
1
Tartu 2021

ISSN 2613-5906
ISBN 978-9949-03-618-9

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS
26

TA
U

N
O

 PA
LTS	

A
 M

odel for A
ssessing C

om
putational Thinking Skills

TAUNO PALTS

A Model for Assessing
Computational Thinking Skills

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

26

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

26

TAUNO PALTS

A Model for Assessing
Computational Thinking Skills

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor of
Philosophy (PhD) in Computer Science Education on April
of the Institute of Computer Science, University of Tartu.

Supervisor

Prof. Margus Pedaste
University of Tartu
Tartu, Estonia

Prof. Varmo Vene
University of Tartu
Tartu, Estonia

Opponents

Prof. Valentina Dagienė
Vilnius University
Vilnius, Lithuania

Prof. Erik Barendsen
Radboud University, Open University
Nijmegen, The Netherlands

The public defense will take place on June

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright © 2021 by Tauno Palts

ISSN 2613-5906
ISBN 978-9949-03-618-9 (print)
ISBN 978-9949-03-619-6 (PDF)

University of Tartu Press
http://www.tyk.ee/

8, 2021 at 14:15 in Narva mnt 18.i

i20, 2021 by the Council

http://www.tyk.ee/

To my family and friends

ABSTRACT

In the modernizing world, computer science is not only a separate discipline for
scientists but has an essential role in many fields. Next to reading, writing, and
arithmetic, thinking computationally has become a necessary skill for everyone.
There is an increasing interest in developing computational thinking (CT) skills at
various education levels – from kindergarten to university. Wing has defined CT
as "the thought processes involved in formulating problems and their solutions so
that the solutions are represented in a form that can be effectively carried out by an
information-processing agent." [Win06]. Therefore, at the comprehensive school
level, research is needed to have an understanding of the dimensions of CT skills
and to develop a model to describe the dimensions of CT for assessing CT skills.

CT is described in several articles and reports. Still, these are not in line with
each other, and there is missing a common understanding of the dimensions of the
skills that should be in the focus while developing and assessing CT skills. In this
doctoral study, through a systematic literature review, an overview of the dimen-
sions of CT presented in scientific papers is given. A model for assessing CT skills
in three stages is proposed: i) defining the problem, ii) solving the problem, and
iii) analyzing the solution. Those three stages consist of ten CT skills: problem
formulation, abstraction, problem reformulation, decomposition, data collection
and analysis, algorithmic design, parallelization and iteration, automation, gener-
alization, and evaluation.

The systematic development of CT skills needs an instrument for assessing CT
skills at the basic school level. Tasks of the Bebras (Kobras) international chal-
lenge on informatics have been suggested as part of an instrument to assess CT
skills. This doctoral study empirically tests which CT skills can be distinguished
from the Bebras challenge results. Exploratory factor analysis was used to an-
alyze the results from 7,100 participants of the Bebras challenge, and two main
factors emerged, which can be characterized as algorithmic thinking and pattern
recognition.

As an instrument is created for assessing CT skills at basic school, an interest
remains, if and how this instrument for assessing CT skills can be used at the sec-
ondary school level. This doctoral study also presents a modified and empirically
tested instrument with tasks for the secondary school level. 649 secondary school
students were included in the study, and confirmatory factor analysis (CFA) was
used to confirm that the modified instrument is suitable for assessing skills of al-
gorithmic design and pattern recognition and can be used for setting directions for
developing CT skills at the secondary school level.

Eventually, a modified model for assessing CT skills is presented, combining
the theoretical and empirical results from the three main studies.

6

CONTENTS

List of original publications 11

1. Introduction 13
1.1. Research Problem . 13
1.2. The Focus of the Research . 15

2. Theoretical Background 17
2.1. Skills of CT . 17
2.2. Assessing the Development of CT Skills 18

2.2.1. Assessing the Development of CT Using Gaming and Project
Creation Activities . 18

2.2.2. Assessing Development of CT Using Robotics and Tinkering
Activities . 21

2.2.3. Assessing Development of CT Using Unplugged Activities 22

3. Research Design and Methods 26
3.1. Research Design . 26
3.2. Creating a Model for Assessing CT Skills 27
3.3. Methods for Developing Instrument to Assess CT in Basic School 28
3.4. Methods for Developing Instrument to Assess CT in Secondary School 29

4. Findings 31
4.1. A Model for Assessing CT Skills 31

4.1.1. Identifying the Directions of CT 31
4.2. A New Model for Assessing CT Skills 35

4.2.1. Defining the Problem . 37
4.2.2. Solving the Problem . 39
4.2.3. Analyzing the Solution 41
4.2.4. An Example of Using the New Model for Assessing CT Skills 43

4.3. Tasks for Assessing CT Skills at Basic School Level 45
4.3.1. Exploratory Factor Analysis to Explore the Factor Structure

of Bebras Challenge Tasks to Assess CT 45
4.3.2. Description and an Example of Algorithmic Thinking Tasks 48
4.3.3. Description and an Example of Pattern Recognition Tasks . 49

4.4. Tasks for Assessing CT Skills at Secondary School Level 51
4.4.1. Pilot Study to Develop the Tasks to Assess CT Skills at Sec-

ondary School Level . 51
4.4.2. Confirmatory Factor Model to Confirm the Factor Structure

of Tasks to Assess CT Skills 51

5. Discussion 54

7

6. Conclusions and Implications 57
6.1. Conclusions . 57
6.2. Implications . 58
6.3. Limitations . 59

61

A.1. Task 1. Geocaching . 69
A.2. Task 2. Crane Operating . 69
A.3. Task 3. Quick Beaver Code . 70
A.4. Task 4. Mushrooms . 70
A.5. Task 5. Biber Hotel . 71
A.6. Task 6. Robot the Stairs . 71
A.7. Task 7. Animation . 72
A.8. Task 8. Fair Share . 72
A.9. Task 9. Dream Dress . 73

A.10. Task 10. Bracelet . 73
A.11. Task 11. Cross Country . 74
A.12. Task 12. Animal Competition . 74
A.13. Task 13. Walnut Animals . 75
A.14. Task 14. Button Game . 75
A.15. Task 15. Pencils Alignment . 76

Appendix B. Tasks for Assessing CT at Secondary School Level 77
B.1. Task 1. Crane operating . 77
B.2. Task 2. Popularity . 77
B.3. Task 3. Word Chains . 77
B.4. Task 4. Geocaching . 78
B.5. Task 5. Irrigation System . 78
B.6. Task 6. Beaver Lunch . 78
B.7. Task 7. Button Game . 79
B.8. Task 8. Decorating Chocolate . 79
B.9. Task 9. Pencils’ Alignment . 80

B.10. Task 10. Building a Chip . 80

Sisukokkuvõte (Summary in Estonian) 81

Publications 83

Curriculum Vitae 128

Elulookirjeldus (Curriculum Vitae in Estonian) 129

8

Appendix A. Tasks for Assessing CT at Basic School Level 69
Bibliography

LIST OF FIGURES

1. Example of a Scratch Project . 20
2. LEGO Robots EV3 and NXT are suggested for developing CT skills 23
3. An Example of Bebras Challenge Task Suggested for Developing

CT Skills . 24
4. Research design . 26
5. Stages of systematic CT literature analysis 27
6. Map of the clusters of the CT dimensions identified from the articles 32
7. A new model for assessing CT skills 37
8. A model for assessing CT skills with illustrations from the project

measuring plants’ soil humidity. 43
9. Solving the problem stage suggested for the model of assessing CT

skills. 47
10. An example of algorithmic thinking task. Title: The Crane Operating 48
11. An example of an algorithmic thinking task. Title: The Quick Beaver

Code . 49
12. An example of a pattern recognition task. Title: The Animal Com-

petition . 50
13. An example of a pattern recognition task. Title: The Button Game 50
14. CFA model from the results of CT tasks (t1-t10) with the factor

loadings of the two factors: algorithmic thinking (f1) and pattern
recognition (f2). 52

15. A modified model for assessing CT skills 55

9

LIST OF TABLES

1. Categories of CT skills from six original articles 36
2. Factor loadings of two factors of the tasks and predicted original

skill assessed. 46

10

LIST OF ORIGINAL PUBLICATIONS

Publications included in the thesis

I Tauno Palts and Margus Pedaste. “A Model for Developing Computational
Thinking Skills”. In: Informatics in Education 19.1 (2020), pp. 113–128.
DOI: http://dx.doi.org/10.15388/infedu.2020.06.

II Tauno Palts et al. “Tasks for Assessing Skills of Computational Thinking”.
In: Informatics in Education. 10th annual International Conference of Edu-
cation, Research and Innovation (2017), pp. 2750–2759. DOI: http://dx.
doi.org/10.21125/iceri.2017.0784.

III Tauno Palts and Margus Pedaste. “Tasks for Assessing Computational Think-
ing Skills at Secondary School Level”. In: (2019), pp. 216–226. DOI: http:
//dx.doi.org/10.1007/978-3-030-35343-8_23.

Other published work of the author

IV Eerik Muuli et al. “Using image recognition to automatically assess program-
ming tasks with graphical output”. In: Education and Information Technolo-
gies 25.6 (2020), pp. 5185–5203. DOI: https://doi.org/10.1007/
s10639-020-10218-z.

V Piret Luik et al. “Programming MOOCs – different learners and different
motivation”. In: International Journal of Lifelong Education 39.3 (2020),
pp. 305–318. DOI: https : / / doi . org / 10 . 1080 / 02601370 . 2020 .
1780329.

VI Piret Luik et al. “What motivates enrolment in programming MOOCs?” In:
British Journal of Educationalt Technology 50.1 (2019), pp. 153–165. DOI:
https://doi.org/10.1111/bjet.12600.

VII Piret Luik et al. “Participants and Completers in Programming MOOCs”. In:
Education and Information Technologies 24.6 (2019), pp. 3689–3706. DOI:
https://doi.org/10.1007/s10639-019-09954-8.

VIII Margus Pedaste et al. “Complex Problem Solving as a Construct of Inquiry,
Computational Thinking and Mathematical Problem Solving”. In: 2161-377X
(2019), pp. 227–231. DOI: https://doi.org/10.1109/ICALT.2019.
00071.

IX Marina Lepp et al. “Troubleshooters for Tasks of Introductory Programming
MOOCs”. In: The International Review of Research in Open and Distributed
Learning 19.4 (2018). DOI: https : / / doi . org / 10 . 19173 / irrodl .
v19i4.3639.

X Piret Luik et al. “Completion of Programming MOOC or Dropping Out: Are
There Any Differences in Motivation”. In: (2018), pp. 329–337.

11

https://doi.org/http://dx.doi.org/10.15388/infedu.2020.06
https://doi.org/http://dx.doi.org/10.21125/iceri.2017.0784
https://doi.org/http://dx.doi.org/10.21125/iceri.2017.0784
https://doi.org/http://dx.doi.org/10.1007/978-3-030-35343-8_23
https://doi.org/http://dx.doi.org/10.1007/978-3-030-35343-8_23
https://doi.org/https://doi.org/10.1007/s10639-020-10218-z
https://doi.org/https://doi.org/10.1007/s10639-020-10218-z
https://doi.org/https://doi.org/10.1080/02601370.2020.1780329
https://doi.org/https://doi.org/10.1080/02601370.2020.1780329
https://doi.org/https://doi.org/10.1111/bjet.12600
https://doi.org/https://doi.org/10.1007/s10639-019-09954-8
https://doi.org/https://doi.org/10.1109/ICALT.2019.00071
https://doi.org/https://doi.org/10.1109/ICALT.2019.00071
https://doi.org/https://doi.org/10.19173/irrodl.v19i4.3639
https://doi.org/https://doi.org/10.19173/irrodl.v19i4.3639

XI Margus Pedaste et al. “What Happens to IT Education? The Case in Esto-
nia with Some Recommendations for International Discussion”. In: Interna-
tional Journal of Information and Education Technology 7.3 (2017), p. 204.

XII Marina Lepp et al. “Self-and Automated Assessment in Programming MOOCs”.
In: (2016), pp. 72–85.

XIII Marina Lepp et al. “MOOC in Programming: A Success Story”. In: (2017),
pp. 138–147.

XIV Tauno Palts and Margus Pedaste. “Tasks for Assessing Skills of Compu-
tational Thinking”. In: (2017), pp. 367–367.

XV Külli Kori et al. “First-year Dropout in ICT Studies”. In: (2015), pp. 437–
445.

XVI Tauno Palts and Margus Pedaste. “Model of Learning Computational Think-
ing”. In: (2015), pp. 211–221.

XVII Külli Kori et al. “What influences students to study information and com-
munication technology”. In: INTED2014 Proceedings (2014), pp. 1477–1486.

12

1. INTRODUCTION

1.1. Research Problem

According to OECD [AGZ16], the European labor market lacks qualified ICT
practitioners as jobs are lost and new jobs are created by automation. The report
states a decreasing interest in STEM subjects science, technology, engineering,
and mathematics. The problem is that in order to educate future citizens, educa-
tional research is needed to identify the forms of knowledge, skills, and compe-
tencies necessary for the advancement of society in the 21st century.

In computer science, questions arise, how to raise interest in and knowledge of
learning the principles of computer science already at the comprehensive school
level. At first, computational thinking (CT) was approached as a way computer
scientists think, but recently it has been noted that it has become an essential way
of thinking for everyone to solve problems effectively while finding their way in
the world of technology.

In 1991 Seymour Papert mentioned the goal of introducing computational
thinking – using a computer to solve problems so that it helps people analyze and
explain the problems, solutions, and connections between them [Pap96]. Wing
[Win06] states that CT skills are fundamental skills for everyone, not just for
computer scientists, and belong to every child’s analytical ability, just like read-
ing, writing, and arithmetic. Wing started a new wave of developing CT as early
as the comprehensive school level. Wing defined CT as "the thought processes in-
volved in formulating problems and their solutions so that the solutions are repre-
sented in a form which can be effectively carried out by an information-processing
agent." [Win08]. The information processing agent can be a robot, a computer, a
machine, or a human being. This definition of CT has been widely used and cited
in further studies. Therefore, this Wing’s definition of CT is used as a basis for
this Ph.D. thesis.

Later, the term CT has had several interpretations and has evolved from being
only a way programmers and computer scientists think to essential skills for every
child. Some authors refer to CT as a way computer scientists think. For example,
Anderson [And16] states that "Computational thinking is an approach to problem-
solving typically employed by computer programmers.". Fronza et al. describe
CT as a skill for everyone through in-depth computer science topics as being "the
study of computers and algorithmic processes, including their principles, their
hardware and software designs, their applications, and their impact on society.
" [FIC17]. Grover and Pea, 2013, describe CT as "the process of recognizing
aspects of computation in the world that surrounds us and applying the tools and
techniques from Computer Science to understand and reason about both natural
and artificial systems and processes." [GP13].

Several authors describe CT as a way of thinking for computer scientists to
tackle challenging problems. Gouws et al. state that "this concept extracts the

13

thought processes involved in thinking like a computer scientist from concrete
computer science practices and provides a more generalized understanding of
how computer scientists approach problems." [GBW13]. Fowler defines it as "a
method of using some of the concepts used in CS to systematically solve problems
and process information." [Fow17]. Rose et al., 2017 add that a human being is
an essential part of CT, describing CT as "solving problems, designing systems,
and understanding human behavior, by drawing on the concepts fundamental to
computer science." [RHJ17]. Shute et al., 2017, claim that CT occurs when stu-
dents use computers to model their ideas and develop programs [SSA17]. These
views on CT are based on the premise that everyone should be familiar with the
basic concepts of computer science by developing CT.

Not all authors see CT as a skill for computer scientists. Vallance and Towndrow
[VT16] claim that "CT is a skill that all pupils must learn if they are to be ready
for the workplace and able to participate effectively in the digital world". Wein-
trop et al. [Wei+16] believe that CT "represents a universally applicable attitude
and skill set everyone, not just computer scientists, would be eager to learn and
use.". CT is needed for any workplace, but several authors include the problem-
solving aspect of CT. For example, Lee et al. [Lee+11] look at CT in the context of
problem-solving, claiming to use CT " to describe a set of thinking skills, habits,
and approaches that are integral to solving complex problems using a computer
and widely applicable in the information society". Voogt et al. [Voo+15] define
CT as "a conceptual way to systematically, correctly, and efficiently process infor-
mation and tasks to solve complex problems". Roscoe et al. [RFP14] state that CT
"is a fundamental problem-solving technique that has applications beyond com-
puting and is considered by many to be a fundamental life skill". This way, CT
can be recognized as algorithmic thinking involved in solving problems.

The Computer Science Teacher Association (CSTA) and the International So-
ciety for Technology in Education (ISTE) describe CT as an ability to deal with
complexity and open-ended problems [IC11]:"CT as a problem-solving process
that includes (but is not limited to) the following characteristics: formulating
problems for computational solution, logically organizing and analyzing data, ab-
stractions including models and simulations, algorithmic thinking, evaluation for
efficiency and correctness, generalizing and transferring to other domains".

Not all authors emphasize the role of problem-solving in CT. Selby and Wool-
lard [SW13] define CT as "a cognitive or thought process that reflects the ability
to think in abstractions, the ability to think in terms of decomposition, the ability
to think algorithmically, the ability to think in terms of evaluations, and the ability
to think in generalizations". Lee et al. look at CT as "a set of thinking patterns
that includes understanding problems with appropriate representation, reasoning
at multiple levels of abstraction, and developing automated solutions". These
definitions concentrate on describing dimensions of CT, which mostly include de-
scribing problem-solving processes but do not name problem solving indirectly.
Denning and Tedre [DT19] emphasize that CT varies as students progress taking a

14

constructivist approach by starting from writing down clear instructions and mov-
ing towards learning fundamental concepts found in programs. Although, they
explain that CT is not a set of concepts for programming; it is a way of thinking
that is honed through practice: the mental skills for designing computations to do
jobs for us, and for explaining and interpreting the world as a complex of infor-
mation processes. The authors identify six dimensions of CT: methods, machines,
computing education, software engineering, computational science, and design.

Several reports have described CT, but these reports are not in line with each
other. Various definitions of CT conflict with each other, for example, by stating
that CT is essential for the way computer scientists think versus it is for everyone.
Some of the definitions include the problem-solving aspect, and some do not.
This leads to the idea of finding a common understanding of the dimensions of
CT skills. Although several authors list CT skills, there is no integrated model
based on a shared sense of CT dimensions that include CT skills for developing
CT.

In addition to the common understanding of the definition and dimensions, a
tool for assessing CT skills is needed. Such a tool would help us measure the
development of CT skills at basic and secondary school levels in order to plan and
develop various CT skills systematically.

1.2. The Focus of the Research

As there are many different definitions for CT, the aim of the study is to find a com-
mon understanding of CT and, more specifically, CT skills, to develop a model
and an instrument for describing and assessing the dimensions of CT. Therefore,
this Ph.D. study is divided into three studies: i) creating a model for developing
CT skills, ii) creating an instrument to assess CT skills at the basic school level,
and iii) creating an instrument to assess CT skills at the secondary school level.

The aim of the first study is as follows: Finding a common understanding of
the dimensions of CT skills that should be developed at school. The following
two research questions are posed for the first study:

1. Which dimensions of CT skills can be identified in articles on developing
CT?

2. How can these dimensions from different articles be combined into a new
theoretical model for assessing CT?

Research questions 1 and 2 are addressed in the original publication of Article
I [TP20].

The aim of the second study is as follows: Finding and testing an instrument to
assess CT skills in basic school. The following two research questions are posed
for the second study:

3. Which instrument can be used to assess CT skills in basic school?

15

4. Which CT skills can be differentiated with an instrument used for assessing
CT in basic school?

Research questions 3 and 4 are addressed in the original publication of Article
II [Tau+17].

The aim of the third study is as follows: Finding and testing an instrument to
assess CT skills in secondary school. The following research questions are posed
for the third study:

5. Which instrument can be used to assess CT skills in secondary school?
6. Which CT skills can be differentiated with an instrument used for assessing

CT in secondary school?
Research questions 5 and 6 are addressed in the original publication of Article

III [TP19].
Visual representation of the research design including all three studies can be

found in Figure 4.

16

2. THEORETICAL BACKGROUND

2.1. Skills of CT

International Society for Technology in Education (ISTE) has included CT as
an across discipline for all the students, and CT is claimed to be a foundational
skill for every student’s ability to recognize opportunities to apply CT in their
environment [IST]. As educators should develop a working knowledge of core
components of CT, the question remains, which skills of CT should be developed
already at the comprehensive school level?

Wing [Win08] described the skills of CT through problem-solving. Wing’s
definition includes formulating problems and their solutions so that the solutions
can be carried out by a machine, a computer, or a human being. This definition
has become the most used definition to describe a way to approach CT for solving
problems using algorithms and is the base definition of CT in this thesis.

The Computer Science Teachers Association (CSTA) and the International So-
ciety for Technology in Education (ISTE) have collaborated to create a framework
for preparing students to become computational thinkers who can use digital tools
for solving future problems. They concluded that CT is a problem-solving process
that includes (but is not limited to) the following six characteristics [IC11]:

• "Formulating problems in a way that enables us to use a computer and other
tools to help solve them.

• Logically organizing and analyzing data.
• Representing data through abstractions such as models and simulations.
• Automating solutions through algorithmic thinking.
• Identifying, analyzing, and implementing possible solutions with the goal

of achieving the most efficient and effective combination of steps and re-
sources.

• Generalizing and transferring this problem-solving process to a wide variety
of problems."

The authors of computer science education articles have included various CT
concepts in their models. For example, next to abstraction, problem decomposi-
tion, algorithms, and automation, Barr and Stephenson [BS11] have included the
importance of data collection, analysis, and representation to the CT concepts.
Also, parallelization and simulation should be considered to be the core CT con-
cepts. Moreno-León et al. [MRR15] have created an automatic tool for assessing
CT in educational programming language Scratch projects and have included the
following skills of CT in their model: abstraction, parallelization, logic, synchro-
nization, flow control, user interactivity, and data representation.

As CSTA and ISTE are leading computer science education organizations,
most of the authors follow the previously mentioned list of the main ideas for
developing CT [IC11], but that list is not that specific when it comes to teaching

17

the skills of CT. Selby and Woollard [SW13] have taken a more in-depth look at
CSTA and ISTE suggestions. They have systematically identified CT skills in-
corporating thought processes that utilize abstraction, decomposition, algorithmic
thinking, evaluation, and generalization. Logical thinking and problem solving
are often mentioned as being part of CT, but Selby and Woollard [SW13] have
excluded several previously mentioned terms due to being broad and not well
defined. They claim that other aspects, such as system design, automation, com-
puter science content, modeling, simulation, and visualization, are not skills but
evidence of the use of skills. CT is an activity, often product-oriented, associ-
ated with, but not limited to, problem-solving. This leads us to five specific skills
to be developed in comprehensive school curricula as skills of CT: abstraction,
decomposition, algorithmic design, generalization, and evaluation.

The five skills of CT identified by Selby and Woollard [SW13] is a starting
point for finding a common understanding of the CT skills in this thesis, but the
question arises: Is this the list of CT skills that we should introduce at school, or
are there any other skills that should be included in the model for developing CT?

2.2. Assessing the Development of CT Skills

The main focus of the thesis is on creating and an instrument to assess CT skills.
Instruments for assessing CT skills can vary depending on how we develop CT
skills – instruments for assessing robotics research projects can differ from how
we assess algorithmic tasks on paper. CT skills can be developed in various school
subjects using multiple tools and methods.

Selby et al. [SDW14] have suggested six strands of CT: algorithms, program-
ming and development, data and data representation, hardware and processing,
communication, and networks and information technology. These strands can be
used for creating scenarios for developing CT tasks but can overlap slightly. A
pedagogical framework for CT [Kot+17] suggests dividing CT into four expe-
riences: unplugged, tinkering, making, and remixing. Lee et al. have suggested
teaching CT in youth practice in three domains: modeling and simulation, robotics
and machines, and game design and development.

One common understanding of the categorization described above is by the
tools used for developing and assessing CT. Looking at all of these categories,
a common idea arises of dividing scenarios for developing and assessing the de-
velopment of CT skills into three main categories: gaming and project creation,
robotics and tinkering activities, and unplugged activities.

2.2.1. Assessing the Development of CT Using Gaming and Project
Creation Activities

One of the options to develop CT skills is playing pre-made games for developing
CT skills. Brackmann [Bra+17] has described tasks from the webpage code.org,
designed to develop decomposition by breaking problems into smaller solvable

18

ones, e.g., planting a tree, washing hands, preparing breakfast, taking an elevator,
tying shoes, etc. Algorithmic design, abstraction, and pattern recognition can be
developed with games, including a map for finding the shortest route by using ar-
rows and multipliers as commands. Also, a popular song was used as an example
of how a song can turn into an algorithm. The game of Tetris was used to give
instructions to the partner with the use of repetitions, moving every piece to the
correct location. Eventually, a game was played, where several starting points had
to be connected with ending points with various colors leaving no blank spaces.
For assessing the CT skills, they used a test consisting of the following tasks: "De-
composition" activity (decomposition, algorithms), "Monica’s Map" activity (pat-
tern recognition and algorithms), "Elephants" activity (abstraction, pattern recog-
nition, algorithms), "Tetris" activity (pattern recognition, algorithms), "Repetition
Drawing" activity (decomposition, abstraction, pattern recognition, algorithms)
and "Monica’s Automata" (decomposition, abstraction, algorithms). These tasks
seem to be engaging but assess several skills in each task and cannot be used for
assessing one skill at a time.

Roman-Gonzalez [RPJ17] developed a CT test for assessing the skills of com-
pletion, debugging, and sequencing through nesting tasks The Maze and The Can-
vas. Those tasks involved finding the path through the labyrinth with correct se-
quencing arrows and drawing shapes on the canvas with valid commands. Re-
sults showed four factors emerging: verbal factor, spatial factor, reasoning factor,
and numerical factor. Also, a problem-solving test was used to assess reason-
ing, spatial ability, and working memory. The problem-solving test had the most
significant correlation with the CT test, but CT lacks information on specific CT
skills.

Rose et al. [DS18] used Lightbot and Scratch jr tasks to develop CT skills.
Firstly, matching shapes tasks were developed, where students had to select the
odd one out of the shapes and select the next shape or the missing shape in a
pattern. Answers were rotated, requiring the students to perform transformations
like the thinking required in Lightbot. Two versions of Lightbot-like games with
15 levels were created – one that looked like Lightbot and another like Scratch jr.
The CT skills of abstraction and generalization, algorithms and procedures, data
collection, analysis and representation, decomposition, parallelism, debugging,
testing and analysis, and control structures were developed with the tool. The
authors assessed scores, steps, number of attempts, a level reached, and time for
each student. This approach does not give much information about developing
specific CT skills.

Brennan and Resnick [BR12] have suggested creating playful projects with
the visual program language Scratch for developing CT skills. Completed project
portfolios of students can be analyzed, artifact-based interviews conducted, and
predesigned scenarios used for assessing the development of CT skills. Brennan
and Resnick [BR12] claim that designing projects with Scratch develops CT con-
cepts (sequences, loops, events, parallelism, conditionals, operators, and data),

19

practices (being incremental and iterative, testing and debugging, reusing and
remixing, abstracting and modularizing), and perspectives (expressing, connect-
ing and questioning). Resnick et al. [BR12] suggest three ways of assessing
various aspects of CT in Scratch projects: project analysis, artifact-based inter-
views, and design scenarios. Fronza et al. [FIC17] used the same framework of
analyzing Scratch projects for assessing animation creation, where the animal is
moving towards the objects (see Figure 1), and eventually creating games, where
the user clicks on objects to increase the score.

Figure 1. Example of a Scratch Project

Moreno-Leon et al. [MRR15] have developed a tool called Dr. Scratch for
automated assessment of the Scratch project, which analyzes the usage of the
following CT concepts: abstraction, parallelization, logic, synchronization, flow
control, user interactivity, and data representation. Robles et al. [Rob+17] have
emphasized that, in addition to creating original projects, the skill of reusing oth-
ers’ projects in Scratch can be useful as well as it develops the same CT skills.
Chang et al. [CTC17] used the same tool for assessing the projects called Maze
Starter and Slime Slayer and looked at the remixes that students composed. The
results show that those remixes can develop other CT skills than original projects.
Marcelino et al. [Mar+18] used Dr. Scratch for assessing results from a Scratch
course with CT fundamentals, which involved constructing animations, interac-
tive stories, and educational games. This tool seems to be strict but can assess
Scratch projects that can be very different. Final projects included a poem that
can be read and heard, a healthy food wheel game, where students have to put the
different food in the right place of the wheel and gain some points that way, and
an animal rights game with three different puzzles about the theme. Morelli et al.
[Mor+11] suggest another way of developing CT by creating mobile apps with a

20

block-based environment, App Inventor, where usage of the same CT skills can
be identified from the projects.

Similar to Scratch, a visual programming language environment Alice, has
been used by Zhong et al. [Zho+16] for developing CT skills. They created
six tasks for assessing sequences, loops, parallelism, modularization, testing and
debugging, planning and designing, creativity and expressing, abstraction and
modeling, testing and debugging, iteration and optimization, and reusing. Tasks
included closed tasks where the student had to make a rabbit eat off a green
cauliflower, a pair of semi-open tasks where students had to make the big rab-
bit jump to the front of red cauliflowers, and open tasks for designing a scenario
to describe what has probably happened after the small rabbit became smaller and
required filling out the creative design.

Another visual programming language environment, Kodu Gaming Lab, was
used by Chiazzese et al. [Chi+17] to assess storyline (narrative), problem formu-
lation (abstraction), solution expression (automation), execution, and evaluation
(analysis). Tasks consisted of introducing visual programming and the Kodu en-
vironment by manipulating the physical tiles of the Kodu language. The next step
was to design a virtual game scenario, define goals, choose rules, construct game
actions, and create a scoring system. Children were guided by the autonomous
construction of simple games, starting from the narrative description. Eventually,
the acquired skills were assessed. There are other activities that can be included
in this category, like a web page or mobile app creation.

2.2.2. Assessing Development of CT Using Robotics and Tinkering
Activities

Robotics as a hands-on activity can be used for developing CT skills, too. Bers et
al. [Ber+14] suggest the following TangibleK lessons for developing CT skills:

1. The engineering design process. Children solve toy people’s transport prob-
lems by building non-robotic vehicles. For this purpose, the engineering
design processes were implemented to plan, test, and improve their vehi-
cles.

2. Robotics. This activity includes discussing the robots- what robots are and
are not. Children explore robotic parts by designing and building their
robots. The goal is to learn to connect robotic parts (wires and motors)
to make a robot that moves. Children have an opportunity to build and de-
sign with the robotics materials freely and to create their programs beyond
those that are outlined in each of the structured lessons.

3. Choosing and sequencing programming instructions. Children program
robots to dance the "Hokey-Pokey" by choosing and sequencing relevant
instructions. Those programming commands help to recall and apply the
programming instructions.

4. Looping programs. Children use instructions to program robots to repeat

21

a movement forever. After that, they can program their robot’s movement
only a particular number of times to reach a fixed location.

5. Sensors. This activity includes using light sensors to program robots to turn
on and off lights according to the darkness of the room. Children draw
comparisons between robotic sensors and human senses.

6. Branching programs. Children are introduced to conditional control flow
instructions, "If" and "If Not," which are used with sensors to make pro-
grams that include environmental conditions into the robot’s behavior.

After the six activities, an interdisciplinary project can be made that invites
children to apply the now-familiar powerful ideas to a different theme or context.
The teacher decides on a theme drawn from other subjects studied during the
year, and each child chooses a challenge within this theme, e.g., animal behaviors,
vehicles that help the community, or "Who Am I?". Children created projects
representing snakes that slither, recycling trucks that collect refuse, and sewing
needles that travel back and forth through the fabric, among many others. The
projects allow children to demonstrate the powerful ideas they learned over the six
activities and apply them and continue learning about them in a new context. CT is
assessed with a grading matrix, including aspects of problem-solving (hypothesis
of the problem, working towards the solution, taking care of the workplace) and
an interview asking questions about understanding the code and working towards
the solution.

Atmatzidou and Demetriadis [AD16] suggest LEGO robotics (see Figure 2)
for teaching CT skills. They studied 11 Lego Mindstorms NXT robotics lessons,
which develop five CT skills: abstraction, generalization, algorithm, modularity,
and decomposition. The following instruments were used to assess: profile ques-
tionnaire, two intermediate questionnaires, student opinion questionnaire, think-
aloud protocol, interview, and observation.

There are other activities that can be included in this category, as the internet
of things and smart clothing activities.

2.2.3. Assessing Development of CT Using Unplugged Activities

There are several ways to develop CT skills without the need for a computer, ma-
chine, or robot. Chiazzese et al. [Chi+17] suggest paper graph activities for pri-
mary school pupils, as literature emphasizes the relevance of narrative strategies
to stimulate learning processes. For this reason, the authors propose extending
the range of CT skills by including a narrative stage as an introductory level. This
stage includes writing the description of a story to be used in the virtual stage. The
narrative stage is when students elaborate on the abstract formulation of a story
(problem formulation) by extracting key information items from the narrative de-
scription of the story (storyline). It includes identifying characters, protagonists,
antagonists, virtual stage elements, scoring rules, game goals, and characters’ ac-
tions. After that stage, children can translate the key information items into pro-

22

Figure 2. LEGO Robots EV3 and NXT are suggested for developing CT skills

gramming instructions (solution expression). Finally, the children play the game
and test (execution and evaluation) their code to detect errors. Various tools have
been used to collect data: a pre-test and a post-test to detect differences in the
attitude towards computer programming amongst students. The questionnaires
have been delivered in the post-test, with the specific aims of measuring the read-
ing, numeracy, and reasoning abilities and other measures of student performance.
Unfortunately, the skills of CT were not explicitly tested.

Borges et al. [BMC17] presented a challenge to develop a board game using,
as much as possible, the tools available at the maker space (3D printer, laser cut-
ter, vinyl cutter, and Arduino kits). Participants worked in groups of four people
to create a digital portfolio using Google Documents and shared it with the au-
thor. Then they engaged in a 12-hour training for machine use (vinyl cutter, laser
cutter, 3D printer, and basic electronics). After that, they had time to create and
test a game. Initially, cognitive development was tested using Longleat’s Test of
Cognitive Development. This test aims to classify the subjects as being in either
the concrete-operational or formal-operational stage. It evaluates the operational
level of secondary school students in three areas: logic, combinations, and proba-
bilities.

To assess specific skills of CT, Selby, Dorling, and Woollard [SDW14] created
a matrix for assessing the five skills of CT: abstraction, decomposition, algorith-
mic thinking, generalization, and evaluation. This approach includes an individual
assessment that might be time-consuming and has not been empirically tested in
real-life situations. Dagiene and Sentance [DS16] and Dagiene et al. [DSS17]
suggest Bebras challenge tasks for developing and assessing CT skills. Bebras is

23

an informatics challenge for pupils, which provides for many real-life-based tasks
for developing CT. They have suggested that Bebras tasks can be used either as
interesting starter tasks at the beginning of a lesson or in the formative assessment
part of a lesson. They analyze 52 Bebras tasks that were chosen by Lithuania and
the UK for all age groups. For each task, they identified the primary and most
important CT skills being developed in that task. Twenty-two of the tasks involve
some degree of algorithmic thinking in finding a solution. Eleven tasks involve
the skill of evaluation, eight demonstrate abstraction, six decomposition, and five
generalization. Tasks can demonstrate more than one CT skill, but in this instance,
they have highlighted the most dominant one. Bebras tasks are short and designed
to be solved within a few minutes. It can be challenging to generate tasks that
demonstrate a lot of decomposition or evaluation in a short task. However, a key
aspect of computer science at school is the design and execution of algorithms,
which support the development of programming skills, so it may not be surprising
that so many algorithmic thinking tasks (see Figure 3) make their way into the
Bebras contest.

The crane in the port of Lodgedam has six different input commands:

left

right

up

down

grab

let go

Crate A is in the left position, crate B is in the position on the right.

Question:

Using the command buttons, swap the position of the two crates.

Figure 3. An Example of Bebras Challenge Task Suggested for Developing CT Skills

Dagiene and Sentence [DS16] suggest the following Bebras tasks (that can be
found in UK Bebras "Computational Thinking Challenge "[Blo+15]) for develop-
ing the following skills of CT:

• Abstraction is assessed in the tasks Beaver the Alchemist, Busy Beaver,
Drawing Stars, Fried Egg, Geocaching, Popularity, Trains, and Walnut An-
imals.

• Decomposition is assessed in the tasks Animation, Fireworks, Pirate Hunters,
Stack Computer, Quick Beaver Code, and Word Chains.

24

• Algorithmic thinking is assessed in the tasks Beaver Logs, Biber Hotel,
Bowl Factory, Building a Chip, Button Game, Car Transportation, Chakhokhbili,
Crane operating, Cross Country, Decorating Chocolate, Drawing Patterns,
Dream Dress, Fair Share, Irrigation system, Left Turn!, Mushrooms, Pen-
cils Alignment, Reaching the Target, Supper Power Family Theatre, Throw
the Dice, and You Won’t Find It.

• Evaluation is assessed in the tasks Animal Competition, Beaver Gates, Beaver
Tutorials, Birds Bracelet, Birthday Balloons, Data Protection, Email Scam,
Robot the Stairs, Setting the Table, and Turn the Cards.

• Generalization is assessed in the following tasks: Beaver Lunch, Kangaroo,
Mobiles, RAID Array, and Spies.

Our study empirically tests the tasks by looking at the factors arising from the
results of the Bebras challenge. Such tasks would help us choose specific tasks
for developing and accessing specific skills of CT.

25

3. RESEARCH DESIGN AND METHODS

This chapter gives an overview of the research design and methods used in the
doctoral study. Firstly, the research design, including flow charts of the studies
and articles, is introduced. Secondly, methods for creating a model for assessing
CT skills are described. Thirdly, methods for developing tools to assess CT skills
at the basic and secondary school levels are presented. According to the Inter-
national Standard Classification of Education, this study includes students from
basic school classification ISCED 1 (11–12 years old, grade 5–6) and secondary
school classification ISCED 3 (16–18 years old, grade 10–12).

3.1. Research Design

The doctoral study consists of three studies answering six research questions lead-
ing to a modified model for assessing CT skills (see Figure 4).

STUDY 1
Which dimensions of CT skills can be identified in articles developing CT?

How can these dimensions be combined into a new theoretical model for developing CT?.

Article 1
A Model for Developing Computational Thinking Skills

Systematic literature review.
Search term "computational thinking", n = 65

STUDY 2
Which instrument can be used to assess CT skills at basic school?

Which CT skills can be differentiated with an instrument used for assessing CT at basic school?

Article 2
Tasks for assessing Skills of Computational Thinking

Instrument for assessing CT skills at basic school.
Exploratory factor analysis (EFA), n = 7100

STUDY 3
Which instrument can be used to assess CT skills at secondary school?

Which CT skills can be differentiated with an instrument used for assessing CT at secondary school?

Article 3
Tasks for Assessing Skills of Computational Thinking
at Secondary School Level

Instrument for assessing CT skills at secondary school.
Confirmatory factor analysis (CFA), n = 649

MODIFIED MODEL FOR ASSESSING CT SKILLS

Figure 4. Research design

The goal of study 1 was to identify the dimensions of CT skills. A systematic
literature review was conducted, and 65 articles were included to create a model
for assessing CT skills. The goal of study 2 was to create an instrument for as-
sessing CT skills in the basic school environment. Tasks from Bebras challenge
[Blo+15] with the results from 7,100 students were analyzed, and a two-factorial
model was created using exploratory factor analysis (EFA). The goal of study 3
was to adapt the tool created in study 2 for usage at the secondary school level.
Results from 649 students were analyzed, and confirmatory factor analysis was

26

used to test the two-factorial model found at the basic school level. These three
studies led to the result of creating a new model for assessing CT skills.

3.2. Creating a Model for Assessing CT Skills

The first study includes the identification of dimensions of CT to make a model
for assessing CT skills. The PRISMA statement for reporting systematic reviews
and meta-analyses of studies [Lib+09] was used as being one of the most used
systematic review models in four stages: identification, screening, eligibility, and
inclusion. This study used a systematic literature review method using EBSCO
Discovery Service and ACM Digital Library search engines (see Figure 5). These
search tools provided the main articles included in the introductory part of the
thesis and are acknowledged search tools for scientific computer science education
literature.
Articles found from EBSCO Discovery Service;

Search term: "computational thinking"

(n = 313)

Articles found from ACM Digital Library;
Search term: "computational thinking"

(n = 228)

Articles after removal of duplicates

(n = 528)

Articles excluded for not discussing
computational thinking or being too short:

1–3 pages
(n = 127)

Full-text articles assessed for eligibility

(n = 401)

Full-text articles excluded for being
irrelevant to the study

(n = 345)

Articles initially included in
qualitative synthesis

(n = 56)

Additional articles added through analysis
of references in initially included articles

(n = 9)

Articles finally included in
qualitative synthesis

(n = 65)

Figure 5. Stages of systematic CT literature analysis

The search procedure included the following steps:
1. Step 1. Identification Specifying the search of relevant articles, which was

carried out on 1 January 2018. It returned 541 matches (228 from ACM
Digital Library and 313 from EBSCO Discovery Service). As Wing in 2006
[Win06] started a wave of using the term "computational thinking," and the
search was done in 2018, the publications’ were from the period 2006 to
2018.
The following criteria were conducted in each search engine:

27

(a) The EBSCO Discovery Service search engine: i) search term "com-
putational thinking"; ii) full text available; iii) peer-reviewed, and iv)
in English.

(b) The ACM Digital Library search engine: i) search term "computa-
tional thinking" in the abstract, and ii) full text available.

2. Step 2. Screening Filtering out relevant articles for the study. This step
included filtering out:

(a) duplicates (13);
(b) too short, only 1–3 pages long texts (127);

3. Step 3. Eligibility. In this stage, full articles were assessed for eligibility,
and articles were excluded that:

(a) did not include CT in the context of computer science education (32);
(b) had no exact listing of CT skills (313).

4. Step 4. Inclusion. During the qualitative synthesis of 56 articles, nine
articles were added through analysis of the references. Added articles are
connected with dashed lines in Figure 5).

During the filtering stage, nine articles were added based on the references
in selected articles, making a total number of 65 articles used in the qualitative
analysis (see Figure 5).

After filtering out 65 articles, a three-step systematic review process was con-
ducted as follows. Firstly, to mark down the definitions and dimensions of CT
skills described in the articles, an analytic framework was created, including a
reference name, model type and number, definitions, and dimensions of CT skills.
Secondly, descendences of the models used in the articles were visualized by cre-
ating a cluster map (see Figure 6) and connecting the articles with arrows. This
cluster map of the descendences led to the mainly referred articles containing
models of CT skills, which were highlighted. Thirdly, the CT skills from the
mainly referred models were sequenced. Descriptions of the skills and dimen-
sions by various authors were combined in a table (see Table 1) to create a new
model for assessing CT skills. Finally, the model and the core CT skills were
described with examples.

3.3. Methods for Developing Instrument to Assess CT in Basic
School

The second study, after the systematic review of the articles, includes developing
a tool for assessing CT skills at basic school. Basic school in Estonia includes
grades from 1 to 9 (7–15 years old), and according to the International Standard
Classification of Education, this study includes students from basic school clas-
sification ISCED 1 (11–12 years old, grade 5–6). Based on the five-dimensional
model by Selby and Woollard [SW13], Bebras challenge tasks were suggested for

28

basic school by Dagiene and Sentance [DS16] to be used for assessing five skills
of CT: abstraction, algorithmic design, decomposition, evaluation, and general-
ization. As Bebras is an award-winning international contest in informatics that
has been running since 2004 in basic and secondary schools, with over 50 coun-
tries participating, the following tasks from UK Bebras "Computational Thinking
Challenge" [Blo+15] were used for assessing mainly four CT skills out of five as
no generalization tasks were suggested:

• Abstraction: Geocaching.
• Decomposition: Animation, Quick Beaver Code.
• Algorithmic design: Biber Hotel, Button Game, Crane Operating, Cross

Country, Dream Dress, Fair Share, Mushrooms, Pencils Alignment.
• Evaluation: Animal Competition, Robot the Stairs.

Although the Bebras challenge is for six various age groups, in this study, the
Benjamin age group (11–12 years of age) students from Lithuania (n = 7,100)
were studied to determine which dimensions of CT skills can be identified from
the results as independent factors. This study includes the results from all the
Lithuanian students participating in the Bebras challenge preliminary round, in-
cluding male and female students with various backgrounds.

For assessing CT skills at the basic school level, Bebras algorithmic problem-
solving tasks were used with specific problem description and a question. Tasks
have been translated by the organizers into Lithuanian and into English. Each task
gave 1 point for correct answers, and -1 point for wrong answers. 0 points were
given for no answer.

As the aim of this study was to understand if the tasks of the Bebras chal-
lenge assess the theoretical dimensions of CT skills as suggested, a confirmatory
factor analysis (CFA) was used for finding out fit-indexes Tucker-Lewis (TLI),
comparative fit (CFI), and root mean square error of approximation (RMSEA) for
assessing CT skills as suggested. The Bebras challenge of 2015 used only tasks
for assessing four out of the five dimensions of CT skills; therefore, CFA was
performed for confirming the four-factor model. As CFA did not give the results
theoretically expected, an exploratory factor analysis (EFA) was conducted to find
out if results could be divided into categories that are not specific to the model with
the five dimensions. EFA with principal axis factoring was used with the Oblimin
rotation and Kaiser normalization to detect main factors. These factors are then
interpreted by analyzing the tasks, as main CT skills in a problem-solving stage.

3.4. Methods for Developing Instrument to Assess CT in
Secondary School

The third study presents a modification of the instrument from study 2 to assess
CT skills at the secondary school level. According to the International Standard

29

Classification of Education, this study includes students from secondary school
classification ISCED 3 (16-18 years old, grade 10-12).

For assessing CT skills of problem-solving at the secondary school level, a
modified instrument from study 2 was created. In 2018 a pilot study for the third
study and the main part of the third study was conducted.

A pilot study for the third study was conducted with 35 students from the
11th grade (16–17 years of age). Tasks with over 80% of the correct answers
were replaced with the tasks suggested from the same dimension. The tasks for
being suitable in the two-factorial model were Popularity, Word Chains, Irrigation
System, Beaver Lunch, Decorating Chocolate, and Building a Chip [Blo+15]. A
modified instrument for the secondary school includes ten tasks, five tasks from
each dimension of CT skills – algorithmic thinking and pattern recognition. As
the negative scores made statistically no difference, tasks were graded 1 point for
correct answers and 0 points for incorrect answers. This instrument was uploaded
as an online questionnaire, and the suggestion was to finish it within 40 minutes,
but no strict time limit was set.

After the pilot study of the third study, a main part of the third study included
students from the 10th grade of 17 secondary schools. All the schools were se-
lected based on a voluntary basis, where the whole class, including male and
female students with various backgrounds, had to complete the online test. 789
students started the test, but 118 results were removed for not finishing the test,
and 25 were removed due to duplicates or students being unidentifiable. So the
final study included a total number of 655 responses.

As the third study used a modified instrument from the second study, confir-
matory factor analysis (CFA) was used to confirm the two dimensional CT skill
structure found from the basic school study in the original publication Article I.
CFA for validating the two-dimensional structure was done by determining the fit
indices Tucker-Lewis (TLI), Comparative Fit (CFI), Root Mean Square Error of
Approximation (RMSEA), and Weighted Root Mean Square Residual (WRMR).

As two factors were predicted, a two-factor model was created with five tasks
in each factor. The statistical program Mplus (Version 7) [BG11]) was used for
CFA. In order to evaluate the models, we adopted criteria for fit indexes that had
been proposed by Mplus [MM98], which are as follows: RMSEA: close fit: 6
.05, reasonable fit: .05-.08, poor fit: > .10; CFI: > .95; TLI: > .95.).

30

4. FINDINGS

4.1. A Model for Assessing CT Skills

This chapter describes the process of identifying the directions of CT with a new
proposed model for assessing CT skills. CT skills identified in this model are used
for creating tasks for assessing CT skills at basic school and secondary school
levels.

4.1.1. Identifying the Directions of CT

CT has been a matter of discussion for several years, and opinions on the dimen-
sions of CT have evolved accordingly. This study concentrates on that issue by
including 65 articles for identifying the skills of CT. It appeared that those arti-
cles are often referring to each other. Therefore, for a better understanding of the
relations between various articles about CT skills, articles were categorized based
on the theoretical framework, definition, and skills of CT. The year of publication
helps to create the dependencies of the articles as usually, newer articles are based
on the previous studies. As a result of the article content analysis, a cluster map
was created (see Figure 6), which demonstrates the descendancies of the articles.

Large colored framed borders on Figure 6 mark six bigger clusters of identified
CT skills from the original publication Article I that originated from the following
authors:

1. Wing (2006) [Win06],
2. Barr and Stephenson (2011) [BS11],
3. CSTA and ISTE (2011) [IC11],
4. Brennan and Resnick (2012) [BR12],
5. Selby and Woollard (2013) [SW13], and
6. Moreno-León (2015) [MRR15].

31

B
o
rg

e
s

e
t

a
l.
,

2
0

1
7

R
o
d
ri

g
u
e
s

e
t

a
l.
,

2
0

1
7

C
h
ia

zz
e
se

e
t

a
l.
,

2
0

1
7

S
h
u
te

e
t

a
l.
,

2
0

1
7

C
o
st

a
 e

t
l.
,

2
0

1
7

C
h
a
n
g

e
t

a
l.
,

2
0

1
7

R
o
b
le

s
e
t

a
l.
,

2
0

1
7

M
o
re

n
o
-L

e
ó
n

e
t

a
l.
,

2
0

1
7

 (
1

)

Fr
o
n
za

e
t

a
l.
,

2
0

1
7

M
a
rc

e
lin

o
e
t

a
l.
,

2
0

1
7

D
e
n
n
in

g
,

2
0

1
7

C
h
e
n

e
t

a
l.
,

2
0

1
7

Pe
lla

s
&

V
o
si

n
a
ki

s,
2

0
1

7

R
o
w

e
 &

C
u
n
n
in

g
h
a
m

,
2

0
1

7

Fo
w

le
r,

2
0

1
7

N
ie

m
e
lä

e
t

a
l.
,

2
0

1
7

D
a
u
n
g
ch

a
ro

n
e
,

2
0

1
7

R
o
se

 e
t

a
l.
,

2
0

1
7

B
ra

ck
m

a
n
n

e
t

a
l.
,

2
0

1
7

M
o
re

n
o
-L

e
ó
n

e
t

a
l.
,

2
0

1
7

 (
2

)

G
o
n
za

le
s

e
t

a
l.
,

2
0

1
7

D
u
n
ca

n
e
t

a
l.
,

2
0

1
7

D
a
g
ie

n
e
 &

S
e
n
ta

n
ce

,
2

0
1

7

M
o
u
za

e
t

a
l.
,

2
0

1
7

Lo
w

e
 &

B
ro

p
h
y
,

2
0

1
7

K
o
rk

m
a
z

e
t

a
l.
,

2
0

1
7

D
u
ra

k
&

S
a
ri

te
p
e
ci

,
2

0
1

7

G
o
o
g
le

,
2

0
1

6
R

e
p
e
n
n
in

g
 &

B
a
ts

w
a
p
a
tn

a
,

2
0

1
6

W
e
in

tr
o
p
,

2
0

1
6

A
tm

a
tz

id
o
u
 &

D
e
m

e
tr

ia
d
is

,
2

0
1

6

M
u
n
o
z

e
t

a
l.
,

2
0

1
6

M
o
re

n
o
-L

e
ó
n

e
t

a
l.
,

2
0

1
6

V
a
lla

n
ce

 &
To

w
n
d
ro

w
,

2
0

1
6

A
n
g
e
li

e
t

a
l.
,

2
0

1
6

D
a
g
ie

n
e
 &

S
e
n
ta

n
ce

,
2

0
1

6

A
n
d
e
rs

o
n
,

2
0

1
6

D
a
sg

u
p
ta

&
 P

u
rz

e
r,

2
0

1
6

K
a
le

lio
g
lu

e
t

a
l.
,

2
0

1
6

S
o
le

im
a
n
i

e
t

a
l.
,

2
0

1
6

Z
h
o
n
g

e
t

a
l.
,

2
0

1
6

S
e
it

e
r

&
Fo

re
m

a
n
,

2
0

1
3

R
o
d
e

e
t

a
l.
,

2
0

1
5

S
e
lb

y
,

2
0

1
5

S
ci

zm
a
d
ia

e
t

a
l.
,

2
0

1
5

To
e
d
te

 &
A
y
d
e
n
iz

m
2

0
1

5

V
o
o
g
t

e
t

a
l.
,

2
0

1
5

R
o
sc

o
e

e
t

a
l.
,

2
0

1
4

Le
e

e
t

a
l.
,

2
0

1
4

Ly
e
 &

K
o
h
,

2
0

1
4

M
a
n
n
ila

e
t

a
l.
,

2
0

1
4

G
o
u
w

s
e
t

a
l.
,

2
0

1
3

G
ro

v
e
r

&
Pe

a
,

2
0

1
3

W
e
rn

e
r

e
t

a
l.
,

2
0

2
1

L'
H

e
u
re

u
x

e
t

a
l.
,

2
0

1
2

B
a
rc

e
lo

s
&

S
ilv

e
ir

a
,

2
0

1
2

Q
u
a
lls

e
t

a
l.
,

2
0

1
1

Le
e

e
t

a
l.
,

2
0

1
1

B
a
rr

 &

S
te

p
h

e
n

s
o
n

,
2
0
1
1
 (

2
)

M
o
re

n
o
-L

e
ó
n

e
t

a
l.

,
2
0
1
5
 (

6
)

W
in

g
,

2
0
0
6
 &

2
0
1
0
 (

1
)

C
S

T
A

 &
IS

T
E
,

2
0
1
1
 (

3
)

B
re

n
n

a
n

 &
R

e
s
n

ic
k
,

2
0
1
2
 (

4
)

S
e
lb

y
 &

W
o
o
ll
a
rd

,
2
0
1
3
 (

5
)

Fr
o
n
za

e
t

a
l.
,

2
0

1
5

Fi
gu

re
6.

M
ap

of
th

e
cl

us
te

rs
of

th
e

C
T

di
m

en
si

on
s

id
en

tifi
ed

fr
om

th
e

ar
tic

le
s

32

As the cluster map shows, the modern era of developing CT skills started with
Wing in 2006 [Win06], suggesting CT for describing fundamental skills for ev-
eryone, not only for computer scientists. CT skills are connected with solving
algorithmic problems with a computer, machine, or human being. Solving algo-
rithmic problems includes evaluating the difficulty and best solutions for solving
the accounting problems for the power of the computing device that runs the sys-
tem.

The first cluster (on the left side of the cluster map on Figure reffig:clusterm,
with a green border) includes twenty-one articles that derive from Wing’s theory
[Win06] highlighting the following characteristics of CT: abstraction, problem
decomposition, problem reformulation, automation, and testing.

The second cluster, deriving from Wing [Win06], starts from Barr and Stephen-
son (2011) [BS11] (light blue border on Figure 6). They compared nine CT con-
cepts and capabilities in computer science, mathematics, science, language arts,
and social studies: data collection, analysis and representation, decomposition,
abstraction, algorithms and procedures, automation, parallelization, and simula-
tion. Compared to Wing [Win06], these concepts have a more significant focus on
data manipulation (collection, analysis, and representation) and algorithms. Par-
allelization and simulation were added as separate core CT concepts. Deriving
from this article, the second cluster of articles uses these CT concepts (Gouws et
al., 2013 [GBW13], Soleimani et al., 2016 [Sol+16], Atmatzidou and Demetriadis
2016 [AD16], Costa et al., 2016 [CCG17] and Rose et al., 2017 [RHJ17]).

The third cluster, deriving from Wing [Win06], starts from the six concepts
presented by CSTA and ISTE (2011) [IC11] (dark blue border on Figure 6), which
includes formulating problems, organizing and analyzing data, abstractions, au-
tomation (algorithmic thinking), evaluation for efficiency and correctness, and
generalizing. The main focus of these concepts is on solving problems using al-
gorithms. These concepts are different from Barr and Stephenson (2011) [BS11]
as generalization and evaluation for efficiency and correctness were included as
CT skills. As computer science teacher organizations (ISTE and CSTA) have
an international influence on teaching, nine articles have used those CT concepts
(Denning, 2017 [Den17], Fronza et al., 2015 [FIC17], Rode et al., 2015 [Rod+15],
Kalelioglu et al., 2016 [KGK16], Chen et al., 2017 [Che+17], Pellas and Vosi-
nakis, 2017 [PV17], Korkmaz et al., 2017 [KÇÖ17], Durak and Saritepeci, 2018
[DS18] and Lowe and Brophy, 2017 [LB17]).

The fourth cluster, deriving from Wing [Win06], comes from Brennan and
Rescnick (2012) [BR12] (pink border on Figure 6), studied Scratch projects and
described four practices of CT: abstracting and modularizing, reusing and remix-
ing, being incremental and iterative, and testing and debugging. As block-based
coding environments like Scratch have been suggested for developing CT skills,
the fourth cluster includes five articles covering those practices of CT (Lye et
al., 2014 [LK14], Vallance and Towndrow, 2016 [VT16], Zhong et al., 2016
[Zho+16], Fronza et al., 2017 [FIC17] and Román-González, 2017 [RPJ17]).

33

The fifth cluster includes articles deriving from Selby and Woollard (2013)
[BR12] (red border in Figure 6). They synthesized the CT dimensions from
Barr and Stephenson (2011) [BS11] and CSTA, and ISTE (2011) [IC11]. Selby
and Woollard [BR12] concluded that CT skills involve abstractions, decomposi-
tion, algorithmic thinking, generalization, and evaluation. Compared to Barr and
Stephenson (2011) [BS11], data manipulation was left out for being too broad,
not-well defined, or not considered a skill. The CT skill of generalization was
added from the dimensions of CSTA and ISTE [IC11]. Afterwards, those five
skills of CT have been recognized as being the main dimensions of CT by several
authors (Anderson, 2016 [And16], Selby, 2015 [Sel15], Csizmadia et al., 2015
[Csi+15], Angeli et al., 2016 [Ang+16], Dagienė and Sentence, 2016 [DS16],
Marcelino et al., 2018 [Mar+18], Duncan et al., 2017 [DBA17] and Dagienė et al.,
2017 [DSS17]. As some of the dimensions of CT from CSTA and ISTE (2011)
[IC11] are common with Selby and Woollard (2013) [SW13] (orange border on
Figure 6), several authors have included both ideas (Seiter and Foreman, 2013
[SF13], Dasgupta and Purzer, 2016 [DP16] and Mouza et al., 2017 [Mou+17]).

The sixth cluster evolves from the article by Brennan and Resnick (2012)
[BR12] (yellow border on Figure 6), which connects it with an analysis of au-
tomatic visual programming language projects. Moreno-León (2015) [MRR15]
defined eight aspects of CT that can be assessed in Scratch projects: abstraction,
parallelism, logic, synchronization, flow control, user interactivity, and data rep-
resentation. The main impact is opening up algorithmic thinking by looking at
it to demonstrate the usage of parallelism, synchronization, logical thinking, and
flow control. As articles in the previous dimension have excluded data manipula-
tion, Moreno-León (2015) [MRR15] has included it due to being emphasized by
data representation and user interactivity. These dimensions have been used later
on in several studies (Chang et al., 2017 [CTC17], Munoz et al., 2016 [Mun+16],
Moreno-León et al., 2016 [MRR16], Robles et al., 2017 [Rob+17], Moreno-León
et al., 2017a [MRR17], Brackmann et al. 2017 [Bra+17] and Moreno-León et
al., 2017b [Mor+17]) that analyze projects created in educational programming
environments.

As the cluster map (see Figure 6) shows, six main clusters of the dimensions
of CT skills can be identified based on the articles. Each cluster derives from
specific authors, but no real consensus about the dimensions has appeared. Each
cluster originating from distinct authors leads us to the idea of collecting the CT
skills from each original author to form a unified model for assessing CT skills.
The common understanding from the articles is that CT is the thinking process
involved in solving algorithmic problems. Wing [Win06] states that problem-
solving starts with defining a problem and ends with testing and evaluation.

The next section describes the process of creating a model for assessing CT
skills based on the composed cluster model.

34

4.2. A New Model for Assessing CT Skills

Based on 65 included articles, the first study of the thesis grouped the definitions
and dimensions of CT into six clusters identified from the original articles found
through the EBSCO Discovery Search and the ACM Digital Library. To find a
common understanding of the relations between the aforementioned six studies,
a proposal of using three stages of the CT process from Repenning et al. (2017)
[RBE17] was used. Repenning [RBE17] identified three stages of the CT process
that a CT tool must elicit:

1. Problem formulation (abstraction), where the problem is conceptualized
verbally.

2. Solution expression (automation), where the solution is expressed in a non-
ambiguous way so that the computer can carry it out.

3. Execution and evaluation (analysis), where the solution is executed by the
computer in ways that show the direct consequences of one’s thinking.

Finding a consensus can be difficult, but based on the descriptions of the CT skills,
the first study of the thesis suggests grouping all the CT skills deriving from the six
original articles into three larger algorithmic problem-solving stages. In this the-
sis, Table 1 visualizes how all the CT skills deriving from the six original articles
can be grouped into three larger algorithmic problem-solving stages: defining the
problem, solving the problem, and analyzing the solution (see Table 1). Defining
the problem includes skills problem formulation, abstraction, problem reformu-
lation, and decomposition. Solving the problem includes skills in data collection
and analysis, algorithmic design, automation, parallelization, and iteration. Ana-
lyzing the solution includes generalization, testing, and evaluation.

35

Ta
bl

e
1.

C
at

eg
or

ie
s

of
C

T
sk

ill
s

fr
om

si
x

or
ig

in
al

ar
tic

le
s

W
in

g,
B

ar
r

&
C

ST
A

&
B

re
nn

an
&

Se
lb

y
&

M
or

en
o-

L
eo

n
20

06
St

ep
he

ns
on

,2
01

1
IS

T
E

,2
01

1
R

es
ni

ck
,2

01
2

W
oo

lla
rd

,2
01

3
et

al
.,

20
15

D
efi

ni
ng

Pr
ob

le
m

Pr
ob

le
m

-
Fo

rm
ul

at
in

g
-

-
-

th
e

fo
rm

ul
at

io
n,

fo
rm

ul
at

io
n

pr
ob

le
m

s
pr

ob
le

m
ab

st
ra

ct
io

n,
A

bs
tr

ac
tio

n
A

bs
tr

ac
tio

n
A

bs
tr

ac
tio

n
A

bs
tr

ac
tin

g
an

d
A

bs
tr

ac
tio

n
A

bs
tr

ac
tio

n
m

od
ul

ar
iz

in
g

pr
ob

le
m

Pr
ob

le
m

-
-

-
-

-
re

fo
rm

ul
at

io
n

an
d

re
fo

rm
ul

at
io

n
-

-
-

-
-

de
co

m
po

si
tio

n.
Pr

ob
le

m
Pr

ob
le

m
-

-
D

ec
om

po
si

tio
n

Pr
ob

le
m

de
co

m
po

si
tio

n
de

co
m

po
si

tio
n

-
-

de
co

m
po

si
tio

n
So

lv
in

g
D

at
a

co
lle

ct
io

n
an

d
-

D
at

a
co

lle
ct

io
n,

O
rg

an
iz

in
g

R
eu

si
ng

an
d

-
U

se
ri

nt
er

ac
tiv

ity
,

th
e

an
al

ys
is

,
da

ta
an

al
ys

is
,

an
d

an
al

yz
in

g
re

m
ix

in
g

da
ta

da
ta

da
ta

re
pr

es
en

ta
tio

n
re

pr
es

en
ta

tio
n,

si
m

ul
at

io
n

pr
ob

le
m

A
lg

or
ith

m
ic

de
si

gn
,

A
ut

om
at

io
n

A
ut

om
at

io
n,

A
lg

or
ith

m
ic

B
ei

ng
A

lg
or

ith
m

ic
Pa

ra
lle

lis
m

,
au

to
m

at
io

n,
al

go
ri

th
m

s
an

d
th

in
ki

ng
,

in
cr

em
en

ta
l

de
si

gn
,

lo
gi

ca
lt

hi
nk

in
g,

pa
ra

lle
liz

at
io

n
an

d
pr

oc
ed

ur
es

,
au

to
m

at
in

g
an

d
ite

ra
tiv

e
sy

nc
hr

on
iz

at
io

n,
ite

ra
tio

n.
pa

ra
lle

liz
at

io
n

so
lu

tio
ns

flo
w

co
nt

ro
l

A
na

ly
zi

ng
G

en
er

al
iz

at
io

n,
-

-
G

en
er

al
iz

in
g

-
G

en
er

al
iz

at
io

n
-

th
e

te
st

in
g

an
d

Sy
st

em
at

ic
-

Id
en

tif
yi

ng
,

Te
st

in
g

an
d

E
va

lu
at

io
n

-
so

lu
tio

n
ev

al
ua

tio
n.

te
st

in
g

-
an

al
yz

in
g,

an
d

de
bu

gg
in

g
im

pl
em

en
tin

g
so

lu
tio

ns

36

As problem-solving is a cyclic activity, this study suggests for all the CT skills
are divided into three algorithmic problem-solving stages, identified from the sys-
tematic literature review, to form a cyclic model for assessing CT skills (see Figure
7) in three algorithmic problem-solving stages.

Algorithmic
design

Problem
formulation

Abstraction

Problem
reformu-

lation

General-
ization

Testing

Data
colleciton

and
analysis

Paral-
lelization

Automation

Iteration

Decompo-
sition

Evaluation

Figure 7. A new model for assessing CT skills

The next paragraphs describe these three stages together in the theoretical
model for assessing CT skills created in this thesis.

4.2.1. Defining the Problem

The first stage of the new model for assessing CT is defining the problem, which
derives from Wing’s [Win06] description of CT as a way of solving problems.
This stage of defining the problem includes all CT skills that are needed before
actually starting to solve the algorithmic problem. Next, all the CT skills, included

37

in the stage of defining the problem, are described.
Problem Formulation. Although several authors do not include defining a prob-

lem as a separate skill, all articles describe it as part of the algorithmic problem-
solving process. As CT is a thought process used in solving algorithmic problems,
it is essential to understand and research the real-life problems that need to be
solved. Problem formulation is a process of conceptualizing a problem verbally
[RBE17]. This skill includes researching the problem. Decomposing and for-
mulating the main problem is the first step that allows students to conceptualize,
either verbally, e.g., by trying to formulate a question such as "How can I solve
this problem?" or visually, e.g., by describing behaviors and relationships [PV17].

Abstraction. Secondly, all of the main articles presented in the table 1, include
abstraction as an important part of CT. Abstraction occurs when a problem is for-
mulated, and it is important to identify and extract relevant information to define
the main idea(s) to solve the problem. As abstraction includes modeling the core
aspects of complex problems or systems, it also includes modularizing the prob-
lem.

Solving an algorithmic problem starts with understanding the problem and
defining how it can be solved by a computer, machine, or a human being. Abstrac-
tion has a vital part in it by being an ability to decide what details of a problem
are important and what details can be ignored while solving the problem [SW13].
The ability to create and use abstractions is used constantly across mathematical
and scientific undertakings, be it creating computational abstractions when writing
a program, generating visualizations of data to communicate an idea or finding,
defining the scope or scale of a problem, or creating models to explore further or
understand a given phenomenon [Wei+16].

Although abstraction, to the idea of complexity, has been introduced as part of
CT by Wing in her original article [Win08], the definition has developed over the
subsequent years. Wing states that computing is the automation of our abstrac-
tions [Win08]. Abstraction is usually one of the first steps of problem-solving.
Based on the descriptions [Win08], [SW13] and definitions [Bit], [Goo], [Cod],
[Blo+15], tasks that need abstraction to include the following characteristics:

• tasks contain more information than is necessary for solving the task;
• the goal of the tasks is to decide what information is essential;
• the real-life problem needs to be understood and written down so that it can

be solved.
In computer science, abstraction is used, for example, when a computer pro-

gram plays chess or any other game filtering out the right moves and essential
info for the right move. In cooking recipes, we name our ingredients and give the
measurements giving the real-life objects names and values for further activities.

Problem Reformulation. Problem reformulation is reframing a problem into a
solvable and familiar one [SSA17]. Problem reformulation is similar to problem
formulation but is a skill connecting researching the real-life problem to visualiz-

38

ing the algorithms for a solution. This needs visual thinking and communicating
of the problem to describe object interactions and metaphors that can support a
suggested approach [PV17]. In a game creation project, problem reformulation
can be a formulation of the story in terms of actors, virtual stage elements, game
goals, rules, and characters’ actions [Chi+17]. Problem reformulation needs a
skill of abstraction [RBE17].

Decomposition. The fourth skill included in the first stage is the decompo-
sition of the problem, which means breaking the problem down into manageable
units. Decomposition is usually listed after the abstraction, and in this model, they
follow each other. As problem formulation and reformulation have been added,
this step of decomposition now follows problem formulation.

Most of the complex algorithmic problems need a skill of decomposition to
break the problem down into smaller, more easily solved parts [SW13]. Al-
ready Polya (1948) provided a general discussion on the use of decomposition
in problem-solving and Hertz (1964) [POL]. They claimed that with the decom-
position principle, one could generally take account of more factors than when
making direct or global judgments, and it would seem possible to analyze infor-
mation on the various components more effectively by "computer" than by doing
it in one’s head.

Wing [Win08] has not used the word decomposition but has described breaking
problems down by functionality as part of CT. Decomposition is required when
dealing with extensive problems, complex systems, or complex tasks. Danny
Edelson [Fow17] points out that creating solutions requires breaking problems
down into chunks of functionality and sequencing them. Most recently, in refining
his definition of CT, Guzdial [Guz08] also includes decomposition as a skill of CT.
Based on the descriptions [Win08], [SW13], [Guz08], [Cou+11] and definitions
[Bit], [Goo], [Cod], decomposition tasks include the following characteristics:

• tasks should be sufficiently tricky for not enabling solving in one piece;
• tasks should be solvable when broken down into smaller parts;
• the sequence of the steps of the solution should not be necessary because

that already leads to the principle of algorithmic thinking skill.
In computer science, decomposition is used to break a computational graph

problem into four sections, each completed by a different computer processor.
Another example would be using several functions to conduct smaller tasks in a
more complex code. In cooking recipes, we have several parts of the process:
preparation, cooking, and decorating.

4.2.2. Solving the Problem

The second stage of the model for assessing CT skills includes aspects of solving
the problem. This stage consists of all CT skills involved in creating the solution
for the redefined algorithmic problem. Next, all the CT skills, included in the
stage of solving the problem, are described.

39

Data Collection and Analyzis. The precondition for solving the problem al-
gorithmically is collecting and analyzing data beforehand. Data collection and
analysis include finding a data source for a problem area, collecting data from an
experiment, write a program to do basic statistical calculations on a set of data,
analyze data from an experiment, identify trends in data from statistics, use data
structures such as an array, linked list, stack, queue, graph, hash table, etc., use
histogram, pie chart, a bar chart to represent data, use sets, lists, graphs, etc., to
contain data, summarize data from an experiment and represent trends [BS11].
Data representation is depicting and organizing data in appropriate graphs, charts,
words, or images. [DBA17]

Algorithmic Thinking. After data manipulation, the solution for the problem is
designed with algorithmic design (a series of ordered steps). Algorithmic thinking
is evidenced through the creation of algorithms – algorithmic design. One of the
most important skills of CT is algorithmic thinking. An algorithm is a method
to solve a task (problem) that consists of defined instructions. Algorithmic think-
ing creates a step-by-step set of instructions carried out by a device [Voo+15],
[SW13]. Algorithmic design is using the creation of algorithms and develops al-
gorithmic thinking [SW13]. Algorithmic design relates to algorithmic thinking as
the design of algorithms is part of many solution theories of operation research
[AD16]. Algorithmic thinking and design is used not only in computer science
but in other disciplines as well.

Based on the descriptions [SW13], [Cou+11] and definitions, [Bit], [Goo],
[Cod], [Blo+15] algorithmic design tasks include the following characteristics:

• a problem that needs several steps to solve it;
• possible steps could be given beforehand;
• steps need to be used in the correct sequence.

In computer science, algorithmic thinking is the basis of solving problems in
various disciplines: optimization and search algorithms to identify best chemicals
for improving reaction conditions to improve yields in chemistry; quantum com-
puting in physics; mathematics behind string theory; testing planes via computer
simulations in engineering; electronic commerce in economics; crime scene in-
vestigations in law, etc. Most of these are using rather complex algorithms, but
the logic behind them remains the same – each of the tasks needs a step-by-step
solution that can be carried out by an information-processing agent. For exam-
ple, in cooking recipes, the algorithmic design is the step-by-step instructions for
creating the cake.

Iteration. Iteration is an adaptive process, one in which the plan might change
in response to approaching a solution in small steps [RBE17]. Students are incre-
mental and iterative while creating the paths with Logo as it gives them the op-
portunity to execute their commands and receive feedback immediately. [LK14].
Designing a project is not a clean, sequential process of first identifying a concept
for a project, then developing a plan for the design, and then implementing the

40

design in code. Students use iterative cycles of imagining and building projects
– developing a little bit, then trying it out, and then developing further, based on
their experiences and new ideas [BR12].

Parallelization. Parallelization is threading, pipelining, dividing up data or
tasks in such a way that it is processed parallel, e.g., running experiments with
different parameters simultaneously [BS11]. Parallelism in a game creation is il-
lustrated with the presence of two or more characters that can execute an action
at the same time [FIC17]. In CT projects, events are represented by the listeners
("sensors") of actions that may be carried out. These events can be eventually
evaluated by conditions. Conditional blocks can be added to evaluate a fact, after
which a decision can be made. Data are present thanks to the possibility of inte-
grating variables that can be managed by using logic and mathematic operators.
Both data and operators provide inputs for conditional blocks as well [BR12]. In
Scratch projects, parallelization occurs on two scripts when a message sending
and receiving logic is applied [MRR15].

Automation. As algorithmic design uses parallelization and iteration, it eventu-
ally leads to the automation of the process. ISTE [IC11] views CT as algorithmic
thinking with automation tools and data representation with the use of simula-
tion. Automation is having computers or machines do repetitive tasks [DBA17].
It is the control flow realized with the help of control structures and information
processing [Nie+17]. Students develop their own thinking way when they real-
ize that the computers could produce more effective automatical solutions while
solving the problems [KÇÖ17]. It can be an approach to problem-solving that
can be automated in some way, and that can be applied in many subjects or areas
[KÇÖ17]

4.2.3. Analyzing the Solution

The third stage of the model is finally analyzing the created solution. Next, all the
CT skills included in the stage defining the problem are described.

Generalization. This stage includes generalization, which means transferring
this problem-solving process to a broader range of problems. Generalization is
the ability to express a problem solution in generic terms, which can be applied
to different problems that share some of the same characteristics as the original
[SW13]. Generalization is the ability to move from specific to broader applicabil-
ity, such as understanding how to draw a square by defining internal angles and
applying the same algorithm to produce an approximation of a circle. It is the abil-
ity to recognize parts of solutions that have been used in previous situations or that
might be used in future cases. Generalization is the step of identifying how small
pieces may be reused and reapplied to similar or unique problems. Based on the
descriptions [SW13] and definitions [Bit], [Goo], [Cod], [Blo+15], generalization
tasks include the following characteristics:

• the task to represent a problem in generic terms (e.g., function);

41

• using new or already familiar algorithms in new situations.
In computer science, generalization can be seen in the concept of "objects,"

which may contain data often known as attributes, and procedures, often known
as methods. In cooking recipes, the structure of a recipe can be used for various
recipes, and elements of one recipe can be used in other recipes.

Testing. An essential role in solving the algorithmic problem is evaluating and
testing the solution, which includes analyzing the processes and the results in
terms of efficiency and resource utilization. This stage also includes systematic
testing and debugging, efficiency and performance constraints, error detection,
etc. Debugging and performance testing are essential activities in CT learning
[Lee+11]. As things rarely work just as imagined, it is critical for designers to
develop strategies for dealing with – and anticipating – problems [BR12]. Various
testing and debugging practices can be used, which are developed through trial
and error, transfer from other activities, or support from knowledgeable others.
Solutions can be tested by listing the various testing and debugging processes
[BR12].

Evaluation. Evaluation analyzes processes to assess and recognize the pro-
cesses and outcomes of efficiency and resource utilization [SW13]. Evaluation
goes hand-in-hand with several of the elements of CT described above. In the
context of solutions, analyzing could be interpreted as a similar term to evalu-
ation. [GP18] Wing [Win08] expresses the need for a computational thinker to
make trade-offs by evaluating the use of time and space, power, and storage. That
leads to the idea that evaluation tasks often already need a solution for the problem
to be analyzed in terms of whether the solution is correct and efficient. Based on
the descriptions [Win08], [SW13] and definitions [Bit], [Goo], evaluation tasks
include the following characteristics:

• solution for a problem is already given;
• task is to analyze if the solution is correct and efficient;

In computer science, if a device is needed to deliver something automatically to
a customer, it needs to be programmable in an error-free, quick, safe, and straight-
forward way. In cooking, the easiest way of evaluating the cake is by looking at
it and tasting it. Recipes can be changed in several ways: changing the ingredi-
ents, cooking time and temperature, or decorations. Efficiency can be altered by
changing the procedure more efficiently by thinking about making more than one
cake in a similar kitchen environment.

Problem-solving stages act cyclically as improvements can be made after all
of the CT stages are completed. The solution can still be improved after the eval-
uation and testing by using again the formulation of the emerged problems. This
way, the three-staged application of the CT model is repeated until the user is
satisfied with the result in the current time, knowledge, and resources frame.

As these three problem-solving stages repeat in a cyclic manner, categorization
of CT skills from six original articles allows us to create a new model for assessing

42

CT skills proposed by the author of the thesis (see Figure 7). This model covers
all of the main dimensions extracted from the articles in a three-staged problem-
solving cycle, relying on CT to solve problems algorithmically.

4.2.4. An Example of Using the New Model for Assessing CT Skills

To get a better overview of the new model for assessing CT skills, this section
describes an example of the CT skills and stages, using an example of creating a
plant watering system (see Figure 8).

Algorithmic
design

Problem
formulation

Abstraction

Problem
reformu-

lation

General-
ization

Testing

Data
colleciton

and
analysis

Paral-
lelization

Automation

Iteration

Decompo-
sition

Evaluation

Figure 8. A model for assessing CT skills with illustrations from the project measuring
plants’ soil humidity.

Plants tend to lose vitality due to excessive or insufficient watering. An exam-
ple project to solve the problem of watering the plants at home starts with formu-
lating the problem: How to create a plant watering system that reminds us when

43

to water the plant? The next step would be researching the problem. Abstraction
occurs when filtering out the relevant information from the irrelevant by planning
the way, how to collect data on soil moisture as a humidity percentage and to find
out which would be the optimal soil humidity percentage for the specific plant.
Extra data is necessary for turning on and off the alarm for saving the alarm clock
state. Planned activities for solving the problem include measuring the soil humid-
ity and turning the alarm on and off according to the data collected. Now, after
the abstraction, the solution for the problem is decomposed into smaller solvable
problems. Which hardware can be used for setting up the alarm and measuring
the humidity? Which algorithms can be used to turn the alarm on and off accord-
ing to the soil humidity percentage? An example of decomposition is dividing
the process into smaller stages: connecting a humidity sensor as an input and an
alarm clock as an output to the computer, creating algorithms for reading the data
about soil humidity, and turning on and off the alarm accordingly. When the stage
of defining the problem is over, the second stage starts (see Figure 8).

The second stage of the model includes the CT skills of solving the problem,
which includes putting together the plant watering system. The Arduino platform
can be used to control the soil humidity sensor and an alarm. The next step is to
compose the algorithm for measuring the soil humidity percentage and turning on
the alarm when humidity is too low. This algorithm of humidity regulation can
be used for various plants by just adjusting the variables for the minimum level
of humidity. An if-else loop can automatically turn on and off the alarm based on
soil humidity.

The third stage is analyzing the solution. The CT skill of generalizing de-
scribes the applicability of the solution that can be expanded to other plants and
situations like measuring room humidity, temperature, carbon dioxide, light, etc.
This stage also includes evaluating the frequency of humidity readings, user noti-
fication, and the accuracy of data and performance of the system.

As solving a problem can be a cyclic process, after completing the third stage,
the problem can be formulated again. For example, the user may not like an
alarm clock for notification and may prefer LED lights or email notifications for
that. If the user can not be near the plant to water it, or watering can be too
labor-intensive, an automatic system can be built. Would it be possible to add
an automated watering system safely with a water pump to the system? Can the
design be more aesthetic by hiding the wires? Improving the solution can lead to
real working solutions (see Figure 8).

Creating a new solution for the problem can lead to new problems. The second
prototype can be improved by completing the three stages of CT skills again until
the user is satisfied with the plant watering system.

44

4.3. Tasks for Assessing CT Skills at Basic School Level

The aim of study 2 of the thesis is to find and test an instrument to assess CT skills
at basic school. To develop CT skills at basic school, a tool for assessing CT skills
must be developed. Bebras challenge tasks have been suggested by Dagiene and
Sentance [DS16] to assess and develop the skills of CT. Therefore, results from a
Bebras Challenge were analyzed with CFA to identify four CT skills: abstraction,
algorithmic design, decomposition, and evaluation. No tasks assessing the skill of
generalization were included in the Bebras Challenge. There were 15 tasks in the
Bebras challenge, whose factor loadings in the CFA came up as follows:

• Abstraction: .43, .36;
• Algorithmic thinking: .40, .34, .28, .29, .38, .36, .08, .20;
• Decomposition: .38, .43;
• Evaluation: .26, .23, .37.

Although the fit indexes of the model were almost satisfactory (TLI = .831, CFI =
.865 and RMSEA = 0.037), all factor loadings were small (.08-.43), which means
that the empirical study does not support the theory of the categorization of the
tasks assessing the skills of CT accordingly. In addition, it appeared that two
factors consisted of only two variables (tasks), while it is often expected that in a
good model, each factor should consist of at least three variables.

As the CFA did not support the four-factorial model, in addition to CFA, EFA
was used to determine if the Bebras challenge tasks could be divided into other
dimensions that better describe the CT skills. As a result, a two-factorial model
was suggested for assessing the skills of CT.

4.3.1. Exploratory Factor Analysis to Explore the Factor Structure of
Bebras Challenge Tasks to Assess CT

As CFA gave relatively small factor loadings for the model, EFA with principal
axis factoring was used with the Oblimin rotation and Kaiser normalization to
determine if the Bebras challenge tasks could be divided into other dimensions
that describe better the CT skills. As a result, a two-factorial model was suggested
for assessing the skills of CT. Tasks describing the two factors are shown in Table
2, where Tabachnick and Fidell [TF07] recommend a minimum factor loading of
.32 for including the task in the factor.

45

Table 2. Factor loadings of two factors of the tasks and predicted original skill assessed.

Task name Factor 1 Factor 2 Original skill assessed
Geocaching 0.45 0.184 Abstraction
Crane operating 0.44 -0.13 Algorithmic thinking
Quick Beaver Code 0.41 0.20 Decomposition
Mushrooms 0.40 0.01 Algorithmic thinking
Biber Hotel 0.40 0.14 Algorithmic thinking
Robot the Stairs 0.39 0.20 Evaluation
Animation 0.33 0.25 Decomposition
Fair Share 0.33 0.31 Algorithmic thinking
Dream Dress 0.29 0.11 Algorithmic thinking
Bracelet 0.27 0.04 Evaluation
Cross Country 0.25 0.19 Algorithmic thinking
Animal Competition 0.20 0.44 Evaluation
Walnut Animals 0.31 0.40 Abstraction
Button Game 0.01 0.29 Algorithmic thinking
Pencil Alignment 0.17 0.20 Algorithmic thinking

Factor 1. Algorithmic thinking. The first factor, algorithmic thinking, includes
mostly predictably algorithmic thinking tasks and some other tasks for assessing
abstraction, decomposition, and even evaluation. Taking a closer look at the tasks,
all of the tasks already include a description of the problem and the question. None
of the tasks include skills of defining the problem and analyzing the solution. This
way, all the algorithmic thinking tasks can be summarized by describing tasks that
assess step-by-step solving skills. All the tasks used for assessing CT skills at the
basic school level are in Appendix A.

Factor 2. Pattern recognition. The second factor, pattern recognition, includes
tasks for predictably assessing evaluation, abstraction, and algorithmic thinking.
Again, taking a closer look at the tasks, all of the tasks include a description
of the problem and the question. None of the tasks include skills of defining the
problem and analyzing the solution. This way, all the pattern recognition tasks can
be summarized by including tasks that assess recognizing and applying familiar
algorithmic patterns and logic. All the tasks used for assessing CT skills at the
basic school level are in Appendix A.

As the Bebras challenge tasks are complex, and authors have admitted [DS16]
that tasks may need various CT skills to solve, the results differ from the theory
of assessing five skills of CT. The new model for assessing CT skills in study 1
(see Figure 7) is a theoretical model and in study 2 assessing four CT skills was
empirically tested. A two-factorial model was suggested for the stage of solving
the problem, which included two dimensions of CT skills:

• algorithmic thinking;
• pattern recognition.

46

Based on that, a new model for assessing CT is modified by combining the
theoretical and empirical parts of the models by including algorithmic thinking
and pattern recognition dimensions in the problem-solving stage by replacing data
collection and analysis, parallelization, iteration, and automation (see Figure 9).
The reasoning behind the replacement is that the skills of algorithmic thinking
and pattern recognition are used in data collection and analysis, parallelization
iteration, and automation.

Algorithmic
thinking

Pattern
recognition

Algorithmic
design

Data
colleciton

and
analysis

Paral-
lelization

Automation

Iteration

Figure 9. Solving the problem stage suggested for the model of assessing CT skills.

47

4.3.2. Description and an Example of Algorithmic Thinking Tasks

As previously mentioned, tasks included in Factor 1 can be characterized as tasks
of algorithmic thinking. These tasks require step-by-step solutions for the prob-
lems. Examples of the tasks that assess algorithmic thinking are The Crane Oper-
ating (see Figure 10) and The Quick Beaver Code (see Figure 11).

The crane in the port of Lodgedam has six different input commands:

left

right

up

down

grab

let go

Crate A is in the left position, crate B is in the position on the right.

Question:

Using the command buttons, swap the position of the two crates.

Figure 10. An example of algorithmic thinking task. Title: The Crane Operating

The first example of a task for assessing algorithmic thinking is The Crane Op-
erating task (see Figure 10), where students had to switch the places of two crates
using the given commands for the crane. This task needs a sequentially structured
algorithm for exchanging two objects and was initially listed as an algorithmic
design task. Places of two crates can only be changed if one of the crates is placed
on extra empty space. The sensible way of doing this is starting from crate A.
This task deals with designing and implementing sequential algorithms and pro-
cess concepts. Most programs work with sequentially run operations, so each
operation in the memory of the computer also needs extra space. As tasks in Be-
bras challenges are marked with three types of difficulty: A (easy), B (medium),
and C (hard), this task is marked with B (medium) difficulty, and results show that
75% of students in the age group were able to solve this task correctly.

The second example of an algorithmic thinking task is The Quick Beaver Code
(see Figure 11). Students had to use algorithmic thinking by looking at each
square of the code and calculating the binary value of the square. However, this
task was initially listed as a decomposition task. Although the answer can be
filtered out without doing complicated calculations by looking only at the first
square, which has the highest value of 365, on the top-left corner, it is still a step-
by-step process to find the solution. QR codes are used in applications, including

48

The beavers want to encode numbers. They developed the Quick-Beaver-Code (QB-Code).

This is a code consisting of squares. Every square has a certain value.
The squares are filled line by line from the bottom to the top and from right to left.

The value of the bottom right square is 1. The other squares have double the value of the
square before them.

Example:

Here is a 3x3 QB-Code. The beavers have encoded a number
by darkening some squares.

The number encoded is the sum of the values of the dark squares,
so the number encoded in this QB-Code is 2 + 32 + 64 = 98.

Question:
Of the following 4x4 QB-Codes, which one encodes the highest number?

A B C D

Figure 11. An example of an algorithmic thinking task. Title: The Quick Beaver Code

commercial tracking, entertainment, and transport ticketing, product/loyalty mar-
keting, and in-store product labeling. Mobile phone users may receive text, add a
contact to their device, open an URL, or compose a message after scanning a QR
code. This task is marked with C (hard) difficulty, and results show that 48% of
students solved this task correctly.

4.3.3. Description and an Example of Pattern Recognition Tasks

As previously mentioned, tasks included in Factor 2 can be characterized as tasks
of pattern recognition. Students cannot solve these tasks by applying step-by-step
solutions for solving and must recognize familiar patterns that emerge while solv-
ing the tasks. Examples of the tasks from Factor 2 are The Animal Competition
task (see Figure 12) and The Button Game task (see Figure 13).

The first example of a task assessing pattern recognition is The Animal Com-
petition (see Figure 12). This task requires an understanding of how data ordering
rules are used. The conditions used in this task are called constraints. When
working with data, some organization of the data is necessary. By solving this
task, students can organize data logically, interpret patterns and models, break
down problems into parts. This task is marked with B (medium) difficulty, and
results show that 11% of students in the age group could solve this task correctly.

The second example of a pattern recognition task is The Button Game (see Fig-
ure 13), where students have to find out the minimal button moves to put all green

49

The beavers and dogs had a competition. In total nine animals took part.

The nine participants had the following scores: 1, 2, 2, 3, 4, 5, 5, 6, 7.

No dog scored more than any beaver.

One dog tied with a beaver.

There were also two other dogs that tied with each other.

Question:

How many dogs took part in the competition?

2, 3, 5, 6 or 7

Figure 12. An example of a pattern recognition task. Title: The Animal Competition

You can play this game on the ground. Draw a board and put the coloured buttons on the board.
One step means to move one button to top, down, right of left through one box.

Question
What is the least number of steps to put all green squared buttons into one line at the button
of the board?

Figure 13. An example of a pattern recognition task. Title: The Button Game

buttons into one line at the bottom of the board. This task cannot be solved easily
by creating a step-by-step solution as the starting point is unclear, although it was
initially listed as an algorithmic design task. Solving the task requires consider-
ing several solutions, which leads to the idea of finding the most optimal strategy
from the beginning of the game. Having experience with that sort of algorithm
is a benefit for finding the correct solution. This task includes solving algorithms
but concentrates on optimization and logic. Optimization means finding the most
cost-effective or highest achievable performance under given constraints by min-
imizing the undesired factors or maximizing desired ones. A strategy is needed

50

to find the best solution from all feasible solutions, as the most efficient way of
solving this task is making a room first at the bottom of the board by moving blue
buttons up. This task is marked with C (hard) difficulty, and results show that 6%
of students in the age group could solve this task correctly.

These Bebras tasks are suggested for assessing CT. Still, they can also be
used in formative assessment at schools so that teachers can track their students’
progress in developing CT skills like algorithmic thinking and pattern recognition.
Although this study shows that five CT skills cannot be distinguished, the tasks
include applying CT skills like abstraction, decomposition, algorithmic thinking,
evaluation, and generalization in various stages.

4.4. Tasks for Assessing CT Skills at Secondary School Level

To develop CT skills at secondary school, a tool for assessing CT skills must be
developed. Results from study 2 show that Bebras challenge tasks could be used
at the basic school level. In study 3, the basic school tasks were used to conduct a
similar study at the secondary school level, replacing more manageable tasks with
more complicated ones. CFA was used to confirm the theory of using the same
instrument to assess two CT skills, algorithmic thinking and pattern recognition.

4.4.1. Pilot Study to Develop the Tasks to Assess CT Skills at
Secondary School Level

Study 3 includes the pilot study and main study. Can these previously developed
tasks for assessing CT skills at the basic school level be used at the secondary
school level, too? This means filtering out more manageable tasks to be replaced
with more difficult tasks more suitable for secondary school level. The tool for
assessing CT skills in basic school was used in the pilot study of study 3, and
results show that six tasks out of ten were too simple, having a successful com-
pletion rate of over 80%. As it is still important to remain focused on two skills
of CT – algorithmic thinking and pattern recognition, these tasks were replaced
with more difficult tasks from the same skills. Confirmatory factor analysis was
used to confirm that all the tasks form a bi-factorial model according to the skills
of CT.

4.4.2. Confirmatory Factor Model to Confirm the Factor Structure of
Tasks to Assess CT Skills

After the pilot study in study 3, the main study of study 3 was conducted to con-
firm with the CFA the suggested dimensions of CT. The figreffig:13 shows the
bi-factorial model as Factor 1 (f1) includes tasks that assess algorithmic thinking
and Factor 2 (f2) to assess pattern recognition.

The graph in Figure 14 shows the factor loadings of the tasks 1–5 (t1-t5) in
Factor 1 are from .429 to .745, and factor loadings of the tasks 6–10 (t6–t10) in

51

Figure 14. CFA model from the results of CT tasks (t1-t10) with the factor loadings of
the two factors: algorithmic thinking (f1) and pattern recognition (f2).

Factor 2 are from .248 to .650. The correlation between the factors f1 (algorithmic
thinking) and f2 (pattern recognition) is .677.

The fit indices of the model were good (TLI = 1.035, CFI = 1.000, RMSEA
= .000, and WRMR = .541), which means that this empirical study supports the
theory proposed that the tasks are divided into two dimensions being suitable for
assessing the CT skills. CFI and TLI values are usually below one and are cur-

52

rently over the top. It can occur for smaller sample sizes [Mpl].
Although the individual factor loadings are not very high (.25-.75), Tabach-

nick and Fidell [TF07] recommend a minimum factor loading of .32 for including
the task in the factor, and only task 8 had a value below that. Together, those
tasks form a two-factorial model with a very high significance. The tasks can
be suggested for formative assessment in lessons so that teachers can track their
students’ progress in developing CT skills.

All the tasks used for assessing CT skills at the secondary school level can be
seen in Appendix B.

53

5. DISCUSSION

In a modernizing world, it is essential to develop CT skills as jobs are lost, and
new jobs are created by automation [AGZ16]. CT skills are fundamental skills for
everyone and belong to every child’s analytical ability, just like reading, writing,
and arithmetic [Win06]. Developing CT skills needs a systematic approach to
assess the CT skills. The author of the thesis proposed a model for assessing CT
skills and tools for assessing CT skills at basic and secondary school. To identify
the CT skills to be assessed, research is needed to have a common understanding
of CT skills, develop a model and an instrument to assess the CT skills.

This thesis offers a new model for developing CT skills based on six main
studies identified from the systematic literature review:

1. Wing (2006) [Win06],
2. Barr and Stephenson (2011) [BS11],
3. CSTA and ISTE (2011) [IC11],
4. Brennan and Resnick (2012) [BR12],
5. Selby and Woollard (2013) [SW13], and
6. Moreno-León (2015) [MRR15].
Combining the theoretical new model for assessing CT skills from study 1 (see

Figure 7) with the CT skills from the empirical study 2 (see Figure 9) and study 3
at basic and secondary school, a modified model for assessing CT skills is formed
(see Figure 15).

54

Algorithmic
thinking

Problem
formulation

Abstraction

Problem
reformu-

lation

General-
ization

Testing

Decompo-
sition

Evaluation

Pattern
recognition

Figure 15. A modified model for assessing CT skills

This modified model is similar to the theoretical new model for assessing
CT skills in three algorithmic problem-solving stages suggested by Reppenning
[RBE17], but the solving the problem stage is modified. The skills in the solving
the problem stage are replaced with two new skills coming from analyzing Bebras
Challenge tasks [Blo+15] suggested by Dagiene and Sentance [DS16] that were
designed for assessing the CT skills. Empirical studies 2 and 3 in this thesis show
that two main factors for categorizing the CT skills appeared from the factorial
analysis: algorithmic thinking and pattern recognition. These two CT skills are
used in data collection and analysis, parallelization, iteration, and automation.

Based on the systematic literature review, this thesis suggested the theoretical
categorization of four CT skills in defining the problem stage. Categorization of
the skills was not tested empirically, but are included in the new suggested model
for assessing CT skills:

• problem formulation;
• abstraction;
• problem reformulation;
• decomposition.

55

The categorization of the skills in defining the problem stage is theoretical and
should be empirically tested. Tasks and scenarios for developing CT skills should
be created. It is a possibility that not that many skills can be identified in solving
the problem stage. For example, to formulate a problem, the skill of abstraction is
needed.

As this new model for assessing CT skills is a theoretical model, skills of the
second problem-solving stage were empirically tested in study 2. Dagiene et al.
(2016) [DS16] suggested Bebras Challenge tasks to assess abstraction, algorith-
mic design, decomposition, and evaluation. In this thesis, study 1 at the basic
school level did not support that theory. Instead, a two-factorial model was sug-
gested for the solving the problem stage, which included two dimensions of CT
skills:

• algorithmic thinking;
• pattern recognition.

In this thesis, study 3 was conducted at the secondary school level to find out if
tasks assessing CT skills at the basic school level could be used at the secondary
school level. Assessing CT skills with a modified instrument for assessing CT
skills at the secondary school level confirmed the theory of two dimensions sug-
gested in the study conducted at the basic school level. The model for assessing
CT skills was modified accordingly, combining the theoretical and empirical part
of the problem-solving stage by replacing data collection and analysis, paralleliza-
tion, iteration, and automation with algorithmic thinking and pattern recognition
skills (see Figure 15).

This thesis did not test empirically the categorization of CT skills in the third
analyzing the solution stage. The systematic literature identified four CT skills in
the analyzing the solution stage:

• generalization;
• testing;
• evaluation.

Categorization of the skills in analyzing the solution stage is theoretical and
should be empirically tested. Tasks and scenarios for developing CT skills should
be created. It is possible that not that many skills can be identified in solving the
problem stage. For example, to test the solution, the skill of evaluation is needed.

56

6. CONCLUSIONS AND IMPLICATIONS

6.1. Conclusions

Academic articles often include various definitions of CT. This Ph.D. thesis offers
a unified model for a common understanding of the assessment of CT skills. RQ
1 and RQ 2. Which dimensions of CT skills can be identified in articles on devel-
oping CT? How can these dimensions from different articles be combined into a
new theoretical model for developing CT?

• This thesis identified three stages of assessing CT skills as follows:

– defining the problem, which includes the CT skills of formulating the
problem, abstraction, problem reformulation, and decomposition;

– solving the problem, which includes the CT skills of algorithmic think-
ing, and pattern recognition that lead to data collection and analysis,
parallelization, iteration, and automation;

– analyzing the solution, which includes the CT skills of generalization,
testing, and evaluation.

• A new model for assessing CT skills (see Figure 15) is formed by com-
bining the CT skills into one model. The model includes three sequential
stages for solving algorithmic problems that could be used for assessing CT.
Previous models of CT have not listed CT skills in the order of occurrence
in such a cyclic manner, where each stage follows the previous one. This
model can be used by teachers, students, and scientists to assess various
project ideas and instructional activities.

RQ 3 and RQ 4. Which instrument can be used to assess CT skills at basic
school? Which CT skills can be differentiated with an instrument used for assess-
ing CT at basic school?

• This thesis suggests a test containing Bebras tasks for assessing CT skills at
the basic school level. Two CT skills can be assessed in the stage of solving
the problem in any kind of lesson, and the test is not limited to specific
situations or software. Test results can be assessed either automatically
online or manually using paper and pencil. Two factors that emerged from
the study are characterized as algorithmic thinking and pattern recognition,
which can be assessed by the test.

RQ 5 and RQ 6. Which instrument can be used to assess CT skills at sec-
ondary school? Which CT skills can be differentiated with an instrument used for
assessing CT at secondary school?

• As an instrument for assessing CT skills at the basic school level was de-
veloped, the question remained, which instrument could be developed for
assessing CT skills at the secondary school level. This thesis also presents a
test that can assess CT skills at the secondary school level. The test consists

57

of 10 Bebras challenge tasks, where five tasks assess algorithmic thinking
and five tasks pattern recognition skills. Results show that the two-factorial
model is fitting. The main factors can be described as algorithmic think-
ing (tasks of finding step-by-step solutions for algorithmic problems) and
pattern recognition (tasks of recognizing algorithms for solving algorithmic
problems).

6.2. Implications

Practical implications:
• The main new aspects of the model for assessing CT skills include explain-

ing the way of assessing the stages and skills of CT with examples from
project-based learning. This model can be used in a problem-solving pro-
cess to assess CT skills from start to finish by completing the sequential
stages. This model can be used by teachers and students to assess and de-
velop various project ideas and instructional activities.

• An instrument for assessing CT skills at basic school was created. This
thesis suggests tasks for assessing the two CT skills (algorithmic thinking
and pattern recognition) that can be used in any kind of basic school lessons;
that is not limited to specific situations or software, and that can be effective
in a paper or an online test that can be automatically assessed by the teacher
or a researcher.

• An instrument for assessing CT skills at secondary school was created. This
study suggests tasks for assessing two CT skills at secondary school; the
tasks can be used in any kind of lesson; they are not limited to specific
situations or software, and they can be used effectively in a paper on online
tests. The instrument consists of 10 tasks with five tasks for each of the two
CT skills: algorithmic thinking and pattern recognition.

Theoretical implications:
• A modified model for assessing CT skills was created, as previous models

have not included CT skills in such a cyclic manner where the assessed CT
skills are divided into three major problem-solving stages following each
other.

• In assessing CT problem-solving skills at basic school, this study explored
two main factors emerging, which can be characterized as algorithmic think-
ing (includes mainly tasks of algorithmic patterns and decomposition) and
pattern recognition (includes mainly tasks of abstraction, generalization,
and evaluation).

• In assessing CT problem-solving skills at secondary school, this study con-
firmed the two-factorial model is fitting. The two emerging main factors
can be described as algorithmic thinking and pattern recognition, like in the
basic school study.

58

Directions for further studies:
• Further research is needed to investigate the factorial structure of the modi-

fied model for assessing CT. More information about the factorial structure
of the problem-solving stage could give us more information about the two-
factorial structure of CT skills that could be assessed using other skills.

• Also, further research is needed to investigate in more depth each of the
core CT skills and to create more tasks for assessing the various concepts
of CT. Distinguishing other skills of CT to create tasks helps us under-
stand their differences and use that knowledge in assessing and developing
those skills. The relationships between the various skills could be further
researched. The tasks are constructed so that they could be used in different
subjects tackling computational problems. The scenarios and activities for
integrating the tasks of CT into the basic and secondary school level class-
room could be created, and the effectiveness of the activities developing the
awareness and knowledge of the CT principles could be researched.

6.3. Limitations

The main limitations are as follows:
• The limitations of the study are that the tasks used in the test are relatively

small and specific, which means that it can be difficult to create similar
tasks. The tasks are only rated as true or false, but they could be devel-
oped further by allocating point scores to smaller parts of the tasks. Some
tasks were still a little too easy for secondary school students and could be
replaced with more complex tasks. Some tasks included multiple-choice
questions, and, therefore, it was possible to select the right answer ran-
domly. This study does not include scenarios for developing the CT skills
that are assessed with the test, and, therefore, another systematic approach
is required for that purpose.

• The limits of this model are that it is based only on the search term "compu-
tational thinking" and on the articles found in two search engines. Although
these two search engines are rather significant, powerful, and well accepted
in the research community, the new model does not include dimensions
from the articles that do not present specific lists of CT skills. The identi-
fied clusters are based on a number of references from the other articles and
can be changed in the future as new approaches get more references. Some
aspects like abstraction, generalization, and data collection can occur in
other sages, but the model only considered main occurrences, as explained.

• Further research is needed to create scenarios for developing and assessing
the development of CT skills at various school levels. The tools for eval-
uating CT skills could be created to give us more information about the
elements and the relations of the elements in the model. The model for

59

assessing CT skills can be used in various subjects and at various school
levels for assessing the development of CT skills.

• Further research is needed to investigate the other dimensions of CT skills
(defining the problem and analyzing the solution) to create tasks for de-
veloping and assessing those skills. The relationships between the various
skills could be further researched. The tasks are constructed so that they
can be used in different subjects tackling computational problems. Another
idea for research would be developing activities for integrating the tasks
of CT into the secondary school level classroom using various scenarios in
lessons and verification of the effectiveness of such activities.

60

BIBLIOGRAPHY

[AD16] Soumela Atmatzidou and Stavros Demetriadis. “Advancing students’
computational thinking skills through educational robotics: A study
on age and gender relevant differences”. In: Robotics and Autonomous
Systems 75 (2016), pp. 661–670.

[AGZ16] Melanie Arntz, Terry Gregory, and Ulrich Zierahn. “The risk of au-
tomation for jobs in OECD countries: A comparative analysis”. In:
(2016).

[And16] Nicole D Anderson. “A call for computational thinking in undergrad-
uate psychology”. In: Psychology Learning & Teaching 15.3 (2016),
pp. 226–234.

[Ang+16] Charoula Angeli et al. “A K-6 computational thinking curriculum
framework: Implications for teacher knowledge”. In: Journal of Ed-
ucational Technology & Society 19.3 (2016), pp. 47–57.

[Ber+14] Marina Umaschi Bers et al. “Computational thinking and tinkering:
Exploration of an early childhood robotics curriculum”. In: Comput-
ers & Education 72 (2014), pp. 145–157.

[BG11] Natasha K Bowen and Shenyang Guo. Structural equation modeling.
Oxford University Press, 2011.

[Bit] BBC Bitesize. KS3 Computer Science - Computational thinking. URL:
http://www.bbc.co.uk/education/topics/z7tp34j.

[Blo+15] D Blokhuis et al. UK Bebras Computational Thinking Challenge
2015. UK Bebras. 2015. URL: http://www.bebras.uk/uploads/
2/1/8/6/21861082/ukbebras2015-junioranswers.pdf.

[BMC17] Karen Selbach Borges, Crediné Silva de Menezes, and Léa da Cruz
Fagundes. “The use of computational thinking in digital fabrication
projects a case study from the cognitive perspective”. In: 2017 IEEE
Frontiers in Education Conference (FIE). IEEE. 2017, pp. 1–6.

[BR12] Karen Brennan and Mitchel Resnick. “New frameworks for studying
and assessing the development of computational thinking”. In: Pro-
ceedings of the 2012 annual meeting of the American educational
research association, Vancouver, Canada. Vol. 1. 2012, p. 25.

[Bra+17] Christian P Brackmann et al. “Development of computational think-
ing skills through unplugged activities in primary school”. In: Pro-
ceedings of the 12th Workshop on Primary and Secondary Comput-
ing Education. 2017, pp. 65–72.

[BS11] Valerie Barr and Chris Stephenson. “Bringing computational think-
ing to K-12: what is Involved and what is the role of the computer
science education community?” In: Acm Inroads 2.1 (2011), pp. 48–
54.

61

http://www.bbc.co.uk/education/topics/z7tp34j
http://www.bebras.uk/uploads/2/1/8/6/21861082/ukbebras2015-junioranswers.pdf
http://www.bebras.uk/uploads/2/1/8/6/21861082/ukbebras2015-junioranswers.pdf

[CCG17] Erick John Fidelis Costa, Livia Maria Rodrigues Sampaio Campos,
and Dalton Dario Serey Guerrero. “Computational thinking in math-
ematics education: A joint approach to encourage problem-solving
ability”. In: 2017 IEEE Frontiers in Education Conference (FIE).
IEEE. 2017, pp. 1–8.

[Che+17] Guanhua Chen et al. “Assessing elementary students’ computational
thinking in everyday reasoning and robotics programming”. In: Com-
puters & Education 109 (2017), pp. 162–175.

[Chi+17] Giuseppe Chiazzese et al. “Promoting computational thinking and
creativeness in primary school children”. In: Proceedings of the 5th
International Conference on Technological Ecosystems for Enhanc-
ing Multiculturality. 2017, pp. 1–7.

[Cod] Code.org. Computational Thinking. URL: https : / / code . org /
curriculum/course3/1/Teacher.

[Cou+11] National Research Council et al. Report of a workshop of pedagog-
ical aspects of computational thinking committee for the workshops
on computational thinking. 2011.

[Csi+15] Andrew Csizmadia et al. “Computational thinking-A guide for teach-
ers”. In: (2015).

[CTC17] Chih-Kai Chang, Yu-Tzu Tsai, and Ya-Lun Chin. “A visualization
tool to support analyzing and evaluating Scratch projects”. In: 2017
6th IIAI International Congress on Advanced Applied Informatics
(IIAI-AAI). IEEE. 2017, pp. 498–502.

[DBA17] Caitlin Duncan, Tim Bell, and James Atlas. “What do the teachers
think? Introducing computational thinking in the primary school cur-
riculum”. In: Proceedings of the Nineteenth Australasian Computing
Education Conference. 2017, pp. 65–74.

[Den17] Peter J Denning. “Remaining trouble spots with computational think-
ing”. In: Communications of the ACM 60.6 (2017), pp. 33–39.

[DP16] Annwesa Dasgupta and Senay Purzer. “No Patterns in Pattern Recog-
nition: A Systematic Literature Review”. In: Eire, PA, USA: IEEE
Press, 2016, pp. 1–3. DOI: 10.1109/FIE.2016.7757676. URL:
https://doi.org/10.1109/FIE.2016.7757676.

[DS16] Valentina Dagienė and Sue Sentance. “It’s computational thinking!
Bebras tasks in the curriculum”. In: International conference on in-
formatics in schools: Situation, evolution, and perspectives. Springer.
2016, pp. 28–39.

[DS18] Hatice Yildiz Durak and Mustafa Saritepeci. “Analysis of the relation
between computational thinking skills and various variables with the
structural equation model”. In: Computers & Education 116 (2018),
pp. 191–202.

62

https://code.org/curriculum/course3/1/Teacher
https://code.org/curriculum/course3/1/Teacher
https://doi.org/10.1109/FIE.2016.7757676
https://doi.org/10.1109/FIE.2016.7757676

[DSS17] Valentina Dagienė, Sue Sentance, and Gabrielė Stupurienė. “Devel-
oping a two-dimensional categorization system for educational tasks
in informatics”. In: Informatica 28.1 (2017), pp. 23–44.

[DT19] Peter J Denning and Matti Tedre. Computational thinking. MIT Press,
2019.

[Ein05] Albert Einstein. “Zur Elektrodynamik bewegter Körper. (German)
[On the electrodynamics of moving bodies]”. In: Annalen der Physik
322.10 (1905), pp. 891–921. DOI: http://dx.doi.org/10.1002/
andp.19053221004.

[FIC17] Ilenia Fronza, Nabil El Ioini, and Luis Corral. “Teaching computa-
tional thinking using agile software engineering methods: A frame-
work for middle schools”. In: ACM Transactions on Computing Ed-
ucation (TOCE) 17.4 (2017), pp. 1–28.

[Fow17] Allan Fowler. “Engaging young learners in making games: an ex-
ploratory study”. In: Proceedings of the 12th International Confer-
ence on the Foundations of Digital Games. 2017, pp. 1–5.

[GBW13] Lindsey Gouws, Karen Bradshaw, and Peter Wentworth. “First year
student performance in a test for computational thinking”. In: Pro-
ceedings of the South African Institute for Computer Scientists and
Information Technologists Conference. 2013, pp. 271–277.

[GMS93] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The
LATEX Companion. Reading, Massachusetts: Addison-Wesley, 1993.

[Goo] Google. Computational Thinking for Educators – Course. URL: https:
//computationalthinkingcourse.withgoogle.com.

[GP13] Shuchi Grover and Roy Pea. “Computational thinking in K–12: A re-
view of the state of the field”. In: Educational researcher 42.1 (2013),
pp. 38–43.

[GP18] Shuchi Grover and Roy Pea. “Computational Thinking: A compe-
tency whose time has come”. In: Computer science education: Per-
spectives on teaching and learning in school 19 (2018).

[Guz08] Mark Guzdial. “Education Paving the way for computational think-
ing”. In: Communications of the ACM 51.8 (2008), pp. 25–27.

[Hof09] Leah Hoffmann. “Q&A The upper limit”. In: Communications of the
ACM 52.1 (2009), 112–ff.

[IC11] I ISTE and C CSTA. “Operational definition of computational think-
ing for K–12 education”. In: National Science Foundation (2011).

[IST] ISTE. Computational Thinking Competencies. URL: https://www.
iste.org/standards/computational-thinking.

[KÇÖ17] Özgen Korkmaz, Recep Çakir, and M Yaşar Özden. “A validity and
reliability study of the computational thinking scales (CTS)”. In:
Computers in human behavior 72 (2017), pp. 558–569.

63

https://doi.org/http://dx.doi.org/10.1002/andp.19053221004
https://doi.org/http://dx.doi.org/10.1002/andp.19053221004
https://computationalthinkingcourse.withgoogle.com
https://computationalthinkingcourse.withgoogle.com
https://www.iste.org/standards/computational-thinking
https://www.iste.org/standards/computational-thinking

[KGK16] Filiz Kalelioglu, Yasemin Gulbahar, and Volkan Kukul. “A frame-
work for computational thinking based on a systematic research re-
view”. In: (2016).

[Knu] Donald Knuth. Knuth: Computers and Typesetting. URL: http://
www-cs-faculty.stanford.edu/%5C~%7B%7Duno/abcde.html.

[Kor+14] Külli Kori et al. “What influences students to study information and
communication technology”. In: INTED2014 Proceedings (2014),
pp. 1477–1486.

[Kor+15] Külli Kori et al. “First-year Dropout in ICT Studies”. In: (2015),
pp. 437–445.

[Kot+17] Donna Kotsopoulos et al. “A pedagogical framework for computa-
tional thinking”. In: Digital Experiences in Mathematics Education
3.2 (2017), pp. 154–171.

[LB17] Tony Lowe and Sean Brophy. “An operationalized model for defin-
ing computational thinking”. In: 2017 IEEE Frontiers in Education
Conference (FIE). IEEE. 2017, pp. 1–8.

[Lee+11] Irene Lee et al. “Computational thinking for youth in practice”. In:
Acm Inroads 2.1 (2011), pp. 32–37.

[Lep+16] Marina Lepp et al. “Self-and Automated Assessment in Program-
ming MOOCs”. In: (2016), pp. 72–85.

[Lep+17] Marina Lepp et al. “MOOC in Programming: A Success Story”. In:
(2017), pp. 138–147.

[Lep+18] Marina Lepp et al. “Troubleshooters for Tasks of Introductory Pro-
gramming MOOCs”. In: The International Review of Research in
Open and Distributed Learning 19.4 (2018). DOI: https://doi.
org/10.19173/irrodl.v19i4.3639.

[Lib+09] Alessandro Liberati et al. “The PRISMA statement for reporting sys-
tematic reviews and meta-analyses of studies that evaluate health care
interventions explanation and elaboration”. In: Journal of clinical
epidemiology 62.10 (2009), e1–e34.

[LK14] Sze Yee Lye and Joyce Hwee Ling Koh. “Review on teaching and
learning of computational thinking through programming: What is
next for K-12?” In: Computers in Human Behavior 41 (2014), pp. 51–
61.

[Lui+18] Piret Luik et al. “Completion of Programming MOOC or Dropping
Out: Are There Any Differences in Motivation”. In: (2018), pp. 329–
337.

[Lui+19a] Piret Luik et al. “Participants and Completers in Programming MOOCs”.
In: Education and Information Technologies 24.6 (2019), pp. 3689–
3706. DOI: https://doi.org/10.1007/s10639-019-09954-8.

64

http://www-cs-faculty.stanford.edu/%5C~%7B%7Duno/abcde.html
http://www-cs-faculty.stanford.edu/%5C~%7B%7Duno/abcde.html
https://doi.org/https://doi.org/10.19173/irrodl.v19i4.3639
https://doi.org/https://doi.org/10.19173/irrodl.v19i4.3639
https://doi.org/https://doi.org/10.1007/s10639-019-09954-8

[Lui+19b] Piret Luik et al. “What motivates enrolment in programming MOOCs?”
In: British Journal of Educationalt Technology 50.1 (2019), pp. 153–
165. DOI: https://doi.org/10.1111/bjet.12600.

[Lui+20] Piret Luik et al. “Programming MOOCs – different learners and dif-
ferent motivation”. In: International Journal of Lifelong Education
39.3 (2020), pp. 305–318. DOI: https://doi.org/10.1080/
02601370.2020.1780329.

[Mar+18] Maria José Marcelino et al. “Learning computational thinking and
scratch at distance”. In: Computers in Human Behavior 80 (2018),
pp. 470–477.

[MM98] Linda K Muthén and Bengt O Muthén. Mplus: The comprehensive
modeling program for applied researchers; user’s guide;[Version 1.0].
Muthén & Muthén, 1998.

[Mor+11] Ralph Morelli et al. “Can android app inventor bring computational
thinking to k-12”. In: Proc. 42nd ACM technical symposium on Com-
puter science education (SIGCSE’11). 2011, pp. 1–6.

[Mor+17] Jesús Moreno-León et al. “On the automatic assessment of compu-
tational thinking skills: A comparison with human experts”. In: Pro-
ceedings of the 2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. 2017, pp. 2788–2795.

[Mou+17] Chrystalla Mouza et al. “Resetting educational technology course-
work for pre-service teachers: A computational thinking approach
to the development of technological pedagogical content knowledge
(TPACK)”. In: Australasian Journal of Educational Technology 33.3
(2017).

[Mpl] Mplus. Unusual TLI values. URL: https://www.statmodel.com/
download/TLI.pdf.

[MRR15] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González.
“Dr. Scratch: Automatic analysis of scratch projects to assess and
foster computational thinking”. In: RED. Revista de Educación a
Distancia 46 (2015), pp. 1–23.

[MRR16] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González.
“Comparing computational thinking development assessment scores
with software complexity metrics”. In: 2016 IEEE global engineer-
ing education conference (EDUCON). IEEE. 2016, pp. 1040–1045.

[MRR17] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González.
“Towards data-driven learning paths to develop computational think-
ing with scratch”. In: IEEE Transactions on Emerging Topics in Com-
puting 8.1 (2017), pp. 193–205.

[Mun+16] Roberto Munoz et al. “Game design workshop to develop computa-
tional thinking skills in teenagers with Autism Spectrum Disorders”.

65

https://doi.org/https://doi.org/10.1111/bjet.12600
https://doi.org/https://doi.org/10.1080/02601370.2020.1780329
https://doi.org/https://doi.org/10.1080/02601370.2020.1780329
https://www.statmodel.com/download/TLI.pdf
https://www.statmodel.com/download/TLI.pdf

In: 2016 11th Iberian Conference on Information Systems and Tech-
nologies (CISTI). IEEE. 2016, pp. 1–4.

[Muu+20] Eerik Muuli et al. “Using image recognition to automatically assess
programming tasks with graphical output”. In: Education and In-
formation Technologies 25.6 (2020), pp. 5185–5203. DOI: https:
//doi.org/10.1007/s10639-020-10218-z.

[Nie+17] Pia Niemelä et al. “Computational thinking as an emergent learning
trajectory of mathematics”. In: Proceedings of the 17th Koli Calling
International Conference on Computing Education Research. 2017,
pp. 70–79.

[Pap96] Seymour Papert. “An exploration in the space of mathematics educa-
tions.” In: Int. J. Comput. Math. Learn. 1.1 (1996), pp. 95–123.

[Ped+17] Margus Pedaste et al. “What Happens to IT Education? The Case in
Estonia with Some Recommendations for International Discussion”.
In: International Journal of Information and Education Technology
7.3 (2017), p. 204.

[Ped+19] Margus Pedaste et al. “Complex Problem Solving as a Construct of
Inquiry, Computational Thinking and Mathematical Problem Solv-
ing”. In: 2161-377X (2019), pp. 227–231. DOI: https://doi.org/
10.1109/ICALT.2019.00071.

[POL] GEORG POLYA. “How to Solve It, Princeton, 1948”. In: PolyaHow
to Solve It1948 ().

[PV17] Nikolaos Pellas and Spyridon Vosinakis. “How can a simulation game
support the development of computational problem-solving strate-
gies?” In: 2017 IEEE Global Engineering Education Conference (EDUCON).
IEEE. 2017, pp. 1129–1136.

[RBE17] Alexander Repenning, Ashok R Basawapatna, and Nora A Escherle.
“Principles of computational thinking tools”. In: Emerging research,
practice, and policy on computational thinking. Springer, 2017, pp. 291–
305.

[RFP14] Jonathan Francis Roscoe, Stephen Fearn, and Emma Posey. “Teach-
ing computational thinking by playing games and building robots”.
In: 2014 International Conference on Interactive Technologies and
Games. IEEE. 2014, pp. 9–12.

[RHJ17] Simon Rose, Jacob Habgood, and Tim Jay. “An exploration of the
role of visual programming tools in the development of young chil-
dren’s computational thinking”. In: Electronic journal of e-learning
15.4 (2017), pp. 297–309.

[Rob+17] Gregorio Robles et al. “Software clones in scratch projects: On the
presence of copy-and-paste in computational thinking learning”. In:
2017 IEEE 11th International Workshop on Software Clones (IWSC).
IEEE. 2017, pp. 1–7.

66

https://doi.org/https://doi.org/10.1007/s10639-020-10218-z
https://doi.org/https://doi.org/10.1007/s10639-020-10218-z
https://doi.org/https://doi.org/10.1109/ICALT.2019.00071
https://doi.org/https://doi.org/10.1109/ICALT.2019.00071

[Rod+15] Jennifer A Rode et al. “From computational thinking to computa-
tional making”. In: Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. 2015, pp. 239–
250.

[RPJ17] Marcos Román-González, Juan-Carlos Pérez-González, and Carmen
Jiménez-Fernández. “Which cognitive abilities underlie computational
thinking? Criterion validity of the Computational Thinking Test”. In:
Computers in human behavior 72 (2017), pp. 678–691.

[SDW14] Cynthia Selby, Mark Dorling, and John Woollard. “Evidence of as-
sessing computational thinking”. In: (2014).

[Sel15] Cynthia C Selby. “Relationships: computational thinking, pedagogy
of programming, and Bloom’s Taxonomy”. In: Proceedings of the
workshop in primary and secondary computing education. 2015, pp. 80–
87.

[SF13] Linda Seiter and Brendan Foreman. “Modeling the learning progres-
sions of computational thinking of primary grade students”. In: Pro-
ceedings of the ninth annual international ACM conference on Inter-
national computing education research. 2013, pp. 59–66.

[Sol+16] Arash Soleimani et al. “A tangible, story-construction process em-
ploying spatial, computational-thinking”. In: Proceedings of the The
15th International Conference on Interaction Design and Children.
2016, pp. 157–166.

[SSA17] Valerie J Shute, Chen Sun, and Jodi Asbell-Clarke. “Demystifying
computational thinking”. In: Educational Research Review 22 (2017),
pp. 142–158.

[SW13] Cynthia Selby and John Woollard. “Computational thinking: the de-
veloping definition”. In: (2013).

[Tau+17] Tauno Palts et al. “Tasks for Assessing Skills of Computational Think-
ing”. In: Informatics in Education. 10th annual International Confer-
ence of Education, Research and Innovation (2017), pp. 2750–2759.
DOI: http://dx.doi.org/10.21125/iceri.2017.0784.

[TF07] Barbara G Tabachnick and Linda S Fidell. Using multivariate statis-
tics (5: e upplagan). 2007.

[TP15] Tauno Palts and Margus Pedaste. “Model of Learning Computa-
tional Thinking”. In: (2015), pp. 211–221.

[TP17] Tauno Palts and Margus Pedaste. “Tasks for Assessing Skills of
Computational Thinking”. In: (2017), pp. 367–367.

[TP19] Tauno Palts and Margus Pedaste. “Tasks for Assessing Computa-
tional Thinking Skills at Secondary School Level”. In: (2019), pp. 216–
226. DOI: http://dx.doi.org/10.1007/978-3-030-35343-
8_23.

67

https://doi.org/http://dx.doi.org/10.21125/iceri.2017.0784
https://doi.org/http://dx.doi.org/10.1007/978-3-030-35343-8_23
https://doi.org/http://dx.doi.org/10.1007/978-3-030-35343-8_23

[TP20] Tauno Palts and Margus Pedaste. “A Model for Developing Compu-
tational Thinking Skills”. In: Informatics in Education 19.1 (2020),
pp. 113–128. DOI: http://dx.doi.org/10.15388/infedu.
2020.06.

[Voo+15] Joke Voogt et al. “Computational thinking in compulsory education:
Towards an agenda for research and practice”. In: Education and In-
formation Technologies 20.4 (2015), pp. 715–728.

[VT16] Michael Vallance and Phillip A Towndrow. “Pedagogic transforma-
tion, student-directed design and computational thinking”. In: Peda-
gogies: An International Journal 11.3 (2016), pp. 218–234.

[Wei+16] David Weintrop et al. “Defining computational thinking for math-
ematics and science classrooms”. In: Journal of Science Education
and Technology 25.1 (2016), pp. 127–147.

[Win06] Jeannette M Wing. “Computational thinking”. In: Communications
of the ACM 49.3 (2006), pp. 33–35.

[Win08] Jeannette M Wing. “Computational thinking and thinking about com-
puting”. In: Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences 366.1881 (2008), pp. 3717–
3725.

[Zho+16] Baichang Zhong et al. “An exploration of three-dimensional inte-
grated assessment for computational thinking”. In: Journal of Edu-
cational Computing Research 53.4 (2016), pp. 562–590.

68

https://doi.org/http://dx.doi.org/10.15388/infedu.2020.06
https://doi.org/http://dx.doi.org/10.15388/infedu.2020.06

Appendix A. TASKS FOR ASSESSING CT AT BASIC
SCHOOL LEVEL

A.1. Task 1. Geocaching

A.2. Task 2. Crane Operating

69

A.3. Task 3. Quick Beaver Code

A.4. Task 4. Mushrooms

70

A.5. Task 5. Biber Hotel

A.6. Task 6. Robot the Stairs

71

A.7. Task 7. Animation

A.8. Task 8. Fair Share

72

A.9. Task 9. Dream Dress

A.10. Task 10. Bracelet

73

A.11. Task 11. Cross Country

A.12. Task 12. Animal Competition

74

A.13. Task 13. Walnut Animals

A.14. Task 14. Button Game

75

A.15. Task 15. Pencils Alignment

76

Appendix B. TASKS FOR ASSESSING CT AT
SECONDARY SCHOOL LEVEL

B.1. Task 1. Crane operating

B.2. Task 2. Popularity

B.3. Task 3. Word Chains

77

B.4. Task 4. Geocaching

B.5. Task 5. Irrigation System

B.6. Task 6. Beaver Lunch

78

B.7. Task 7. Button Game

B.8. Task 8. Decorating Chocolate

79

B.9. Task 9. Pencils’ Alignment

B.10. Task 10. Building a Chip

80

SISUKOKKUVÕTE

Algoritmilise mõtlemise oskuste hindamise mudel

Tehnoloogia on kõikjal meie ümber ja arvutiteadus pole enam ainult eraldi distsip-
liin teadlastele, vaid omab aina laiemat rolli ka teistel aladel. Lugemise, kirjuta-
mise ja arvutamise kõrval on algotitmilise mõtlemise (ingl computational thin-
king) oskus saamas vajalikuks oskuseks kõigile. Huvi algoritmilise mõtlemise
arendamise vastu kasvab kõigil haridustasemetel alates eelkoolist kuni ülikoolini.
Sellega seoses vajame aina enam üldhariduskoolide tasemel uuringuid, et omada
paremat ülevaadet algoritmilise mõtlemise oskuste erinevatest dimensioonidest, et
luua mudelit, mis aitaks praktiliselt hinnata algoritmilise mõtlemise oskuste taset.

Algoritmilist mõtlemist kirjeldatakse paljudes artiklites ja raportites, kuid sa-
geli pole need artiklid omavahel kooskõlas ja puudub ühine arusaamine algoritmi-
lise mõtlemise oskuste dimensioonidest, millele keskenduda arendamisel ja hin-
damisel. Doktoritöö sisaldab süstemaatilist kirjanduse analüüsi, kus mõjukama-
te artiklite sünteesimisel jõutakse kolmeetapilise algoritmilise mõtlemise oskuste
mudelini. See mudel koosneb järgnevatest etappidest: i) probleemi defineerimine,
ii) probleemi lahendamine ja iii) lahenduse analüüsimine. Need kolm etappi sisal-
davad järgnevaid algoritmilise mõtlemise osaoskust: probleemi formuleerimine,
abstrahheerimine, probleemi reformuleerimine, probleemi osadeks võtmine, and-
mete kogumine ja analüüs, algoritmiline disain, paralleliseerimine, itereerimine,
automatiseerimine, üldistamine ning tulemuse hindamine ja testimnine.

Selleks, et algoritmilist mõtlemist põhikoolis süstemaatiliselt arendada, on va-
ja mõõtevahendit vastavate oskuste mõõtmiseks põhikoolis. Üheks võimaluseks
soovitatakse kasutada selleks rahvusvahelise informaatikaviktoriini Kobrase üles-
andeid. Doktoritöö uurib testide abil empiiriliselt, milliseid algoritmilise mõt-
lemise osaoskusi on võimalik eraldada Kobrase viktoriini tulemustest lähtuvalt.
Uurimuslikku faktoranalüüsi kasutati 7100 osalejaga Kobrase viktoriini tulemus-
te analüüsimiseks ja selle põhjal loodi kahefaktoriline mudel, mille faktoreid saab
nimetada üldnimetustega algoritmiline disain ja mustrite äratundmine.

Kuna loodud instrument töötab põhikoolis, siis tekkis küsimus, kas seda oleks
võimalik kasutada ka gümnaasiumis? Doktoritöös esitletakse ka täiendatud ja em-
piiriliselt testitud mõõtevahendit gümnaasiumi jaoks. 649 gümnaasiumiastme õpi-
last vastasid kohendatud testile ja kinnitava faktoranalüüsiga kinnitati, et täienda-
tud mõõtevahend on sobilik hindamaks algoritmilise mõtlemise osaoskusi algorit-
milist disaini ja mustrite äratundmist ka gümnaasiumis.

Doktoriöö arutelu peatükis pakutakse välja teoreetilisi ja empiirilisi tulemusi
kokkuvõttev kohendatud algoritmilise mõtlemise oskusi hindav mudel.

81

PUBLICATIONS

CURRICULUM VITAE

Personal data

Name: Tauno Palts
Birth: 17.05.1985
Marital Status: Married
Contact: tauno.palts@ut.ee

Education

2014–2021 University of Tartu, PhD in Computer Science
2009–2011 University of Tartu, MA in Teacher of Mathematics and

Informatics
2009–2011 University of Tartu, MA in Teacher of Informatics
2004–2009 University of Tartu, BSc in Information Technology
1992–2004 Kadrina Keskkool

Employment

2013– University of Tartu, assistant of informatics didactics
2018– Tartu Tamme Gymnasium, teacher of computer program-

ming

Scientific work

Main fields of interest:
• developing computational thinking
• teaching programming
• teaching school robotics

128

ELULOOKIRJELDUS

Isikuandmed

Nimi: Tauno Palts
Sünniaeg: 17.05.1985
Perekonnaseis: abielus
Kontaktandmed: tauno.palts@ut.ee

Haridus

2014–2021 Tartu Ülikool, PhD informaatika
2009–2011 Tartu Ülikool, MA Matemaatika- ja informaatikaõpetaja
2009–2011 Tartu Ülikool, MA Informaatikaõpetaja
2004–2009 Tartu Ülikool, BSc Infotehnoloogia
1992–2004 Kadrina Keskkool

Teenistuskäik

2013– Tartu Ülikool, informaatika didaktika assistent
2018– Tartu Tamme Gümnaasium, programmeerimise õpetaja

Teadustegevus

Peamised uurimisvaldkonnad:
• algoritmilise mõtlemise arendamine probleemide lahendamisel
• programmeerimise õpetamine
• koolirobootika õpetamine

129

130

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

131

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

77. Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

132

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

116. Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

121. Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

122. Eno Tõnisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

133

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

1. Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

2. Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

3. Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

4. Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

5. Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

6. Irene Teinemaa. Predictive and Prescriptive Monitoring of Business
Process Outcomes. Tartu 2019, 196 p.

7. Mohan Liyanage. A Framework for Mobile Web of Things. Tartu 2019,
131 p.

8. Toomas Krips. Improving performance of secure real-number operations.
Tartu 2019, 146 p.

9. Vijayachitra Modhukur. Profiling of DNA methylation patterns as bio-
markers of human disease. Tartu 2019, 134 p.

10. Elena Sügis. Integration Methods for Heterogeneous Biological Data.
Tartu 2019, 250 p.

11. Tõnis Tasa. Bioinformatics Approaches in Personalised Pharmacotherapy.
Tartu 2019, 150 p.

12. Sulev Reisberg. Developing Computational Solutions for Personalized
Medicine. Tartu 2019, 126 p.

13. Huishi Yin. Using a Kano-like Model to Facilitate Open Innovation in
Requirements Engineering. Tartu 2019, 129 p.

14. Faiz Ali Shah. Extracting Information from App Reviews to Facilitate
Software Development Activities. Tartu 2020, 149 p.

15. Adriano Augusto. Accurate and Efficient Discovery of Process Models
from Event Logs. Tartu 2020, 194 p.

16. Karim Baghery. Reducing Trust and Improving Security in zk-SNARKs
and Commitments. Tartu 2020, 245 p.

17. Behzad Abdolmaleki. On Succinct Non-Interactive Zero-Knowledge Pro-
tocols Under Weaker Trust Assumptions. Tartu 2020, 209 p.

18. Janno Siim. Non-Interactive Shuffle Arguments. Tartu 2020, 154 p.
19. Ilya Kuzovkin. Understanding Information Processing in Human Brain by

Interpreting Machine Learning Models. Tartu 2020, 149 p.
20. Orlenys López Pintado. Collaborative Business Process Execution on the

Blockchain: The Caterpillar System. Tartu 2020, 170 p.
21. Ardi Tampuu. Neural Networks for Analyzing Biological Data. Tartu

2020, 152 p.

22. Madis Vasser. Testing a Computational Theory of Brain Functioning with
Virtual Reality. Tartu 2020, 106 p.

23. Ljubov Jaanuska. Haar Wavelet Method for Vibration Analysis of Beams
and Parameter Quantification. Tartu 2021, 192 p.

24. Arnis Parsovs. Estonian Electronic Identity Card and its Security Challen-
ges. Tartu 2021, 214 p.

25. Kaido Lepik. Inferring causality between transcriptome and complex
traits. Tartu 2021, 224 p.

	List of original publications
	Introduction
	Research Problem
	The Focus of the Research

	Theoretical Background
	Skills of CT
	Assessing the Development of CT Skills
	Assessing the Development of CT Using Gaming and Project Creation Activities
	Assessing Development of CT Using Robotics and Tinkering Activities
	Assessing Development of CT Using Unplugged Activities

	Research Design and Methods
	Research Design
	Creating a Model for Assessing CT Skills
	Methods for Developing Instrument to Assess CT in Basic School
	Methods for Developing Instrument to Assess CT in Secondary School

	Findings
	A Model for Assessing CT Skills
	Identifying the Directions of CT

	A New Model for Assessing CT Skills
	Defining the Problem
	Solving the Problem
	Analyzing the Solution
	An Example of Using the New Model for Assessing CT Skills

	Tasks for Assessing CT Skills at Basic School Level
	Exploratory Factor Analysis to Explore the Factor Structure of Bebras Challenge Tasks to Assess CT
	Description and an Example of Algorithmic Thinking Tasks
	Description and an Example of Pattern Recognition Tasks

	Tasks for Assessing CT Skills at Secondary School Level
	Pilot Study to Develop the Tasks to Assess CT Skills at Secondary School Level
	Confirmatory Factor Model to Confirm the Factor Structure of Tasks to Assess CT Skills

	Discussion
	Conclusions and Implications
	Conclusions
	Implications
	Limitations

	Tasks for Assessing CT at Basic School Level
	Task 1. Geocaching
	Task 2. Crane Operating
	Task 3. Quick Beaver Code
	Task 4. Mushrooms
	Task 5. Biber Hotel
	Task 6. Robot the Stairs
	Task 7. Animation
	Task 8. Fair Share
	Task 9. Dream Dress
	Task 10. Bracelet
	Task 11. Cross Country
	Task 12. Animal Competition
	Task 13. Walnut Animals
	Task 14. Button Game
	Task 15. Pencils Alignment

	Tasks for Assessing CT at Secondary School Level
	Task 1. Crane operating
	Task 2. Popularity
	Task 3. Word Chains
	Task 4. Geocaching
	Task 5. Irrigation System
	Task 6. Beaver Lunch
	Task 7. Button Game
	Task 8. Decorating Chocolate
	Task 9. Pencils’ Alignment
	Task 10. Building a Chip

	Sisukokkuvõte (Summary in Estonian)
	Publications
	A Model for Developing Computational Thinking Skills
	Tasks for Assessing Skills of Computational Thinking
	Tasks for Assessing Computational Thinking Skills at Secondary School Level

	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)

