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Abstract. Reinforcement Learning (RL) is a subfield of Artificial Intelligence (AI)
that deals with agents navigating in an environment with the goal of maximizing
total reward. Games are good environments to test RL algorithms as they have
simple rules and clear reward signals. Theoretical part of this thesis explores
some of the popular classical and modern RL approaches, which include the use of
Artificial Neural Network (ANN) as a function approximator inside Al agent. In
practical part of the thesis we implement Advantage Actor-Critic RL algorithm
and replicate ANN based agent described in [Vinyals et al., 2017]. We reproduce
the state-of-the-art results in a modern video game StarCraft II, a game that is
considered the next milestone in Al after the fall of chess and Go.
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Liihikokkuvote. Stiimulope on tehisintellekti valdkond, mille uurimisobjektiks
on agent, mis navigeerib etteantud keskkonnas eesmérgiga maksimeerida oma
tegevustest tulenevat preemiat. Mangud on sobivad keskkonnad stiimuloppe algo-
ritmide testimiseks, kuna nendel on lihtsad reeglid ja selgelt defineeritud preemia.
T66 teoreetilises osas uuritakse stiimuloppe populaarsemaid meetodeid, s.h. tehis-
narvivorkude kasutust. Praktilises osas on realiseeritud tehisnéarvivorgul pohinev
aktor-kriitik algoritm [Vinyals et al., 2017]. T66s reprodutseeritakse hetke pari-
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Introduction

The phenomenon of learning has been a topic of interest for many generations of
researchers. Though there is no consensus on the exact types of experiences that
produce long lasting, behavior altering effects, games seem to play a key role in
learning, especially in early developmental stages of the brain. In fact, it seems
that most animals learn by playing games, at least initially — from kittens and
puppies acquiring necessary skills for survival by play-fighting; to humans learning
ways to solve a variety of abstract and complex tasks through the multitude of
games they play in their childhood.

Given the role games have in the formation of animal’s intelligence, it is no
wonder that developing and evaluating Artificial Intelligence (AI) agents has been
historically done through games - from the very first attempts at Al in check-
ers [Samuel, 1959| to modern explosion of Reinforcement Learning (RL) based Als
in classical board games such as Go [Silver et al., 2016], and in video games such
as Atari platform [Mnih et al., 2015], Ms. Pac-Man [van Seijen et al., 2017|, and
Doom [Kempka et al., 2016].

Company DeepMind in particular has been actively pushing the boundaries of
machine learning based Als. After IBM’s Deep Blue victory over Kasparov in chess,
Go was widely seen as the next great challenge for Al. Having significantly bigger
state space and branching factor than chess, it was assumed by many Al researchers
that it might take another decade before competitive Go Al emerged. Which is
why DeepMind’s decisive victory over Go world champion Lee Sedol in March 2016
was as significant as Deep Blue and has solidified DeepMind’s reputation as one of
the world’s leading Al research laboratories.

A short time after their achievement in Go, DeepMind has announced StarCraft
IT — a popular real-time strategy video game — as their next research target. In
cooperation with Blizzard Entertainment, DeepMind has released StarCraft 11
Learning Environment (SC2LE): a set of easy to use tools and libraries to connect
with the StarCraft II game and enable training of RL based Al.

Alongside SC2LE, DeepMind has released a paper describing their baseline end-
to-end RL agent architecture. This agent learns from input data similar to what
a human player would perceive and makes choices from the same action options
a human player would have [Vinyals et al., 2017|. Described agent was evaluated



on a set of mini-games and their results were recorded as a benchmark for future
research attempts. For comparison’s sake, DeepMind has also recorded results from
two humans: an amateur player, and professional expert.

However, one key piece is missing from DeepMind’s contribution to the field
of RL-based AI — namely, the source code of their benchmark agent was not made
public along with the scientific publication. Without the source code, the publica-
tion provides only general guidelines, but not the exact details on how to recreate
the AI agent described in the paper.

Focus of this thesis is to explore modern Reinforcement Learning based approaches
by replicating and open-sourcing DeepMind’s baseline architecture, following de-
scribed specification as closely as possible and ensuring that implemented agent is
capable of achieving set benchmark results.



1. Background

In this chapter we describe the background necessary to understand the work that
follows. We first introduce what can now be considered “classical” Reinforcement
Learning and its mathematical formalization as a Markov Decision Process.

We then introduce Artificial Neural Networks (ANN) - a key concept in all of
modern Machine Learning (which RL is a subset of). In particular, we will see that
at their core, ANNs are simply non-linear function approximators. Additionally,
we look at Convolutional Neural Networks (CNNs) - a special type of ANNs that
performs well on data containing spatial information, such as images.

Combining RL with ANNs we arrive at Deep Reinforcement Learning (DRL)
and describe the relatively novel algorithm used in this thesis: Advantage Actor-
Critic. We will then briefly describe some successful applications of RL algorithms
to various games. Finally, we will describe StarCraft I video game, its rules, and
the DeepMind’s PySC2 library through which communication with StarCraft II is
made.

1.1 Reinforcement Learning

The idea of learning by reinforcement is historically rooted in behavioral psychol-
ogy |Thorndike, 1898], and boils down to the observation that an animal is more
likely to repeat a desired pattern of actions in a given environment if the actions
are followed by a stimulus (either positive or negative). Applying this idea to
the context of self-learning agents in computer science, the field of Reinforcement
Learning was formed [Samuel, 1959].

A typical RL model describes an agent taking actions in some environment and
receiving rewards (typically scalar values) as a result (see Figure 1.1). The goal of
the agent is to find best choice of actions for every given state such that agents
returns (cumulative rewards) are maximized.

For example, in the classical game of Tic-Tac-Toe, the agent navigates 3 x 3
board states by choosing actions from a list of available cells, receiving +1 for a
winning move (with —1 to the opponent) and +0.5 for a tie.



There is no direct control over the specifics of the learned behavior, which are left
for the agent to decide as long as it satisfies the goal of maximizing returns. This
is in contrast with the more common Supervised Learning based approaches, where
the researcher provides the agent with samples of state and optimal action pairs,
typically collected by observing human experts.

Agent

Action Observation,
Reward

Environment

Figure 1.1: Reinforcement Learning model of interaction with the environment.
Source: C5294 DRL Course, Berkeley http://rll.berkeley.edu/deeprlcourse-falb

Autonomy of learning agents in RL based approaches is the reason they are often
considered to be closest to human intelligence and a potential key to eventually
solving the problem of Artificial General Intelligence (AGI) — an Al capable of
conscious thought and reasoning.

While the end goal of RL may lie in practical applications such as optimiza-
tion of data center energy consumption [Gao, 2014| or even as grandiose as solving
AGI, there is a need for simpler environments to initially test novel approaches. As
the field evolved, games quickly became the benchmark environments of choice for
many researchers as they are defined with (relatively) simple rules for navigation
(ex. move up or down) and clear reward signals (ex. win or lose).

In fact, the birth of RL field is often linked to an early AI experiment with
a self-learning agent that quickly surpassed its creator at the game of check-
ers [Samuel, 1959]. This at the time monumental success for the Al field had the
unfortunate side-effect of cultivating too much interest from the general public.
The interest peaked with the release of Marvin Minsky’s “Perceptrons” book, but
eventually lead to (understably) failed expectations and the so-called “Al winter”.


http://rll.berkeley.edu/deeprlcourse-fa15

Problems of unreasonable expectations haunt the field of Al to this day, fueled
now more so by fear of “Terminator’-like events, where a sentient Al chooses to
eliminate the human race based on incorrectly provided reward function. It is
important to consider the possibility of such events, and discuss ways to build
in safety measures, but RL as a field is still in very early stages and it is more
productive to focus on development and improvement of RL based approaches
based on game environments.

Reinforcement Learning algorithms are often divided into model-based and model-
free categories. Model-based algorithms attempt to learn a model of the envi-
ronment, represented by the transition probabilities and reward function in the
MDP formulation above. In contrast, model-free RL algorithms focus only on
the end goal of cumulative reward maximization, effectively disregarding informa-
tion about the environment the agent is operating in. While there are pros and
cons to both approaches, RL researchers mainly focused on model-free algorithms
due to their relative simplicity in implementation and computation. For simplic-
ity, all the work that follows is implicitly assumed to be in the model-free RL family.

The two dominant approaches to solving Reinforcement Learning problems in
a model-free fashion are defined by the underlying optimization problem they are
solving: either by optimizing on the expected value of the actions (e.g. Q-Learning)
or on the policy itself (e.g. Policy Gradients). These approaches are different
enough to have evolved into two separate families of algorithms and are explored
in greater detail in sections 1.1.3, 1.1.4 below.

While there are many different approaches to solving RL based problems, one
common thing between them all is in their mathematical formalization as a Markov
Decision Process.

1.1.1 Markov Decision Process

The problem of RL can be viewed as a Markov Decision Process (MDP), which is
formally defined by the < S, A, P, R > tuple:

e S: set of all possible states
e A: set of all possible actions

e P: (S,A,S) — [0,1], where P(s|s,a) is the probability of arriving at s’ € S
given s € S and a € A

e R: (S,A,S) = R, where R(s,a,s) is the reward function for arriving in state
s’ € S, while taking action a € A in state s € S



That is, given a set of all possible states S, a set of all possible actions A, transi-
tion probability function P, and a reward function R, find an optimal policy 7 —
probability distribution over action space given current state — such that expected
returns are maximized. Policy can be either deterministic 7(s) or stochastic 7(als).

The underlying stochastic process is defined by the transition probability P and in
the context of RL problems (especially in games) is often implicitly assumed to be
stationary, meaning it does not change over time. This assumption significantly
simplifies following theoretical reasoning about the agent.

As the agent acts in the same environment with discrete timesteps, it is often useful
to reason about the sequence of states, actions and rewards through time together
as a single trajectory 7: < sg,ag,71 >, < S1,a01,72 >,..., < Sp_1,0n_1,Tn >, Where
7, represents agents immediate reward at a given time-step t: r; = R(s;—1, az_1, S¢).

If full state information is not accessible to the agent then it is possible to ex-
tend definition above and model the problem as a Partially Observable Markov
Decision Process (POMDP), which defines an additional observation set O and its
conditional probabilities Po(o|s’, a).

1.1.2 Credit Assignment Problem

While an agent receives some rewards immediately after an action was taken, it
is often unclear whether the action actually contributed to the reward gained.
Imagine a game of Tic-Tac-Toe where the agent has caught the opponent in a trap
which will lead to his inevitable loss. While the win reward will be assigned to the
final action, the contributing action was actually made beforehand. This is known
as credit assignment problem and it is an open area of research.

One very common solution to the credit assignment problem is known as n-step

discounted returns, where the cumulative rewards following action a; for n steps
are exponentially weighted by some v € (0, 1]:

n
k
Ry = E Y Ttdk+1
k=0

The task is to then find an optimal policy m that maximizes expected returns
ESt+1~P('|St,at),at’\’ﬂ'(3t)I:Rt|$t = S] for all s € S.



1.1.3 Value-Based Methods

In value-based RL methods the goal of finding an optimal policy 7(s) is defined
through maximizing the estimate the state value function:

Vﬂ'(s) = Est+1NP('|St,at),0LtN7T(St)[Rt|st = 8]

However, this task is not possible to solve in most real-world applications as we do
not know the transition probabilities. For this reason the notion of state-action
pair Q.(s,a) (Q-value) is introduced and optimized instead:

Qw(st, at) = Est+1~P(-\st,at)[Rt‘8t = S,a¢ = a]

Q-value represents expected cumulative reward given that action a € A is taken in
state s € 9, followed by actions chosen based on the policy 7. It is often more useful
to define Q-value recursively, separating immediate reward to its own component:

Qﬂ(sh at) = E8z+1~P(-|St,at) [R(Stv ag, 3t+1) + ’YQW(SH-lv at-i-l)]

Recursive definition above is commonly refered to as the Bellman Equation and is
tightly related to the Bellman Optimality Equation:

Q" (St, at) = Est+1~P(~\st,at) [R(Su at, 3t+1> + mai‘ Q*(st—i-lu at+1>]7
a4

where Q*(s,a) denotes an optimal state-action value function. This definition has
a favorable property — it can be iteratively approximated (by e.g. bootstrapping).
There are several algorithms based on this definition, one popular among them is
the Q-Learning algorithm |[Watkins and Dayan, 1992].

The Q-Learning algorithm approximates optimal state-action values Q*(s, a) with
Temporal Difference (TD) Learning, a general framework for iteratively optimizing
a function while bootstrapping from current estimates [Sutton, 1988]. In context
of Q-Learning, the TD update step is defined as follows (« is learning rate):

Qir1(s0 ar) = Qilse,ar) + (e +ymax Qi(si, a) — Qise, ar))
This algorithm is guaranteed to produce an optimal greedy policy m(s) = argmax Q(s, a).
In practice, learned policy is often parametrized by some set of parameters 6.

Though in that case convergence guarantees do not hold, empiricially this has
proven not to be an issue in most RL based problems.
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1.1.4 Policy-Based Methods

Alternative approach to value-based methods is to directly optimize the parametrized
policy 7(a|s; #) with regards to the expected returns Es, , , ~p(.[s;.a0),a0~n(se) [Fe] St = 5].
There are several reasons why this approach could be beneficial or even the only
viable option, for example continuous action space or a need for stochastic policy.

In policy-based methods the optimization procedure is typically done with gradient
descent family of algorithms. There are several ways to define the cost function for
the underlying optimizer, but by far the most common method is the REINFORCE
family [Williams, 1992].

The core of the REINFORCE approach is in its unbiased re-parametrization
of the optimization target which results in their gradients definition being computa-
tionally feasible for stochastic optimization procedure. Specifically, REINFORCE
defines an unbiased estimate of VyE[R;|s;| as Vglogm(a¢|ss; 0) Ry [Williams, 1992].

1.1.5 Actor—Critic Methods

REINFORCE approach can be improved by reducing variance of the gradient
estimate with a baseline b;(s;) subtracted from the returns Ry, resulting in the
estimate VyE[R;|s;] taking the form Vylogm(a.|s:; 0)(Ry — bi(st)), which is shown
to remain unbiased [Williams, 1992].

Often used baseline is an estimate of the state value function V,(s) = E[R|s; = s].
Since R; can be shown to be an estimate of Q.(s,a) = E[Rs; = s,a; = al,
then R; — V. (s;) can be considered to be an estimate of the advantage function
A(sy, ap) = Qr(se, ap) — Vi(sy).

Algorithms that learn with the resulting estimate Vylog s, (as;0)A(s,, a;) are
referred to as the Actor-Critic methods, with the idea of the approach boiling
down to the combination of optimization targets of the policy (actor) and the value
(critic) terms [Sutton and Barto, 1998]. See Figure 1.2 below for a visual model.

Intuitively this approach can be understood as agents inner dialogue where the
agent learns to act optimally in his environment, while scrutinizing his behavior
based on the missed expected returns.

Though the critic terms name and its relation to Q-Learning can be deceiving, as

critic’s task is not so much tied to agents ability to navigate the environment as it
is to accurately predicting the value of the current state.

11
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Figure 1.2: Actor-Critic model as illustrated in [Sutton and Barto, 1998|.

1.2 Function Approximation

While an RL agent can be successfully trained on full state representations when
the state space is relatively simple, the problem quickly becomes computationally
infeasible as the state dimensionality and complexity grows. For this reason, a
function approximator is often used that serves both as a dimensionality reduction
technique and the mapping of similar states to the same result.

Though it should be noted that by using function approximators, convergence
guarantees are not necessarily going to hold. In practice however that is rarely a
significant problem. In particular, a staple of modern RL algorithms has become
the use of a specific type of non-linear function approximators, commonly referred
to as Artificial Neural Networks.

1.2.1 Artificial Neural Network

As the name suggests, Artificial Neural Networks are inspired by neuronal con-
nections in the brain. The idea of using brain-inspired mathematical models
was first explored relatively long ago [McCulloch and Pitts, 1943|, but it only
really took off with introduction of backpropagation: a method to iteratively
calculate derivatives of complex functions by applying dynamic programming tech-
niques [Rumelhart et al., 1986].

12



In practice, the backpropagation procedure is typically done behind the scenes
by automatic differentiation libraries such as TensorFlow [Abadi et al., 2016] or
PyTorch |Paszke et al., 2017].

Formally, ANNs can be viewed as non-linear function approximators:

f(.l?) = thn(Wn—lhn—l(- .. (Woﬂf + bg) - ) + bn—l) + bn,
where h;(z) is the activation function — a function that ensures non-linearity in
the approximator at layer i. It was shown that with the correct choice of the
activation function, ANNs are able to approximate any continuous function in
a compact subset of R™, making them universal approximators [Hornik, 1991].
Typical examples of h(zx) are sigmoid and tanh.

While sigmoid and tanh were favorable mathematically, having desirable properties
such as continuity and differentiability, they also resulted in convergence break-
ing side-effects such as “vanishing” gradients, where the gradient of the function
quickly became zero as the input grew in magnitude. Recently, Rectified Linear
Unit (ReLU, h(z) = maxz(0,z)) became the nonlinearity function of choice for
many researchers as it doesn’t suffer from vanishing gradient problems, and is
computationally faster [Nair and Hinton, 2010].

ANNSs enjoyed some success during 1980-1990, a notable example of that would
be “ALVINN” - an automated vehicle where turning direction was chosen by the
ANN [Pomerleau, 1989|. But their real potential was showcased only in second
part of 2000s, when people started experimenting with running massively parallel
matrix computations on specialized hardware, most notably on easily accessible
consumer graphics processing units by NVIDIA.

This, coupled with practical advancements in model initialization [Hinton et al., 2006],
led to breakthroughs in many areas. Notably, in 2012 this led to significant improve-
ments over state-of-the-art at the time in speech recognition [Dahl et al., 2012] and
in image recognition [Krizhevsky et al., 2012], the latter was done by making use of
a special type of layer, specialized for spatial information processing — convolutional
layer.

1.2.2 Convolutional Neural Network

Convolutional Neural Networks are a special type of ANN that contain one or more
convolutional layers. These layers are designed to work well on certain types of

13



data such as images, making use of the inherent spatial information while keeping
number of parameters relatively small (compared to classical ANNs). While used
mainly for image processing, they have been recently shown to perform well on
text-based tasks as well.

Each layer consists of a number of filters: small tensors, typically 3 x 3 x C
or 5 x 5 x C in size (where C' matches the image depth), that produce outputs
by performing sliding window dot products on localized parts of the input image
step-by-step (Figure 1.3). Step size (or stride) is often fixed to 1 (meaning sliding
window moves 1 pixel at a time), although other options are also not uncommon.
Sometimes image dimensions will not be compatible with configured filter size and
stride in which case input image border is often padded with zeros as a workaround.

The idea of using convolutional layers on spatial information has been explored
in the past [Fukushima, 1980|, but the biggest showcase of their potential was
probably done by “AlexNet” - a specialized ANN architecture that has won Ima-
geNet Large Scale Visual Recognition Challenge in 2012 with a significant jump in
classification accuracy performance [Krizhevsky et al., 2012|. This achievement is
often referred to as the start of “Deep Learning” era in Machine Learning.

CNN based architectures are particularly notable because they are first examples
of “end-to-end” solutions, where a single Artificial Neural Network performs all
the necessary sub-tasks for problems such as recognition and classification. Prior
to CNNs, typical image processing solutions contained multitude of hand-crafted
filters and input preprocessing functions, all of which often required domain experts
to write. Though some researchers argue that relying on convolutional layers in
itself can be considered domain knowledge and thus CNN based approaches cannot
be called truly “end-to-end”.

1.3 Deep Reinforcement Learning

Using Artificial Neural Networks as function approximators for classical RL al-
gorithms has led to a significant improvement in their performance across many
different tasks and environments. This has put the field of Reinforcement Learning
into the spotlight both for researchers and the general public.

The idea itself was not novel and first successful applications date as far back
as 1995 with TD-gammon: a Backgammon Al that relied on NNs for state eval-
uation |Tesauro, 1995]. But the work that has led to bringing RL approaches
notoriety is most likely to be DeepMind’s Atari Al.

14
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Figure 1.3: Convolutional layer. Each circle represents a single filter of size 5 x 5 x 3.
Here the first filter is performing a dot product on the middle portion of the input
image. Source: http://cs231n.github.io/convolutional-networks/

DeepMind researchers showed the full potential of RL based approaches with
their Deep Q-Network paper, which used Atari Learning Environment — an emula-
tor for the classical Atari console video games — as their benchmark environment.
The importance of this paper was in the fact that the agent was learning to outplay
human experts by learning only from the raw pixel inputs, not only resembling
how a human would perceive the game, but also not having access to any domain
knowledge from the experts [Mnih et al., 2015].

This was the first time an Al agent was capable of surpassing human perfor-
mance in a complex environment while having no additional information such
as domain specific features, and has led to an explosion in research of (Deep)
Reinforcement Learning based approaches.

1.3.1 Advantage Actor-Critic (A2C)

The algorithm known as A2C has an interesting history of conception in that there
is no official publication describing it, even though it is widely used and referenced.

15
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In articles, A2C is often defined as a synchronous version of the Asynchronous
Advantage Actor-Critic (A3C) algorithm [Mnih et al., 2016]. The two algorithms
are essentially equivalent mathematically, though this is not the case when it comes
to technical implementation.

Conceptually the A2C/A3C algorithms are quite similar to the classical actor-critic
methods described in section 1.1.5, where the policy 7, (actor) and value estimate
Vz(s) (critic) are trained at the same time as a form of self-scrutinizing learning
loop. However, there are some key differences that are big enough to warrant
considering them as a separate algorithm.

First, the use of Neural Networks as end-to-end non-linear function approximators
both for the value and policy outputs. This breaks any convergence guarantees
provided by the original algorithms, but significantly improves the level of com-
plexity of environments an agent can learn to navigate in.

Second, the algorithms’ key selling point is in their capacity for mass parallelization.
For A3C this is defined through client-server architecture, where each client contains
a local copy of the model, computes its own gradients and pushes those to the
central server. Central server performs a single optimization step based on the
incoming gradients, updates model weights (parameters of the ANN) and then
distributes new model version to all child workers.

In A2C, everything related to the model is stored on the server side, with client
workers are only responsible for communicating with the environment itself. A2C
workers are executed synchronously, which results in a trade-off between per-
formance during sample gathering stage and during training stage. A2C gains
significant computational speed due to the fact that the model can be efficiently
executed on the GPU hardware, which is in contrast with the typically CPU only
architecture of A3C based agents.

Finally, a common pitfall of the original actor-critic algorithms is the explo-
ration /exploitation problem, which refers to maintaining a healthy balance between
greedily following the current best policy (exploitation) and experimenting with
alternative policies to see if the result improves (exploration). Since both policy
and value functions are parametrized and are not guaranteed to converge to optimal
values, an agent can quickly converge to some local optimum which may be far
from desired behavior.

16



In the A2C/A3C algorithms this problem is alleviated by introducing a sepa-
rate policy entropy maximization target to the gradient descend optimization
objective. Specifically, the optimization problem is solved with the additional

entropy term.

The full objective loss function for some sampled trajectory 7 is defined as follows:

J(0) = E, | log m(as|s; 0) A(ss, ar) + (Ry — V(ss; 9))2 — w(ag|se; 0) log(m(ay]ss; 0))

We can now present pseudo-code for the described Advantage Actor-Critic algorithm,
roughly adapted from [Mnih et al., 2016]:

Algorithm 1 Advantage Actor-Critic algorithm
input: learning rate o, number of updates 7},,,, number of n-steps t,,4.
while T < T,,,. do:

t<+ 0

Get s state

while t < t,,,,, do:
Perform a; ~ 7(+|sy; 0)
Get r; reward and s;y; state
t+—t+1

if s;_1 is not terminal then:
Ry, < V(si_1;0)

else
R... <0

for all i € {t,0. — 1,...,0} do:
Ri — 1+ fyRi—H

0+ 0+ aVyJ(0)

T+~T+1

1.4 StarCraft II

StarCraft was an immensely popular video game developed and published by Bliz-
zard Entertainment in 1998. Much like the classical board games such as chess and
go, StarCraft holds the property of being relatively easy to learn, but extremely
difficult to master. This ensured that interest in the activity is not quickly lost
and, given competitive nature of humans, eventually led to a competitive following.

17



Many consider StarCraft as one of the contributing games to the birth of the
e-sports movement.

In fact, this game was considered a national sport of South Korea for almost
two decades with many young people pursuing professional careers as StarCraft
players, joining one of many organizations that specialized in this sport. Major
tournaments were broadcasted live on television and gathered millions of viewers.
Best players in South Korea were often very well-paid and recognized by the general
public on same level as celebrities and athletes in more traditional sports.

However, given rapid technological advancement, StarCraft started to become out-
dated and in 2010 Blizzard released its successor StarCraft II. While not as popular
as its ancestor due to rise of many great competitors, it still gathers thousands of
viewers for regular tournaments broadcasted live of various platforms.

The fact that this game is still played actively by millions of people across all levels
of expertise from amateur beginner to professional veteran is very important from
the point of view of Al research. Given that humans are still the best known solvers
of complex and abstract tasks, they can play roles of a benchmarks for Als and
provide demostrations for the Al agents to learn from.

StarCraft II is a real-time strategy video game, which means that in order to
win a player must continually make strategic decisions that are better than their
adversary. A player starts with a set number of worker units and a central structure.
Workers can either gather resources and return them to the central structure or,
given enough resources, build additional structures. Central structure produces
additional workers, but many others produce attacker type units which compose
players army.

At any given time a player has access to only a small part of the game state.
He has no direct access to what other players are doing, which contrast with most
classical games and adds a significant layer of complexity to decision making. In
order to win a player must “scout” his opponent by sending a unit to approximate
position of opponents location and make educated guesses based on the (often
minimal) information he has received before the scout was destroyed.

For simplicity of understanding, the game is often viewed in two distinct parts:
“macro” and “micro”. Macro refers to general strategic and economic actions which
may have long-term effects, such as choice of buildings and army composition.
Micro refers to split-second decisions most often with regards to their army and
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its actions towards opponents army or buildings. The ability to balance between
making correct strategic decisions on a “macro” level mixed with controlling the
army on a “micro” level is what often sets best players from others (Figure 1.4).

Given that the game is real-time, a player must constantly make all the deci-
sions, often multiple times per second. Number of decisions a player makes is
measured by Actions Per Minute (APM) and for most professional players it is
around 400, meaning a player makes about 6 actions every second throughout the
game.

Additional complexity arises from the fact that each player can choose one of
three district races, each with their own unique set of structures and units.
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Figure 1.4: A game of StarCraft 2. Blue player must constantly switch between
defending his resource gathering units from red player’s army and at the same time
coordinating an attack of his own, seen on the minimap in bottom left. Source:
Global StarCraft League tournament “GSL vs the World”, August 2017

Mathematically, StarCraft II can be viewed as POMDP (see section 1.1.1) with
practically infinite state and action spaces. For this reason, it is especially beneficial
to rely on function approximators when attempting to navigate this environment
via RL based agents.
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1.4.1 PySC2

To communicate with the game programmatically, PySC2 library was used. This
library exposes a list of spatial and non-spatial features containing information
similar to what a player would have access to. All benchmark results were gathered
on a set of minigames: maps with pre-defined sets of goals such as moving a unit to a
target location, defeating enemy army or gathering resources and building structures
(Figure 1.5). Full specification for input features and actions can be viewed online:
https://github.com/deepmind/pysc2/blob/master/docs/environment .md

ssRecall

Figure 1.5: PySC2 environment view example. On the left is a simplified game
engine GUI meant to illustrate what is happening in the game for a human observer.
On the right are the actual spatial features an Al agent would see, including unit
and structure affiliation, types, health and visibility [Vinyals et al., 2017].
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2. Agent for StarCraft 11

In this chapter we first provide a birds-eye view of the implemented model archi-
tecture. We then dive deeper into two key aspects: categorical feature embeddings
and action policies with multiple outputs. These aspects are not only critical to the
whole agent, but also neither present in other common benchmark environments
such as Atari and MuJoCo, nor described in-depth in the reference publication.
Finally, we describe some of the important implementation details such as platform
choice and codebase structure.

2.1 Model Architecture

Agent model architecture closely follows FullyConv architecture description from
the SC2LE paper and visualized in Figure 2.1 below. The name FullyConv refers
to the fully convolutional, resolution preserving nature of the model, remaining
spatial in structure from beginning to the end. This approach is in contrast with
typical usages of convolutional layers, that reduce in size at each layer, ending
with a conversion to a flat vector with dense layer on top (ex. Atari DQN architec-
ture [Mnih et al., 2015]).

The need for spatial structure preserving architecture stems from the nature
of the environment and how an agent typically interacts with it. A significant
part of navigating StarCraft comes in the form of mouse clicks, either directly on
the game screen or on the minimap. For this reason it would be beneficial for
the spatial policies to remain in the same domain space as the incoming spatial
features [Vinyals et al., 2017].

The model begins with three essentially separate blocks, representing different
sources of information: two for spatial data (screen and minimap) and one for
non-spatial data. First two sources represent the spatial data that an agent could
see on the screen or on the minimap respectively (ex. unit type or health), whereas
non-spatial data stands for additional information a player can get about the game
state, such as number of resources or army count.

Spatial information inputs consist of n x n pixel “images”, where each pixel repre-

sents value of the feature at a given pixel. Since most units are larger than a pixel
in size, the information about them is duplicated across every pixel they occupy.
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Spatial inputs are passed through two convolutional layers with 5 x 5, 3 x 3
size and 16, 32 filter count respectively. In order to preserve resolution, these
layers have stride 1 and are evenly padded. Non-spatial inputs are logarithmically
scaled and then broadcasted to the same dimensions as spatial inputs — that is, the
information is repeated across every pixel in the image to match height and width
of the spatial features.

The three blocks are then merged into a single H x W x D state representa-
tion. From here the state is converted into a spatial policy, non-spatial policy and
value estimate of the current state. Spatial policy conversion is done by applying
one 1x1 convolutional layer with a single output filter. For non-spatial policy and
value estimates the state is first pushed through a joint fully connected (FC) layer
and then another final FC layer representing the policy and value estimate.

A final softmax layer is applied to action policy outputs to obtain probability
distributions. Action policies are described in greater detail in section 2.1.2.

—Value
Non-spatial
features —_
— Non-spatial
> action policy
Screen H l \ — }
Spatial
State action policy
representatlon
Minimap
Figure 2.1: FullyConv  architecture as described and illustrated

in [Vinyals et al., 2017].
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2.1.1 Embedding Layer

One special type of input information are the categorical spatial features, which
represent some categorical data for every pixel in the feature “image”. For example,
a unit could be represented by n x m pixel grid and every pixel in this grid would
contain various information about this unit, such as its type (ex. marine, worker)
or id of the player than controls him. As these features are not ordinal in nature,
they can not be simply processed as is. One typical way to handle such situation is
to apply one-hot expansion to a dimension that matches the number of categorical
levels of the feature.

In case of spatial features naive one-hot expanding would be prohibitively ex-
pensive from computational perspective. For example the unit type feature has
over 1800 levels, which would result in a H x W x 1800 sized tensor just on the
input layer. For this reason, the one-hot expanded tensor must be reduced in the
channel dimension back to a reasonable level (to continuous space in the SC2LE
paper) with 1x1 convolutional layer (see Figure 2.2). Intuitively, this layer has
a separate parameter responsible for recognizing different categorical levels of a
given feature. Since input to the layer is a one-hot expanded tensor, an output will
consist of an “image” where each pixel is filled with the relevant parameters value.

e /
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Figure 2.2: Embedding layer visualization. An input image of H x W x 1 size with
value 2 at a specified pixel is first one-hot expanded, producing an H x W x C
tensor with all zeros except for 1 at index 2 for specified pixel’s vector. Resulting
tensor is then passed through 1 x 1 convolutional layer, arriving back to H x W x 1
image, containing continuous values for each pixel.
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As the weights of the 1 x 1 convolutional layer are trained, a useful side-effect to
the embedding layer emerges, similar to word2vec [Mikolov et al., 2013|. That is,
the network learns to recognize the semantic similarity between different inputs
such as two different units having similar role in the environment.

2.1.2 Action Policies

The action space provided by PySC2 environment is rich enough to express most,
if not all, actions possible in a game as complex as StarCraft II. This includes left
and right mouse clicks, boxed selection of units and queued actions (actions that
are deferred until previous was completed).

At every timestep the environment provides an agent with a list of all possi-
ble action identifiers their argument types. An example of a action identifier could
be left-mouse click on the screen, which takes as argument coordinates of the
click and whether the click is queued. For simplicity, we will refer to both action
identifier and its argument choices as a single action step.

The most correct way to represent actions would be through their full joint proba-
bility distribution, but such an approach would result in millions of possible values
even for very low spatial dimensions, which would render any trainable approach
virtually infeasible in the foreseeable future.

A simplifying assumption is made that action choices are conditionally independent
from one another and are made entirely separately. This assumption of course
does not hold in the real world (ex. argument type choices depend on their action
identifier), but nonetheless works relatively well in practice.

Individual policy representations are obtained by either applying 1 x 1 convolutional
layer or FC layer to the merged state representation for spatial and non-spatial
policies respectively (preceding steps are described in detail in section 2.1). One
final softmax layer is applied to convert model outputs to action probability distri-
butions (Figure 2.3). Agent actions (both the indentifier and its arguments) are
obtained by sampling the resulting probability distributions.

At any given point in time only a portion of actions are available to the agent,
which is important to keep in mind when sampling the policies. For this reason a
mask of available actions is applied one step before sampling, which effectively sets
the probabilities of unavailable actions to zero. We then re-normalize the policy to
ensure that the probabilities sum up to 1.
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Figure 2.3: Action policy layer. State block is transformed into a spatial policy
(used mainly for mouse-clicking on the screen) and non-spatial policy outputs. An
output consist of probability distributions across possible values, such as action ids
or specific pixels to click.

2.2 Implementation Details

Given that no official A2C paper was released, several sources of information were
pooled for inspiration during development of this agent: the original A3C [Mnih et al., 2016]
paper, it’s GPU support extension paper G-A3C [Babaeizadeh et al., 2017|, the
OpenAl baselines repository [Dhariwal et al., 2017] and PyTorch based RL al-
gorithms repository [Kostrikov, 2018], both of which contained a reference A2C
implementation. Earlier attempts to replicate SC2LE were also loosely referenced,
however at the time of writing they were missing key aspects, relying on a different

or incomplete architecture interpretation. Parts of the code that were most inspired

by the attempts were marked with a reference link in the source code.
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Agent is implemented with the Python programming language and TensorFlow
— a general-purpose automatic differentiation library [Abadi et al., 2016]. With
TensorFlow, complex differentiable layers can be defined seamlessly in a flexible
computation graph. Derivatives of the layers are calculated automatically by
applying the backpropagation algorithm. Additionally, NumPy [Oliphant, 2015|
and SciPy [Jones et al., 01 | were used for helper methods during input/output
preprocessing stages.

Agent codebase is designed with ease of extension in mind, either with alter-
native algorithm implementations, model implementations or even with alternative
Starcraft IT communication methods (such as the upcoming raw pixel API). See
Figure 2.4 below for a visualization of the codebase structure.

Flexibility with regards to the choice of input features is key during experimentation
step and lacking in alternative approaches. Here it is implemented as a list of
accepted features stored in an external JSON configuration file which is loaded
during initialization into a Config class instance, passed to EnvPool and A2CAgent
instances.

Model-free algorithms such as A2C require significant amount of samples to learn
even the most basic policies, which is why codebase was structured with strong
support for parallelization. API is defined such that the number of environments
is hidden away from the agent or its model, which means that any number of
environments can be supported, only limited by hardware capabilities. This is for
the most part enabled with strong vectorization capabilities of TensorFlow and
NumPy.

Communication with the game engine is done through the SC2Env class from
PySC2 library. Instances of SC2Env are created as separate processes and com-
municated with via the EnvPool class, based on the feature specification loaded
into the Config class. EnvPool itself is wrapped with EnvWrapper which provides
simple API for the agent to get relevant input features and provide necessary actions.

The main class of the codebase is the A2CAgent, which accepts the TensorFlow
Session instance, Config instance and model definition as a lambda function defined
in a separate class. This class is solely responsible both for acting and training
of the agent. While having many responsibilities, content of the class was kept
relatively short thanks to powerful vectorized operations support of TensorFlow.
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The glue between the agent and the environment is implemented in a lightweight
Runner class, which essentially only contains the main execution loop and logging

utilities.
model [’rf.‘;mim ‘ ‘ Cmﬁq ' ‘ BavPool ’
\, %
AﬂCAa'm'c ‘ EavWWrapper ] S£2Bav

Figure 2.4: Structure of the implemented codebase.
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3. Evaluation

In this chapter we describe the different tasks (minigames) our agent is evaluated
in, list the results the agent has obtained and provide commentary on how these
results compare to the expectations and human expert benchmarks.

3.1 Tasks

Each evaluated task is a StarCraft Il minigame: a map with some simple pre-defined
MDP. These minigames are meant to test agents ability to learn and generalize
across different environments.

MoveToBeacon map requires the agent to navigate a single unit to a beacon — a
specific location on the map, identified by a large green circle.

In CollectMineralShards map the agent has to collect mineral shards (resource
nodes) by walking on top of them. The map provides the agent with two units and
an optimal strategy would be to navigate them simultaneously.

DefeatRoaches map introduces static opponent army units, which the agent
has to defeat with his own. Opponent and agent units are significantly different, so
the agent has to learn the characteristics of both types while only controlling its
own units.

DefeatBanelingsAndZerglings map expands on the adversarial objective by
providing opponent with two types of units: Zerglings and Banelings. The Baneling
units can explode on contact with their opponents, meaning that the agent has to
learn precise navigation and avoidance mechanisms in order to succeed.

FindAndDefeatZerglings map tests agents’ ability to navigate in a partially
observable environment. An agent has to find and defeat opponent units scattered
across the map.

CollectMineralsAndGas map objective is to test agents economic reasoning
capabilities. The only goal of the map is to gather as many resources as possible,
though there are multiple paths to achieving this goal, including building additional
workers and a secondary base to speed up their gathering rate.

28



BuildMarines is similar to previous map, except the objective is to build as
many units of a specific type (Marine) as possible. The path to building these units
requires completion of multiple sub-tasks with long time-steps inbetween. This, in
turn, tests agent’s long term planning capabilities.

3.2 Setup

Choice of hyperparameters such as learning rate, loss weights and batch size is
typically made by repeatedly randomly sampling from some expected interval and
training to a stable policy until satisfying results are achieved. Unfortunately this
approach is not feasible for the StarCraft Il environment as the agent might take sig-
nificant amount of time before it is clear whether hyperparameter choice was good.
Furthermore, even with fixed hyperparameters the end result varies wildly across dif-
ferent seeds. For this reason many hyperparameters were chosen based on the initial
performance of the agent on a subset of maps and locked for future experimentation.

Screen and minimap resolution of presented results was locked to 16px for all
map environments. For comparison, DeepMind used 64px resolutions. The choice
for lower resolution is driven purely by time constraints, as computational require-
ments grow significantly with higher resolutions (about 25x increase in wall clock
time requirements for 64px). Agents capacity for learning in higher resolutions to
the level of presented results was empirically verified at least once for every map.
On some of the maps with higher resolution agents training speed improved in terms
of number of samples required to reach the target results, but was unfortunately
too slow in terms of wall clock time.

While the codebase was developed with dynamic configuration of input features
in mind, they were locked across all map environments during results gathering
phase to ensure that the agent is capable of generalizing — learning complex policies
across varying environments.

Optimization algorithm was chosen between Adam |Kingma and Ba, 2014| and
RMSProp [Tieleman and Hinton, 2012|, two SGD improvements. RMSProp was
used for all minigames except FindAndDefeatZerglings, where Adam was used in-
stead. Adam is considered to be the best algorithm in supervised learning scenario,
where its momentum build up helps jump through unfavorable local optima. For
this same reason we have considered Adam to be unfavorable in RL scenarios as
the input data distribution is inherently not stationary and thus momentum build
up may be detrimental to agents performance. Surprisingly it has significantly
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surpassed RMSProp on the FindAndDefeatZerglings minigame, perhaps due to
the unique partially observable nature of the map.

All model weights were initialized with He initialization [He et al., 2015], which is
shown to produce better results than the alternatives (eg. uniform or normal) and
has become standard practice in modern Machine Learning.

3.3 Results

Results were collected by first training implemented agent until its average score
matches baseline results and then executing in test mode, similarly to the training
mode. The agent operates in 32 environments and the average score over those 32
runs is reported as the final result. If target score is not achieved in reasonable time
then the training is prematurely terminated. Time limit depends on the minigame,
from 30 minutes for MoveToBeacon to 50 hours for FindAndDefeatZerglings (wall
clock time). To ensure that our agent is capable of converging to a policy with
target results, we run training procedure four times with different random seeds.
Results are summarized in the table 3.1 below.

Note that our method is different from how DeepMind has gathered their re-
sults, where they launched 100 instances with different hyperparameter sets for 500
million frames and chose best out of them. This method was not chosen due to
unrealistic computational requirements: obtaining results presented in this work
took about 25,000 CPU hours in total, which means that repeating DeepMind
experiments in full would take over 5,000,000 CPU hours.

Map Name A2C Agent | DeepMind | Human
MoveToBeacon 26.3 £ 0.5 26 28
CollectMineralShards 106 + 4.3 103 177
DefeatRoaches 147 + 38.7 | 100 215
DefeatBanelingsAndZerglings | 230 + 106.4 | 62 727
FindAndDefeatZerglings 43 £ 5 45 61
CollectMineralsAndGas 3340 £ 185 3978 7566
BuildMarines 0.55+ 025 |3 133

Table 3.1: Mean and std.dev of total reward for an episode of the implemented
agents relative to DeepMind benchmarks. “A2C Agent” stands for our baseline im-
plementation, “DeepMind” for DeepMind’s baseline FullyConv results and “Human”
for DeepMind’s GradMaster ranked expert results.

30



3.4 Discussion

Our agent matches or slightly surpasses DeepMind FullyConv baseline results on
most of the maps. A video of our agent navigating given set of maps has been
recorded and available online: https://youtu.be/gEyBzcPU5-w

MoveToBeacon map can be considered solved, 2 point difference from human
expert is most likely due to luck in random placements of the beacon. Specifically
on this map the agent learned optimal policy very suddenly: behavior seemed quite
random for majority of the time with optimal actions emerging almost instantly
after first few good attempts.

CollectMineralShards map matches DeepMind baseline results, but is almost
two times worse than human expert. The environment contains two units that
could be controlled at almost the same time, singificantly increasing the speed of
gathering the shards. Seems that the agent is unable to discover this strategy.

DefeatRoaches map matches DeepMind baseline results, but is two times worse
than human expert. Most likely optimal strategy is to defeat opponent army in
parts by getting attention of a subset at a time.

DefeatBanelingsAndZerglings results are better than DeepMind’s baseline,
but significantly worse than human benchmark. This map requires precise control
of the individual units in the army in order to minimize damage from baneling
explosions and the agent fails to learn anything more advanced than some initial
splits. We observe significant variance of results in this minigame, most likely
stemming from its volatile nature.

Find AndDefeatZerglings results match DeepMind baseline, but are worse than
human expert. Most likely reason is that since the map is not fully visible, a human
expert can remember where enemy army can be located on the map, whereas best
policy our agent has discovered is to just move the units in a trajectory that covers
the full map.

CollectMineralsAndGas results are slightly below DeepMind baseline and more
than two times worse than human expert. The "optimal" strategy our agent has
learned is to simply send the initial workers to gather resources and wait for the
remaining time. Judging by DeepMind results, their agents strategy is similar with
maybe 1 more worker produced.
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BuildMarines map proved to be too difficult for our agent to learn any rea-
sonable policy on. Judging by relative score, this seems to be true for Deep-
Mind agent as well. As this map requires long-term economic planning, solving
it is most likely too difficult without some sort of temporal structure such as
LSTM [Hochreiter and Schmidhuber, 1997].

3.4.1 Failures

In this section we list alternative choices (either architectural or in agent setup)
that were considered failures due to agents poor performance.

Although the SC2LE paper only mentions embedding into continuous space, we
have also experimented with having dimensionality reduced to a different space size.
The size was either fixed to a small number (ex. 2 or 3) or dynamically changed
based on the feature (ex. log,(D), where D is number of categorical levels). In the
end results were not consistently better than simply using continuous space.

We have experimented with an alternative approach to embedding categorical
spatial data described in section 2.1.1. While the main approach requires defining
a separate embedding layer for every categorical feature, an alternative solution
would be to combine all categorical spatial inputs into a single H x W x (Z C’i)
tensor, where C; defines number of categorical levels of i-th feature. In theory this
approach had two benefits: ease of implementation and computation (can run a
single convolutional operation for all categorical features at the same time) and
the potential for learning interactions of different features since they all influenced
each others output filters. However, empirically this lead to very unstable learning
trajectory, often times oscillating between reasonable policies and borderline ran-
dom behavior.

Singificant amount of time was spent investigating influence of various input
features on agents speed of convergence to target results. While we have found
some configurations that led to as much as 10x improvement in learning speed on
some of the maps, they typically resulted in worse perfomance on other maps.

3.4.2 Future Work

Possible direction for future work could in investigating ways of improving sample
efficiency of the agent (number of samples required to achieve target results), either
by applying alternative algorithms such as PPO, ACKTR or SAC, or applying vari-
ance reduction techniques from Monte Carlo methods such as Antithetic Variates.

32



A promising direction to explore would be to pre-train agent model in a supervised
learning setting with data gathered from human experts.

An alternative direction could be in exploring Hierarchical Reinforcement Learning
— a way to organize agents tasks into hierarchies. While the goal is to produce
an agent capable of beating a professional human player in a modern video game
such as StarCraft II, but solution to this task is still an open research question,
potentially many years away.
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Conclusion

We have investigated and implemented modern model-free Deep Reinforcement
Learning algorithm: Advantage Actor Critic. We have measured its performance
its ability to learn complex tasks, namely playing a modern video game with access
to information similar to what a human player would have.

As a result, we have released an open-source implementation of the reference
ANN based architecture described by DeepMind [Vinyals et al., 2017]. We have
shown that our implementation is able to match reference results under mild game
configuration simplifications to make the task feasible without access to expensive
hardware.

Our open source implementation is available at https://github.com/inoryy/

pysc2-rl-agent and a video recording of the agent navigating reference tasks can
be seen at https://youtu.be/gEyBzcPU5-w.
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Appendices

Source Code

Source code of the practical part of this thesis is available in a repository online
on GitHub: https://github.com/inoryy/pysc2-rl-agent. This repository con-
tains Python code of the agent that replicates [Vinyals et al., 2017| results, along
with instructions to install and execute it locally.

Video Recordings
Two video recordings of the agent navigating described minigames are available:

1. With StarCraft II point of view: https://youtu.be/gEyBzcPU5-w

2. With PySC2 simplified GUI: https://youtu.be/Qde0bwCCxFI
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