktuur peaks olema märgatavalt erineva mastaabiga.

Joonis 4.2: Olulisuse funktsioonid $s_j(x)$ võrrelduna N-keha arvutustest ning vaatlusandmetest saadud olulisuste kõveratega.

Leidnud kõikidel tasanditel olulised maksimumid, joonistasin nende ümber parvede kontuurid (joonis 4.4). Kontuurid on moodustatud maksimume ümbritsevatest pikselitest, mille olulisuse väärtused on suuremad kui kõrgema tasandi omad, $S_{j,\text{cont}}(k,l) > S_{j+1}(k,l)$. Eri tasandite parved võivad seega kattuda, millisel juhul eeldan, et tegemist on alamstruktuuriga parves.

Loodud maskide abil on lihtne jaotada valimisse kuuluvad galaktikad parvedesse. Iga kontuuri alla jääv galaktika assotsieeritakse parvega, mille kese on talle lähim. Galaktikad võivad korraga kuuluda mitme parve juurde. Seejuures eeldasin, et antud ruumiosas kuulub 10 - 15% galaktikatest fooni hulka. Samal viisil toimisin leitud parvede keskpunktidega, eraldades nii parved, mis kuuluvad suuremate gruppide koosseisu. Tulemuseks on tabeli kujul kaks puud (joonis 9.4), mis kirjeldavad galaktikate ja parvede kuuluvusi.

Joonis 4.3: Olulisusteks teisendatud *wavelet*-amplituudid.

4.5 Parvesõrmede kokkusurumine

Eelnevalt kogutud informatsiooni põhjal on võimalik parvesõrmi kokku suruda. Kõige lihtsam meetod, mida ka esialgu kasutasin, oli liikuda suurimast mastaabist väiksemale ning vähendada iga parvesõrme kuuluva galaktika kaugust b korda antud parve tsentrist d_{cl} :

$$d' = d_{cl} + \frac{d - d_{cl}}{b},$$
(4.3)

kus d tähistab galaktika esialgset ning d' parandatud kaugust. Iga galaktikat tuleb nihutada ainult üks kord suurima mastaabi juures, sest sellisel juhul surutakse ka võimalikud alamstruktuurid b korda kokku. Samas võimaldab olemasolev informatsioon kasutada ka märksa täpsemat metoodikat. Par-

Joonis 4.4: Nelja järku parvesõrmede kontuurid üksteise peale projitseerituna.

vede kontuuride järgi on võimalik määrata iga parvesõrme individuaalne väljavenitatus. Kokkusurumist saab alustada ka väikseimalt skaalalt, minnes edasi suurematele, sest meil on võimalik alamstruktuure hiljem tervikuna nihutada. Parvesõrmede kokkusurumisel ei teki täiesti tühjasid alasid, sest parvede eraldamisel fooni hulka arvatud galaktikad jäävad paika.

Tulemused

5.1 Lähteandmed

Meetodi testimiseks kasutasin kolme SDSS DR3 lõiget. Tabelis 5.1 on toodud kolme töödeldud valimi parameetrid. Arvutuste lihtsuse ning kiiruse huvides piirasin lõiked sektorisse nurgaga 1 rad ning kaugusega z = 0.05 punanihke ühikut, ehk umbes 150 Mpc/h. Lõigete ulatused on piisavalt väikesed ning me võime sel juhul ignoreerida võimalikke selektsiooniefekte. Kihtide paksus on kõikjal 2, 4 kraadi.

5.2 Eraldatud parved

Esimeseks tulemuseks oli galaktikate jaotamine parvedesse. Joonistel 5.1, 5.2, 5.3 on toodud kolme lõike 3., 4., 5. ning 6. järku parvede kontuurid ning joonistel 5.4, 5.5, 5.6 neisse kuuluvad galaktikad. Seejuures võivad galaktikad kuuluda korraga mitmesse eri järguga kattuvasse struktuuri. Parvede kontuuride joonistelt on näha, et peaaegu kõik suuremad parvesõrmed omavad alamstruktuure. Nagu on näha jooniselt 5.2, ei leitud teisest lõikest ühtegi 6. järgu parve, mis vastab ka visuaalsele hinnangule. Tulemused saadakse tabeli kujul, kus on iga galaktika kohta kirjas tema kuuluvused, alamstruktuuride kirjeldamiseks koostatakse samasugune tabel ka parvede endi kohta (vt. lisa).

Nr.	λ_1	λ_2	η_1	η_2	N_g
1	132.0	189.0	-46.3	-48.7	1352
2	-42.0	19.0	-33.7	-31.3	1647
3	175.0	232.0	-33.7	-31.3	2061

Tabel 5.1: Kasutatud SDSS DR3 lõigete andmed.

5.3 Kokkusurumine

Kokkusurumise tagajärjel sain kõikides lõigetes galaktikate parandatud asukohtadega kataloogid (joonised 5.7, 5.8, 5.9). Ehkki kokkusurumine oli üldiselt tulemusrikas, leidub siiski ka kohti, mis pole päris üheselt mõistetavad. Näiteks esimeses kihis (joonis 5.7) asuva suure parvesõrme (~ 33° juures) kokkusurumisel on järele jäänud selgelt eristatav jälg, mis ei pruugi reaalselt eksisteerida. Teises lõikes (joonis 5.8) tunduvad mitmed parved (nt. ~ 17° juures) olevat kokku surutud liiga laiaks, ehkki seal võib olla tegu mitme kõrvuti asuva väiksema parvega. Kolmandas kihis on kokku surutud vaatesihiga väikese nurga all asuv struktuur (~ 17°). Vaadates sama lõike kontuure (joonis 5.3) näeme, et olulisuse nivoo väikesel tõstmisel tekiks sinna kaks väiksema pindalaga parve. Olulisuste tasemete ning võre parameetrite muutmine annaks kindlasti erinevaid ning võibolla paremaid tulemusi.

Joonis 5.1: Esimese lõike parvede kontuurid.

Joonis 5.2: Teise lõike parvede kontuurid.

Joonis 5.3: Kolmanda lõike parvede kontuurid.

Joonis 5.4: Esimese lõike parved.

Joonis 5.5: Teise lõike parved.

Joonis 5.6: Kolmanda lõike parved.

Joonis 5.7: Esimese lõike esialgne ning parandatud kaart.

Joonis 5.8: Teise lõike esialgne ning parandatud kaart.

Joonis 5.9: Kolmanda lõike esialgne ning parandatud kaart.

Kokkuvõte

Saadud tulemuste põhjal leian, et kirjeldatud meetod koos selle realiseerimiseks kirjutatud programmiga, on üldjoontes täitnud püstitatud eesmärgid. Edasise häälestamise järel on seda võimalik kasutada nii automaatseks kaartide tegemiseks kui eri parvepopulatsioonide uurimiseks.

Järgmiseks sammuks oleks meetodi kohaldamine kolmemõõtmelistele andmetele. See ei ole raske tehnilisest seisukohast, ent kasvav arvutuste maht võib samas nõuda kobararvutite kasutamist ning vastavalt programmi paralleliseerimist. Samuti tuleks suuremate valimite korral muuta algoritmi nii, et see arvestaks ka ebaühtlast galaktikate, mis on tavaline heledusega piiratud kataloogides. Minu poolt eraldatud galaktikaparved erinevad tõenäoliselt teiste meetoditega leitutest. Vajalik oleks ka nende erinevuste uurimine.

Summary

Á TROUS COMPRESSION OF CLUSTER FINGERS

Finger-of-god redshift distortions have long hidden the real picture of the spatial distribution of galaxies. These objects exist only in the redshift space and they have many negative effects on the statistical studies of the galaxy distribution. In this work I intend to develop a method, first, to detect these fingers and later, to liquidate them by squashing. As the redshift space fingers correspond to more or less spherical compact structures in real space, they should be compressed for real space maps.

Compression of cluster fingers has been addressed only occasionally – in an early paper by Gramann et al., and more recently by Tegmark et al., but not in a detailed way. Compression has mainly been used to better estimate correlation functions (Gramann et al., 1994) or power spectra (Tegmark et al., 2002).

The usual approach to compress cluster fingers has been to find them by a FOF (friend-of-friends) clustering method, with different linking lengths in the sky and along the line-of-sight, and to compress the objects either into disks or into spheres. The main problem with this approach is that it does not consider the substructure in the fingers, which is pretty frequent, and it does not quarantee that only fingers will becompressed. Also, when compressing, one should consider the large-scale environment of a finger, otherwise the full compression of a finger in a filament close to the line-of-sight would leave unrealistic holes in real-space galaxy maps.

Clusters have also been looked for by using the adaptive matched filters (Kepner et al.). The idea is to fit parametric cluster models over the whole survey volume and analyze the peaks of the resulting likelihood map. My approach here is somewhat similar; I choose a wavelet profile similar to the cluster finger profiles. I am looking for fingers at all scales, using the multiresolution wavelet decomposition of raw maps. In principle, such an approach has been used before, in the context of image processing in astronomy (Rué, Bijaoui; Starck et al., 1998; Starck, Murtagh, 2002). Galaxy maps bring additional complications – discreteness of data, nonuniform overall density (surveys are magnitude-limited), much larger data sets, and the need for anisotropic wavelets. We clearly need an automated, tunable map-making tool. This work is a step in this direction.

I start by shortly describing the example dataset, a slice from the SDSS DR3 (I work in 2D in this paper, to see the results more clearly). Then I introduce the wavelet decomposition method I shall use (à trous), and present the special coordinate grid I use. Next, I create wavelet maps on different scales for an example slice, and determine the significance of the maxima of wavelet amplitudes that describe our objects. In order to represent the substructure, I connect objects at different wavelet orders, and find the largest scale the object belongs to. Then I compress the fingers and clean the map. As a byproduct of the analysis, I obtain also a substructured group catalog. Finally, I apply the procedure to a few more SDSS DR3 slices, compare the maps, and test how the compression affects their correlation functions.

As a result I have found that the procedure works fairly well. The results show that I have achieved my main objectives. The algorithm has a few tunable parameters (the finger ellipticity in redshift space, the significance ratios of wavelet amplitudes for different scales). These can be either selected to last interminally, creating an automatic toolkit, or they can be used for creating different cluster populations.

The next logical step will be to extend the algorithm to 3D data. Variable data density, common for magnitude-limited catalogues, have also to be taken account and the algorithm should be modified accordingly. Lists of the groups and galaxies which we obtain in process should be compared those aquired with different methods (FOF).

Kirjandus

- Martinez, V. J., Saar, E. Statistics of the Galaxy Distribution. Chapman & Hall/CRC, 2002.
- Starck J.-L., Murtagh, F., Bijaoui, A. Image Processing and Data Analysis. The Multiscale Approach., Cambridge University Press, 1998.
- 3. Starck J.-L., Murtagh, F. Astronomical Image and Data Analysis., Springer-Verlag, 2002.
- Barreiro, R. B., Sanz, J. L., Herranz, D., Martinez-Gonzales, E. Comparing filters for the detection of point sources. *Monthly Notices of the Royal Astronomical Society*, 2003, **342**, 119-133.
- Bennett, C., L., Halpern, M., Hinshaw, G. jt. First Year WMAP Observations. *The Astrophysical Journal Supplements*, 2003, 148, 1.
- Bryan, L. G., Norman, M. L. Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons. *Astrophysical Journal*, 1998, 495, 80-99.
- Eke, V. R. et al. Galaxy groups in the 2dFGRS: the group-finding algorithm and the 2PIGG catalogue. Monthly Notices of the Royal Astronomical Society, 2004, 348, 866.
- 8. Gramann, M., Cen, R., Gott, J. R. I. Recovering the real density field of galaxies from redshift space. *Astrophysical Journal*, 1994, **425**, 382-391.
- 9. Hamilton, A. J. S. Linear Redshift Distortions: A Review. astro-ph/9708102.
- Kepner, J., Fan, X., Bachall, N. et al. An Automated Cluster Finder: Adaptive Matched Filter. Astrophysical Journal, 1999, 517, 78.

- Knebe, A., Green, A., Binney, J. MLAPM a C code for cosmological simulations. *Monthly Notices of the Royal Astronomical Society*, 2001, 325, 845.
- Rué, F., Bijaoui, A. A Multiscale Vision to Analyse Field Astronomical Images. *Experimental Astronomy*, 1997, 7, 129-160.
- Shensa, M. J. The Discrete Wavelet Transform: Wedding the A Trous and Mallat Algorithms. *IEEE Trans. Signal Proc*, 1992, 40, 2464-2482.
- Slezak, E., de Lapparent, V., Bijaoui, A. Objective Detection of Voids and High-density Structures in the First CfA Redshift Survey Slice. *The Astrophysical Journal*, 1993, 409, 517-529.
- Tegmark, M., Hamilton, A. J. S., Xu, Y. The power spectrum of galaxies in the 2dF 100k redshift survey. *Monthly Notices of the Royal Astronomical Society*, 2002, **335**, 887-908.
- York, D. G. et al. The Sloan Digital Sky Survey: Technical Summary. The Astronomical Journal, 2000, 120, 1579-1587.
- FITS (Flexible Image Transport System), Astronomy and Astrophysics, 2001, 376, 359.

Lisad

9.1 Võremudelist

Arvutuste juures oli üheks olulisemaks punktiks optimaalse võremudeli leidmine. Antud juhul tegi olukorra raskeks ühest küljest asjaolu, et otsitava efekti kirjeldamine on lihtne ainult polaarkoordinaatides ning teisest küljest, et kasutatav filter on mõeldud ristvõrele. Minu poolt kasutatud võre punktid asetsevad kontsentrilistel kaartel, kusjuures igal järgmisel kaarel on b (valem 2.5) punkti rohkem kui eelmisel. Võre katab täpselt 1 radiaani suuruse nurgaga sektori (joonis 9.1). Seega on iga võrepunkti (k; l) koordinaadid:

$$d = k \Delta_d;$$

$$\gamma = \frac{l}{b k},$$
(9.1)

kus Δ_d on võre radiaalsuunaline samm. Võre samm nurgakoordinaadi suunas on $\Delta_{\gamma} = \Delta_d/b$.

Selliselt defineeritud võrel on antud ülesande lahendamise juures mitmeid eeliseid.

- Võrepunktide tihedus on kõikjal konstantne.
- Teisest või kolmandast teisenduse järgust alates on võre kasutatava filtri suhtes heas lähenduses käsitletav ristvõrena (joonis 9.3). Süstemaatilised häired, mida ikkagi leidub, jäävad signaalist mitu suurusjärku väiksemaks.
- Võre vaatesihiga risti olev telg langeb alati kokku parvesõrmede samasuguse teljega ning radiaalsuunaline telg on samuti võrele hästi lähendatav.

Esialgu piirdusin lihtsuse huvides üheradiaanilise nurgaga, ent võret on edaspidi võimalik üldistada mistahes nurgale β . Valem 9.1 muutub siis

Joonis 9.1: Võre skeem.

9.2 Programmist

9.2.1 Wavelet-teisendus

Esimeseks etapiks on tihedusvälja moodustamine ning wavelet-amplituudide arvutamine. Algandmed loetakse sisse tekstifailist, mis sisaldab kahes veerus galaktikate otsetõuse ja punanihkeid. Töös esitatud tulemused on saadud kasutades $512 \times 6 \cdot 512$ võret. Võre samm radiaalsuunas on seega $\Delta_d = 0.29$ Mpc/h. Aine jäävuse ning pildi sileduse tagamiseks toimub servadel peegeldamine. Niimoodi saadud skaleerimis- ning wavelet-funktsiooni massiivid salvestatakse FITS-tüüpi piltidena. Ühe galaktikate või N-keha arvutustest saadud punktide kataloogi wavelet-kordajate arvutamine võtab 1.8 GHz AMD protsessoriga arvutil aega umbes 20 sekundit.

Joonis 9.2: Tihedusvälja moodustamine CIC meetodil. Sirge läbib galaktikat ja koordinaatide alguspunkti. Hall ala on galaktikat sisaldav rakk, mis üldjuhul ei lange kokku indeksite järgi moodustatud rakkudega.

Joonis 9.3: \acute{A} trous-teisenduse filtri lähendamine võrele. Suurematel järkudel muutub filtri nihutamine võrepunktidesse piisavalt mittesüstemaatiliseks.

9.2.2 Olulisuse määramise funktsiooni leidmine *N*-keha kataloogide abil

Olulisuste kõverate leidmisel ei saa kasutada pikseleid, mille raadius on väiksem kui filtri raadius antud järged, sest selles piirkonnas toimub mit-

mekordne peegeldamine servadelt ning tekkiv pilt ei kajasta enam hästi tegelikkust. Seega peab olema rahuldatud tingimus

$$k > 2^j. \tag{9.2}$$

Teisendusfunktsioonid olulisuste arvutamiseks sain, kui lähendasin funktsiooni

$$s(x) = \operatorname{erf}\left[\frac{(x-b)^c}{a}\right]$$

tundmatute a, b ja c järgi vähimruutude meetodil programmi Gnuplot abil *N*-keha arvutuste kataloogidest saadud olulisuste kõveratele. Kõrgematel järkudel osutus vajalikuks teha lähendusi kahes piirkonnas. Tabelis 9.1 on toodud määratud parameetrite väärtused, kus ξ tähistab kahe piirkonna eralduspunkti.

Tabel 9.1: Olulisuste arvutamise funktsioonide määratud parameetrid.

Järk	a_1	b_1	c_1	ξ	a_2	b_2	C_2
3.	0.0576	0.0042	0.6143	0.0120	0.2808	0.0088	0.2436
4.	0.1063	0.0031	0.4981	0.0120	0.2114	0.0044	0.3407
5.	0.0918	0.0033	0.5431	0.0160	0.1377	0.0043	0.4420
6.	0.0164	0.0031	0.8367	0.0087	0.0517	0.0040	0.5939

Tänu leitud funktsioonidele, toimub *wavelet*-amplituudide olulisusteks teisendamine väga kiiresti.

Nagu on näha jooniselt 4.2 alahindab funktsioon $s_j(x)$ pikselite olulisust süstemaatiliselt võrreldes tegelike kataloogidega. Seetõttu olin sunnitud kõik tasemed läbi jagama suurusega $1 - 0.015j^2$:

$$S_j(k,l) = \frac{S_j(k,l)}{1 - 0.015j^2},$$

kus j on wavelet-teisenduse järk. Paremate võrdlusjaotuste leidmine võimaldab edasises töös sellist ümberarvutamist loodetavasti vältida. Olulisused salvestatakse samuti FITS-formaadis faili.

N-keha arvutustes on struktuuri tekkimise simuleerimiseks kasutatud MLAPM programmi (Knebe jt). MLAPM kasutab adaptiivset võret, millega luuakse tihedamad alamvõred suurema ainetihedusega piirkondadesse.

Aluseks on lame kosmoloogiline mudel, parameetrid on määratud WMAP mikrolainelise taustkiirguse vaatlustest (Bennett jt): tumeda aine tihedus $\Omega_m = 0.226$; barüonaine tihedus $\Omega_b = 0.044$; kosmoloogiline konstant $\Omega_{\Lambda} =$ 0.73; Hubble'i konstant h = 0.71; tihedusfluktuatsioonide standardhälbe parameeter $\sigma_s = 0.84$. Simulatsioon tehti kuubis küljega 200 Mpc/h. Tumeda aine osakeste arv oli 256³. Algtingimused genereeriti 256³ võrel punanihkel z = 30. Lõiked valiti nii, et nad oleksid statistiliselt sõltumatud (üksteisest piisavalt kaugel).

9.2.3 Maksimumide otsimine

Maksimume otsitakse eelmises punktis saadud olulisuste failist. Maksimumide otsimisel nõutakse, et konkreetse pikseli ümber pole antud järgu filtri pindala alla jäävas piirkonnas suuremaid väärtusi. Osutus, et ka suurematel järkudel piisab vaid 32×32 suuruse pindala kontrollimisest. Naabertasanditel vaadeldakse antud pikseli kõrval asuvaid väärtusi. Samuti ei arvesta pikseleid, mis jäävad servadele lähemale kui pool filtri laiust 2^{j-1} . Maksimumide otsimise tulemused igal tasemel salvestatakse omaette faili. Otsimise protseduur võtab aega alla 10 sekundi.

9.2.4 Parvede eraldamine ning kokkusurumine

Galaktikate parvedesse jagamisel koostatakse tabel, mille iga rida vastab esialgse kataloogi vastaval real asuvale galaktikale. Tulbad vastavad uuritavatele mastaapidele ning seal asuvad gruppide numbrid, millesse antud galaktika kuulub, või null, kui galaktika ei kuulu kuhugi. Gruppide numeratsioon vastab nende järjekorrale vastava järgu maksimumide failis. Sarnane tabel tehakse ka leitud maksimumide kohta, kuid selles tabelis on igal real vähemalt üks nullist erinev väärtus – maksimum kuulub iseenda defineeritud gruppi. Parvede eraldamiseks ning kokkusurumiseks kulub programmil aega kuni 50 sekundit, millest suurem osa kulub maskide koostamisele. Maskid salvestatakse samuti FITS-formaadis.

Joonis 9.4 illustreerib galaktikate ning gruppide võimalikke omavahelisi kuuluvusi.

Joonis 9.4: Galaktikate jaotamine parvedesse.

9.2.5 Tehnilised üksikasjad

Kirjeldatud programmi lähtekood on kättesaadav aadressil http://meteo.physic.ut.ee/~juhan/ftt/.

Programmifailide funktsioonid:

fft.f90 - wavelet-teisendus.

an.f90 – maksimumide otsimine.

lev.f90 – olulisuste kõverate leidmine.

yap.f90 – galaktikate jaotamine parvedesse, kontuuride moodustamine ning kokkusurumine.

 ${\tt fns.f90-kasutatavate\ funktsioonide\ moodul.}$

file_op.f90 - failioperatsioonide moodul.

fits_op.f90 - FITS-failide moodul.

Programm kompileerub ainult Inteli Fortran95 kompilaatoriga, samuti on vajalik cfitsio teegi olemasolu arvutis (http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html).