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INTRODUCTION 

Ribosomes are a major component of prokaryotic and eukaryotic cells. They 
produce the cell proteins, and are very expensive in term of ‘building material’ 
and energy. The traditional view is that ribosomes are stable. In the past, 
ribosomal degradation in bacteria has been studied in stress conditions like 
nutrients starvation, presence of damaging chemicals, or antibiotics treatment. 
The ribosome stability has, until recently, not been tested in bacteria actively 
growing in nutrient-rich media. One aim of my work is to shed light on this 
issue. 

The contribution of this thesis to the understanding of ribosome degradation 
in bacteria is two-fold. First, by developing a test system that allows direct 
measurement of ribosomal stability in growing E. coli cultures, we could show 
that wild-type ribosomes are degraded during the slowing of growth that 
precedes entry into the stationary phase, presumably facilitating recycling of the 
cellular components no longer needed by the cell. Second, we showed that 
certain mutations that are known to have deleterious effects on the cellular 
phenotype induce degradation of the ribosomes. We also showed a role for two 
RNases, YbeY and RNase R, in the degradation of both WT and mutant ribo-
somes in growing cells. 
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REVIEW OF LITERATURE 

1. Historical overview 
Ribosomes are the universally conserved protein factories of all prokaryotic and 
eukaryotic cells, and are also their most abundant component. The very first 
scientific observations of ribosomes were made by the Frenchman, G. Garnier, 
in 1897–99. He called them ‘ergastoplasms’ (Siekevitz and Zamecnik 1981). In 
the early 1940s’ Caspersson and Brachet noticed the correlation between the 
amount of RNA in various cells and their protein-synthesis capacity. G. Palade 
microscope studies led him to describe the ribosomes as particles either attached 
to the endoplasmic reticulum or free in the cytoplasm, and to postulate that the 
attached particles could account for the high RNA content of the reticulum. He 
defined them as ‘small particulated components’ (Palade 1955). The term ribo-
some was coined in 1958 by Dick Roberts. In the mid-1950s, after significant 
advancements in electron microscopy techniques, rRNA (ribosomal RNA) was 
recognized as a component of the ribosome. The role of ribosome as protein 
‘builders’ was firmly established by 1960 (Hill et al. 1990). However, early 
studies on ribosomes were based on the assumption that rRNA carries the 
information for the synthesis of proteins. The discovery of mRNA disposed of 
this notion in the early 60s. Already a few years earlier Zamecnik and Hoagland 
had noticed in vitro that a certain fraction of RNA was able to transfer amino 
acids to microsomal protein in vitro. By 1953 Zameknink had succeeded in 
making the first cell-free system capable of carrying out net peptide bond 
formation using 14C-amino acids. Using this system, Zamecnik and Hoagland 
noticed that the RNA in a particular cytoplasmic fraction became labeled with 
14C-amino acids and that the labeled RNA was subsequently able to transfer the 
amino acids to microsomal protein. The transfer was dependent upon guanosine 
triphosphate. They had discovered the transfer RNA (tRNA) (Hoagland et al. 
1958, Kresge et al. 2005, Zamecnik 2005). By the late 60s the cyclic 
mechanism of subunit dissociation and re-association during ribosome function 
was established (Hill et al. 1990). Alexander Rich, known also for his pioneer 
studies on DNA crystal structures, advanced our understanding of translation 
with the discovery of polysomes, ribosome clusters that read a strand of mRNA 
simultaneously (Warner et al. 1963). In the same period, studies on ribosomal 
proteins and their chemical characteristics were carried on by Traut, Moore and 
Noller (Traut et al. 1967, Moore et al. 1968). Traub and Nomura succeeded in 
reconstituting ribosomes in vitro. The composition of the peptidyl transferase 
center was determined by Nierhaus and his collaborators in the early 80s 
(Nierhaus 1980, Schulze and Nierhaus 1982). Since the 1960s, ribosome 
footprinting analysis has become an established method to identify the position 
of active ribosomes bound to target mRNA, thanks to the pioneering work of 
Steitz and Kozak (Jackson and Standart 2015). Thermal neutron scattering, 
irradiation of free low energy neutrons, was introduced in the 70s by Engelman 
and Moore to study the three-dimensional structure of the ribosome (Moore et 
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al. 1975). Improved X-ray crystallographic techniques made possible to obtain 
high-resolution atomic structures of the prokaryotic large and small ribosomal 
subunits by 2000, when the structure of the large ribosomal subunit (from the 
archaeon Haloarcula marismortui) was revealed (Ban et al. 2000). The structure 
of the small ribosomal subunit was described soon after (Schluenzen et al. 
2000). Advances in crystallography techniques made possible further progress 
in recent years (Moore and Steitz 2003, Sanbonmatsu 2012, Zhou  et al. 2012, 
Jenner et al. 2012). In the past decades investigation of ribosomal structure has 
also been carried on by chemical and enzymatic probing (Vaughn et al. 1984, 
Green and Noller 1997, Lauber and Reilly 2011). Recently advances in electron 
cryo-microscopy have made it possible to study ribosomes in solution at near-
atomic resolution (Bai et al. 2013). Atomic mutagenesis experiments on ribo-
somes are used to study protein biosynthesis (Erlacher et al. 2011). Recent 
advances in FRET allow studying the dynamic changes in single ribosomes in 
the range of 10–90 angstroms and a millisecond time-resolution (Wang and 
Xiao 2012, Wang et al. 2014). 
 
 

2. Structure and function of the prokaryotic ribosome 
The bacterial ribosome weights about 2.5 MDa and sediments as a 70S particle 
(S stands for Svedberg, a unit indicating the sedimentation velocity of a particle 
when subjected to a centrifugal force). It consists of a large and a small subunit 
(Figure 1). The large subunit is about 250 Å in diameter, with an approximately 
hemispheric shape, and it sediments as a 50S particle. It is composed of two 
rRNA molecules (23S and 5S) and of 33 L-proteins. Its structural landmarks are 
a central protuberance (CP) in the middle and two stalks (L1 and L7/L12) pro-
truding at either side of the CP. Below the CP, at roughly the center of the 
intersubunit face is the peptdyl-transferase center (PTC). It comprises parts of 
the A and P tRNA binding sites and the LSU RNA nucleotides directly partici-
pating in the catalysis of making of the peptide bond. Also, during termination 
of protein synthesis, the PTC catalyzes the transfer of the peptide moiety to 
water (Amort et al. 2007) The exit tunnel starts close to the P site and leads to 
the opposite side of the 50S subunit. The GTPase-associated center (GAC) is 
situated at the base of the L7/L12 stalk. The A site is the point of entry for the 
aminoacyl tRNA but the first aminoacyl tRNA enters at the P site, where the 
peptidyl tRNA is formed in the ribosome. The E site is the exit site of the tRNA 
after it gives its amino acid to the growing peptide chain. 

The small (30S) subunit is composed of 16S rRNA and 21 S-proteins (S1–
S21). It has a more modular shape with a moveable head, which sports a 
beaklike structure over a shoulder. On the opposite side from the beak the head 
rests on a protruding platform, with a tapering body underneath, which ends in a 
spur. The A, P and E sites are located at the base of the head. 
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The two ribosomal subunits accomplish various and different functions in protein 
synthesis (Bashan and Yonath 2008, Steitz 2008, Schmeing and Ramakrishan 
2009). The 30S subunit associates with messenger RNA (mRNA) during 
translation initiation. In the decoding center (DC) of 30S interactions between 
codons in the mRNA and anticodons in transfer RNA (tRNA) determine which 
amino acid will be incorporated into the polypeptide chain. The PTC of the 50S 
subunit acts as a catalyst for two key reactions. It performs the peptide bond 
formation between the amino acid attached to the tRNA in the A-site 
(aminoacyl-tRNA) and the emerging peptide chain attached to the tRNA in  
P-site (peptidyl-tRNA) during translation elongation. And it’s involved in the 
hydrolysis of nascent peptide from P-site tRNA during translation termination. 
The polypeptide exit tunnel that begins below the PTC provides the nascent 
peptides with a stable path through the 50S subunit.  

Codons are three-nucleotide sequences in the mRNA that are matched to 
complementary sequences in the tRNA, the anticodon. Thus tRNA acts as the 
link between the mRNA transcripts and the amino acid sequences of the 
proteins translated in the ribosome. The first codon of an mRNA translated by 
the ribosome is called start codon, and it always codes for Methionine in 
eukaryotes or for a modified form, formyl-Methionin, in prokaryotes (Figure 2). 
The most common start codon is AUG, but there are alternate start codons: 
GUG, UUG and AUU (Blattner et al. 1997, Sacerdot et al. 1982). 
 

 

Fig 1. Structure of prokaryotic ribosomal subunits (Jmol 14.6, from RCSB PDB Protein 
Data Bank). The major landmarks of the subunits are labelled (head, body, spur, and the 
central protuberance) and atom identities are presented in color code. 
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Fig 2. Prokaryotic translation initiation (Modified from Alila Medical Media). mRNA is 
in green, the ribosomal subunits are in grey, the Shine-Dalgarno sequence in the 16S 
rRNA is in blue, the fMet-tRNA is in red, and the GTP is in yellow. The initiation takes 
place in the AUG start codon (yellow), where the fMet-tRNA-GTP-IF2 ternary complex 
is bound to the ribosomal P site. The IF1 facilitates this process and the IF3 prevents 
any premature binding of the large subunit to the initiation complex. 
 
 
The two subunits associate upon translation initiation, connecting through 
protruding structures called inter-subunit bridges (Yusupov et al. 2001, Maiväli 
and Remme 2004, Hennely et al. 2005, Schuwirth et al. 2005, Pulk et al. 2006, 
Kietrys et al. 2009). Some of the inter-subunit bridges are composed entirely of 
RNA, and they are mostly located in the central region of the subunit interface. 
The inter-subunit bridges that have protein components are mostly located 
peripherally (Yusupov et al. 2001, Schuwirth et al. 2005, Korostelev et al. 2006, 
Selmer et al. 2006). In prokaryotic ribosomes only one of the 13 bridges, B1b 
consists solely of protein-protein interactions (Kietrys et al. 2009). Rearrange-
ment of inter-subunit bridges during elongation is part of the coordinated action 
between the DC of the 30S and the PTC of the 50S, and of the translocation of 
the mRNA/tRNA complex – exactly one codon at the time relative to the 
ribosome (Yusupov et al. 2001, Frank et al. 2007, Zhang et al. 2009, Jenner et 
al. 2010). The subunits remain together during the translation process and 
separate when the finished polypeptide is released (Bashan and Yonath 2008, 
Steitz 2008, Schmeing and Ramakrishnan 2009). In bacteria, translocation is 
induced by the elongation factor G (EF-G). EF-G is also involved in ribosome 
recycling, i.e. disassembly of the ribosome into subunits after the termination of 
protein synthesis. Recycling also requires ribosome recycling factor (RRF) and 
GTP hydrolysis by EF-G (Salsi et al. 2014). 

When a ribosome reaches the end of an mRNA, a release factor frees the 
ribosome from it. There are three known release factors in bacteria. RF1, which 
recognises stop codons UAA and UAG, RF2, which recognizes stop codons 
UAA and RF3, which promotes termination by either factor and participates in 
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quality control during translation elongation in E. coli through post-peptidyl-
transfer-quality-control (post PT QC) (Zaher and Green 2011). Release factors 
induce termination by having a conformation that mimics that of tRNA 
molecules (Ito et al. 1996, Baranov et al. 2002, Zaher and Green 2011), by 
fitting to the sites of tRNA binding. If the mRNA is defective by lacking the 
stop codon the release factor cannot bind and the ribosome is ‘trapped’ on the 
mRNA. Bacterial cells contain a species of RNA called tmRNA, which mimics 
both tRNA and mRNA. tmRNA is composed of a tRNA-like domain (TLD), a 
short ORF encoding the ssrA peptide, and four pseudoknot structures. When it 
meets a trapped ribosome it binds alongside the defective mRNA in the A-site, 
allowing protein synthesis to proceed and, as tmRNA contains a stop codon, 
allowing the release factor to bind and disassemble the ribosome (Janssen and 
Hayes 2013). The defective proteins thus made are subsequently degraded and 
the ribosome is freed to once again participate in protein synthesis. Thus 
bacteria possess a regulatory mechanism that rescues ribosomal function from a 
potentially harmful mRNAs mutation (Madigan et al. 2012). 

rRNA is the key component of the ribosome, which is constituted by almost 
two thirds of it by weight. Ribosomal proteins stabilize rRNA tertiary structure 
and assist in various steps of translation such as mRNA binding (S1), decoding, 
as well as in ensuring the optimal fidelity of translation (S4, S5, S12) (Klein et 
al. 2004, Korobeinikova et al. 2012). Some r-proteins are essential for the 
biogenesis of ribosomal subunits, but their function becomes dispensable once 
the ribosome is fully assembled (Wilson and Nierhaus 2005). Assembly and 
processing of ribosomal components into functional ribosomes is a complex and 
energy-intensive process. rRNA genes are organized into operons (Deutscher 
2009), seven of which are present in E. coli. Each operon contains genes for 
each of the three rRNA species – 16S, 23S and 5S rRNA. One or more tRNA 
genes are located between the 16S and 23S sequences (Kaczanowska and 
Ryden-Aulin 2007, Deutscher 2009). Ribosome assembly in vivo is a rather 
slow process, which takes minutes to go to completion (Lindahl 1975). Ribo-
some assembly is initiated before rRNA transcription is completed. While 
transcription is taking place, secondary structure motifs start to form, creating 
binding sites for r-proteins. R-proteins stabilize the rRNA and assist in its 
folding. Some of them may also act also as chaperones to protect rRNA from 
misfolding (Semrad et al. 2004). Assembly proceeds through multiple pathways 
that generate an array of intermediate particles (Sykes et al. 2010). The three 
rRNA species are transcribed together in a single transcript, the pre-rRNA 
(Kaczanowska and Ryden-Aulin 2007, Deutscher 2009, Shajani et al. 2011). 
Ribonuclease III (RNase III) is the main rRNA processing enzyme, even if 
surprisingly it is not essential for bacterial survival (Takiff et al. 1992, Court 
1993). It starts cleaving the pre-RNA before its transcription is completed. In 
E. coli, both 16S and 23S rRNA are synthesized as one large transcript that 
contains precursor sequences, and RNase III produces the separate 16S and 23S 
rRNA precursors (King and Schlessinger 1983). The pre-5S rRNA is processed 
by RNase E and T. The endonucleases RNase E and RNase G are required for 
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the final processing of the 5’ end of the 16S rRNA, while the exonuclease 
RNase T is involved in the final processing of the 23S rRNA end, by trimming 
the extra 3’ residues (Li et al. 1999b). YbeY (Davies et al 2010) and other still 
unidentified RNases are also involved in pre-rRNA processing. Four 3’ to 5’-
exoribonucleases, RNases II, R, and PH, and polynucleotide phosphorylase 
(PNPase), participate in maturation of the 3’ end of 16S rRNA. The presence of 
any of these four RNases is enough to allow maturation to occur, but with 
different efficiencies (Sulthana and Deutscher 2013). Final processing of the 
LSU rRNAs is completed during formation of the translation initiation complex 
or during the first cycles of translation (Kaczanowska and Ryden-Aulin 2007, 
Deutscher 2009). The final processing of the 5S rRNA is inhibited by the 
antibiotic chloramphenicol, which inhibits protein synthesis (Deutscher 2009). 

Ribosome assembly is assisted by a number of assembly factors, such as 
RNA helicases, ribosome-dependent GTPases, heat-shock proteins, and RNA 
chaperones. Most assembly factors are not essential for cell growth, except 
under stress conditions. 

Specific ribonucleotides in rRNA are covalently modified during ribosome 
biogenesis, mostly by methylations and of pseudouridylations (Ψs). 36 different 
naturally occurring nucleoside modifications are present in E. coli. Modified 
nucleotides (MN) are concentrated around the actives sites of the ribosomes, 
such as the mRNAs and tRNA binding sites on the 30S subunit, the PTC and 
the entrance of the polypeptide exit tunnel on the 50S subunit and the inter-
subunit bridges. This suggests that nucleotide modifications play important 
roles in ribosome stability and functioning. Accordingly, there are three con-
served MNs in the stem-loop 69 of 23S rRNA, which is a universally conserved 
secondary structure in the 50S subunit, that is involved in several steps of 
initiation elongation and ribosome recycling (Agrawal et al. 2004, Wilson et al. 
2005, Ali et al. 2006). MNs in bacteria are made by specific modification 
enzymes, such as pseudouridine synthases and methyltransferases. Different 
rRNA modifications take place at different phases of ribosome assembly, so that 
defects in the latter can likely lead to undermodification of rRNAs. Modi-
fications also take place in r-proteins, eleven of which are known to be post-
translationally modified in E. coli (Arnold and Reilly 1999, Polevoda and 
Sherman 2007). R-protein modifications consist mostly of acetylations and 
methylations. 

Finally, let us mention the regulation mechanisms of ribosome synthesis. 
Ribosomes constitute as much as 50% of the cell dry mass, which makes ribo-
some biogenesis very expensive energetically (Condon et al. 1995, Dennis et al. 
2006). Obviously ribosome synthesis must be a highly coordinated and efficient 
process. A complex network of regulatory mechanisms control ribosome 
synthesis in bacteria. rRNA synthesis is regulated by the stringent response, by 
growth rate control, by transcriptional antitermination, by upstream activation, 
and by feedback control (Wagner 1994). In this context, mechanisms that 
ensure quality control and prevent the formation of defective ribosomes are very 
important, and we need to elaborate further on this subject. 
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3. Ribonucleases 
As mentioned above, ribonucleases (RNases) are the main actors involved in 
rRNA degradation. They catalyze the degradation of RNA into smaller compo-
nents. Ribonucleases can be divided into endoribonucleases and exoribo-
nucleases. Exonucleases hydrolyze nucleotides at the ends where a free 3’ or 5’ 
hydroxyl group is present in the polynucleotide chain. Endonucleases do not 
require a free 3’ or 5’ hydroxyl group at the end of the polynucleotide chain; 
they attack internal 3’ or 5’ linkages. Importantly, E. coli does not have 5’-to-3’ 
exonucleases so it can only degrade RNAs starting from their 3’ends (either 
mature or those generated by endonuclease cleavages). RNases are present in 
both prokaryotic and eukaryotic cells, resulting in very short life-span for RNAs 
not protected from their action. Cells have a variety of mechanisms, like 
ribonuclease inhibitors, to protect their RNA from the action of RNases. Other 
protection mechanisms include 5’ end capping, 3’ end polyadenylation and 
association with proteins, that shield RNAs from RNase action. Proteins 
conjugated with RNA form Ribonucleoproteins (RNPs), which are involved in 
many cellular processes, including catalyzing RNA chemical modifications, and 
participation to pre-mRNA splicing (Bleichert and Baserga 2010). 

Here follows a summary of the major RNases involved in ribosome 
processing, function and degradation (see also Table 1). 
–  RNase I is an endoribonuclease that cleaves the 3’-end of ssRNA at 

essentially random phosphodiester bonds, even at the dinucleotide level. It 
remains latent upon association with the ribosome in E. coli in vitro (Datta 
and Burma 1972, Raziuddin et al. 1979), but is active on the 50S of other 
prokaryotes, like S. typhimurium (Datta and Burma 1972). It accounts for 
the majority of the RNase activity in E. coli. Most of the enzyme resides in 
the periplasmic space (Subarrayan and Deutscher 2001). RNase M is a 
mutated form of RNase I present in E. coli strain MRE600 (Subbarayan and 
Deutscher 2001). 

–  RNase III is an endoribonuclease whose active form is a homodimer (Court 
1993). In bacteria it cleaves pre-16S rRNA and pre-23S rRNA from 
transcribed polycistronic RNA operons. In particular, it is involved in the 
processing of the 3’ terminus of immature 23S rRNA (King et al. 1983). 
RNase III also participates in the processing of pre-microRNA (Lee et al. 
2003). It is regulated posttranscriptionally, by autoregulatory processes in 
which RNase III cleaves its own mRNA making it vulnerable to degradation 
by other RNases (Court et al. 2013). 

–  RNase E is a endoribonuclease that cleaves single-stranded RNA in A- and 
U-rich regions, with the most common site of cleavage close to an AU 
dinucleotide (Mackie 1992, Mackie et al. 1997). It functions as part of a 
large macromolecular complex known as the RNA degradosome and 
evidence suggests that this complex associates with the inner membrane of 
bacteria (Mackie 2013). Its action is modulated by stem-loops regions, 
which limit cleavage at potentially susceptible sites (McDowall et al. 1995). 
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It participates in the processing of the 9S precursor to 5S rRNA and shortens 
the 17S precursor of 16S rRNA, facilitating 5′ maturation by RNase G 
(Mackie 2013). It is also involved in tRNA processing and maturation 
(Deutscher 2003). It is known that a single endonucleolytic cleavage after 
residue 1942 initiated degradation of 23S rRNA (Basturea et al. 2011), and a 
recent study indicates that RNaseE is responsible for this excision, both 
during quality control and during starvation (Sulthana et al. 2016). 

–  RNase G is an endoribonuclease that cleaves the 5’ end of the 16S rRNA 
during maturation. RNase G and E are both required in this process (Li et al. 
1999). It is homologous to the catalytic domain of RNase E but its functions 
and importance are more limited (Deana and Belasco 2004). It participates 
inefficiently to the degradation of 9S rRNA and isn’t involved in the 
degradation of tRNA (Ow et al. 2003). 

–  RNase P is a type of endoribonuclease that is a ribozyme, like the ribosome 
itself, and is composed by RNA plus one or more proteins. Its function is to 
cleave off precursor sequences on tRNA molecules, and furthermore it acts as 
a transcription factor for pol III (Jarrous and Reiner 2007). One type of RNase 
P in animal mitochondria, mtRNase P, lacks RNA (Holzmann et al. 2008). 

–  MazF is a single-strand specific endonuclease that participates in ribosomal 
degradation by cleaving the 3’-end of S16 rRNA (Vesper et al. 2011, Moll 
and Engelberg-Kulka 2012). MazF is the toxic component of a toxin-
antitoxin (TA) module and its endoribonuclease activity is inhibited by the 
cognate antitoxin MazE. Various stress conditions can lead to programmed 
cell death by MazF activation through MazE degradation (Engelberg-Kulka 
et al. 2005). MazF governs a post-transcriptional stress response mechanism 
in E coli. During stringent response, as well as oxidative stress and heat 
shock, 43 nucleotides can be cleaved from the 3′-end of the mature 16S 
rRNA by the endonuclease MazF, possibly in fully assembled ribosomes 
(Vesper et al. 2011, Moll and Engelberg-Kulka 2012). This results in the 
accumulation of specific stress ribosomes that lack anti-SD sequences. The 
stress ribosomes in turn reprogram global translation patterns giving 
preference to leaderless mRNAs lacking SD sequences (Vesper et al. 
2011) – although the new “pattern” of translation seems not to give prefe-
rence to any type of cellular functionality (Sauert et al. 2016). Many of these 
mRNAs are also processed by MazF, providing a regulatory layer with both 
specialised ribosomes and specialized mRNAs, which are selectively 
translated by them. Moreover the RNA ligase RtcB can catalyze the re-
ligation of the truncated 16S rRNA in E. coli, thus reversing the MazF-
induced heterogeneity (Temmel et al. 2016). 

In addition to its role in cleaving the 5’ UTRs of specific mRNAs, MazF 
cleaves single-stranded mRNAs at ACA sequences thus inhibiting protein 
synthesis (Zhang et al. 2003, Zhang et al. 2005). Recently, it has been 
suggested that MazF may cleave preferentially the ACA sites that are 
located in the open reading frames of mRNAs, while out-of-frame ACAs are 
resilient to cleavage (Oron-Gottesman et al. 2016). 
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–  MqsR is a toxin that is induced in E. coli biofilms (Ren et al. 2004) and in 
association with the antitoxin MqsA is involved in regulation of cell motility 
(Barrios et al. 2006). MqsR is a member of the RelE/YoeB family of 
bacterial RNase toxins, and likely functions as a ribosome-dependent RNase, 
playing a role in bacterial persistence by inhibition of translation and, in 
turn, cell growth (Brown et al. 2009). MqsR toxicity is dependent on the 
activities of proteins CspD, ClpX, ClpP, Lon, YfjZ, and is assisted by RelB, 
RelE and HokA (Kim et al. 2010).  

–  RNase BN is an RNase Z homologue that has dual endo- and exonuclease 
activity (Dutta and Deutscher 2009). It participates in the processing of 
tRNA precursors. The removal of its exonuclease activity in cells lacking 
other processing RNases leads to slower growth and affects the maturation 
of several tRNA precursors (Dutta et al. 2012). 

–  RNase II was one of the first exonucleases studied in bacteria. It is a 3’–5’ 
ribonuclease, which is very active in cell-free extracts, but possesses enzy-
matic activity even when attached to ribosomes (Spahr 1964). It degrades 
single-stranded RNA (Deutscher 2009) and participates in the maturation of 
the 3’end of 16S rRNA (Sulthana and Deutscher 2013). 

– RNase D is a 3'–5' exoribonuclease involved in the 3' processing of various 
stable RNA molecules (Zuo et al. 2005). One of its functions is to add the 3' 
CCA sequence to tRNA in prokaryotic tRNA processing. Cells lacking 
RNase D have a reduced ability to synthesize extracellular matrix, show 
reduced motility, and take longer to recover from prolonged starvation 
(Taylor 2014). 

–  RNase T is an exoribonuclease that is involved in the metabolism of stable 
RNA, including tRNA end turnover and the maturation of the 23S rRNA by 
removing the last residues of the 3’ terminus after the initial cleavage by 
RNase III. RNase T is the only enzyme that can efficiently remove residues 
near the double-stranded (ds) stem present in most stable RNAs (Zuo and 
Deutscher 1999). 

–  RNase PH is a 3'–5' exoribonuclease. It is involved in the processing of 
tRNA and of the 3’end of 16S rRNA (Sulthana and Deutscher 2013). It is a 
phosphorolytic enzyme, which uses phosphate as a cofactor to cleave 
nucleotide-nucleotide bonds, releasing diphosphate nucleotides. It can digest 
RNA duplexes that are resistant to the action of RNase II and RNase T. It 
has also been found to play a role in initiating the degradation of rRNA upon 
starvation of E. coli cultures (Basturea et al. 2011, Jain 2012). Degradation 
of 16S rRNA during starvation occurs after RNase PH initiates the removal 
of nucleotides from the 3′ end. The entire 3’ minor domain is removed, 
altering RNA packing in the two ribosomal subunit, thus exposing the 16S 
and 23S rRNA to the action of RNaseE (Sulthana et al. 2016). RNase PH 
has also been found to play a role in initiating the degradation of rRNA in E. 
coli upon starvation (Basturea et al. 2011). 

–  Polynucleotide Phosphorylase (PNPase) is a 3’–5’ exoribonuclease that is 
involved in phosphorolytic degradation of mRNA and rRNA in bacteria 
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(Condon 2003). It has a minor role in the processing of the 3’end of 16S 
rRNA (Sulthana and Deutscher 2013). It is also involved in the processing of 
CRISPRs, a class of bacterial non-coding RNA that confers immunity 
against bacteriophages (Sesto et al. 2014). 

 
 
Table 1. Ribonucleases involved in ribosome processing and degradation (adapted from 
Mackie 2013). 

Enzyme Gene Essential Substrates

mRNA rRNA tRNA sRNA 

Endoribonucleases 

YbeY  ybey  Yes  + + ? + 

RNase E  rne  Yes  ++ ++ ++ + 

RNase G  rng  No  + ++ ? ? 

RNase P  rnpA, rnpB  Yes  + − ++ ? 

RNase BN  rbn  No  ? − + ? 

RNase I  rna  No  – − − − 

RNase III  rnc  No  + ++ ++ ? 

Exoribonucleases

RNase D  rnd  No ? − + ? 

RNase PH  rph  No ? − ++ ? 

RNase R  rnr  Synthetic lethality§ + ? ? + 

RNase T  rnt  No ? ++ ++ ? 

PNPase  pnp  Synthetic lethality§ ++ ? + + 

RNase II  rnb  Synthetic lethality§ ++ − + ? 

Toxin–antitoxin systems

MazF  mazF  No + + − − 

RelE relE No + − − − 

RNase LS rnlA  No + − − − 

YhaV yhaV  No + − − − 

YoeB yoeB  No + − − − 

ChpB chpB  No + − − − 

MqsR mqsR No + + ? + 

*++, the enzyme activity is required for the majority of that class of RNA; +, the enzyme 
activity may be needed for some RNA species in the class; –, there is no evidence for 
participation of the enzyme activity in processing; ?, there is no definitive evidence for 
cleavage of the indicated substrate. §, synthetic lethality with another RNase. 
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4. YbeY and RNase R 
YbeY and RNase R are two RNases whose role in ribosomal degradation – as 
evidenced by our recent study (see next chapter) – appears to be so important 
that they deserve a chapter of their own. 

YbeY is an endonuclease involved in degradation of defective 70S ribo-
somes and in the maturation of 16S rRNA (Jacob et al. 2013) and of the 23S 
rRNA and 5S rRNA 5’ termini (Davies et al. 2010). YbeY influences the 
maturation of 5S, 16S and 23S rRNA (Davies et al. 2010) but its role in the 
removal of 3’-residues from pre-16S is debated (Sulthana and Deutscher 2013). 
Deletion of YbeY in E. coli results in decreased growth rate and sensitivity to 
diverse stress conditions, such as temperature variation, β-lactam antibiotics, 
detergents, etc. (Davies et al. 2010). YbeY also plays a major role in bacterial 
sRNA regulation. Studies suggest that it participates in both Hfq-dependent and 
Hfq-independent sRNAs-mediated interactions in E. coli (Pandey et al. 2014). It 
has also a role in the adaptation of pathogens during infection of host cells. 
YbeY is an essential RNase in the pathogen Vibrio cholerae, playing an 
important role for cell fitness and general stress tolerance. It is crucial for 16 S 
rRNA 3′ end maturation, assembly of functional 70 S ribosomes and ribosome 
quality control, and regulates virulence-associated small RNAs (Vercruysse et 
al. 2014). YbeY is recruited to the ribosomes through interaction with ribosomal 
proteins S11 and Era, thus participating in the maturation and stress regulation 
of 16S rRNA (Vercruysse et al. 2016). In vitro studies show that YbeY, 
together with RNase R, act as a mechanism of ribosome quality control by 
removing defective non-translating and translating 70S ribosomes in E. coli. 
This process is mediated by the defective 30S ribosomal subunit, while in a 
ribosome containing a mutant 50S and a WT 30S the degradation does not occur 
(Jacob et al. 2013). YbeY also participates in programmed cell death a.k.a. 
apoptosis-like death (ALD) in E. coli. ALD is the consequence of a response to 
DNA damage, and YbeY is involved through its rRNA degrading action 
(Erental et al. 2014) 

RNase R is a homolog of RNase II that can act on essentially all RNAs 
inclusive those with extensive secondary structure. Both enzymes are non-
specific processive ribonucleases that release 5′-nucleotide mono-phosphates 
and leave a short undigested oligonucleotide core. RNase R shortens RNA pro-
cessively to di- and trinucleotides. RNase R is encoded by the rnr gene (Cheng 
and Deutscher 2002). Together with PNPase it removes defective rRNAs as 
soon as they are generated. E. coli cells lacking both RNases are inviable 
(Cheng and Deutscher 2003). In presence of altered environmental conditions, 
like nutrients starvation and heat shock, and in response to entry into stationary 
phase the level of RNase R is dramatically increased, up to 10-fold (Chen and 
Deutscher 2005). RNase R requires a 3’ single-stranded overhang with a length 
of at least five nucleotides to degrade through a double RNA strand (Deutscher 
2009). Part of RNase R is bound to ribosomes in growing cells, where it is 
stable and is involved in trans-translation. The free form is very unstable; 
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inhibition of its binding with ribosomes results in greatly increased RNA 
degradation (Liang and Deutscher 2013). In stationary phase, the enzyme is sta-
bilized, leading to its accumulation (Chen and Deutscher 2010). Its stability is 
regulated by acetylation of Lys544, which occurs in exponential growth phase 
but not in stationary phase (Liang et al. 2011). The acetylating enzyme, protein 
lysine acetyltransferase, Pka (YfiQ), is absent from late exponential and statio-
nary phase cells (Liang and Deutscher 2012). The helicase activity of RNase R 
is essential for its function in vivo (Hossain and Deutscher 2016). RNase R acts 
with YbeY to degrade defective 70S ribosome by a process mediated by the 30S 
ribosomal subunit (Jacob et al. 2013). RNase R is involved in the maturation of 
the 3’end of 16S rRNA (Sulthana and Deutscher 2013). It also participates in 
mRNA decay (Cheng and Deutscher 2005). 
 
 

5. The Degradosome 
The degradosome is a protein complex involved in the degradation of mRNA. 
The turnover of mRNA is a necessary aspect of the cell normal lifecycle and its 
genetic regulation. The principal components of the E. coli degradosome are 
RNase E, PNPase, RhlB helicase, and the glycolytic enzyme, enolase (Car-
pousis 2007). The non-catalytic portion of RNase E forms a scaffold for the 
physical association of the other enzymes in the degradosome. The degrado-
some scaffolding domain also includes RNA binding domains (RBD and AR2), 
and a membrane targeting sequence (Katarzyna et al. 2013). RNase E and 
enolase are the most crucial elements. The removal of the scaffold region of 
RNase E suppresses the rapid degradation of ptsG mRNA in response to the 
metabolic stress without affecting the expression of ptsG mRNA under normal 
conditions, while the depletion of enolase but not the disruption of pnp or rhlB 
eliminates the rapid degradation of ptsG mRNA (Morita et al. 2004). The de-
gradation is the result of the combined action of endo- and exoribonucleases. 
Two parallel pathways for RNA degradation through RNase E have been 
identified: one requiring the 5′ end monophosphate and one depending on the 
RNA fold (Katarzyna et al. 2013). Two heat shock proteins, GroEL and DnaK, 
and polyphosphate kinase (Ppk) also are associated with degradosomes in 
substoichiometric amounts (Bernstein et al. 2003). Several studies suggest that 
there are alternative forms of the RNA degradosome depending on growth con-
ditions or other factors. These alternative forms appear to regulate RNase E 
activity in the degradation of mRNA (Carpousis 2007). The degradosome 
complex mediates the decay of some transcripts, whereas other transcripts are 
likely to be degraded independently of the complex. Different categories of 
mRNA are marked for degradation by structural features, biochemical factors 
and the function of the protein encoded by the transcripts (Bernstein et al. 
2004).  
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6. Ribosome degradation in bacteria under  
stress conditions 

Since ribosomes are so abundant in cells, their production is very costly in 
terms of energy and resources. An efficient regulation of ribosome production is 
therefore essential for cell survival. Cessation of growth implies that excess 
ribosomes become redundant. Cells respond either by storing ribosomes for 
future use or by degrading and recycling them.  

Upon entry into stationary phase, bacterial ribosomes can be inactivated and 
stored as 100S dimers (Wada et al. 2000). Ribosomes can also be stored by in-
activation at the 70S level, or by dissociation into subunits (Häuser et al. 2012). 
Tests on E. coli in batch culture found over half of the ribosomes as 100S at the 
onset of the stationary phase (Wada et al. 2000). The proteins RMF and HPF 
are necessary to 100S formation, blocking the anti-Shine-Dalgarno:Shine-
Dalgarno interaction and the tRNA, IF1 and IF3 binding sites (Polikanov et al. 
2012). The 100S dimer is dissociated after a few hours from the onset of 
stationary phase, and after several more days the final ribosomal degradation 
occurs. At this point cell viability is lost (Wada et al. 2000). The storage of 
ribosomes at the 70S level can be achieved through inactivation by binding of 
the YfiA protein, or through the action of proteins like YqiD, which tie them to 
the membrane in E. coli (Yoshida et al. 2012). Another strategy is binding of 
YbeY to the 50S with resulting subunits dissociation (Häuser et al. 2012). 

Under various stress conditions – like starvation, heat shock or in presence 
of antibiotics – recycling of ribosomes becomes a key survival strategy for bac-
teria. Several mechanisms therefore lead to ribosomal degradation under those 
conditions. This kind of stress- induced degradation has been the focus of most 
studies on ribosomal degradation over the past decades. 

The work on ribosomal degradation has focused mostly on starvation con-
ditions in E. coli: starvation of Mg²+, phosphate, nitrogen, carbon, and growth in a 
minimal sea-salt medium (Aronson and McCarthy 1961, Ben-Hamida and 
Schlessinger 1966, Jacobson and Gillespie 1968, Kaplan and Apirion 1975, 
Davis et al. 1986, Zundel et al. 2009). Studies have also been done on E. coli 
cells with increased membrane permeability (Yuan and Shen 1975), during 
antibiotic treatment (Shen and Bremer 1977), and under protein over expression 
(Dong et al. 1995). These studies focus generally on non-growing stressed cells, 
where RNase I can efficiently move to the cytoplasm and degrade rRNA 
(Deutscher 2009). Under normal conditions E. coli has a mechanism protecting 
its rRNA from the action of RNase I, which sequesters it to helix 41 of the 16S 
rRNA and thus renders it inactive (Kitahara and Miyazaki, 2011). 

RNA degradation during starvation is largely confined to rRNA, and there is 
some evidence that tRNA and ribosomal proteins are stable in these conditions 
(Deutscher 2003). This is important for cell recovery as ribosome production 
may be able to restart as soon as new rRNA is synthesized. Ribosomal de-
gradation can be very extensive, exceeding 95% in some studies (Deutscher 
2003). There is also evidence that at all growth rates there is an excess of rRNA 
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production relative to ribosomal proteins, and at the very slow growth rates 
occurring during starvation this excess rRNA is degraded (Deutscher 2003). 
Under starvation conditions, the exoribonucleases RNase PH, RNase II and 
RNase R participate in the removal of rRNA fragments. RNase II and R both 
contribute to rRNA degradation during starvation (Basturea et al. 2011). 23S 
rRNA cleavage in the region of H71 occurs during starvation, while for 23S 
rRNA degradation begins with shortening of its 3’ end by RNase PH (Basturea 
et al 2011) 

Degrading ribosomes could be a survival strategy, where cells utilize the 
material released by ribosome breakdown to allow a small population of 
surviving cells to resume growth, as it has been shown in E. coli (Basturea et al. 
2012). However, as it will become apparent in the light of our research (see next 
chapter), ribosomal degradation does not necessarily depend on stress con-
ditions or on the presence of non-functional ribosomes: growing wild type 
E. coli cells exhibit ribosomal degradation during growth before the onset of the 
stationary phase (Piir et al. 2011). This kind of rRNA degradation is inde-
pendent of the stringent response. During early to mid-exponential phase RNase 
R, one of the main rRNA degrading enzymes (see above), is inactivated by ribo-
some binding but is active in late exponential phase, as acetylation decreases 
(Liang and Deutscher 2012, Liang and Deutscher 2013). Only a small popu-
lation of ribosomes, which have bound nonstop mRNA and undergo trans-
translation, binds RNase R, providing an interesting example of RNase regu-
lation ((Liang and Deutscher 2011, Liang 2013). In persister cells ribosomes are 
found largely as inactive subunits, while most rRNAs and tRNAs are 
degraded – only a small fraction of the ribosomes remain mostly intact, except 
for reduced amounts of seven ribosomal proteins (Cho et al. 2015).  

Apart from nutrient starvation, membrane damaging compounds such as 
toluene, dodecyldiethanolamine and Hg2+ ions promote RNA degradation 
(Deutscher 2003). These agents lead to alteration of membrane permeability, 
causing loss of ions, including Mg2+, which likely leads to alterations in the 
ribosome structure, rendering the rRNA more accessible to degrading RNases. 
Degradation in these conditions may be due to the actions of the non-specific 
endoribonuclease, RNase I (Beppu et al. 1969, Lambert et al. 1975). As Mg2+ is 
a known RNase I inhibitor, magnesium loss increases its action on rRNA. In the 
case of degradation due to Hg2+, it occurs only in cells during exponential 
growth, but not during the stationary phase. This is probably due to changes in 
the cell membrane that occur during stationary phase and affect the entry of 
RNase I into the cytoplasm (Deutscher 2003).  

The action of several classes of antibiotics (Table 2) can also lead to rRNA 
degradation (Deutscher 2003). The majority of known antibiotics target the 
elongation phase of translation (Wilson 2014). However, one effect of com-
pounds such as streptomycin, mitomycin C, and polymixin E is promotion of 
degradation of the ribosomes, likely by affecting membrane permeability, which 
results in the loss of ions such as Mg²+, which, as mentioned above, alter ribo-
some structure and render rRNA accessible to RNases. However, the physio-
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logical and clinical importance of the action of antibiotics on ribosomal 
degradation is presently unknown.  

Ribosome-targeting antibiotics also act in other ways to inhibit cell growth 
and/or survival (Lambert 2012, Wilson 2014, Hong et al. 2014). Ribosomal 
antibiotics can target the decoding site, the peptidyl-transferase center, the 
protein exit tunnel, and other elements involved in protein biosynthesis. Their 
modes of action include promoting miscoding, interfering with tRNA and 
translation factor binding, and blocking the protein exit tunnel (Yonath 2005). 
In general, ribosomal antibiotics can be divided into 30S subunit inhibitors and 
50S subunit inhibitors (Lambert 2012). 
 
Table 2. Main antibiotics classes (modified from Lambert 2012). 

30S ribosomal subunit 
inhibitors 

50S ribosomal subunit inhibitors 

Main  
antibiotic 
classes 

Main mode of 
action 

Main antibiotic 
classes 

Main mode of action 

Amino- 
glycosides 

Mistranslation 
through binding 
to 16S rRNA 

Macrolides, 
lincosamides and 
streptogramins (MLS)

Block peptide chain 
extension 

Tetra-
cyclines 

Impairing of 
binding of tRNA 
to the ribosomal 
A-site 

Pleuromutilins Block peptide formation  

  Orthosomycins Inhibition of translation  

  Phenicols Inhibition of peptydil 
transferase activity 

  Fusidic acid Inhibition of protein 
synthesis by preventing the 
turnover of elongation 
factor G (EF-G) 

  Oxazolidinones Stop formation of the 
initiation complex for 
protein synthesis 

 
Crystallographic studies on the structure of naturally produced antibiotics and 
their semi-synthetic derivatives bound to ribosomal particles have provided new 
understanding of their mechanisms of action. For instance, crystal structures of 
neomycin and gentamicin interacting with the 70S ribosome have revealed a 
second binding site of these antibiotics within helix 69 (H69) of the 23S rRNA 
(which interacts with H44 of the 16S rRNA to form the B2a intersubunit 
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bridge). Crystallographic studies show that this second binding site restricts the 
movement of H44 relative to H69, thus likely impairing translocation and ribo-
some recycling (Wilson 2014). As will become apparent in the results section of 
this thesis, the 23S rRNA H69 is intimately connected to controlled ribosomal 
degradation, suggesting a further link between antibiotics and regulating cellular 
ribosome concentrations. 
 
 

7. Ribosome degradation in yeasts  
Ribosomal RNA quality control and degradation in yeast was largely ignored 
until the first decade of the present century – with some notable exceptions 
(Frank and Mills 1978). A landmark study (LaRiviere et al. 2006) analysed the 
effect on rRNA stability in mature ribosomes affected by deleterious mutations. 
The study established that rRNAs containing functionally those mutations are 
significantly down-regulated in S. cerevisiae. This down-regulation occurs 
almost entirely through decreased stability of the mature mutant rRNAs. This 
indicates that budding yeast contains a quality control mechanism that targets 
the RNA component of mature ribosomal subunits (“nonfunctional rRNA 
decay” or “NRD”). The mutations analyzed were chosen based on their known 
negative consequences on translation and viability in bacteria (A2451G or 
U2585A in the 23S rRNA PTC and G530U and A1492C in the 16S rRNA 
DCC: E. coli nomenclature). The dominant lethality caused by expression of 
these mutants in bacteria indicates that such rRNAs are assembled into mature 
ribosomes. Several quality-control pathways that eliminate erroneously pro-
cessed pre-rRNAs and/or improperly assembled pre-ribosomes have been 
described in S. cerevisiae. Dim1p, for example, blocks pre-rRNA processing 
steps required for maturation of 18S rRNA in absence of pre-rRNA dimethy-
lation, (Lafontaine et al. 1998). Also, the nuclear exosome degrades other in-
correctly processed pre-rRNAs (Allmang et al. 2000, Zanchin and Goldfarb, 
1999). In some cases Trf4p/Air/Mtr4p (TRAMP) complex-mediated pre-rRNA 
polyadenylation is involved in the degradation process (Dez et al. 2006). 
However it is likely that NRD is separate from these known nuclear pre-rRNA 
surveillance pathways, as it acts on mature rRNAs and likely occurs in the 
cytoplasm. Because mature 18S and 25S rRNAs derive from a single pre-rRNA 
transcript, the mutations in one rRNA (18S or 25S) did not affect the level of 
the other co-transcribed wild-type rRNA (25S or 18S, respectively). This 
indicates that reduction of the deleterious rRNA species must occur after both 
transcription and cleavage of 32S pre-rRNA into the 20S and 27S intermediates. 
In budding yeast, conversion of 20S pre-rRNA to 18S rRNA is a wholly cyto-
plasmic event (Venema and Tollervey 1999), and since the defective mutant 
18S rRNAs were found in 80S particles, 18S NRD is likely to occur in the 
cytoplasm. Even if 25S rRNA maturation occurs entirely in the nucleus the 
study suggests that 25S NRD is cytoplasmic. Nucleic acids within cells are 
subject to damage by a number of factors, such as alkylating agents, oxidative 
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stress, and UV irradiation, and there is evidence that not only DNA, but RNA 
too, is subject to insult (Bregeon and Sarasin 2005). In S. cerevisiae, RNA 
nucleotides vastly outnumber DNA nucleotides, and rRNA constitutes 80% of 
total RNA (Warner 1999). Thus rRNA is very likely affected by damaging 
agents. It is therefore likely that NRD serves to clear from cells aging rRNAs 
that become increasingly dysfunctional over time.  

Ribosomal degradation has been shown to occur also in yeast exposed to 
stimuli known to induce apoptosis, such as exposure to ROS. This process is 
most likely endonucleolytic, is correlated with stress response, and is dependent 
on the mitochondrial respiratory status, whereas rRNA of cells with functional 
defence against oxidative stress is less susceptible to degradation (Mroczek and 
Kufel 2008). Another pathway for ribosomal regulation in eukaryotes is the 
target of rapamycin (TOR), which plays a central role in regulating cellular 
responses to nutrient availability and mitogenic signals (Arsham and Neufeld 
2006, Wullschleger et al. 2006, Wei and Zheng 2011). Rapamycin is a TOR 
inhibitor that inhibits cell proliferation and growth (Barbet et al. 1996, Zaragoza 
et al. 1998). TOR-mediated control of cell growth and proliferation inhibits the 
synthesis of new ribosomes (Powers and Walter 1999). A recent study (Pestov 
and Shcherbik 2012) suggests that TOR control of the cellular ribosome content 
extends beyond the regulation of new ribosome synthesis. The study found that 
the number of existing ribosomes present in a S. cerevisiae culture during growth 
in rich medium rapidly decreases by 40 to 60% when the cells are treated with 
rapamycin. It was found that the exosome contributes to the efficient processing 
of 25S rRNA degradation intermediates in yeast cells. The process involves the 
exosomic cofactors Ski7 and the SKI complex. Furthermore, the 25S rRNA 
decay occurring in yeast culture upon nutrient depletion also involves the Ski-
exosome system, and is independent from NRD. The study indicates that TOR-
mediated control of the ribosome content can affect both ribosome synthesis 
and the degradation of mature ribosomes. One intriguing hypothesis underlined 
by the above mechanisms is that yeast cells may have a system that recognizes 
such idle subunits and targets them for degradation. 

Ribosomal proteins in yeast are degraded by a selective autophagic process 
termed ‘ribophagy’. This process requires the catalytic activity of the Ubp3p/ 
Bre5p ubiquitin protease (Kraft et al. 2008, Heinrichs 2008). 
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2. AIMS OF THE STUDY 

The purpose of this dissertation is to shed light on the fate of ribosomes in 
growing bacteria. Ribosomes constitute a large part of the cell mass and are 
expensive to make in terms of energy and materials. So far, almost all studies 
on ribosome degradation in bacteria have focused on non-growing cells under 
stress conditions. In contrast, we wanted to find the physiologically relevant 
growth conditions where mature ribosomes are degraded. In addition, we aimed 
to gain knowledge on the trigger mechanisms and molecular pathways of the 
degradation, and to compare the process of mature ribosome degradation in 
Escherichia coli with the corresponding process in yeast. 
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3. MATERIALS AND METHODS 

MG1655 cells transformed with pBAD‐23t‐ara, pBAD‐16t‐ara, or pBAD‐hybrid 
plasmid were grown in batch at 37 °C in MOPS or LB medium (as specified in 
individual experiments) supplemented with 0.2–0.3% arabinose and ampicillin 
for plasmid selection. At the indicated optical density, 5,6‐[3H]‐uridine was 
inoculated to 2‐ml culture, which was then grown for a further 30–45 min at 
37 °C. Cells were subsequently pelleted and re-suspended in 2 ml fresh MOPS 
medium supplemented with 0.4–0.5% glucose and 1 mM non-radioactive 
uridine, and growth was resumed at 37 °C. At the indicated time points, 200 μl 
aliquots were collected and stored at −85 °C. In control experiments, [3H]‐uridine 
was added 10 min after shifting the cells to glucose‐containing media. Before 
lysis, each aliquot was mixed with 20 ml of culture grown under inducing 
conditions in non‐radioactive medium. This was done to minimize inter-sample 
variability during cell lysis and affinity-purification of tagged rRNAs. For the 
turbidostat experiments, the induction of tagged RNAs and pulse labelling with 
5,6‐[3H]‐uridine was performed in batch cultures at an optical density of 
0.2 U/ml as described above. After repression in 4–5 ml fresh MOPS or LP 
glucose, the cultures were transferred into the pre‐warmed turbidostat and 
grown for 5 h and optical density of the culture was kept between 0.4 and 
0.45 U/ml. Volumes of medium that were collected for lysis after every 30 min 
were increased in proportion to the increases in culture volumes as fresh 
medium was added to keep the culture turbidity constant. Radioactive cells were 
mixed with normalization cultures. RNA was extracted by incubation of cells 
re-suspended in 600 μl TEN buffer containing 1% SDS, and 1% Brij in equal 
volume of phenol pH 5.5 at 65 °C for 15 min (0.6% Na‐deoxycholate was 
added in the experiments for paper 1, but omitted in subsequent ones as it didn’t 
affect the effectiveness of the lysis). This was followed by phenol:chloroform 
extraction and ethanol precipitation. Purification was carried on as following: 
23S rRNAs tagged with streptavidin binding aptamer were incubated overnight 
with 20 μl Sepharose High Performance Streptavidin sepharose (GE Health-
care), washed with LLP, and incubated overnight with 20 μl (5 mM) biotin 
(Sigma-Aldrich). After centrifugation, the supernatant containing the strep-
tavidin-tagged 23S rRNAs was extracted. 16S rRNAs carrying the M2S tag 
were purified by incubation with 6 µl MS2 protein (titrated for activity) and 150 
µl amylose resin (BioLabs), washed with binding buffer (20 mM Tris pH = 7.5, 
0.1 M NH4Cl, 10 mM MgCl2), and placed in a 1.5 ml amylose resin column. 
After washing with binding buffer the samples were eluted with 300 µl elution 
buffer (20 mM Tris pH = 7.4, 0.2 M NaCl, 10 mM Maltose). 

Concentrations of 23S rRNA and 16S rRNA were measured by absorbance 
at 260 nm. Radioactivity from incorporated [H3]-uridine was measured by 
scintillation counting and normalized for the A260 absorbance value of the 
sample. After RNA extraction and prior to purification, the total radioactivity 
was measured. The specific activity of each sample was further normalized for 
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the total radioactivity after RNA extraction to account for differences in 
extraction efficiency.  

In the experiments with co-transformed mutants and “wild type” plasmids 
(paper 3) an untagged rrnB operon from a pBAD plasmid was cloned into a 
pBAD33 plasmid. 1919G and 1960G mutations were introduced by cloning 
from the mutant plasmids. Each construct was co-transformed with the pHyb 
plasmid using chloramphenicol and ampicillin selection. As a control, a 
construct with an untagged wild-type rrnB operon cloned in the pBAD33 
plasmid was co-transformed with the pHyb plasmid. 

For the experiments in the unpublished manuscripts the strains MGJ5987 
(Δ10TA), ΔPAP, Δrph, ΔRNase R and ΔYbeY from the Keio collection (Baba 
et al. 2006) were transformed with pBAD-1919G. ΔYbeY was also transformed 
with pBAD-1960G. 

For the experiments in paper 4, E. coli cells were grown in LB and LB plates 
at 37 °C. Toxin expression was induced in BW25113 and MG1655exo-, harbo-
ring plasmids pSC228 and pSC3326 for the induction of MazF and MazE or 
pTX3 and pAT3 for the induction of MqsR and MqsA. Samples were analyzed 
by primer extension and 3’ RACE. cDNA libraries were constructed and se-
quenced by Vertis Biotechnologie AG.  

For the sucrose analysis performed by me Bacterial pellets were suspended 
in TNM-10 buffer, lyzozime and Dnase I were added and the cells were 
disrupted by glass beads in Precellys 24 homogenizer (Bertin Technologies). 
After centrifugation at 12,000 g for 20 min., 30–50 A260 units of S30 lysate 
was loaded onto a 10–25% sucrose gradient in TNM-10 buffer, followed by 
centrifugation at 21,000 rpm for 16 h. fractions containing ribosomal particles 
were collected and precipitated by addition of 2.5 volumes of ice-cold ethanol. 
Ribosomal pellets were suspended in TNM-10 buffer and stored at –80 °C. 
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4. RESULTS AND DISCUSSION 

1. rRNA degradation in wild type ribosomes (paper I) 
The aim of studies on ribosomal degradation has traditionally been to investi-
gate the ribosomes under conditions of starvation or other stresses, but the 
stability of wild type ribosomes growing under normal, non-stress conditions 
has been a subject largely ignored. While ribosome degradation has been 
suggested to occur in growing Salmonella strains (Hsu et al. 1994), it has never 
been shown in growing E. coli. However, rRNA fragments have been found in 
degradosomes in E. coli cells, suggesting either degradation of mature ribo-
somes or co-assembly degradation of pre-ribosomal ribonucleotide particles 
(Bessarab et al. 1998). The effect of ribosome-inactivating mutations on ribo-
some degradation in bacteria was also unknown. Although studies on yeast have 
shown the presence of a regulatory mechanism to degrade non-functional rRNA 
(LaRiviere et al. 2006), few such studies exist on bacteria (Liiv et al. 1996, 
Cheng and Deutscher 2003). One question that arises is at which step of 
ribosomal biogenesis quality control occurs and what mechanisms are involved. 
Recent work suggests that cells evolved multiple strategies to recognize specifi-
cally, and target for clearance, ribosomes that are structurally and/or functio-
nally deficient, as well as in excess (Lafontaine 2009). The study by La Riviere 
(LaRiviere et al. 2006), described above, indicates the presence of a quality 
control mechanism that degrades mature ribosomes in yeasts and suggests that 
at least in eukaryotes rRNA is subjected to specific mechanisms of surveillance 
and control (Meenakshi and Parker 2006). A purpose of our research is to shed 
light on these mechanisms in bacteria. 

Growing cells need to synthesize new ribosomes at a fast rate, as active ribo-
some concentration is rate limiting for growth (Scott et al. 2010). At fast cell 
division rate there are about 70 000 ribosomes in a single E. coli cell (Bremer 
and Dennis 1996) Modulation of chemical composition and other parameters of 
the cell by growth rate. (Neidhardt 1996) thus it is inevitable that some errors 
occur during ribosome synthesis. As ribosome synthesis is a very expensive 
process in term of energy and building components, it is important for the cell 
to precisely tailor the ribosome production. Therefore, the question arises 
whether bacteria growing in non-stress condition normally degrade ribosomes 
that are defective or in excess.  

When a cell divides, the existing ribosomes are distributed to the daughter 
cells. As we cannot exclude the possibility that any observed reduction in the 
number of ribosomes per cell is due to dilution of the ribosomes upon cell 
division, rather than their degradation, it is difficult to directly measure ribo-
somal degradation in growing cells. 

In order to assess the stability of ribosomes in growing cells, we devised a 
system that can measure ribosomal degradation without the bias due to ribo-
somal dilution.  
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 We cloned an rRNA operon in the presence of repressible arabinose BAD 
(araBAD) or rhamnose BAD (rhaBAD) promoters. We then inserted strepta-
vidin-binding (Leonov et al. 2003) and MS2 RNA aptamers (Youngman and 
Green 2005) to 23S rRNA and 16S rRNA respectively, in order to purify the 
affinity-tagged ribosomes by affinity chromatography (Figure 3). 

 

 
Fig 3. Schematics of the rnnB operon in the pBAD-Hyb plasmid. The placement of the 
MS2-tag (yellow) and the Streptavidine-tag (red) are shown in the 16S rRNA and 23S 
rRNA.  

The cells were labelled with H3-Uridine for a limited time interval, after which 
the culture was switched to a repressible medium. An unlabeled ‘cold’ culture 
was also grown in tag-expressing conditions, which was to be added to the 
samples in order to minimize inter-sample variation. By collecting culture 
samples at different time points post-repression of tagged ribosome synthesis, 
we were able to follow the degradation of the ribosomes present during the 
labelling, while ignoring the fates of the ribosomes synthesized from chromo-
somally encoded rRNA operons. Specific activity at each time point was calcu-
lated by normalizing the radioactive activity with the optical density, which was 
obtained mostly from the excess unlabeled tagged rRNA derived from cold 
culture added to each sample in equal amounts (Figure 4). 

 
Fig 4. Schematics of the experimental setup. 
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We performed our study on bacteria growing with constant rate in turbidostat, 
and in batch culture. The turbidostat is an incubator where fresh medium is 
constantly added to the culture to keep its density, and thus its growth rate, 
constant. The optical density in the turbidostat system was kept between 0.4 and 
0.45 U/ml, which corresponds to mid- logarithmic growth phase.  

Both 23S rRNA and 16S rRNA was found to be stable at constant growth 
rate (Paper 1, Figure 2). In batch culture, however, both rRNA species were 
found to be degraded, and the degradation occurred in the transition phase 
between exponential and stationary culture growth (Paper 1, Figure 3). On the 
other hand, ribosomes were stable in the stationary phase of the batch cultures. 
Therefore, degradation seems to be limited to the intermediate-growth stage 
between logarithmic and stationary growth phase, when complex changes take 
place in the cellular physiology in preparation to entry into the stationary phase.  
 
 

2. rRNA degradation in mutant ribosomes (paper III) 
After studying degradation of WT ribosomes, we wanted to assess the effect of 
disrupting mutations in rRNA on ribosomal stability. As described in the 
previous chapter, LaRiviere et al. convincingly demonstrated that two mutations 
(A2451G or U2585A in E. coli nomenclature) in the 25S rRNA peptidyl 
transferase centre (PTC) and two mutations (G530U and A1492C) in the 18S 
rRNA decoding centre (DCC) lead to rRNA degradation in S. cerevisiae, 
pointing to the existence of a quality control process working on mature ribo-
somes (LaRiviere et al. 2006). Using the same experimental set-up as in Paper 
1, we developed to study degradation in WT ribosomes, we investigated the 
effect of the corresponding mutations in E. coli. In addition, we studied the 
effect of three mutations in intersubunit bridge B2a (A1912G, A1919G and 
ΔH69) and one intersubunit bridge B3 (A1960G) in the domain IV of 23S 
rRNA (Figure 5). These structures, particularly B2a, where H69 (helix 69) is 
located, are important for subunit association and ribosome recycling (Maivali 
et al. 2004, Pulk et al. 2006). The mutations A1912G, A1919G, and A1960G 
have been shown to have a strong effect on growth phenotypes (Liiv et al. 2005, 
Liiv and O’Connor 2006), while ΔH69 confers a lethal phenotype (Ali et al. 
2006). In order to avoid the ribosome degradation that occurs upon slowing of 
bacterial growth in the batch culture (as described in Paper 1), our experiments 
were conducted in a turbidostat upon constant growth rate. 
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Fig 5. Domain IV of 23S rRNA with the location of helix69 and the positions 1912, 
1919 and 1960. 
 
 
Rather surprisingly, only one of the four mutations that lead to degradation in 
yeast, U2585A in the 23S PTC, resulted in degradation of E. coli ribosomes, 
even if these mutations are known to confer lethal phenotypes ((Powers and 
Noller 1990, Thompson et al. 2001). Furthermore, while in yeast the ribosome-
inactivating mutations lead to degradation of only the subunit in which they are 
located, in E. coli U2585A leads to degradation of both ribosomal subunits. The 
extent of degradation is similar for both subunits, about 40–50% over the five-
hour experiment. These findings suggest that ribosomal degradation in yeast 
and in bacteria involve different molecular mechanisms. As the growth rates of 
the four mutants were similar, it is unlikely that the degradation observed in the 
presence of the U2585A mutation is due to a different physiological state of the 
culture. 

As for the mutations in the intersubunit bridges, only A1919G in B2a and 
A1960G in B3 lead to ribosomal degradation. Again, both subunits are degraded, 
at a similar rate (up to 40–50% in 4 hours). Surprisingly, the deletion of the 
whole helix 69 doesn’t seem to affect ribosomal stability. H69 is a conserved 
structure, known to be involved not only in subunit association and tRNA 
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binding, but also in initiation, translocation, translational accuracy, the peptidyl 
transferase reaction. However, while its deletion confers a lethal phenotype, 
ΔH69 ribosomes in vitro are able to carry out accurate incorporation of 
phenylalanine from a poly(U) template, can synthesize a full-length protein 
using a natural mRNA, and carry out translocation at wild-type rates (Ali et al. 
2006). 

In addition, we found that the A1919G and A1960G mutations lead not only 
to degradation of mutant rRNA containing ribosomes, but also to degradation of 
fully wild-type ribosomes, where neither 16S nor 23S contain the inactivating 
point mutation. For this experiment we co-transformed untagged plasmids 
carrying these mutations and tagged WT plasmids, and found that degradation 
of tagged WT rRNA occurred to a similar extent as in the experiments where 
the mutant ribosomes were directly tagged (Paper 3, Figure 4). This suggests 
that the degradation pathway activated by the expression of mutant ribosomes is 
equally adept at degrading wild-type ribosomes, where neither subunit carries 
mutations. 

As our previous work showed that wild-type ribosomes were stable during 
constant growth in turbidostat and there was no growth in the stationary phase, 
we decided to measure the stability of A1919G mutant ribosomes, which 
induced degradation in both mutant and wild type rRNA, during the stationary 
growth phase in the batch culture. We found that ribosomes are stable in the 
stationary phase even in presence of this destabilizing mutation (Paper 3, 
Figure 5). Next we investigated if interruption of protein synthesis would rescue 
ribosomes from degradation in the presence of this same mutation. We found 
that ribosomes grown in presence of cloramphenicol, a protein synthesis 
inhibitor, become stable (Paper 3, Figure 5).  

The results of our experiments on the mutations leading to ribosome 
degradation in S. cerevisiae suggest that a different mechanism than the non-
functional decay active in yeast is involved in E. coli. In vitro studies by Zundel 
et al. support the theory that ribosomal degradation in E. coli is due to exposure 
of RNA-rich intersubunit surfaces to cellular RNases (Zundel et al. 2009). Our 
in vivo studies point to a more complex model. While the single point mutation 
in 23S rRNA H69 (A1919G) leads to degradation, the deletion of the whole 
H69 seems to result in stable ribosomes. We know that when the subunit 
separates, the tip of H69 is released from contact with the 30S subunit and 
becomes in contact with the cytoplasm. It is therefore possible that H69 is an 
entry point for the endonuclease that initiates degradation of the 50S subunit. 
The wholesale deletion of H69 would thus block degradation by removing the 
structure needed for entry of the (hypothetical) degradation machinery into the 
ribosome. 

Another surprising finding of our study is that two destabilizing mutations in 
the intersubunit bridges B2a and B3, which lead to ribosome degradation, also 
lead to degradation of the tagged ribosomes that do not contain any mutation. In 
both subunits, the presence of a mutation in one of the subunits leads to the 
degradation of the other tagged subunit, and the degradation occurs at a similar 
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rate. However, the co-expression of tagged WT ribosomes with a mutant form 
of tRNATrp23 does not lead to degradation, suggesting that ribosomal degradation 
is not simply a generic response to overexpression of RNA. The results of our 
study suggest a mechanism that is activated by the mutant ribosomes, which is 
inactive in non-growing cells in stationary phase. A possible explanation is that 
the degradation is activated by the overexpression of an RNase that cleaves the 
RNA exposed in the intersubunit surfaces, and doesn’t discriminate between 
mutant and WT subunits, as indicated by our experiments where both WT and 
mutant ribosomes are co-expressed, and by the dependence of ribosomal 
degradation on ongoing protein synthesis (the chloramphenicol experiment 
discussed above). 

Our investigations lead to the question of which RNases are involved in 
ribosomal decay in E. coli. Cheng and Deutscher (2003) present evidence of the 
key role of PNPase and RNase R in controlling ribosomal viability, by 
eliminating deleterious 23S and 16S fragments. In the absence of PNPase and 
RNase R activity these fragments accumulate, eventually resulting in loss of 
viability.  

Another candidate for the degradation mechanism implied by our study is 
YbeY.  

YbeY is involved in rRNA processing (Davies et al. 2010, Jacob et al. 2013, 
Warner et al. 2013, Vercruysse et al. 2016) but it has also an important role, in 
conjunction with RNase R, in degrading defective rRNA (Jacob et al. 2013, 
Warner 2013). Quite appropriately this enzyme has been called ‘the jealous 
tailor’ (Warner 2013). The role of YbeY and RNase R will be discussed in more 
detail below. 
 
 

3. rRNA processing by MazF and MqsR (paper IV) 
The role of toxin-antitoxin systems in rRNA processing and regulation in E. coli 
is studied in our fourth paper (Mets et al. 2016). Even if the main targets of the 
toxin-antitoxin systems is mRNA, some endoribonuclease toxins also target 
other RNA species, including ribosomal RNA (Moll and Engelberg-Kulka 
2012, Sauert et al. 2016, Temmel et al. 2016). In E. coli MazF is known to 
cleave the 3’-end of 16S rRNA and mRNA upstream of of the AUG start codon, 
producing leaderless mRNAs (lmRNAs). (Amitai et al. 2009, Vesper et al. 
2011) Under stress conditions the 3’-terminal 43 nucleotides of the 16S rRNA, 
and, concomitantly, the 5’-untranslated regions of specific transcripts, are 
removed (Moll and Engelberg-Kulka 2012). Experiments on overexpression of 
MazF resulted in large rRNA cleavage fragments (Kasari et al. 2013), sug-
gesting that MazF must cleave rRNA also elsewhere, and/or initiate cleavage by 
other endoribonucleases. 

To further examine rRNA cleavage by toxins MazF and MqsR a version of 
differential RNA-seq, which allows specific mapping of the toxin-cleaved 5’- 
and 3’-ends of RNA was adopted. 
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The MazF and MqsR overexpression experiments resulted in a substantial 
fragmentation of rRNA including a band corresponding to the 43-nt 3’ terminal 
fragment of 16S rRNA. 5’-ends were mapped by ligation of RNA adapters to 
the RNA molecules. 3’-ends were mapped by poly(A)tailing of RNA, which 
requires 3’-OH groups. Transcription, ordinary cellular RNases, and toxin endo-
nucleases produce different RNA ends, which can be resolved by enzymatic 
treatments. Thus we can from a single biological sample quantify the RNA ends 
produced by these three sources. The analysis was performed under five 
different conditions: a log phase culture, cultures where growth was arrested by 
expression of either MazF or Mqsr, and stationary phase cultures of wt and exo- 

E. coli strains. The exoribonuclease mutant strain (-exo), where the rRNA decay 
intermediated are preserved, was included in the study because RNA from 
decayed ribosomes is rapidly recycled in wt E. coli. 

Several MazF and MqsR specifically cleaved 5’-ends, which were generated 
in both 16S and 23S rRNA, as identified by RNA-seq. In contrast, only one 
major direct cleavage site of MqsR was identified in 16S rRNA. However, 
MqsR-cleaved 5’-ends were verified at C2628 in 23S rRNA. All these cleavage 
sites were detectable in total RNA but not in the 70S fraction. 

Sucrose density gradient ultracentrifugation experiments further revealed 
that MazF and MqsR induce accumulation of abnormal ribosome subunits 
(Paper 4, Figure 6). Northern analysis and primer extension confirmed that most 
of the toxin-induced cleavage takes place in those abnormal subunits, which 
probably are immature ribosomal particles containing precursor RNAs that 
cannot be assembled properly. The reason for such imbalanced ribosome 
synthesis is likely to be imbalanced cellular protein synthesis, which is due to 
selective cleavage of different mRNAs by overexpressed MazF and MqsR. 
Consistently with this emerging picture, it was found that expression of MqsR 
induced the build-up of the unprocessed precursors of 16S and 23S RNAs, 
suggesting inhibition of synthesis of mature ribosomal particles. 

The findings of our study suggest that cleavage of rRNA precursors by 
toxins could help to remove unproductive ribosomal assembly intermediates in 
stressed bacteria. Since one of our aims is to identify the ribonucleases involved 
in the mutant rRNA degradation described in our previous papers, we used a 
modified MG strain lacking ten toxins, to test the stability of mutant ribosomes 
transformed into the cells. As the missing toxins included MazF and MqsR, we 
could test if these toxins are required for the degradation of mature ribosomes in 
growing cells. The answer turned out to be in the negative (see the next 
chapter), further emphasizing the differences in the mechanisms of degrading 
ribosomal precursors and mature ribosomes. 
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Fig 6. Aberrant ribosomal subunits on the 
overexpression of MazF and MqsR were 
visualized by sucrose gradient ultracentri-
fugation (adapted from Mets et al. 2017). 
Gradients where collected from the top 
(the lightest fractions) and optical densities 
measured continuously at 254 nm. Three 
representative experiments (no toxin 
expression, MqsR expression, and MazF 
expression) are shown. Asterisks denote 
the aberrant ribosomal subunits.  

 
 
 

4. RNases involved in mutant rRNA degradation 
(unpublished results) 

As mentioned earlier, our degradation studies on mutant rRNA (Paier et al. 
2014) lead to the question, which nucleases are involved in the degradation 
processes? To answer this question, we performed a series of experiments with 
E. coli strains transformed with the plasmids containing some of the de-
gradation inducing mutations described above, but lacking the most important 
endonucleases, known to cleave rRNA.  

We tested the MGJ5987 (Δ10TA) strain lacking 10 toxins, a strain lacking 
PolyA Polymerase (ΔPAP), one lacking RNase PH (Δrph), one lacking RNase 
R and one lacking YbeY. All the strains were obtained from the Keio collection 
(Baba et al. 2006). MGJ5987 (Δ10TA) was developed by Maisonneuve et al 
(2011). 
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The Keio WT strain does not behave differently from MG1655 in regard to 
rRNA degradation, and its ribosomes are stable during turbidostat growth. The 
MG Δ10TA, ΔPAP, and Δrph strains, when transformed with pBAD-1919G 
and grown in turbidostat exhibited a level of degradation similar to that seen in 
the previous experiments with MG1655 containing the same mutation (data not 
shown). However, the ΔRNase R and ΔYbeY strains did not show evidence of 
rRNA degradation with 1919G (Fig. 6). ΔybeY was also tested with the 1960G 
mutation, which also induced degradation in the wild-type YbeY context, in 
turbidostat. As with 1919G, there was no rRNA degradation. As a control we 
repeated the experiments with the MG1655* strain used in Paier et al 2014, 
which was engineered to in addition lack the genes for functional YbeY or 
RNase R, and transformed with pBAD-1919G. Again no significant rRNA 
degradation was detected. 

We also wanted to test how the lack of YbeY affects the stability of WT 
ribosomes when grown in batch conditions. As shown in previous experiments, 
WT ribosomes are degraded in late exponential phase, prior to entry in 
stationary phase (paper 1). Thus we transformed the MG1655 ΔYbeY strain 
with the pBAD-Hyb plasmid, and performed the degradation experiments in 
batch culture. Both 23S and 16S rRNA were stable, indicating that YbeY has a 
key role in the normal degradation process, which occurs at the end of the 
exponential growth phase (Figure 7). 

We repeated the experiment with the MG1655 Δ RNase R strain, and as 
above the the ribosomes were stable. This suggests that ribonucleases YbeY and 
RNase R are both required for the physiological process of rRNA degradation 
that prepares the cells for the stationary phase, and that neither of them can 
compensate for the absence of the other. While these two ribonucleases have 
been previously shown to have a role in rRNA degradation (Jacob et al. 2013, 
Warner 2013), the absence of effect from the lack of RNase PH was surprising, 
as this exoribonuclease is known to share a common degradation pathway with 
RNase R (Jain 2012). 

We also know that the translation inhibitor chloramphenicol stabilizes rRNA 
(Paier et al. 2014). We repeated degradation experiments in batch conditions 
with MG 1655 transformed with pBAD-1919G. After initial growth in LB with 
glucose, to inhibit tagged rRNA expression, the culture was labelled with 3H-
Uridine. After 10 minutes the medium was switched to LB arabinose and low 
concentration of CAM, and grown for two hours. Then the medium was 
switched into LB with glucose and cold uridine, and time points were taken. No 
degradation was found in either 23S or 16S rRNAs. 

The same experimental setup was repeated, but CAM was added also on the 
second medium switch. Again, no rRNA degradation was found. This confirms 
the previous findings about the role of Chloramphenicol in rescuing ribosomal 
stability. 
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Fig 7. Degradation curves of Δ10-1919G (A), ΔPAP-1919G (B), ΔRNasePH-1919 (C), 
ΔYbeY-1919G (D), ΔRNase R-1919G (E), and of ΔybeY-Hyb in batch culture. The X-
axis denotes time in minutes and the Y-axis denotes specific activity normalized to the 
first time point. Circles denote 23S rRNA and squares denote 16S rRNA. 
 
 
The role of YbeY and RNase R in ribosome degradation has been suggested by 
previous research, notably due to their combined action in degrading mature 
70S ribosomes (Jacob et al. 2013). Our research shows that each of these 
RNases individually is required for the degradation of mature ribosomes prior to 
entry into stationary growth phase. 
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CONCLUSIONS 

- WT ribosomes are degraded during late exponential growth phase in batch 
culture, but are stable in early stationary phase. This suggests that the 
degradation process is part of a mechanism that prepares the cell to enter 
into stationary phase. Conversely, WT ribosomes are stable during constant-
rate exponential growth.  

- The ribosome-inactivating 23S rRNA mutation U2585A in the peptidyl 
transferase center leads to degradation of both the 23S and 16S rRNA during 
constant cell growth in mid-exponential phase. Because the growth rates of 
different mutants were similar, it is unlikely that the observed ribosomal 
degradation in the cells expressing U2585A 23S rRNAs is simply due to a 
general physiological state of the culture. The reason why ribosomal 
degradation is triggered in presence of the U2585A mutation, while leaving 
a different ribosome-inactivating PTC mutation intact, is a question 
unanswered.  

- Mutation A1919G in the intersubunit bridge B2a and A19160G in B3 lead to 
degradation of both the 23S and 16S rRNA during constant cell growth in 
mid-exponential phase. These results support the hypothesis that intersubunit 
bridges are key factors for ribosome stability. 

- Surprisingly, deletion of the entire helix 69 did not result in ribosomal 
degradation. We know that when the subunits separate, the tip of H69 is 
released from contact with helix 44 of 16S rRNA and becomes fully exposed 
to the cytoplasm. H69 could be an entry point to the 50S subunit for the 
endonuclease that initiates the degradation of this subunit. In this case the 
deletion of H69 would be expected to block degradation. 

- Our study provides evidence of differences between ribosome degradation in 
bacteria and in yeast. In S. cerevisiae the degradation is carried out by the 
NRD pathway and only acts on the RNA species affected by the mutation, 
while the U2585A mutation in E. coli leads to degradation of both the 
mutant and the wild-type ribosomes, suggesting activation of a pathway that 
is equally adept at degrading mutant and WT ribosomes. Our results show 
that regardless of which subunit (50S or 30S) the inactivating mutation is 
located, the other tagged subunit is degraded at a similar rate. During 
translation most tagged 50S ribosomes are associated with non-tagged 30S, 
and vice versa, thus the presence of mutant ribosomal subunits causes 
dissociation and degradation of wild-type ribosomes as well. 

- The toxins MazF and MqsR cleave rRNA at multiple sites, very probably 
during new ribosome assembly, and induce accumulation of abnormal ribo-
somal subunits. We have no evidence of either toxin cleaving mature ribosomes. 

- YbeY and RNase R are involved in the degradation of non-functional rRNA 
in the mature ribosomes. Furthermore, these RNases are necessary for the 
degradation of WT rRNA during the phase preceding entry into stationary 
growth phase. 
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SUMMARY 

Ribosomes are macromolecular complexes that consist of two large and one 
small RNA and of many different small proteins. The ribosome synthesizes all 
cellular proteins and the concentration of active ribosomes is rate limiting for 
cell growth. As synthesis or ribosomal RNA encompasses 80% of cellular RNA 
synthesis activity and the ribosomal proteins can make up half of the cellular 
protein mass, it is clear that ribosomal metabolism, including ribosomal 
degradation, makes a worthy object of study. Nevertheless, during the past half 
century it has been widely believed that mature ribosomes are quite stable in the 
cells.  

The major goal of this dissertation is to describe the degradation of mature 
ribosomes in growing E. coli cells and to shed light on the molecular mecha-
nism of degradation. We discovered that while mature ribosomes are indeed 
degraded in cells growing in batch cultures, this process is limited to the 
slowing of growth phase, which precedes entry into the stationary phase. We 
were unable to detect degradation during constant-rate growth and during early 
stationary phase.  

In addition, we found that some, but not all, ribosome-inactivating mutations 
in 23S rRNA and 16S rRNA led to degradation of both mutant and wild-type 
ribosomal RNAs. Thus, unlike in yeast, the ribosome degradation in E. coli is a 
general process that, once initiated, does not discriminate between active and 
inactive ribosomes. As ribosome degradation is inhibited by the protein 
synthesis inhibitor chloramphenicol, we further suggest that de novo protein 
synthesis might be needed for triggering the degradation program. 

To pinpoint the enzymes responsible for degradation we tested several strains 
defective for different RNases. We found two RNases, RNaseR and YbeY, 
whose deletion saved ribosomes from degradation. RNaseR is a well studied 3’ 
to 5’ exonuclease whose role in degrading heavily structured RNAs, including 
the rRNAs, is well established. In contrast YbeY is a potential endonuclease 
recently implicated in a late step ribosomal quality control, which could well be 
the initiating endonuclease, whose cut(s) in rRNA would present substrates for 
RNaseR to further scavenge into mononucleotides. 
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SUMMARY IN ESTONIAN 

Ribosoomide lagundamine bakterites 

Ribosoomid on makromolekulaarsed kompleksid, mis koosnevad kahest suurest 
ja ühest väikesest RNAst ja paljudest erinevatest valkudest. Ribosoomides sün-
teesitakse kõik valgud, mida organismis leida võib, ning aktiivsete ribsoomide 
konsentratsioon (ja seega sünteesi kiirus) limiteerib rakkude kasvu kiirust. Ehk 
teisisõnu, mida kiiremini sünteesitakse uusi ribosoome, seda kiiremini kasvab ja 
jaguneb ka rakk. Kuna ribosomaalse RNA süntees hõlmab ca 80% raku RNA 
sünteesi aktiivsusest ja ribosoomi valgud moodustavad kuni veerandi raku 
valgumassist on selge, et mitte ainult ribosoomide funktsioon valgusünteesil 
vaid ka nende metabolism on rakulises majapidamises määrava tähtsusega. 
Tõepoolest, juba mõnda aega on teada, et aeglaselt kasvavates bakterirakkudes 
tegeleb enamus raku RNA lagundamise võimekusest värskelt sünteesitud 
ribosomaalse RNA lagundamisega. Sellegipoolest on viimase 50 aasta vältel 
üldiselt usutud, et kord juba valmis tehtud ja kokku pakitud ribosoomid on 
äärmiselt stabiilsed ning, et neid lagundatakse vaid tugeva stressi tingimustes. 
Samuti on meie teadmised ribosoomide lagundamise molekulaarsetest mehha-
nismidest bakteris üsnagi piiratud. 

Käesoleva doktoritöö eesmärk on kirjeldada ribosoomide lagundamist 
kasvavates soolekepikese (Escherichia coli) rakkudes ja heita valgust 
ribsoomide lagundamise mehhanismidele, molekulaarsetele radadele ning 
ensüümidele, mis selles protsessis osalevad. Me avastasime üllatusega, et kuigi 
ribosoome tõepoolest lagundatakse kasvavates bakterirakkudes, toimub see 
protsess vaid rakukultuuri kasvu aeglustumise perioodil, mis eelneb statsio-
naarse kasvufaasi saabumisele. Meil ei õnnestunud tuvastada küpsete ribo-
soomide lagundamist ei ühtlase kiirusega kasvavates ega ka null-kiirusega 
kasvavates rakkudes. Võimalik, et ribosoomide lagundamine aitab rakke neid 
ette valmistades eluks statsionaarses faasis, mil ei vajata suurt valgusünteesi 
võimekust, küll aga vabu komponente, millest elutingimuste paranedes kiiresti 
uusi makromolekule tootma hakata.  

Lisaks leidsime, et osad (kuid mitte kõik) ribosoomi RNAd inaktiveerivad 
mutatsioonid viivad samuti ribsoomide lagundamisele, kuid miskipärast lagun-
datakse siis nii mutantseid ning inaktiivseid kui metsiktüüpi ning aktiivseid 
ribosoome. Jällegi viitab see, et ribsoomide lagundamise eesmärk võiks olla 
üldise ribosoomide konsentratsiooni alandamine rakus. Kui me lisasime ribsoo-
mide lagundamise katsesüsteemi valgusünteesi pärssivat antibiootikumi kloram-
fenikool, päästsime me sellega ribosoomid lagundamisest. Seda tulemust võib 
tõlgendada viisil, et de novo valgusüntees on vajalik ribosoomide lagundamis-
programmi käivitamiseks rakus.  

Testides ribosoomide lagundamise võime osas bakteritüvesid, kus puuduvad 
erinevad RNAd lagundavad ensüümid, leidsime kaks ensüümi, mille puudumise 
korral ribosoome ei lagundatud. Neist esimene, RNaas R, lõhub RNAsid alates 
nende tagumisest ehk 3’ otsast ning tunneb erilist lõbu kõrge sekundaar-
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struktuuriga RNA-de hävitamisest. RNaas R on ka eelnevalt näidatud osalevat 
ribosoomide lagundamisel. Teine ensüüm on seevastu suhteliselt vähetuntud 
endoribonukleeas nimega YbeY, mis lõikab RNAd katki keskelt, mitte ei 
lagunda seda otstest. See huvitav valk on arvatud osalevat ribsoomide kokku-
pakkimise kvaliteedikontrollil, kus ta on vajalik kõige viimases etapis, mil 
tuntakse ära valgusünteesil ebaõnnestuvad ribosoomid ja suunatakse need 
lagundamisse. Meie katsed viitavad, et seesama valk võib valla päästa ka töö-
korras olevate ribosoomide lagundamise, tehes ribosoomi RNAsse esimese 
lõike ning tekitades sellega kaitsetu 3’ otsa, mida tunneb ära RNaas R, mis oma-
korda suudab ribosoomi RNA täielikult lagundada.  
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