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Introduction 

The financial crisis in the 2008 showed the importance of stable funding and sufficient 

liquidity in the financial sector. Regulators have since put liquidity and stable funding in the 

financial sector to their top priorities. One of the focuses has been on non-maturity deposits 

(NMDs) as they are an important part of commercial bank’s funding and are characterized by 

two options. First, customers can withdraw their money any time without penalty as there is 

no contractual maturity and second, banks are allowed to change the deposit rate at any point 

in time as deposit rate is administratively set and reprice overnight.  

In April 2016, the Basel Committee on Banking Supervision (BCBS) announced the standard 

on capital framework for interest rate risk in the banking book (IRRBB). IRRBB refers to the 

current or prospective risk to the bank’s capital and earnings arising from adverse movements 

in interest rates that affect the bank’s banking book positions. Changes in interest rates have an 

effect in the present value of future cash flows and the bank’s earnings by altering interest 

rate-sensitive income and expenses, i.e. net interest income (NII). Excessive interest rate risk 

can pose a significant threat to a bank’s current capital base and future earnings if not 

managed appropriately. One of the findings by BCBS was that banks should document, 

monitor, and regularly update primal assumptions regarding NMDs behaviour and balances. 

Although, depositors are free to withdraw their money at any time, NMD balances have 

historically proved to be relatively stable. Therefore, banks should analyse its depositor base 

to be able to identify the proportion of core deposits, i.e. NMDs which are unlikely to be 

redrawn or reprice even under significant changes in interest rate environment. (Basel 

Committee on Banking Supervision, 2016) 

The aim of the study is to find the best model to forecast the volume of private customers’ 

savings deposits of one undisclosed financial institution. The financial institution has 

previously implemented a deposit model where it assesses both core volumes and their 

duration. Next steps include building a more sophisticated model to forecast volumes for the 

NII forecast and the funding plan. This is especially needed in the condition where NII 

sensitivity has increased significantly due to excess liquidity. With rates being negative, until 

recently, and the financial institution’s limited will and capacity to discourage depositors, 



5 

 

deposits have been seen as an expensive source of funding the banks operations. By being able 

to forecast their volumes in a comprehensive manner given different scenarios the financial 

institution will be better equipped to manage its funding and costs.  

In Section 1 an overview of previous research on the topic of deposit volume forecasting is 

presented.  The focus is on determinants such as deposit rate, consumer confidence indicator, 

purchasing managers’ index, gross domestic product, house price index and quantitative 

easing. Section 2 provides the reader the theory of time series analysis, including Holt, Holt-

Winters, ARIMA and ARIMAX models, and its application in R software. Finally, in Section 

3 the data under analysis is described and different time series models are fitted.  Furthermore, 

the models are compared, validated and the best model is chosen. The evaluation of the 

models is based on three principles – goodness of fit, accuracy and simplicity.  
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1 Literature review 

There are numerous analyses done to investigate determinants of deposit volumes. The next 

subchapters give an overview of the different factors that can possibly affect NMD balances. 

The choice of variables is based on previous studies in the area of deposit volumes and time 

series forecasting.  

1.1 Deposit rate 

The deposit rate has for some time been considered to have high explanatory power on deposit 

volumes as it should be one of the key factors considered by customers when allocating assets. 

For example, Masson et al. (1998) found a positive effect of interest rates on private savings in 

industrial countries. However, as the deposit rates have recently been decreasing and close to 

zero, but deposit volumes on the other hand have grown, there have been alternative research 

outcomes. Bank of Japan (2014) showed that NMD balances decrease in a high interest rate 

environment and vice versa. 

1.2 Consumer confidence indicator 

Consumer confidence indicator (CCI) is produced by the Directorate General for Economic 

and Financial Affairs (DG ECFIN) of the European Commission to indicate economic 

perceptions and expectations. It is calculated as the arithmetic average of the balances (in 

percentage points) of the answers to the questions on the financial situation of households, the 

general economic situation, unemployment expectations and savings (Directorate General for 

Economic and Financial Affairs, 2016). The questionnaire covers respondent’s view on the 

economic situation over the previous and upcoming 12 months. Two example questions are 

shown in Figure 1.   
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Figure 1: Sample questions from the CCI questionnaire. Source: Directorate General for 

Economic and Financial Affairs (2016, p 36). 

The indicator takes values between -100 and 100. A positive value indicates that consumers 

are rather optimistic about the conditions. However, a negative value refers to a more 

pessimistic view. 

The hypothesis that increased uncertainty about the future economic situation causes greater 

savings rates has been tested numerous times. For example, an article written by Kłopocka in 

2016 proved that consumer confidence indicator has predictive power for Polish future 

household saving rates. The multiple linear regression analysis (OLS technique) of time-series 

showed that four lags of changes in CCI explain 23% of the variation of changes in total 

household saving rate. There are more examples about the influence of economic uncertainty 

on savings from Carroll et al. (2012), Mody et al. (2012), Carroll and Samwick (1998). 

1.3 Purchasing managers’ index 

The purchasing managers’ index (PMI) is a business cycle indicator for the economy, reported 

by Swedbank in cooperation with Sveriges Inköps- och Logistikförbund (Silf). It measures the 
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activity level of purchasing managers both in the manufacturing and the services sector. On 

monthly basis, purchasing managers are surveyed and the two indexes – PMI manufacturing 

and PMI services – are calculated. A level above 50 indicates expansion, while an index level 

of below 50 signals a contraction. The aim is to quickly measure the current state of the 

economy as purchasing managers generally have early access to their company’s performance, 

which can be a leading indicator of overall economic performance. (Swedbank, 2022)  

1.4 Gross domestic product 

Gross domestic product (GDP) is one of the fundamental economic growth measures. One of 

the main theories is that a general long-term increase in GDP creates a surplus in the economy 

which is transferred to account balances and vice versa. Chaturvedi et al. confirmed in 2009 

that saving rate is positively affected by the real GDP growth rate.  

1.5 House price index 

The house price index (HPI) measures inflation in the residential real estate market. The index 

calculation includes all kinds of new and existing residential property like flats, detached 

houses and terraced houses, purchased by households. (Eurostat, 2022a) 

There are two hypotheses regarding HPI and savings deposits. Firstly, selling real estate at 

high market price is increasing wealth and account balances. Secondly, in order to buy a 

property, one needs to save money and thus savings deposits are increasing. The positive 

relationship between Sweden’s HPI and household savings was proved by Kennedy and 

Andersen (1994). An alternative result was provided by Klerck and Salame (2017) where 

northern Europe countries were analysed. The paper concluded that one percent increase in 

house prices will decrease savings 0.113 percent. 

1.6 Quantitative easing 

Following the financial crises in the 2008, central banks have started using a new tool for 

monetary policy, such as large-scale asset purchases (LSAPs), also known as quantitative 

easing (QE). Although, it was first used by Bank of Japan already in 2001, it has become 

widely used over the last decade with the aim of stimulating demand to increase inflation 

(Grimaldi et al. 2021).  
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The concept behind it is that a central bank starts purchasing government bonds on the 

secondary market. As a result, yields for those safe bonds fall and it becomes more attractive 

for investors to turn to alternative assets. In this way, the lower yields for government bonds 

spread onwards to other parts of the financial markets. Lower interest rates help the banks to 

decrease rates for loans and deposits, which in turn increases companies’ willingness to invest 

and households’ incentive to consume. As a result, asset prices rise and so does the wealth of 

both households and companies. (Sveriges Riksbank, 2021a)  
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2 Time Series Analysis 

This section introduces the theory behind modelling and forecasting time series and is based 

on the book by Chatfield (2004: pp. 1, 5, 10-14, 19-20, 23-24, 34-35, 37-38, 48, 62, 66, 73-89, 

245-246), unless noted otherwise.   

2.1 Fundamentals 

Time series is defined as a collection of observations 𝑥𝑡 made sequentially through time and is 

referred to as discrete when observations are taken only at specific times, usually at equal time 

intervals. Observations 𝑥𝑡 are realizations of a random variable 𝑋𝑡, 𝑡 ∈ 𝑍, and a family of 

random variables (𝑋𝑡)𝑡∈𝑍 is called a stochastic, or random, process.  

One of the main goals in analysing time series is to predict the future values as accurately as 

possible, given the information available about the past. The estimate of 𝑥𝑇+ℎ based on the 

values  𝑥1, … , 𝑥𝑇 is denoted 𝑥̂𝑇+ℎ|𝑇.  

There are four main components in time series forecasting: 

1) preliminary analysis, 

2) choice of suitable model,  

3) model calibration and goodness of fit, 

4) estimating future values and calculating confidence intervals. 

2.1.1 Decomposition 

The first part of preliminary analysis is plotting the data. It enables to see patterns, unusual 

fluctuations, changes over time, and relationships between variables. Traditional methods of 

time series analysis decompose the variation in a time series into trend 𝑇𝑡, seasonal component 

𝑆𝑡 and irregular component 𝜀𝑡. In case of additive decomposition, the formula is given as 

𝑥𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝜀𝑡, 

and in case of multiplicative decomposition as 

𝑥𝑡 = 𝑇𝑡𝑆𝑡𝜀𝑡. 
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The additive decomposition is applicable when the magnitude of the seasonal component is 

roughly constant through the series, while the multiplicative method is preferred when the 

seasonal effect is directly proportional to the mean. A logarithmic transformation can be used 

to make the seasonal effect from multiplicative to additive. 

2.1.2 Stationarity 

The next element of interest is stationarity. A random process (𝑋𝑡)𝑡∈𝑍 is said to be (strictly) 

stationary if random vectors (𝑋1, … , 𝑋𝑚) and (𝑋1+𝑞, … , 𝑋𝑚+𝑞) have the same distribution, 𝑚 

and 𝑞 are integers. In other words – its statistical properties, like mean and variation, do not 

depend on the time at which the series is observed. If random vectors (𝑋1, … , 𝑋𝑚) and 

(𝑋1+𝑞, … , 𝑋𝑚+𝑞) have all up to 𝑙-th moments equal, then the time series is called 𝑙-th order 

(weakly) stationary. Thus, for second order weakly stationary stochastic process (𝑋𝑡)𝑡∈𝑍 by 

definition 

𝐸(𝑋𝑗) = 𝐸(𝑋𝑗+𝑞),  

𝐸(𝑋2
𝑗) = 𝐸(𝑋2

𝑗+𝑞),  

𝐸(𝑋𝑗𝑋𝑖) = 𝐸(𝑋𝑗+𝑞𝑋𝑖+𝑞), 

where 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑚, 𝑞 ∈ 𝑍. This means that mean and variation are constant. In this thesis, 

mainly the second order weakly stationary processes are considered. In addition, it is reckoned 

that a time series is stationary if the underlying stochastic process is stationary. Stationarity is 

essential because it gives more accurate and stable parameter estimates compared to a series 

whose statistical properties keep changing over time.  

From stationarity definition it can be concluded that a time series with changing variance or 

mean is not stationary. Transformations like logarithms are useful for stabilising the variance 

of a time series. Trend can be eliminated by computing the differences between consecutive 

observations, i.e. differencing the series,  

∇𝑥𝑡 =  𝑥𝑡 − 𝑥𝑡−1 = (1 − 𝐵)𝑥𝑡, 

where 𝐵 is backward shift operator, 𝐵𝑥𝑡 = 𝑥𝑡−1. Similarly, 𝐵(𝐵𝑥𝑡) = 𝐵2𝑥𝑡 = 𝑥𝑡−2.   
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For non-seasonal data, first-order differencing is usually enough to attain apparent stationarity. 

Occasionally the differenced data does not look stationary, and it may be necessary to 

difference the data a second time to obtain a stationary series: 

∇2𝑥𝑡 = ∇𝑥𝑡 − ∇𝑥𝑡−1 =  𝑥𝑡 − 2𝑥𝑡−1 + 𝑥𝑡−2 = (1 − 2𝐵 + 𝐵2)𝑥𝑡 = (1 − 𝐵)2𝑥𝑡. 

Seasonal component can be removed by using seasonal difference. For this, the difference 

between observation and the previous observation from the same season is calculated 

∇𝑠𝑥𝑡 =  𝑥𝑡 − 𝑥𝑡−𝑠 = (1 − 𝐵𝑠)𝑥𝑡, 

where 𝑠 is the number of seasons. Seasonal difference followed by first-order difference is 

calculated as 

𝛻𝛻𝑠𝑥𝑡 = (1 − 𝐵)(1 − 𝐵𝑠)𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1 − 𝑥𝑡−𝑠 + 𝑥𝑡−𝑠−1. 

There are number of so-called unit root tests available for determining whether differencing is 

required to attain stationarity, for example, Phillips-Perron test (Phillips and Perron, 1988) and 

augmented Dickey-Fuller (ADF) test. Both test the null hypothesis that a unit root is present 

(non-stationarity).  

2.1.3 Autocorrelation 

The third element of interest in preliminary analysis is autocorrelation. It measures the linear 

relationship between observations at different distances apart. The autocorrelation function 

(ACF) of a second order weakly process (𝑋𝑡)𝑡∈𝑍 at lag 𝑘 is 

𝜌𝑋(𝑘) = 𝑐𝑜𝑟(𝑋𝑡, 𝑋𝑡+𝑘) =
𝛾(𝑘)

𝛾(0)
=

𝛾(𝑘)

𝜎2
, 𝑘 ∈ 𝑍, 

where 𝛾(𝑘) = 𝑐𝑜𝑣(𝑋𝑡, 𝑋𝑡+𝑘) = 𝐸[(𝑋𝑡 − 𝐸(𝑋𝑡))(𝑋𝑡+𝑘 − 𝐸(𝑋𝑡+𝑘))], 𝑘 ∈ 𝑍, is the auto-

covariance function of the process (𝑋𝑡). 

The theoretical autocorrelation function is estimated by the sample autocorrelation function 

which is calculated as  

𝑟𝑘 = 𝜌̂𝑥(𝑘) = 𝑐𝑜𝑟(𝑥𝑡, 𝑥𝑡+𝑘) =
∑ (𝑥𝑡 − 𝑥̅)(𝑥𝑡+𝑘 − 𝑥̅)𝑇−𝑘

𝑡=1

∑ (𝑥𝑡 − 𝑥̅)2𝑇
𝑡=1

, 
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where 𝑘 is the lag and 𝑇 is the length of the time series. Thus, 𝑟1 measures the relation 

between 𝑥𝑡 and 𝑥𝑡+1, 𝑟2 measures the relation between 𝑥𝑡 and 𝑥𝑡+2, and so forth. 

Another useful tool for analysing relation between observations at different distances apart is 

partial autocorrelation function (PACF). It measures the relationship between 𝑋𝑡 and 𝑋𝑡+𝑘 

after removing the effect of lags 1, … , 𝑘 − 1, and is noted as 𝜋𝑋(𝑘). For instance, the sample 

partial autocorrelation of order two 𝜋̂𝑥(2) measures the excess correlation between 𝑥𝑡 and 

𝑥𝑡+2 not accounted by 𝑟1. 

A discrete process that consists of mutually independent and identically distributed (iid) 

random variables is called white noise. Further on, it is assumed that the random variables are 

normally distributed with zero mean and variance 𝛿2, indicated by the notation 

(𝑋𝑡)~𝑊𝑁(0, 𝛿2). Hence, with large 𝑇, approximately 95% of the sample autocorrelations 𝑟𝑘 

and sample partial autocorrelations 𝜋̂𝑘 are expected to fall between ±1.96/√𝑇 (Brockwell and 

Davis, 2002 pp. 16-20). In addition, white noise is a second order weakly stationary process, 

meaning that a time series generated from uncorrelated random variables is second order 

weakly stationary. 

2.2 Models 

In the following subsections different time series models are described. As deposits have 

historically proven to grow in time, then the focus is on methods that allow trend.  

2.2.1 Holt and Holt-Winters 

One of the popular methods for forecasting of time series with a trend is Holt’s linear trend 

method. Exponential smoothing assigns more weight to recent observations and less weight to 

observations further in the past. The forecasting equation of Holt’s method is 

𝑥̂𝑡+ℎ|𝑡 = 𝑙𝑡 + 𝑏𝑡ℎ, 

where 𝑙𝑡 denotes an estimate of the level of the series at time 𝑡  

𝑙𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)𝑥̂𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1), 

and 𝑏𝑡 denotes an estimate of the trend of the series at time 𝑡 
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𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1. 

𝛼 is the smoothing parameter for the level, 0 < 𝛼 < 1, and 𝛽 is the smoothing parameter for 

the trend, 0 < 𝛽 < 1.  

Another similar and widely used method is Holt-Winters’ seasonal method. It is an extension 

of Holt’s method to capture seasonality. Depending on the nature of the seasonal component, 

either multiplicative or additive forecasting equation is used.  The formula for the 

multiplicative method is 

𝑥̂𝑡+ℎ|𝑡 = (𝑙𝑡 + 𝑏𝑡ℎ)𝑆𝑡+ℎ−𝑠, 

where ℎ = 1, … , 𝑠, and 

𝑙𝑡 = 𝛼
𝑥𝑡

𝑆𝑡−𝑠
+ (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1), 

𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1, 

𝑆𝑡 = 𝛾
𝑥𝑡

𝑙𝑡
+ (1 − 𝛾)𝑆𝑡−𝑠. 

The formula for the additive method is 

𝑥̂𝑡+ℎ|𝑡 = (𝑙𝑡 + 𝑏𝑡ℎ)+𝑆𝑡+ℎ−𝑠, 

where ℎ = 1, … , 𝑠, and 

𝑙𝑡 = 𝛼(𝑥𝑡 − 𝑆𝑡−𝑠) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1), 

𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1, 

𝑆𝑡 = 𝛾(𝑥𝑡 − 𝑙𝑡) + (1 − 𝛾)𝑆𝑡−𝑠. 

The estimation of model parameters can be done minimising a forecast error measure. In R 

software, the sum of square errors is used: 

∑(𝑥̂𝑡 − 𝑥𝑡)2

𝑇

𝑡=1

. 
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2.2.2 ARIMA model 

Another widely used class of time series models is ARIMA. While exponential smoothing 

models are built based on the trend and seasonality in the data, the objective of ARIMA 

models is to describe the autocorrelation.  ARIMA(𝑝, 𝑑, 𝑞) is an acronym for autoregressive 

integrated moving-average and is formed by combining autoregressive process of order 𝑝, 

AR(𝑝), 𝑑 degree of differencing and moving-average process of order 𝑞, MA(𝑞).  

Autoregressive process 

Let 𝐸(𝑋𝑡) = 𝜇 be constant. A second order weakly process (𝑋𝑡)𝑡∈𝑍 is called an autoregressive 

process of order 𝑝 and denoted as AR(𝑝) if  

𝑋̃𝑡 = 𝑍𝑡 + 𝛼1𝑋̃𝑡−1 + ⋯ + 𝛼𝑝𝑋̃𝑡−𝑝, 

where 𝑋̃𝑡 = 𝑋𝑡 − 𝜇, 𝑍𝑡~WN(0, 𝜎2) is white noise and 𝛼𝑖, 𝑖 = 1, … , 𝑝, are parameters. The 

model specifies variable’s dependency on previous 𝑝 values. In this thesis only such AR(𝑝) 

processes are considered for which 𝑐𝑜𝑣(𝑋𝑡, 𝑍𝑖) = 0 for all 𝑖 > 𝑡. These processes are called 

causal (Kangro, 2016). Using backward shift operator B, a compact form of the AR(𝑝) 

process can be written as  

φ(𝐵)𝑋̃𝑡 = 𝑍𝑡 

where φ(𝑥) is polynomial of order 𝑝 such that φ(𝑥) = 1 − ∑ 𝛼𝑖𝑥
𝑖𝑝

𝑖=1 .  

AR(𝑝) process is second order weakly stationary if and only if the modules of the roots of the 

polynomial φ(𝑥) lie outside the unit circle, |𝑥𝑖| > 1, 𝑖 = 1, … , 𝑝.  

Moving-average process 

A process (𝑋𝑡)𝑡∈𝑍 is called a moving-average process of order 𝑞 and denoted as MA(𝑞) if  

𝑋̃𝑡 = 𝑍𝑡 + 𝛽1𝑍𝑡−1 + ⋯ + 𝛽𝑞𝑍𝑡−𝑞 ,  

where 𝑋̃𝑡 = 𝑋𝑡 − 𝜇, 𝑍𝑡~WN(0, 𝜎2) and 𝛽𝑖, 𝑖 = 1, … , 𝑞, are parameters. The model describes 

regression error’s dependency on previous 𝑞 forecast errors.  
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A compact form of the MA(𝑞) process can be written as  

𝑋̃𝑡 = 𝜃(𝐵)𝑍𝑡, 

where 𝜃(𝑥) is polynomial of order 𝑞 such that 𝜃(𝑥) = 1 + ∑ 𝛽𝑖𝑥
𝑖𝑞

𝑖=1 .  

MA(𝑞) process is invertible if it can be rewritten in the form of an autoregressive process, 

possibly of infinite order, whose coefficients form a convergent sum. The same applies if the 

modules of the roots of the polynomial 𝜃(𝑥) all lie outside the unit circle, |𝑥𝑖| > 1, 𝑖 =

1, … , 𝑝.  

ARMA model 

Combination of AR(𝑝) and MA(𝑞) processes is called ARMA(𝑝, 𝑞) process and expressed as 

𝑋̃𝑡 = 𝛼1𝑋̃𝑡−1 + ⋯ + 𝛼𝑝𝑋̃𝑡−𝑝 + 𝑍𝑡 + 𝛽1𝑍𝑡−1 + ⋯ + 𝛽𝑞𝑍𝑡−𝑞 , 

where 𝑋̃𝑡 = 𝑋𝑡 − 𝜇, (𝑋𝑡)𝑡∈𝑍 is second order weakly stationary and 𝑍𝑡~WN(0, 𝜎2). A compact 

form of the formula can be written as 

φ(𝐵)𝑋̃𝑡 = 𝜃(𝐵)𝑍𝑡, 

where φ and 𝜃 are respectively polynomials of order 𝑝 and 𝑞. ARMA(𝑝, 𝑞) model can be 

presented as 

• moving-average process 𝑋̃𝑡 =
𝜃(𝐵)

φ(𝐵)
𝑍𝑡 = ψ(𝐵)𝑍𝑡, if the modules of the roots of the 

polynomial φ(𝑥) all lie outside the unit circle, |𝑥𝑖| > 1, 𝑖 = 1, … , 𝑝, 

• autoregressive process 
φ(𝐵)

𝜃(𝐵)
𝑋̃𝑡 = π(𝐵)𝑋̃𝑡 = 𝑍𝑡, if the modules of the roots of the 

polynomial 𝜃(𝑥) all lie outside the unit circle, |𝑥𝑖| > 1, 𝑖 = 1, … , 𝑝. 

In addition, the sample values of PACF of an ARMA(𝑝, 𝑞) model are not significantly 

different from zero after lag 𝑝 and the sample values of ACF cut off after lag 𝑞 (see Table 2). 
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Table 2: Properties of ACF and PACF 

Model ACF PACF 

AR(𝑝) Decay towards zero Decay to zero after lag 𝑝 

MA(𝑞) Decay to zero after lag 𝑞 Decay towards zero 

ARMA(𝑝, 𝑞) Decay to zero after lag 𝑞 Decay to zero after lag 𝑝 

 

ARIMA model 

Previous models assumed stationarity. In practice most time series are non-stationary. 

ARIMA(𝑝, 𝑑, 𝑞) model can be used for forecasting non-stationary time series. This is a 

generalization of ARMA(𝑝, 𝑞) processes to incorporate differenced time series. Let 𝑑 be a 

non-negative integer and 𝑊𝑡 = (1 − 𝐵)𝑑𝑋𝑡, then (𝑋𝑡)𝑡∈𝑍 is an ARIMA(𝑝, 𝑑, 𝑞) process if 𝑊𝑡 

is a causal ARMA(𝑝, 𝑞) process: 

φ(𝐵)𝑊𝑡 = φ(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜃(𝐵)𝑍𝑡, 

where 𝑍𝑡~WN(0, 𝜎2),  φ and 𝜃 are polynomials of order 𝑝 and 𝑞. 

Let 𝑑 and 𝐷 be non-negative integers and 𝑌𝑡 = (1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑋𝑡. A process (𝑋𝑡)𝑡∈𝑍 is 

called a seasonal ARIMA(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄) process with period 𝑠 if 𝑌𝑡 is a casual ARMA 

(𝑝, 𝑞) process: 

φ𝑝
(𝐵)Φ𝑃(𝐵𝑠)𝑌𝑡 = φ𝑝

(𝐵)Φ𝑃(𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑋𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)𝑍𝑡, 

where 𝑍𝑡~WN(0, 𝜎2) and φ𝑝, Φ𝑃, 𝜃𝑞, Θ𝑄 are polynomials of order 𝑝, 𝑃, 𝑞, 𝑄. 

Once the values 𝑝, 𝑑 and 𝑞 have been identified, the estimation of model parameters can be 

done. The following description of methods is based on course material by Kangro (2016). A 

common technique is to use the maximum likelihood estimation (MLE), which finds the 

values of the parameters so that the probability of obtaining the data observed is maximised. 

Let 𝑤 = (𝑊1, … , 𝑊𝑇) be a multivariate normal random variable. When maximizing the log-

likelihood function by 𝛿2, the estimate of variance is 𝛿̂2 =
1

𝑇
𝑤Ω−1(𝛼, 𝛽)𝑤𝑇, where α =
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(𝛼1, … , 𝛼𝑝), 𝛽 = (𝛽1, … , 𝛽𝑞) and Ω is the correlation matrix. The parameters 

𝛼1, … , 𝛼𝑝𝛽1, … , 𝛽𝑞 can be found by maximizing the expression 

−
𝑇

2
ln(𝑤Ω−1(𝛼, 𝛽)𝑤𝑇) −

1

2
ln (|Ω(α, β)|) 

by α = (𝛼
1
, … , 𝛼𝑝) and 𝛽 = (𝛽1, … , 𝛽𝑞), where |Ω(α, β)| is the determinant of the correlation 

matrix.  

Another technique for estimating the model parameters is conditional least squares method. 

Let 𝑧𝑡 denote the residuals from ARIMA model, 𝑡 = 1, … , 𝑇. Conditional least squares method 

finds the parameters 𝛼1, … , 𝛼𝑝, 𝛽1, … , 𝛽𝑞 by minimising the sum of squares of residuals 

∑ 𝑧𝑡
2

𝑇

𝑡=1

, 

where  

𝑧𝑡 = 𝑤𝑡 − ∑ 𝛼𝑖𝑤𝑡−𝑖

𝑝

𝑖=1

− ∑ 𝛽𝑗𝑧𝑡−𝑗

𝑞

𝑗=1

. 

The default technique in R software is using conditional least square method to find starting 

values, and then applying maximum likelihood method. 

2.2.3 ARIMAX model 

This paragraph is based on the course material by Kangro (2016).  

The time series models introduced in the previous sections are only based on past observation 

of the series and are not considering other variables. In this subchapter, an extension of 

ARIMA model is introduced to include explanatory variable in the model.  

In the following let’s assume that time series 𝑋𝑡 and 𝑉𝑡 are stationary with zero mean or 

differenced to achieve stationarity. If 𝑋𝑡 is dependent on 𝑉𝑡, then ARIMAX model can be 

defined as linear regression with ARIMA errors: 

𝑋𝑡 = 𝛾𝑉𝑡 + 𝜂𝑡 , 
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where 𝜂𝑡 follows an ARIMA process. In comparison of standard linear regression, the errors 

𝜂𝑡 are not presumed to be iid. The ARIMAX model with 𝑚 regressors (𝑉1,𝑡, 𝑉2,𝑡, … , 𝑉𝑚,𝑡) is 

defined as 

𝑋𝑡 = ∑ 𝛾𝑖𝑉𝑖,𝑡

𝑚

𝑖=1

+ 𝜂𝑡, 

where 𝜂𝑡 follows an ARIMA process. 

There are three main steps in estimation of ARIMAX model parameters: 

1) estimate the model 𝑋𝑡 = 𝛾𝑉𝑡 + 𝜂𝑡, 

2) examine the sample residuals from the model and find suitable ARIMA model for 𝜂𝑡, 

3) estimate the parameters 𝛿2, 𝛾, 𝛼1, … , 𝛼𝑝, 𝛽1, … , 𝛽𝑞 using, for example, maximum 

likelihood method. 

2.3  Goodness of fit 

ACF plot, or alternatively correlogram, is the first indicator of goodness of fit of a statistical 

model. If not more than two or three of the first 30-40 sample autocorrelations of the residuals 

fall outside ±1.96/√𝑇, then the fitted model is suitable (Brockwell and David, 2002: p. 36). 

In addition to treating each 𝑟𝑘 separately while observing ACF plot, there are statistical tests 

called portmanteau tests that consider a whole set of  𝑟𝑘 values as a group. One such test is the 

Box-Pierce test, which is based on the statistic 

𝑄 = 𝑇 ∑ 𝑟𝑘
2

𝐾

𝑘=1

, 

where 𝑇 is the number of observations and 𝐾 is the number of chosen lags in scope (chosen 

somewhat arbitrarily, typically in the range 15 to 30). Another similar and often used test is 

the Ljung-Box test, based on  

𝑄∗ = 𝑇(𝑇 + 2) ∑
𝑟𝑘

2

𝑇 − 𝑘

𝐾

𝑘=1

. 
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Both statistics are from χ2 distribution with (𝐾 − 𝑝) degrees of freedom, where 𝑝 is the 

number of parameters in the model. If the test is applied to the autocorrelations from the 

original series, not from the model, the then degrees of freedom is just 𝐾. The null hypothesis 

of a portmanteau test is that the autocorrelations for the chosen lags in the population from 

which the sample is taken are all zero. If the p-value of the test is very small, then there is 

strong evidence that the autocorrelations are not from an iid sequence.  

Another way of examining goodness-of-fit is comparing AIC, AICc or BIC of competing 

models: 

• 𝐴𝐼𝐶 =  2𝑝 − 2ln (𝐿̂), 

• 𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑝2+2𝑝

𝑇−𝑝−1
, 

• 𝐵𝐼𝐶 = 𝑝ln(𝑇) − 2ln (𝐿̂), 

where 𝑝 is the number of parameters in the model, 𝐿̂ is the maximum value of the likelihood 

function of the model and 𝑇 is the sample size. The preferred model is the one with the lowest 

AIC, AICc or BIC value. (Brockwell and David, 2002: pp. 173-174) 

2.4  Forecasting 

When a suitable model has been found, the estimation of future values can be done. A wide 

variety of different forecasting procedures is available. It is important to acknowledge that 

each of them is based on specific assumptions and no single method is universally applicable. 

Subjective judgement can be combined with statistical approach when, for example, choosing 

an appropriate model and adjusting the resulting forecasts, especially in case the forecasting 

horizon is long-term. 

In case of univariate prediction methods, the model forecasts are based on the past 

observations and the fitted residuals. Assuming that the ARIMA model equation is known, 

then the point forecasts can be calculated by 

1) expanding the equation so that 𝑋𝑡 is on the left side and all other inputs are on the 

right, 

2) replacing 𝑡 with 𝑇 + ℎ and random variables with the observations, 
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3) replacing past values of the series with the observed values, past errors with the 

corresponding residuals, future values of the series with their forecasts and future 

errors with zero. 

Let’s consider a time series 𝑥𝑡 , 𝑡 = 1, … , 𝑇, which corresponds to the ARIMA(1,0,0)(0,1,1)12 

model 

φ1
(𝐵)(1 − 𝐵12)𝑋𝑡 = Θ1(𝐵12)𝑍𝑡. 

This can be presented in a form 

𝑋𝑡 = 𝛼1(𝑋𝑡−1 − 𝑋𝑡−13) + 𝑋𝑡−12 + 𝑍𝑡 + 𝛽1𝑍𝑡−12. 

The goal is to find the forecasts 𝑥̂𝑇+ℎ|𝑇 and their confidence intervals. When following the 

steps 2) and 3), the forecasts are 

𝑥̂𝑇+1|𝑇 = 𝛼̂1(𝑥𝑇 − 𝑥𝑇−12) + 𝑥𝑇−11 + 𝛽̂1𝑍𝑇−11 

𝑥̂𝑇+2|𝑇 = 𝛼̂1(𝑥̂𝑇+1|𝑇 − 𝑥𝑇−11) + 𝑥𝑇−10 + 𝛽̂1𝑍𝑇−10 

… 

𝑥̂𝑇+ℎ|𝑇 = 𝛼̂1(𝑥̂𝑇+ℎ−1|𝑇 − 𝑥𝑇+ℎ−13) + 𝑥𝑇+ℎ−12 + 𝛽̂1𝑍𝑇+ℎ−12 

The 95% prediction interval is given by 

𝑥̂𝑇+ℎ|𝑇 ± 1.96√𝜎ℎ
2, 

where 𝜎ℎ
2 is the variance of the forecasting error made at time 𝑇 when forecasting ℎ steps 

ahead 

𝜎ℎ
2 = 𝑣𝑎𝑟(𝑒𝑇+ℎ) = 𝑣𝑎𝑟(𝑋𝑇+ℎ − 𝑥̂𝑇+ℎ|𝑇) = 𝜎2 (1 + ∑ ψ2

𝑗

ℎ−1

𝑗=1

). 

In case of ARIMAX model, the estimation of future values is done by combining the forecasts 

of the regression part of the model and ARIMA part of the model. For the regression model, 

the forecasts of the predictor variable need to be obtained first.  
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2.5 Application in R 

This subsection gives an overview of different functions in R useful for time series analysis 

and is based on the online textbook by Hyndman and Athanasopoulos (2018). 

The function ts() is used to produce a time series object. In order to compute and plot the 

estimates of autocorrelation and partial autocorrelation, functions acf() and pacf() can be 

applied to the series. Through lag.max one can specify the maximum number of lags at which 

to calculate the ACF and PACF. Different tests like pp.test() and adf.test() are available in R 

to check the stationarity of a time series.  

Arima() function can be used to fit an ARIMA model to a time series. Through xreg argument 

it allows to specify independent variables. The regressors must have the same number of rows 

as dependent variable x. In case the series are non-stationary, it is possible to apply 

differencing within the Arima() function. For example, the R command 

Arima(X, xreg=V, order=c(1,1,0)) 

will fit the model ∇𝑋𝑡 = 𝛾∇𝑉𝑡 + ∇𝜂𝑡, where ∇𝜂𝑡 is an ARIMA(1,0,0) error and 

𝑍𝑡~𝑊𝑁(0, 𝛿2). This is equivalent to fitting the model 𝑋𝑡 = 𝛾𝑉𝑡 + 𝜂𝑡, where 𝜂𝑡 is an 

ARIMA(1,1,0) error and 𝑍𝑡~𝑊𝑁(0, 𝛿2). 

The auto.arima() function can be used to automatically find a suitable ARIMA model. The 

function uses a combination of unit root tests and minimization of the AIC, AICc or BIC to 

find a suitable ARIMA model. Unit root tests are applied for determining the number of 

differences, while goodness of fit statistics are used for choosing the values of 𝑝 and 𝑞. In this 

thesis, auto.arima() is used for comparison purposes. The main analysis for finding suitable 

ARIMA models is based on manual analysis and usage of Arima() function.  

Methods for checking residuals are conveniently integrated into one function checkresiduals(), 

which will produce a time plot, ACF plot and histogram of the residuals, and do a Ljung-Box 

test with the correct degrees of freedom.  

Once a suitable time series model is found, forecast() function can be used for generating 

forecasts and their confidence intervals.   
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3  Empirical Study  

In this section different time series analysis methods were applied on the financial institution’s 

savings deposits volume. The models with exogenous variables included Stibor 1-month, 

consumer confidence indicator (CCI), purchasing managers’ index (PMI), gross domestic 

product (GDP), housing price index (HPI) and quantitative easing (QE). 

In paragraph 3.1 the data under analysis is described. In the next two paragraphs, different 

time series models are fitted and validated. In paragraph 3.4, the summary of the results is 

presented. 

3.1 Data 

The financial institution offers a wide range of deposit products based on different 

characteristics like maturity and interest.  Overview of the characteristics is brought out in 

Table 3. 

Table 3: Characteristics of the deposits offered by the financial institution 

Deposit type Characteristics 

Transaction account 0% interest rate, no maturity, option to add and withdraw money 

without a fee, physical card linked to the account 

Savings deposit Administratively set interest rate, no maturity, option to add and 

withdraw money without a fee, no physical card linked to the 

account 

Term deposit Fixed interest rate, defined maturity, no option to add or withdraw 

money without a fee, no physical card linked to the account 

 

Different deposit types and customer segments in the financial institution are assumed to 

behave differently, and therefore, separate deposit volume models are needed to be 

implemented. This thesis is focusing on savings deposits from private customers.  

To evaluate forecasting accuracy, the datasets were divided into training and test set. The 

training set covers period from 2011 until 2020 and the test set period of 2021.   
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Savings deposits’ volume 

As a first step, the volumes of savings deposits were analysed. The data was retrieved from the 

financial institution’s data warehouse and consisted of end of month volumes from January 

2011 until December 2021. For business purposes, the volumes were indexed. From Figure 4 

it can be seen that there is a positive trend, no cyclicity and no apparent seasonality.  

 

Figure 4: Savings deposits’ volumes from January 2011 until December 2021. January 2011 = 

100. 

Explanatory variables 

In the financial institution, the deposit rate for savings deposits is mainly administratively set 

and linked to market rate. Therefore, the first exogenous variable included in the analysis was 

Stibor 1-month which was used as proxy for deposit rate. The data was retrieved from 

Sveriges Riksbank (2022b) and Swedish Financial Benchmark Facility (2022) websites and 

consisted of monthly average values from January 2011 until December 2021 (see Figure 5). 

One can see that there is a negative trend during 2012 and 2016, but no apparent seasonality.  
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Figure 5: Stibor 1-month values from January 2011 until December 2021 

The second explanatory variable was Sweden’s consumer confidence indicator. The data was 

taken from Eurostat database (2022b) and included monthly values from January 2011 until 

December 2021. By looking at Figure 6, it can be seen that except from the period in the 

beginning of 2020, the series is stationary – no overall trend, cyclicity nor seasonality.  

 

 

Figure 6: Sweden's consumer confidence indicator from January 2011 until December 2021 
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The next independent variable was Sweden’s purchasing managers’ index. The observations 

were retrieved from Swedbank database (2022) and contained monthly values of PMI 

manufacturing and PMI services from January 2011 until December 2021 (see Figure 7). 

Except from the period in the beginning of 2020, the series are stationary.  

 

 

Figure 7: Sweden’s purchasing managers’ indexes from January 2011 until December 2021 

The fourth independent variable in interest was Sweden’s gross domestic product in constant 

prices. The observations were retrieved from the database of Statistics Sweden (2022) and 

consisted of quarterly values from Q1 2011 until Q4 2021. The data was transformed to 
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monthly by multiplying the quarterly value by share of the month. For example, if the number 

of days in Q1 2011 was 90, then GDPs for January, February and March was calculated as  

𝐺𝐷𝑃𝐽𝑎𝑛 2011 = 𝐺𝐷𝑃𝑄1 2011 ∗
31

90
, 

𝐺𝐷𝑃𝐹𝑒𝑏 2011 = 𝐺𝐷𝑃𝑄1 2011 ∗
28

90
, 

𝐺𝐷𝑃𝑀𝑎𝑟 2011 = 𝐺𝐷𝑃𝑄1 2011 ∗
31

90
. 

Figure 8 shows that there is a positive trend and an evident seasonality.  

 

Figure 8: Sweden’s gross domestic product from January 2011 until December 2021 

The next explanatory variable included in the thesis was Sweden’s house price index. The data 

was retrieved from Eurostat (2022a) database and included quarterly values from Q1 2011 

until Q4 2021. The quarterly data was interpolated to monthly. From Figure 9 one can see that 

there is an overall positive trend with no seasonal component. 
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Figure 9: Sweden’s house price index from January 2011 until December 2021. Year 2010 = 

100.  

Last hypothesis was that quantitative easing has impact on savings volumes. Sveriges 

Riksbank had been purchasing large-scale asset from the end of 2014. The volumes of the 

holdings of government bonds were retrieved from Sveriges Riksbank’s (2022a) website and 

consisted of quarterly values from Q4 2014 until Q4 2021. The quarterly data was transformed 

to monthly similarly to GDP - multiplying the quarterly values by share of the month. Figure 

10 shows that during the years 2015 and 2017 quantitative easing increased rapidly and after 

that slowed down. 
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Figure 10: The Riksbank’s total holdings of government bonds from January 2011 until 

December 2021 

3.2 Modelling  

In this section time series models are tried out and compared, with the purpose of finding the 

most appropriate model for forecasting savings deposits. The input information, e.g. ACF and 

PACF plots, for selecting the models are pointed out in appendices. The best models are 

chosen based on the Ljung-Box test and goodness of fit statistics (AIC, AICc, BIC).  

3.2.1 Holt and Holt-Winters 

The first methods investigated in the thesis were Holt’s linear trend method and Holt-Winters’ 

seasonal method, which are simple time series techniques appropriate for data with a trend. 

From Figure 4 it was seen that savings deposits have a positive trend, but no evident 

seasonality. Therefore, Holt’s linear trend method was applied. The forecasting equation is 

𝑥̂𝑡+ℎ|𝑡 = 𝑙𝑡 + 𝑏𝑡ℎ, 

where 

𝑙𝑡 = 0.9947𝑥𝑡 + 0.0053(𝑙𝑡−1 + 𝑏𝑡−1), 

𝑏𝑡 = 0.1048(𝑙𝑡 − 𝑙𝑡−1) + 0.8952𝑏𝑡−1. 

The AIC, AICc and BIC values were accordingly 569.7120, 570.2383 and 583.6494. 
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3.2.2 ARIMA model 

Figure 4 showed that the time series of savings volumes is not stationary and differencing is 

needed. After first order differencing, the series had evident seasonal component. Due to that, 

an additional seasonal difference was taken after which the series is stationary. The results are 

shown in Figure 11. 

 

Figure 11: First order and seasonally differenced savings deposits  

The next step was to find appropriate ARIMA models based on the sample ACF and PACF. 

The significant spikes at lag 1 and 2 in the ACF suggested ARIMA(0,1,2)(0,1,0)12. 

Although, the p-value of Ljung-Box test was over 0.05, the 12th lag of ACF of the fitted model 

was outside the confidence interval, indicating the usefulness of a seasonal term. Therefore, 

ARIMA(0,1,2)(0,1,1)12 was tried out as well. 

The next group of models in interest were ARIMA models with AR component. The PACF 

showed significant spikes at lag 1 and 12 and therefore both ARIMA(1,1,0)(0,1,0)12 and 

ARIMA(1,1,0)(1,1,0)12 were fitted. 

Finally, the models with combination of MA and AR components were tried out. The 

comparison of the models based on Ljung-Box test and goodness of fit statistics is 

summarized in Table 12. 
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Table 12: Comparison of fitted models for savings deposits  

Model p-value of L-B test AIC AICc BIC 

ARIMA(0,1,2)(0,1,0)12 0.0511 240.38 240.61 248.4 

ARIMA(0,1,2)(0,1,1)12 0.4384 227.81 228.20 238.5 

ARIMA(1,1,0)(0,1,0)12 0.1535 235.34 235.45 240.68 

ARIMA(1,1,0)(1,1,0)12 0.2391 223.02 223.25 231.04 

ARIMA(1,1,0)(0,1,1)12 0.5157 221.46 221.69 229.48 

ARIMA(1,1,1)(0,1,1)12 0.5877 221.84 222.23 232.53 

ARIMA(1,1,2)(0,1,1)12 0.4913 221.29 221.88 234.65 

ARIMA(0,1,1)(1,1,0)12 0.1486 228.94 229.18 236.96 

ARIMA(1,1,1)(1,1,0)12 0.3308 223.29 223.69 233.99 

ARIMA(1,1,1)(1,1,1)12 0.4772 223.51 224.1 236.87 

ARIMA(1,1,2)(1,1,1)12 0.3868 222.97 223.81 239.01 

 

The best model with lowest goodness of fit statistics and high p-value of Ljung-Box test was 

ARIMA(1,1,0)(0,1,1)12: 

𝑋𝑡 = (1 + 𝛼1)(𝑋𝑡−1 − 𝑋𝑡−13)−𝛼1(𝑋𝑡−2 − 𝑋𝑡−14) + 𝑋𝑡−12 + 𝑍𝑡 + 𝛽1
∗𝑍𝑡−12

= 1.5227(𝑋𝑡−1 − 𝑋𝑡−13) − 0.5227(𝑋𝑡−2 − 𝑋𝑡−14) + 𝑋𝑡−12 + 𝑍𝑡

− 0.5023𝑍𝑡−12,  

where 𝑋𝑡 is savings deposits’ volume at time 𝑡 and 𝑍𝑡~WN(0, 0.65762). 

3.2.3 ARIMAX model 

Stibor 1-month 

In order to fit ARIMAX model to savings deposits, the first step was to estimate linear 

regression. In Figure 5 it was seen that Stibor 1-month is not stationary. According to the unit 

root tests and review of ACF and PACF plot, the series was stationary after first difference 

(see Figure 13).  
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Figure 13: First order and seasonally differenced savings deposits compared to differenced 

values of Stibor 1-month 

The initial estimated linear regression model with stationary variables was 

∇∇12𝑋𝑡 = −1.3339∇𝑉𝑡 + 𝜂𝑡 , 

where ∇∇12𝑋𝑡 is first order and seasonally differenced savings deposits’ volume at time 𝑡, ∇𝑉𝑡 

is first order differenced Stibor 1-month value at time 𝑡 and 𝜂𝑡 is model residual at time 𝑡. The 

residuals from linear regression model were stationary and based on the sample ACF and 

PACF, several ARIMA models were fitted. The results are summarized in Table 14. 

Table 14: Comparison of fitted models for residuals from linear regression model with Stibor 

1-month  

Model p-value of L-B test AIC AICc BIC 

ARIMA(0,0,2)(0,0,0)12 0.1408 242.09 242.49 252.79 

ARIMA(0,0,2)(0,0,1)12 0.4414 229.61 230.2 242.97 

ARIMA(1,0,0)(0,0,0)12 0.1722 237.25 237.48 245.27 

ARIMA(1,0,0)(1,0,0)12 0.2921 224.96 225.35 235.65 

ARIMA(1,0,0)(0,0,1)12 0.5117 223.45 223.85 234.15 

ARIMA(1,0,1)(0,0,1)12 0.5297 223.77 224.36 237.13 
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ARIMA(1,0,2)(0,0,1)12 0.5284 222.24 223.08 238.27 

ARIMA(0,0,1)(1,0,0)12 0.1703 230.76 231.15 241.45 

ARIMA(1,0,1)(1,0,0)12 0.3467 225.27 225.86 238.63 

 

One of the suitable models was linear regression with ARIMA(1,0,2)(0,0,1)12 errors 

∇∇12𝑋𝑡 = 0.4574∇𝑉𝑡 + 𝜂𝑡, 

where 𝜂𝑡 = 0.9797𝜂𝑡−1 + 𝑍𝑡 − 0.5213𝑍𝑡−1 − 0.2686𝑍𝑡−2 − 0.6456𝑍𝑡−12 + 0.3366𝑍𝑡−13 +

0.1734𝑍𝑡−14 and 𝑍𝑡~WN(0, 0.64252).  

Consumer confidence index 

The CCI graph in paragraph 3.1 showed that the indicator is stationary. From Figure 15 it can 

be seen that the differenced savings volumes tend to have negative relation to CCI.   

 

Figure 15: First order and seasonally differenced savings deposits compared to consumer 

confidence index 

The initially fitted linear regression model was 

∇∇12𝑋𝑡 = −0.0993𝑉𝑡 + 𝜂𝑡 , 
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where ∇∇12𝑋𝑡 is first order and seasonally differenced savings deposit volume at time 𝑡, 𝑉𝑡 is 

consumer confidence index at time 𝑡 and 𝜂𝑡 is model residual at time 𝑡. The residuals 𝜂𝑡 were 

stationary. Based on the ACF and PACF plot, different ARIMA models were fitted to the 

residuals from linear regression model. The summary of the results is shown in Table 16. 

Table 16: Comparison of fitted models for residuals from linear regression model with CCI 

Model p-value of L-B test AIC AICc BIC 

ARIMA(0,0,3)(0,0,0)12 0.0988 234.89 235.48 248.25 

ARIMA(0,0,3)(0,0,1)12 0.5965 224.52 225.36 240.56 

ARIMA(1,0,0)(0,0,0)12 0.1191 232.65 232.89 240.67 

ARIMA(1,0,0)(1,0,0)12 0.2380 221.35 221.74 232.04 

ARIMA(1,0,0)(0,0,1)12 0.4712 221.58 221.98 232.28 

ARIMA(1,0,1)(0,0,1)12 0.5449 221.67 222.26 235.03 

ARIMA(0,0,1)(1,0,0)12 0.1190 226.34    226.73    237.03 

ARIMA(1,0,1)(1,0,0)12 0.3220 221.29 221.89 234.66 

 

Linear regression with ARIMA(1,0,0)(1,0,0)12 errors was showing the best results. The 

formula is 

∇∇12𝑋𝑡 = −0.0688𝑉𝑡 + 𝜂𝑡, 

where 𝜂𝑡 = 0.4712𝜂𝑡−1 − 0.4265𝜂𝑡−12 + 0.2010𝜂𝑡−13 + 𝑍𝑡 and 𝑍𝑡~WN(0, 0.65692). 

Purchasing managers’ index 

Figure 7 showed that PMI manufacturing and PMI services are both stationary and have had 

quite similar values during the time scope of this thesis. Further on, only PMI services is used 

as the linear regression was showing slightly better results. The comparison of differenced 

savings volumes and PMI services is shown in Figure 17. 
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Figure 17: First order and seasonally differenced savings deposits compared to purchasing 

managers index (services) 

The initial linear regression model was 

∇∇12𝑋𝑡 = 0.0033𝑉𝑡 + 𝜂𝑡 , 

where ∇∇12𝑋𝑡 is first order and seasonally differenced savings deposit volume at time 𝑡, 𝑉𝑡 is 

purchasing managers index (services) at time 𝑡 and 𝜂𝑡 is model residual at time 𝑡. The 

residuals from the model were stationary. Based on the sample ACF and PACF, several 

models were fitted to the residuals from linear regression model. The results are summarized 

in Table 18. 

Table 18: Comparison of fitted models for residuals from linear regression model with PMI 

Model p-value of L-B test AIC AICc BIC 

ARIMA(0,0,1)(0,0,0)12 0.0777 239.38 239.61 247.39 

ARIMA(0,0,1)(0,0,1)12 0.3281 221.96 222.35 232.65 

ARIMA(1,0,0)(0,0,0)12 0.2061 235.27 235.51 243.29 

ARIMA(1,0,0)(1,0,0)12 0.3856 221.71 222.10 232.40 

ARIMA(1,0,0)(0,0,1)12 0.7279 217.7 218.09 228.39 

ARIMA(1,0,1)(0,0,1)12 0.7270 219.40 220.00 232.77 

ARIMA(0,0,1)(1,0,0)12 0.1546 225.43 225.82 236.12 
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ARIMA(1,0,1)(1,0,0)12 0.3220 222.99 223.59 236.36 

 

One of the best models was linear regression with ARIMA(1,0,0)(0,0,1)12 errors 

∇∇12𝑋𝑡 = 0.0027𝑉𝑡 + 𝜂𝑡, 

where 𝜂𝑡 = 0.4517𝜂𝑡−1 + 𝑍𝑡 − 0.5935𝑍𝑡−12 and 𝑍𝑡~WN(0, 0.63752).  

Gross domestic product 

In paragraph 3.1 it was seen that GDP is not stationary time series. Results of unit root tests 

and review of the sample ACF and PACF suggested taking both regular and seasonal 

difference. The differenced volumes of GDP can be seen in Figure 19. 

 

Figure 19: First order and seasonally differenced savings deposits compared to first order and 

seasonally differenced volumes of GDP 

As both savings deposits and GDP are stationary after first order and seasonal difference, the 

linear regression can be assigned to original values and differences can be taken from the 

model residuals. Thus, the estimated linear regression model was 

𝑋𝑡 = 0.3204𝑉𝑡 + 𝜂𝑡 , 
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where 𝑋𝑡 is savings deposit volume at time 𝑡, 𝑉𝑡 is GDP at time 𝑡 and 𝜂𝑡 is model residual at 

time 𝑡. The residuals from linear regression were stationary after first order and seasonal 

difference. 

As a first step, ARIMA(0,1,1)(0,1,0)12 was fitted to the model residuals. The p-value of 

Ljung-Box test was below 0.05 and there were significant spikes at lags 2 and 12 in the ACF 

plot of the residuals from the fitted model. Therefore, ARIMA(0,1,3)(0,1,1)12 was tried out 

as well. 

Next, ARIMA(1,1,0)(0,1,0)12 was fitted. There was a significant spike at lag 12 in the PACF 

plot of the residuals and due to that ARIMA(1,1,0)(1,1,0)12 was tried. 

Finally, the models with combination of MA and AR components were tried out. The 

comparison of the models based on Ljung-Box test and goodness of fit statistics is 

summarized in Table 20. 

Table 20: Comparison of fitted models for residuals from linear regression model with GDP 

Model p-value of L-B test AIC AICc BIC 

ARIMA(0,1,1)(0,1,0)12 0.0240 240.19 240.42 248.21 

ARIMA(0,1,3)(0,1,1)12 0.5857 225.43 226.27 241.46 

ARIMA(1,1,0)(0,1,0)12 0.0541 234.49 234.72 242.50 

ARIMA(1,1,0)(1,1,0)12 0.3297 221.61 222.00 232.30 

ARIMA(1,1,0)(0,1,1)12 0.4914 221.01 221.40 231.70 

ARIMA(1,1,1)(0,1,1)12 0.4484 220.72 221.32 234.09 

ARIMA(2,1,1)(0,1,1)12 0.6337 219.89 220.73 235.93 

ARIMA(1,1,1)(1,1,0)12 0.3515 220.95 221.54 234.31 

 

Linear regression with ARIMA(2,1,1)(0,1,1)12 errors was having the lowest goodness of fit 

statistics and highest p-value of Ljung-Box test. The formula is 

𝑋𝑡 = −0.0147𝑉𝑡 + 𝜂𝑡, 

where  
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𝜂𝑡 = 2.3210(𝜂𝑡−1 − 𝜂𝑡−13) − 1.6542(𝜂𝑡−2 − 𝜂𝑡−14) + 0.3332(𝜂𝑡−3 − 𝜂𝑡−15) + 𝜂𝑡−12 + 𝑍𝑡

− 0.8926𝑍𝑡−1 − 0.5812𝑍𝑡−12 + 0.5188𝑍𝑡−13 

and 𝑍𝑡~WN(0, 0.64092).  

House price index  

Figure 9 showed that house price index is not stationary time series. Unit root tests and review 

of ACF and PACF plot implied taking first order and seasonal difference. The differenced 

volumes of HPI can be seen in Figure 21. 

 

Figure 21: First order and seasonally differenced savings deposits compared to first order and 

seasonally differenced values of house price index  

Similarly to GDP, the first step was to fit linear regression with non-differenced values  

𝑋𝑡 = 0.9380𝑉𝑡 + 𝜂𝑡 , 

where 𝑋𝑡 is savings deposit volume at time 𝑡, 𝑉𝑡 is house price index at time 𝑡 and 𝜂𝑡 is model 

residual at time 𝑡. After that, first order and seasonal difference was taken from the model 

residuals 𝜂𝑡. Several models were fitted, and the comparison of the models based on Ljung-

Box test and goodness of fit statistics is summarized in Table 22.  
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Table 22: Comparison of fitted models for residuals from linear regression model with house 

price index 

Model p-value of L-B test AIC AICc BIC 

ARIMA(0,1,1)(0,1,0)12 0.0226 241.29 241.52 249.31 

ARIMA(0,1,2)(0,1,0)12 0.0696 240.86 241.25 251.55 

ARIMA(0,1,3)(0,1,0)12 0.0873 239.11 239.7 252.47 

ARIMA(0,1,1)(0,1,1)12 0.2843 227.99 228.38 238.68 

ARIMA(0,1,2)(0,1,1)12 0.4314 227.16 227.75 240.52 

ARIMA(0,1,3)(0,1,1)12 0.6526 225.25 226.09 241.29 

ARIMA(1,1,0)(0,1,0)12 0.1197 235.98 236.21 244 

ARIMA(1,1,0)(1,1,0)12 0.2350 223.22 223.61 233.91 

ARIMA(1,1,1)(0,1,0)12 0.1262 237.47 237.86 248.16 

ARIMA(1,1,0)(0,1,1)12 0.5357 221.67 222.06 232.36 

ARIMA(1,1,1)(0,1,1)12 0.6118 222.68 223.28 236.05 

ARIMA(0,1,1)(1,1,0)12 0.1508 227.64 228.03 238.33 

ARIMA(1,1,1)(1,1,0)12 0.3076 224.26 224.86 237.63 

 

One of the best models was linear regression with ARIMA(1,1,0)(0,1,1)12 errors 

𝑋𝑡 =  0.2141𝑉𝑡 + 𝜂𝑡 , 

where 𝜂𝑡 = 1.4995(𝜂𝑡−1 − 𝜂𝑡−13) − 0.4995(𝜂𝑡−2 − 𝜂𝑡−14) + 𝜂𝑡−12 + 𝑍𝑡 − 0.5048𝑍𝑡−12 and 

𝑍𝑡~WN(0, 0.65492).  

Quantitative easing 

In Figure 10 it was seen that quantitative easing is non-stationary time series. The series was 

stationary after first order and seasonal difference (see Figure 23). 
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Figure 23: First order and seasonally differenced savings deposits compared to first order and 

seasonally differenced values of quantitative easing 

The estimated linear regression model with non-differenced variables was 

𝑋𝑡 = 1.4514𝑉𝑡 + 𝜂𝑡 , 

where 𝑋𝑡 is savings deposit volume at time 𝑡, 𝑉𝑡 is quantitative easing at time 𝑡 and 𝜂𝑡 is 

model residual at time 𝑡. The residuals from linear regression model were stationary after first 

order and seasonal difference. Multiple models were fitted, and the comparison of the statistics 

is summarized in Table 24.  

Table 24: Comparison of fitted models for residuals from linear regression model with QE 

Model p-value of L-B test AIC AICc BIC 

ARIMA(0,1,1)(0,1,0)12 0.0490 242.9 243.13 250.92 

ARIMA(0,1,3)(0,1,1)12 0.6119 227.38 228.22 243.42 

ARIMA(1,1,0)(0,1,0)12 0.1274 237.33 237.56 245.35 

ARIMA(1,1,0)(1,1,0)12 0.1958 225.02 225.41 235.71 

ARIMA(1,1,0)(0,1,1)12 0.4283 223.40 223.79 234.09 

ARIMA(2,1,1)(0,1,1)12 0.5915 222.48 223.32 238.52 

ARIMA(0,1,1)(1,1,0)12 0.1180 230.94    231.34 241.64 
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Linear regression with ARIMA(2,1,1)(0,1,1)12 errors was showing the best results. The 

formula is 

𝑋𝑡 = 0.0046𝑉𝑡 + 𝜂𝑡 , 

where  

𝜂𝑡 = 2.3645(𝜂𝑡−1 − 𝜂𝑡−13) − 1.7359(𝜂𝑡−2 − 𝜂𝑡−14) + 0.3714(𝜂𝑡−3 − 𝜂𝑡−15) + 𝜂𝑡−12 + 𝑍𝑡

− 0.9200𝑍𝑡−1 − 0.6267𝑍𝑡−12 + 0.5766𝑍𝑡−13 

and 𝑍𝑡~WN(0,  0.64532).  

Stibor 1-month, CCI and GDP 

In addition to ARIMAX models with single regressor, models with multiple independent 

variables were also tried out. To find the appropriate list of variables to the linear regression, a 

stepwise procedure using p-values was performed. The variables in the final model with p-

value less than 0.05 were Stibor 1-month, consumer confidence indicator and gross domestic 

product. The estimated simple linear regression was 

∇∇12𝑋𝑡  =  −1.6555∇𝑉𝑆𝑡𝑖𝑏𝑜𝑟,𝑡 − 0.0881𝑉𝐶𝐶𝐼,𝑡 − 0.0244∇∇12𝑉𝐺𝐷𝑃,𝑡 + 𝜂𝑡, 

where ∇∇12𝑋𝑡 is first order and seasonally differenced savings deposit volume at time 𝑡, 

∇𝑉𝑆𝑡𝑖𝑏𝑜𝑟,𝑡 is first order differenced Stibor 1-month value at time 𝑡, 𝑉𝐶𝐶𝐼,𝑡 is consumer 

confidence indicator at time 𝑡, ∇∇12𝑉𝐺𝐷𝑃,𝑡 is first order and seasonally differenced volume of 

GDP and 𝜂𝑡 is model residual at time 𝑡. The residuals from linear regression model were 

stationary. Based on ACF and PACF plots, different models were fitted, and the comparison 

of the models based on Ljung-Box test and goodness of fit statistics is summarized in Table 

25.  

Table 25: Comparison of fitted models for residuals from linear regression model with Stibor 

1-month, CCI and GDP  

Model p-value of L-B test AIC AICc BIC 

ARIMA(0,0,1)(0,0,0)12 0.0437 238.08 238.67 251.44 

ARIMA(0,0,1)(0,0,1)12 0.2709 229.11 229.95 245.14 
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ARIMA(1,0,0)(0,0,0)12 0.0512 233.88   234.47 247.24 

ARIMA(1,0,0)(1,0,0)12 0.3216 221.99 222.83 238.03 

ARIMA(1,0,0)(0,0,1)12 0.4026 223.08 223.92 239.11 

ARIMA(1,0,1)(0,0,1)12 0.3631 222.52 223.65 241.23 

ARIMA(0,0,1)(1,0,0)12 0.2297 226.83 227.67 242.87 

ARIMA(1,0,1)(1,0,0)12 0.3132 221.34 222.48 240.05 

 

Linear regression with ARIMA(1,0,0)(1,0,0)12 errors was having the lowest AIC and AICc, 

and highest p-value of Ljung-Box test. The formula is 

∇∇12𝑋𝑡  =  −0.3905∇𝑉𝑆𝑡𝑖𝑏𝑜𝑟,𝑡 − 0.0611𝑉𝐶𝐶𝐼,𝑡 − 0.0161∇∇12𝑉𝐺𝐷𝑃,𝑡 + 𝜂𝑡, 

where 𝜂𝑡 = 0.4526𝜂𝑡−1 − 0.4295𝜂𝑡−12 + 0.1944𝜂𝑡−13 + 𝑍𝑡 and 𝑍𝑡~WN(0, 0.65292). 

PMI and GDP 

As it was seen, the ARIMAX model with Stibor 1-month, CCI and GDP was not having better 

goodness of fit statistics than some of the ARIMAX models with single regressor variable. 

Therefore, additional model with multiple regressors was tried out. As ARIMAX model with 

PMI services was showing good results, several models with combination of this variable were 

fitted. The best one was with purchasing managers’ index (services) and gross domestic 

product. The estimated simple linear regression was 

∇∇12𝑋𝑡  =  0.0034𝑉𝑃𝑀𝐼,𝑡 − 0.0260∇∇12𝑉𝐺𝐷𝑃,𝑡 + 𝜂𝑡, 

where ∇∇12𝑋𝑡 is first order and seasonally differenced savings deposit volume at time 𝑡, 𝑉𝑃𝑀𝐼,𝑡 

is purchasing managers index at time 𝑡, ∇∇12𝑉𝐺𝐷𝑃,𝑡 is first order and seasonally differenced 

volume of GDP and 𝜂𝑡 is model residual at time 𝑡. The residuals from linear regression model 

were stationary. Based on the sample ACF and PACF, several models were fitted to the 

residuals. The results are summarized in Table 26. 
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Table 26: Comparison of fitted models for residuals from linear regression model with PMI 

and GDP  

Model p-value of L-B test AIC AICc BIC 

ARIMA(0,0,2)(0,0,0)12 0.0550 238.05 238.64 251.41 

ARIMA(0,0,2)(0,0,1)12 0.4689 221.24 222.08 237.28 

ARIMA(1,0,0)(0,0,0)12 0.0770 234.18    234.57 244.87 

ARIMA(1,0,0)(1,0,0)12 0.4651 219.97 220.56 233.33 

ARIMA(1,0,0)(0,0,1)12 0.6777 217.29 217.88 230.65 

ARIMA(1,0,1)(0,0,1)12 0.6451 218.73 219.57 234.77 

ARIMA(0,0,1)(1,0,0)12 0.1980 223.9 224.49 237.26 

ARIMA(1,0,1)(1,0,0)12 0.4558 220.72 221.56 236.76 

 

The best model was linear regression with ARIMA(1,0,0)(0,0,1)12 errors 

∇∇12𝑋𝑡 = 0.0028𝑉𝑃𝑀𝐼,𝑡 − 0.0135∇∇12𝑉𝐺𝐷𝑃,𝑡 + 𝜂𝑡, 

where 𝜂𝑡 = 0.4457𝜂𝑡−1 + 𝑍𝑡 − 0.5597𝑍𝑡−12, 𝑍𝑡~WN(0, 0.63552).  

3.3 Validation 

In this section the accuracy of the models from chapter 3.2 was examined. For this purpose, 

the savings deposits’ volumes from the test period were compared to the model forecasts.  

Holt and Holt-Winters 

The first time series method investigated was the Holt’s linear trend method. As it was shown 

in paragraph 3.2.1, the ℎ-step-ahead forecast 𝑥̂𝑡+ℎ|𝑡 is calculated as the last estimated level 𝑙𝑡 

plus ℎ times the last estimated trend 𝑏𝑡. Therefore, the forecasts are a linear function of ℎ (see 

Figure 27).  
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Figure 27: The actual savings deposits’ volumes compared to the forecasts from Holt’s linear 

trend method, 80% and 95% CI 

ARIMA model 

The forecasting formula for ARIMA(1,1,0)(0,1,1)12 is 

𝑋̂𝑡+1 = 1.5227(𝑋𝑡 − 𝑋𝑡−12) − 0.5227(𝑋𝑡−1 − 𝑋𝑡−13) + 𝑋𝑡−11 + 𝑍̂𝑡+1 − 0.5023𝑍𝑡−11. 

For example, the prediction for January 2021 was  

𝑋̂𝐽𝑎𝑛 2021 = 1.5227(𝑋𝐷𝑒𝑐 2020 − 𝑋𝐷𝑒𝑐 2019) − 0.5227(𝑋𝑁𝑜𝑣 2020 − 𝑋𝑁𝑜𝑣 2019) + 𝑋𝐽𝑎𝑛 2020

+ 𝑍̂𝐽𝑎𝑛 2021 − 0.5023𝑍𝐽𝑎𝑛 2020

= 1.5227(180.6125 − 162.5998) − 0.5227(179.1499 − 162.1103)

+ 163.3414 − 0.5023 ∙ 0.6882 = 181.5171, 

while the actual value was 181.3418. The 80% and 95% prediction intervals for the same 

period were accordingly  

𝑋̂𝐽𝑎𝑛 2021 ± 1.282√𝜎1
2 = 181.5171 ± 1.282 ∙ 0.6576 = 181.5171 ± 1.2890, 

𝑋̂𝐽𝑎𝑛 2021 ± 1.960√𝜎1
2 = 181.5171 ± 1.960 ∙ 0.6576 = 181.5171 ± 0.8430. 
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Hence, the actual value stayed within the confidence intervals. All the values from the test 

period compared to the model forecasts can be seen in Figure 28. The confidence intervals 

from ARIMA models with 𝑑 ≥ 1 and/or 𝐷 ≥ 1 increase in time.  

 

Figure 28: The actual savings deposits’ volumes compared to the forecasts from 

ARIMA(1,1,0)(0,1,1)12, 80% and 95% CI 

ARIMAX models 

Stibor 1-month 

The prediction formula for linear regression with Stibor 1-month and ARIMA(1,0,2)(0,0,1)12 

errors is 

∇∇12𝑋̂𝑡+1 = 0.4574∇𝑉̂𝑡+1 + 0.9797𝜂𝑡 + 𝑍̂𝑡+1 − 0.5213𝑍𝑡 − 0.2686𝑍𝑡−1 − 0.6456𝑍𝑡−11

+ 0.3366𝑍𝑡−12 + 0.1734𝑍𝑡−13. 

In case the actual values of Stibor 1-month were used, the point forecast for January 2021 was 

∇∇12𝑋̂𝐽𝑎𝑛 2021 = 0.4574∇𝑉̂𝐽𝑎𝑛 2021 + 0.9797𝜂𝐷𝑒𝑐 2020 + 0 − 0.5213𝑍𝐷𝑒𝑐 2020

− 0.2686𝑍𝑁𝑜𝑣 2020 − 0.6456𝑍𝐽𝑎𝑛 2020 + 0.3366𝑍𝐷𝑒𝑐 2019 + 0.1734𝑍𝑁𝑜𝑣 2019

= 0.4574 ∙ 0.0538 + 0.9797 ∙ 0.9916 + 0 − 0.5213 ∙ 0.4250

− 0.2686(−0.3653) − 0.6456 ∙ 0.4787 + 0.3366(−0.1729)

+ 0.1734(−0.2921) = 0.4547. 
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The observed value was -0.0123. The 80% and 95% prediction intervals for January were 

accordingly  

𝑋̂𝐽𝑎𝑛 2021 ± 1.282√𝜎1
2 = 0.4547 ± 1.282 ∙ 0.6425 = 0.4547 ± 0.8237, 

𝑋̂𝐽𝑎𝑛 2021 ± 1.960√𝜎1
2 = 0.4547 ± 1.960 ∙ 0.6425 = 0.4547 ± 1.2593. 

Thus, the actual value stayed within the prediction intervals. All the actual values in 

comparison of model forecasts are shown in Figure 29.  

 

Figure 29: The actual differenced savings deposits volumes compared to the forecasts from 

linear regression with Stibor 1-month and ARIMA(1,0,2)(0,0,1)12 errors, 80% and 95% CI 

After converting the differenced savings volumes back to original values, the forecast for 

January 2021 was 

𝑋̂𝐽𝑎𝑛 2021 = ∇∇12𝑋̂𝐽𝑎𝑛 2021 + 𝑋𝐷𝑒𝑐 2020 + 𝑋𝐽𝑎𝑛 2020 − 𝑋𝐷𝑒𝑐 2019

= 0.4547 + 180.6125 + 163.3414 − 162.5998 = 181.8088. 
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Figure 30: The actual savings deposits volumes compared to the converted forecasts from 

linear regression with Stibor 1-month and ARIMA(1,0,2)(0,0,1)12 errors 

Consumer confidence indicator 

The formula for calculating forecasts from linear regression with CCI and 

ARIMA(1,0,0)(1,0,0)12 errors is 

∇∇12𝑋̂𝑡+1 = −0.0688∇𝑉̂𝑡+1 + 0.4712𝜂𝑡 − 0.4265𝜂𝑡−11 + 0.2010𝜂𝑡−12 + 𝑍̂𝑡+1. 

In case the observed values of consumer confidence indicator were used, then the forecast for 

January 2021 was 

∇∇12𝑋̂𝐽𝑎𝑛 2021 = −0.0688𝑉̂𝐽𝑎𝑛 2021 + 0.4712𝜂𝐷𝑒𝑐 2020 − 0.4265𝜂𝐽𝑎𝑛 2020 + 0.2010𝜂𝐷𝑒𝑐 2019

= −0.0688 ∙ 2.7 + 0.4712 ∙ 1.0350 − 0.4265 ∙ 0.0543 + 0.2010 ∙ (−1.2418)

= 0.0292 

The actual value was -0.0123. All forecasts compared to observed values can be seen in Figure 

31. 
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Figure 31: The actual differenced savings deposits volumes compared to the forecasts from 

linear regression with CCI and ARIMA(1,0,0)(1,0,0)12 errors, 80% and 95% CI 

After transforming the differenced savings volumes back to original, the forecast for January 

2021 was 

𝑋̂𝐽𝑎𝑛 2021 = ∇∇12𝑋̂𝐽𝑎𝑛 2021 + 𝑋𝐷𝑒𝑐 2020 + 𝑋𝐽𝑎𝑛 2020 − 𝑋𝐷𝑒𝑐 2019

= 0.0292 + 180.6125 + 163.3414 − 162.5998 = 181.3833. 

 

Figure 32: The actual savings deposits volumes compared to the converted forecasts from 

linear regression with CCI and ARIMA(1,0,0)(1,0,0)12 errors 
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Purchasing managers’ index 

The prediction formula for linear regression with PMI and ARIMA(1,0,0)(0,0,1)12 errors is 

∇∇12𝑋̂𝑡+1 = 0.0027𝑉̂𝑡+1 + 0.4517𝜂𝑡 + 𝑍̂𝑡+1 − 0.5935𝑍𝑡−11. 

In case the actual values of purchasing managers’ index were used, the forecast for January 

2021 was 

∇∇12𝑋̂𝐽𝑎𝑛 2021 = 0.0027𝑉̂𝐽𝑎𝑛 2021 + 0.4517𝜂𝐷𝑒𝑐 2020 − 0.5935𝑍𝐽𝑎𝑛 2020

= 0.0027 ∙ 63.0 + 0.4517 ∙ 0.8092 − 0.5935 ∙ 0.4385 = 0.2753. 

In Figure 33 all the values from the test period compared to the model forecasts are shown. 

 

Figure 33: The actual differenced savings deposits volumes compared to the forecasts from 

linear regression with PMI and ARIMA(1,0,0)(0,0,1)12 errors, 80% and 95% CI 

By converting the differenced savings volumes back to original, the prediction for January 

2021 was 

𝑋̂𝐽𝑎𝑛 2021 = ∇∇12𝑋̂𝐽𝑎𝑛 2021 + 𝑋𝐷𝑒𝑐 2020 + 𝑋𝐽𝑎𝑛 2020 − 𝑋𝐷𝑒𝑐 2019

= 0.2753 + 180.6125 + 163.3414 − 162.5998 = 181.6294. 
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Figure 34: The actual savings deposits volumes compared to the converted forecasts from 

linear regression with PMI and ARIMA(1,0,0)(0,0,1)12 errors 

Gross domestic product 

The forecasting formula for linear regression with GDP and ARIMA(2,1,1)(0,1,1)12 errors is 

𝑋̂𝑡+1 = −0.0147𝑉̂𝑡+1 + 2.3210(𝜂𝑡 − 𝜂𝑡−12) − 1.6542(𝜂𝑡−1 − 𝜂𝑡−13)

+ 0.3332(𝜂𝑡−2 − 𝜂𝑡−14) + 𝜂𝑡−11 + 𝑍̂𝑡+1 − 0.8926𝑍𝑡 − 0.5812𝑍𝑡−11

+ 0.5188𝑍𝑡−12. 

When using the actual values of gross domestic product, the forecast for January 2021 was 

𝑋̂𝐽𝑎𝑛 2021 = −0.0147𝑉̂𝐽𝑎𝑛 2021 + 2.3210(𝜂𝐷𝑒𝑐 2020 − 𝜂𝐷𝑒𝑐 2019)

− 1.6542(𝜂𝑁𝑜𝑣 2020 − 𝜂𝑁𝑜𝑣 2019) + 0.3332(𝜂𝑂𝑐𝑡 2020 − 𝜂𝑂𝑐𝑡 2019) + 𝜂𝐽𝑎𝑛 2020

− 0.8926𝑍𝐷𝑒𝑐 2020 − 0.5812𝑍𝐽𝑎𝑛 2020 + 0.5188𝑍𝐷𝑒𝑐 2019

= −0.0147 ∙ 435.1818 + 2.3210(187.1654 − 169.2590)

− 1.6542(185.4914 − 168.5547) + 0.3332(185.1971 − 168.5934)

+ 169.6803 + 0 − 0.8926 ∙ 0.4155 − 0.5812 ∙ 0.5995 + 0.5188(−0.2980)

= 181.4856. 

All the observed values in comparison of model forecasts are shown in Figure 35.  
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Figure 35: The actual savings deposits volumes compared to the forecasts from linear 

regression with GDP and ARIMA(2,1,1)(0,1,1)12 errors 

House price index 

The formula for calculating forecasts from linear regression with HPI and 

ARIMA(1,1,0)(0,1,1)12 errors is 

𝑋̂𝑡+1 =  0.2141𝑉̂𝑡+1 + 1.4995(𝜂𝑡 − 𝜂𝑡−12) − 0.4995(𝜂𝑡−1 − 𝜂𝑡−13) + 𝜂𝑡−11 + 𝑍̂𝑡+1

− 0.5048𝑍𝑡−11. 

In case the observed values of house price index were used, the forecast for January 2021 was 

𝑋̂𝐽𝑎𝑛 2021 =  0.2141𝑉̂𝐽𝑎𝑛 2021 + 1.4995(𝜂𝐷𝑒𝑐 2020 − 𝜂𝐷𝑒𝑐 2019) − 0.4995(𝜂𝑁𝑜𝑣 2020

− 𝜂𝑁𝑜𝑣 2019) + 𝜂𝐽𝑎𝑛 2020 + 𝑍̂𝐽𝑎𝑛 2021 − 0.5048𝑍𝐽𝑎𝑛 2020

= 0.2141 ∙ 170.4347 + 1.4995(144.4313 − 128.2321)

− 0.4995(143.1832 − 127.7756) + 128.8399 + 0 − 0.5048 ∙ 0.5800

= 181.6323.  

The actual values in parallel with model forecasts are shown in Figure 36. 
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Figure 36: The actual savings deposits volumes compared to the forecasts from linear 

regression with HPI and ARIMA(1,1,0)(0,1,1)12 errors 

Quantitative easing 

The forecasting formula for linear regression with QE and ARIMA(2,1,1)(0,1,1)12 errors is 

𝑋̂𝑡+1 = 0.0046𝑉̂𝑡+1 + 2.3645(𝜂𝑡 − 𝜂𝑡−12) − 1.3645(𝜂𝑡−1 − 𝜂𝑡−13) + 0.3714(𝜂𝑡−2 − 𝜂𝑡−14)

+ 𝜂𝑡−11 + 𝑍̂𝑡+1 − 0.9200𝑍𝑡 − 0.6267𝑍𝑡−11 + 0.5766𝑍𝑡−12. 

In case the actual volumes of quantitative easing were used, the forecast for January 2021 was 

𝑋̂𝐽𝑎𝑛 2021 = 0.0046𝑉̂𝐽𝑎𝑛 2021 + 2.3645(𝜂𝐷𝑒𝑐 2020 − 𝜂𝐷𝑒𝑐 2019)

− 1.7359(𝜂𝑁𝑜𝑣 2020 − 𝜂𝑁𝑜𝑣 2019) + 0.3714(𝜂𝑂𝑐𝑡 2020 − 𝜂𝑂𝑐𝑡 2019) + 𝜂𝐽𝑎𝑛 2020

− 0.9200𝑍𝐷𝑒𝑐 2020 − 0.6267𝑍𝐽𝑎𝑛 2020 + 0.5766𝑍𝐷𝑒𝑐 2019

= 0.0046 ∙ 125.1814 + 2.3645(180.0681 − 162.0678)

− 1.7359(178.6231 − 161.5955) + 0.3714(178.0998 − 161.4022)

+ 162.7707 − 0.9200 ∙ 0.4050 − 0.6267 ∙ 0.7019 + 0.5766(−0.3562)

= 181.5337 

All the model forecasts in comparison of observed values can be seen in Figure 37.  
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Figure 37: The actual savings deposits volumes compared to the forecasts from linear 

regression with QE and ARIMA(2,1,1)(0,1,1)12 errors 

Stibor 1-month, CCI and GDP 

The formula for calculating forecasts from linear regression with Stibor 1-month, CCI, GDP 

and ARIMA(1,0,0)(1,0,0)12 errors is 

∇∇12𝑋̂𝑡+1  =  −0.3905∇𝑉̂𝑆𝑡𝑖𝑏𝑜𝑟,𝑡+1 − 0.0611𝑉̂𝐶𝐶𝐼,𝑡+1 − 0.0161∇∇12𝑉̂𝐺𝐷𝑃,𝑡+1 + 0.4526𝜂𝑡

− 0.4295𝜂𝑡−11 + 0.1944𝜂𝑡−12 + 𝑍̂𝑡+1. 

When using the actual values of Stibor 1-month, CCI and GDP, the forecast for January 2021 

was 

∇∇12𝑋̂𝐽𝑎𝑛 2021 =  −0.3905∇𝑉̂𝑆𝑡𝑖𝑏𝑜𝑟,𝐽𝑎𝑛 2021 − 0.0611𝑉̂𝐶𝐶𝐼,𝐽𝑎𝑛 2021 − 0.0161∇∇12𝑉̂𝐺𝐷𝑃,𝐽𝑎𝑛 2021

+ 0.4526𝜂𝐷𝑒𝑐 2020 − 0.4295𝜂𝐽𝑎𝑛 2020 + 0.1944𝜂𝐷𝑒𝑐 2019

= −0.3905 ∙ 0.0539 − 0.0611 ∙ 2.7 − 0.0161 ∙ 10.4454 + 0.4526 ∙ 1.0086

− 0.4295 ∙ 0.0067 + 0.1944(−1.2460) = −0.1424. 

All the observed values in comparison of model forecasts are shown in Figure 38. 
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Figure 38: The actual differenced savings deposits volumes compared to the forecasts from 

linear regression with Stibor 1-month, CCI, GDP and ARIMA(1,0,0)(1,0,0)12 errors, 80% 

and 95% CI 

After transforming the differenced savings volumes back to original values, the forecast for 

January 2021 was 

𝑋̂𝐽𝑎𝑛 2021 = ∇∇12𝑋̂𝐽𝑎𝑛 2021 + 𝑋𝐷𝑒𝑐 2020 + 𝑋𝐽𝑎𝑛 2020 − 𝑋𝐷𝑒𝑐 2019

= −0.1424 + 180.6125 + 163.3414 − 162.5998 = 181.2117. 

 

Figure 39: The actual savings deposits volumes compared to the converted forecasts from 

linear regression with Stibor 1-month, CCI, GDP and ARIMA(1,0,0)(1,0,0)12 errors 



55 

 

PMI and GDP 

The forecasting formula for linear regression with PMI, GDP and ARIMA(1,0,0)(0,0,1)12 

errors is 

∇∇12𝑋̂𝑡+1 = 0.0028𝑉̂𝑃𝑀𝐼,𝑡+1 − 0.0135∇∇12𝑉̂𝐺𝐷𝑃,𝑡+1 + 0.4457𝜂𝑡 + 𝑍̂𝑡+1 − 0.5597𝑍𝑡−11. 

In case the actual values of PMI services and GDP were used, the point forecast for January 

2021 was 

∇∇12𝑋̂𝐽𝑎𝑛 2021 = 0.0028𝑉𝑃𝑀𝐼,𝐽𝑎𝑛 2021 − 0.0135∇∇12𝑉𝐺𝐷𝑃,𝐽𝑎𝑛 2021 + 0.4457𝜂𝐷𝑒𝑐 2020

− 0.5597𝑍𝐽𝑎𝑛 2020

= 0.0028 ∙ 63.0 − 0.0135 ∙ 10.4454 + 0.4457 ∙ 0.8032 − 0.5597 ∙ 0.2998

= 0.2233. 

All the observed values in comparison of model forecasts are shown in Figure 40. 

 

Figure 40: The actual differenced savings deposits volumes compared to the forecasts from 

linear regression with PMI services, GDP and ARIMA(1,0,0)(0,0,1)12 errors, 80% and 95% 

CI 

By converting the differenced savings volumes back to original, the prediction for January 

2021 was 
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𝑋̂𝐽𝑎𝑛 2021 = ∇∇12𝑋̂𝐽𝑎𝑛 2021 + 𝑋𝐷𝑒𝑐 2020 + 𝑋𝐽𝑎𝑛 2020 − 𝑋𝐷𝑒𝑐 2019

= 0.2233 + 180.6125 + 163.3414 − 162.5998 = 181.5774. 

 

Figure 41: The actual savings deposits volumes compared to the converted forecasts from 

linear regression with PMI, GDP and ARIMA(1,0,0)(0,0,1)12 errors 

3.4 Results  

In this paragraph the results presented in subsections 3.2-3.3 are summarized.  

To evaluate forecasting accuracy, it is important to compare model performance on 

completely unseen data, i.e. the test set. Overall, the validations in paragraph 3.3 imply that all 

the models were performing well during the test period and that time series models are 

appropriate for forecasting deposit volumes. To find the best models, error measures such as  

𝑀𝐴𝐸 =
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are used for measuring the accuracy of model forecasts over the test period. 𝑀𝐴𝐸 measures 

the absolute magnitude of errors, while 𝑅𝑀𝑆𝐸 captures the mean square magnitude of errors 

and gives more weight to large deviations such as outliers. The results are presented in Table 

42.  

Table 42:  Error measures for test dataset 

Model 𝑴𝑨𝑬(𝑿̂𝒕𝒆𝒔𝒕) 𝑹𝑴𝑺𝑬(𝑿̂𝒕𝒆𝒔𝒕) 

 Holt 0.590 0.738 

 ARIMA 0.381 0.458 

ARIMAX                     Stibor 0.488 0.545 

CCI 0.599 0.725 

PMI 0.488 0.553 

GDP 0.641 0.798 

HPI 1.148 1.278 

QE 0.596 0.757 

Stibor, CCI, GDP 0.595 0.742 

PMI, GDP 0.490 0.575 

 

By looking at the error metrics, it turns out that the ARIMA model performs the best with 

MAE of 0.381 and RMSE of 0.458. One could expect that adding explanatory variables to a 

model would increase the accuracy, i.e. lower error measures. However, this is not the case in 

this study. ARIMAX models with the best accuracy include Stibor 1-month, purchasing 

managers’ index, and combination of purchasing managers’ index and gross domestic product. 

All three models have similar error measures with MAE between 0.488-0.490 and RMSE 

between 0.545-0.575. The measures are around 20-30% higher than for the ARIMA model.  

The least performing model is ARIMAX with house price index with considerably higher 

MAE (1.1487) and RMSE (1.278). Moreover, the ARIMAX models fitted in paragraph 3.2 are 

more complex compared to the ARIMA model from a perspective of having the necessity of 

forecasting explanatory variables first. On the other hand, using transfer function model 

instead of ARIMAX would eliminate the need. In some cases, the impact of a predictor in a 
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regression model is not straightforward and immediate, and using a model which allows 

lagged effects could potentially give better results.  

Altogether, ARIMA model was performing very good during the time scope of this thesis 

when economy was rising. During economic depression, the model might act differently and 

using exogenous variables could be useful. Therefore, additional investigation on possible 

predictor variables or concentration on ARIMAX models with combination of several 

predictors is recommended. As well, investigation on transfer function models and machine 

learning models could be considered. 
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Conclusion 

With increasing regulatory supervision, financial institutions are required to carefully monitor 

their liquidity risk. Forecasting deposit volumes allows financial institutions to improve their 

risk assessment and allocate funds more efficiently with regards to maturity.  

The objective of the thesis was to conduct an empirical study to find the best model to forecast 

the volume of savings deposits of one undisclosed financial institution in Sweden. Time series 

models such as Holt, ARIMA and ARIMAX were applied to the deposit volumes. The 

explanatory variables included in ARIMAX models were Stibor 1-month, consumer 

confidence indicator, purchasing managers’ index, gross domestic product, house price index 

and quantitative easing. Results imply that ARIMA(1,1,0)(0,1,1)12 model performs the best, 

resulting in approximately 20% lower errors measures compared to the best three ARIMAX 

models – Stibor 1-month, purchasing managers’ index, and combination of purchasing 

managers’ index and gross domestic product.  

The thesis has provided insight to how accurate some macroeconomic measures are in 

forecasting savings volumes. As ARIMAX models were not showing better accuracy than 

regular ARIMA model, then further research could include additional variables or focus more 

on ARIMAX models with combination of several explanatory variables. Secondly, 

investigation on transfer function models or more advanced modelling techniques, like 

machine learning models, could be considered. It would be interesting to see if the accuracy is 

higher compared to the time series models proposed and investigated in this study. In addition, 

future study could analyse corporate customers’ savings deposits. This part of the portfolio is 

presumed to act differently to the changes in the market and economic variables.   
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Appendixes  

Appendix 1. Selection of ARIMA model 

The following figures and R outputs illustrate how the best ARIMA model was chosen. 

 

Figure X: First order differenced savings deposits, ACF and PACF plots 

 



64 

 

 

Figure X: First order and seasonally differenced savings deposits, ACF and PACF plots 

R output of ARIMA(1,1,0)(0,1,1)12 model: 
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Figure X: Residuals from ARIMA(1,1,0)(0,1,1)12 
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Appendix 2. Selection of ARIMAX model with Stibor 1-month 

The following figures and R outputs illustrate how the best ARIMAX model was chosen.  

R output of linear regression with Stibor 1-month: 

 

 

Figure X: Residuals from linear regression model with Stibor 1-month, ACF and PACF plots 
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R output of linear regression with Stibor 1-month and ARIMA errors: 

 

 

 

Figure X: Residuals from linear regression model with Stibor 1-month and 

ARIMA(1,0,2)(0,0,1)12 errors 
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Appendix 3. Selection of ARIMAX model with CCI 

The following figures and R outputs illustrate how the best ARIMAX model was chosen.  

R output of linear regression with consumer confidence indicator: 

 

Figure X: Residuals from linear regression model with consumer confidence index, ACF and 

PACF plots 
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R output of linear regression with consumer confidence indicator and ARIMA errors: 

 

 

Figure X: Residuals from linear regression model with CCI and ARIMA(1,0,0)(1,0,0)12 

errors 
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Appendix 4. Selection of ARIMAX model with PMI 

The following figures and R outputs illustrate how the best ARIMAX model was chosen.  

R output of linear regression with PMI manufacturing: 

 

R output of linear regression with PMI services: 
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Figure X: Residuals from linear regression model with PMI services, ACF and PACF plots  

R output of linear regression with PMI and ARIMA errors: 
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Figure X: Residuals from linear regression model with PMI services and 

ARIMA(1,0,0)(0,0,1)12 errors 
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Appendix 5. Selection of ARIMAX model with GDP 

The following figures and R outputs illustrate how the best ARIMAX model was chosen.  

R output of linear regression with GDP: 
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Figure X: Residuals from linear regression model with GDP, ACF and PACF plots
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Figure X: Residuals from linear regression model with GDP after first order difference and 

seasonal difference, ACF and PACF plots  

R output of the linear regression with GDP and ARIMA errors: 
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Figure X: Residuals from linear regression model with GDP and ARIMA(2,1,1)(0,1,1)12 

errors 
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Appendix 6. Selection of ARIMAX model with HPI 

The following figures and R outputs illustrate how the best ARIMAX model was chosen.  

R output of linear regression with house price index: 

 

Figure X: Residuals from linear regression model with house price index, ACF and PACF 

plots 
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Figure X: Residuals from linear regression model with house price index after first order 

difference and seasonal difference, ACF and PACF plots 

R output of linear regression with housing price index and ARIMA errors: 
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Figure X: Residuals from linear regression model with house price index and 

ARIMA(1,1,0)(0,1,1)12 errors 
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Appendix 7. Selection of ARIMAX model with QE 

The following figures and R outputs illustrate how the best ARIMAX model was chosen.  

R output of linear regression with QE: 
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Figure X: Residuals from linear regression model with quantitative easing, ACF and PACF 

plots 
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Figure X: Residuals from linear regression model with quantitative easing after first order 

difference and seasonal difference, ACF and PACF plots 

R output of linear regression with QE and ARIMA errors: 
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Figure X: Residuals from linear regression model with quantitative easing and 

ARIMA(2,1,1)(0,1,1)12 errors 
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Appendix 8. Selection of ARIMAX model with best regressors 

The following figures and R outputs illustrate how the best regressors and the best ARIMAX 

model were chosen. 

R outputs of stepwise procedure to find the best regressors: 

 

 



85 

 

 

 



86 

 

 

Figure X: Residuals from linear regression model with Stibor 1-month, CCI and GDP, ACF 

and PACF plots  

R output of linear regression with Stibor 1-month, CCI, GDP and ARIMA errors: 
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Figure X: Residuals from linear regression model with Stibor 1-month, CCI, GDP and 

ARIMA(1,0,0)(1,0,0)12 errors 
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Appendix 9. Selection of ARIMAX models with PMI and GDP 

The following figures and R outputs illustrate how the best ARIMA model was chosen.  

R output of linear regression with PMI and GDP: 
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Figure X: Residuals from linear regression model with PMI and GDP, ACF and PACF plots 

R output of linear regression with PMI, GDP and ARIMA errors: 
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Figure X: Residuals from linear regression model with PMI, GDP and 

ARIMA(1,0,0)(0,0,1)12 errors 
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