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Pairwise DNA Methylation Analysis
Abstract: The ever-increasing interest in genetics has lead to the discovery of
epigenetic alterations - cellular trait variations not caused by the changes in the
DNA sequence. DNA mehtylation is the most researched one of the alterations,
being the addition of a methyl group to a DNA nucleobase. Even though methy-
lation itself has been reseached, it is often considered on a per-read basis. The
pairwise influence of methylation sites is still relatively unexplored. One of the
reasons for this is that it is difficult to conduct such an experiment, mainly due to
the lack of tools. The matters are worse with pairwise methylation, as only a few
papers have been published about the topic. The aim of this thesis is to provide
insight in conducting an analysis of pairwise DNA methylation, and to provide a
tool as an R package for extracting pairwise methylation values.
Keywords: DNA methylation, pairwise methylation, R

DNA metülatsiooni analüüs paaride kaupa

Lühikokkuvõte: Üha süvenev huvi geneetikasse on kaasa toonud epigeneetiliste
modifikatsioonide avastamise. Epigeneetilisteks modifikatsioonideks loetakse
rakulisi tunnuseid mis pole põhjustatud DNA sekventsis esinevatest erinevustest.
Sellistest modifikatsioonidest on enim uuritud DNA metülatsiooni, mis seisneb
DNA nukleobaasile metüülrühma lisandumises. Vaatamata sellele, et metülat-
siooni ennast on uuritud, vaadatakse metülatsiooni enamasti lugemite kaupa. See,
kuidas metülatsiooni esinemisega seotud nukleobaasid teineteist mõjutavad, on
suhteliselt tundmatu. Üheks põhjuseks, miks DNA paaride kaupa metülatsiooni
piisavalt uuritud pole, võib pidada tööriistade vähesusest. Kahjuks on selle vald-
konna kohta avaldatud vaid paar uurimustööd. Selle bakalaureusetöö eesmärgiks
on anda lugejale ülevaade paaride kaupa DNA metülatsiooniga seotud eksperi-
mendi läbiviimisest ja esitleda tööriista R paketi kujul, mis võimaldab koguda
lugemitest andmeid paaride kaupa metülatsiooni kohta.
Märksõnad:DNA metülatsioon, paarikaupa metülatsioon, R

2



Contents

1 Introduction 5

2 Preliminaries 7
2.1 DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Methylation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 File formats and specifications . . . . . . . . . . . . . . . . . . . 8

2.3.1 FASTA . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 FASTQ . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 SAM/BAM . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Pairwise methylation and the method 13
3.1 Pairwise methylation . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 General Description . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Description of the algorithm . . . . . . . . . . . . . . . . 16
3.2.5 Analysis of Complexity . . . . . . . . . . . . . . . . . . 16
3.2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . 18

4 Overview of the analysis pipeline 19
4.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Introductory steps . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Acquiring reads and quality control . . . . . . . . . . . . 20
4.1.3 Mapping the reads . . . . . . . . . . . . . . . . . . . . . 20

4.2 An example of an experiment . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Gathering data . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Trimming the reads . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Mapping reads to the genome . . . . . . . . . . . . . . . 22
4.2.4 Extracting pairwise methylation . . . . . . . . . . . . . . 22

3



5 Analysis and Metrics 24
5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 Matthew’s Correlation Coefficient . . . . . . . . . . . . . 24
5.1.2 Linkage Disequilibrium . . . . . . . . . . . . . . . . . . 24

5.2 Aggregation of data . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Further Work 27

7 Conclusion 28

8 References 29

4



1 Introduction

By the course of evolution, organisms have changed drastically. Going from
the single celled to the complex life forms we encounter today. Unfortunately,
the notion of genetics in its modern form was established only at the mid 19th
century. This essentially means even though we are the successful products of
hundreds of generations of evolution, we still really do not know nor have had the
time to study what we are or how we function.
Just recently, with the help of the revolution of computers, have we had a
chance to peek into the building blocks of living organisms. This has lead to the
discovery of DNA. Following the discovery, we have observed various organisms
and annotated their genetical structure, We have managed to connect various
diseases to certain regions of this structure and have also managed to create
reference genomes for the genetical structure we expect to see in an organism.
This is used in comparing individuals with specific traits to the reference and find
deviations of interest.

However, this is not the only information encoded in our cells. Hidden from
the observations of genetic code are epigenetic factors, of whom the most is
known is DNA methylation. Currently, there are adequate tools and extensions
for finding methylation in DNA reads. Methylation is usually considered
considered on a per-read basis, giving each read or region an aggregated value as
a methylation status.

There is a different approach extracting methylation from the reads as well.
This involves mapping all the reads back to the genome to identify all methyla-
tion sites found in the reads. Then the reads can be compared against the sites,
identifying methylation sites adjacent in the reads. Such a method focuses on the
methylation of a certain site instead of a read. This, however, opens up more pos-
sibilities. For example, comparing the methylation of two adjacent sites to find
out how they influence one-another.

The aim of this thesis is to provide insight in the analysis of pairwise methyla-
tion and to provide a method to extract methylation values from reads mapped to
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a fitting genome. The goal is to give a useful tool for further analysis, along with
a manual on how to conduct experiments and how to interpret the results of such
an analaysis.
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2 Preliminaries

2.1 DNA
DNA (Deoxyribonucleic acid)[1] is a molecule used by all living organisms

to encode and store genetic instructions for the development of the organism.
Due to being used as a storage, DNA has to be stable - keep a fairly stable state
throughout the lifespan of the cell it is contained in. For this, DNA uses a double
helix structure, meaning that for each nucleobase(building block of DNA) there
exists a complement base. The building blocks themselves are adenine, guanine,
thymine and cytosine.

The double helix structure means that for each base(nucleobase) there exists
a complementary base on the other strand. The strands themselves are wrapped
around each other to preserve the contained bases better. For the complements,
adenine is complement to thymine and guanine is complement to cytosine,
meaning that if we see an adenine on one of the strands, we know that there will
be a thymine on the other strand in the same place. The DNA structure is kept to-
gether on a strand basis by phosphate between each two nucleobases on the strand.

Another notion we need to establish before moving on is the definition of a
DNA sequence. What we call a DNA sequence is essentially a string of length
N, that is composed of character representations of the nucleotides(nucleobases).
Thus, we have a set S = {A,C,G,T } that forms the alphabet for our strings.

The reference genome is also a DNA sequence, but with a few more elements
in the alphabet set. Since a reference genome is supposed to represent an organism
in general, it is required to represent randomness as well. For example, some
nucleobases may be completely random across organisms of the same species.
Such bases are denoted as N in the reference genome. Also, in some cases, the
randomness might be restricted. For example 5-methylcytosine(the most common
methylation) occasionally deaminates to thymine and ammonia. This is a pretty
common mutation, but the it makes sense to note such a base as cytosine/thymine.
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Figure 2.1: The methylation and deamination of cytosine

2.2 Methylation
In general, methylation[2] is a process of adding a methyl group to a sub-

stance, either by substitution or a reaction that causes the methyl group to occur.

DNA methylation is the addition of a methyl group to a base pair. The
most common methylation is the transformation of cytosine to 5-methylcytosine.
According to current knowledge, this is the only type of methylation that occurs
in mammalian cells, and is of greater interest because of this property. There
are other methylation types present, but they haven’t been explored much.
Furthermore, mammalian DNA methylation occurs mostly in CpG(Cytosine-
phosphate-Guanine) context[2].

For the analysis of methylation in cytosine, it has been discovered that treating
it with bisulfite causes it to deaminate into uracil[3]. This means that an amino
group is removed from the cytosine molecule. However, such a reaction only oc-
curs in cytosine molecules which are not methylated. This essentially enables us
to identify methylation in cytosine and is the method used for extracting methyla-
tion. Such a technique is actually called bisulfite sequencing.

2.3 File formats and specifications

2.3.1 FASTA
FASTA [4] is a text based file format representing either nucleotide or peptide

sequences. Each of the nucleotides or amino acids are represented with a single
character.
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Status Abbreviation
Adenine A
Thymine T
Guanine G
Cytosine C
Any nucleobase N

Table 2.1: nucleotides with the corresponding abbreviations

In addition to the sequences themselves, FASTA also contains headers for
each of the sequences, which describe the sequence on the next line. Headers
start with the symbol ">".

There is a total of one mandatory and one optional parameter in the header.
These parameters are separated by the first whitespace in the header sequence.
The first parameter represents the name of the sequence and must be present
for each FASTA sequence. The other parameter is the description of the sequence.

Since we are concerned with DNA sequences, we can focus the spec-
ification for the nucleotide sequences. By using the abbreviations for the
nucleotides[REF], we can create a table of possible values in the content string.
There is a letter encoding for every possible combination of the four nucleobases,

but they have been omitted due to being fairly uncommon compared to the five
presented.
It is also recommended to keep the number of characters per line less than 80, but
consistent throughout the file.

An example of the file format would be the following:

>HSBGPG Human gene for bone gla protein (BGP)
GGCAGATTCCCCCTAGACCCGCCCGCACCATGGTCAGGCATGCCCCTCCTCATCGCTGGGCACAGCCCAGAGGGT
ATAAACAGTGCTGGAGGCTGGCGGGGCAGGCCAGCTGAGTCCTGAGCAGCAGCCCAGCGCAGCCACCGAGACACC
ATGAGAGCCCTCACACTCCTCGCCCTATTGGCCCTGGCCGCACTTTGCATCGCTGGCCAGGCAGGTGAGTGCCCC

2.3.2 FASTQ
The FASTQ [5] format follows FASTA, but contains additional Phred[6]

quality scores. The quality score is computed by the formula Q = −10 log10 P ,
where Q is the corresponding quality score and P is the base error proba-
bility(probability that the base is wrong). For example, a quality score of
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10 would mean that the prediction is correct 90% of the times, while a score
of 60 would imply that it is correct 99.9999% of the time, or one error in a million.

The outline of the file format consists of four lines. The first line starts with
an "@" symbol, followed by the name of the sequence. There is no whitespace
between the "@" and the sequence name. There is an option for an additional
parameter, in the form of length=X where X is the length of the read, separated
from the name by a whitespace.

The second line consists of the sequence itself, similar to FASTA and based
on the same alphabet.

The third line contains a "+" symbol, with an optional sequence name
parameter following it, without a whitespace.

Finally, the last line contains the quality scores. The scores themselves are
encoded in single letter values. The quality scores in ascending order are the
following. "!" represents the smallest value while "~" represents the highest.

!"#$%&’()*+,-./0123456789:;<=>
?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_‘
abcdefghijklmnopqrstuvwxyz{|}~

This gives a total of 96 possible scores for quality. However, the quality score
"#" is used for filling the quality string when the overall quality of the read is so
bad it is not recommended to use it. This usually occurs when most of the bases
in the sequence have a quality score of 15 or lower.

While according to the original specification, the sequence and quality strings
may be split over multiple lines, it is strongly discouraged, because the splitting
markers ("@" and "+") are also contained in the quality string. Such an overlap
could cause errors in parsing.

The format may be similar to FASTA but is generally used for storing reads
instead. This means that each sequence block in the FASTQ format will be
smaller and contained on one line.

An example of this file format would be the following:
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Filed name Data Type Description
QNAME String Name of the read
FLAG Int bitwise flag that tries to note down strand
RNAME String Reference sequence name
POS Int Leftmost position of the read
MAPQ Int Mapping quality value
CIGAR String modifications done to match reference
RNEXT String Reference sequence name of the next read
PNEXT Int Position of the next read
TLEN Int length of the region mapped to
SEQ String The sequence of the read, similar to FASTA
QUAL String Quality of the read, similar to FASTQ

Table 2.2: Mandatory fields of the SAM format

@SRR566546.970 HWUSI-EAS1673_11067_FC7070M:4:1:2299:1109 length=50
TTGCCTGCCTATCATTTTAGTGCCTGTGAGGTGGAGATGTGAGGATCAGT
+SRR566546.970 HWUSI-EAS1673_11067_FC7070M:4:1:2299:1109 length=50
hhhhhhhhhhghhghhhhhfhhhhhfffffe‘ee[‘X]b[d[ed‘[Y[^Y

2.3.3 SAM/BAM
SAM[7] stands for Sequence Alignment/Map format. The format itself is

TAB-delimited text, consisting of a header and an alignment section.
There are a total of 11 mandatory fileds in the file specification for a single

alignment entry. These are the following:
In addition to these fields, the SAM/BAM specification also holds a number of

optional fields. Such fields are commonly delimited by a two letter combination
followed by a colon, the data type of the entry, followed by another colon, and
the entry of the field. Due to the multitude of such fields, the ones presented
below are produced by the DNA methylation mapped Bismark[8] used in this
thesis as well: The SAM format is a file format readable by a human. However,
recently, software has been moving on to the use of BAM, which is essentially
just a binary file format of SAM. It more compact, but is not readable by a human
due to its compressed nature. Luckily, the conversion between the two formats is
fairly simple, since the fields contained in the files map one-to-one with each other.

An example of a SAM file field would be the following:

11



Filed name Data Type Description
NM-tag Int Edit distance to the reference
MD-tag String base-by-base mismatches to the reference
XM-tag String String of methylation per nucleobase in the read
XR-tag String Read conversion state for the alignment
XG-tag String Genome conversion state for the alignment

Table 2.3: Bismark fields for SAM

HWI-D00154:61:C2BJLACXX:4:1101:2448:2659_1:N:0: 0 chr1 2584389 255 101M

* 0 0
TGGAGTAGTGTTTATATTTTTAGGTGAGTATGTGATAGTGTGGAGTAGTATTTATAGTTTAAGGTGAGTATCTGATAATTTGGAGTAGTAATTATATTTTT
@@@DDADDHFHHHEIBHHHIGBFGCFFBFFEHCFFGAA:CFFB@BDDAF?FHIGHDGHGHHGIIHGAHFBHGHIEGHEHGICEEG??EEAEEEEEEEDEEC
NM:i:36 XX:Z:5C4CCC1C1CCCCC7C6C2C6C2C1CCC1C2CCC8C6C2CC5C2C2CC1C1CCCCC
XM:Z:.....x....hhh.h.hhhhx.......h......x..z......x..h.hhh.x..hhh........h..X...h..hx.....x..h..hh.h.hhhhx
XR:Z:CT XG:Z:CT

The only difference between the specification and the example is that the MD
tag was introduced in a later version of Bismark. In this example, the MD tag has
been replaced by an XX tag. This was done because the XX tag did not reflect
insertions and deletions, whereas the MD tag does. The file is also split up in the
example, because it is too long to contain here in any sensible way.
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3 Pairwise methylation and the
method

3.1 Pairwise methylation
What we define as pairwise methylation is in essence a task of binary

classification[9]. Binary classification is distributing a set of elements into two
groups based on a classification rule. The classification rule can be a simple
mathematical function or even something the computer will have to work out on
its own, given an objective function to either maximize or minimize.

A simple objective function for such a task would be to maximize the number
of correct predictions. This is a value called Accuracy of the prediction. After
a closer inspection, we can see that this is not a good idea, since it is dependent
on the equal cardinality of classes, which does not make it a good metric. A
good illustration would be one where we have less elements in one class than we
classified incorrectly in the other. Such a situation would mean that predicting a
constant would improve accuracy. It is also known that the amount of potential
methylation sites methylated may reach up to 90%, which would create such a
situation. Thus, we need better measurements for our experiments, but we are
going to discuss them later.

We know that in case of a binary classification, we have a total of two
possible predictions and two possible outcomes for each prediction. If we split
the outcomes up with respect to our predictions, we get something what is called
a confusion matrix.

A confusion matrix is a specific table used to measure the performance of
supervised learning algorithms. This table contains all four possible comparisons
of binary prediction and actual outcome pairs. The confusion matrix itself looks
like this:

In the case we are examining, our objects to compare will be adjacent
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c

Prediction
outcome

Actual value

p n total

p′ True
Positive

False
Positive

P′

n′
False
Negative

True
Negative N′

total P N

Table 3.1: Confusion Matrix

methylation sites. The observations contained in the confusion matrix come from
reads which contain both of these methylation sites. The only thing left to decide
on is the prediction rule for the binary classification.

Fortunately, the rule we are interested in this context is fairly trivial. The
identity function f(x) = x. What this means is that after observing a potentially
methylated site in the genome, we predict that the next site will have the same
methylation value. The purpose of the analysis is to find out the overall strength of
this hypothesis. Thus, the question we are examining is: d̈o adjacent methylation
sites directly affect one another?Änother goal would be to detect and pinpoint the
deviations from the average behavior in methylation sites, especially in different
organisms.

3.2 Algorithm

3.2.1 General Description
The algorithm is designed to find methylation in a pariwise context. What this

means is that we are looking at all the potential methylation sites in a genome.
However, instead of looking at them individually, we look at all the adjacent pairs
of these sites. Our goal is to map reads to the genome in such a manner that two
adjacent reads are contained within one read. This means that when we have two
reads of which one contains a methylation status for one of the reads in the pair
and the other read for the other site, we discard such data since it is not informative

14



Parameter name Data type description
context String methylation context
chromosomeName String name of the chromosome
leftmostLoctaion Integer location of the leftmost pair
rightmostLocation Integer location of the rightmost pair
TruePositive count Integer Count of true positive predictions
FalsePositive count Integer Count of false positive predictions
FalseNegative count Integer Count of false negative predictions
TrueNegative count Integer Count of true negative predictions

Table 3.2: Output of the algorithm

enough. This restricts us to use only reads which contain two adjacent methylation
sites.

3.2.2 Input
As the first input parameter to the algorithm, we take a sorted SAM file with

a mandatory XM field as this field contains data about methylation.
The second input parameter is the methylation context analyzed. The default
value for this parameter is CG.

The third input parameter is the destination file, which is in coma separated
file(csv) format. The default value for this is myfile.csv in the directory the script
was run in.

3.2.3 Output
The output of the program is a coma separated file(csv) containing the fields

in the following order:
An example of the output is the following:

cg,chr1,10589,10609,42,18,12,11
cg,chr1,10609,10617,155,0,0,10
cg,chr1,10617,10620,100,0,0,0
cg,chr1,10620,10631,102,2,56,3
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3.2.4 Description of the algorithm
Firstly, the input file existence is checked and the contexts under examination

are defined.

Secondly, the algorithm will initialize a Red-Black tree[10] which is deref-
erenced and re-initialized after a change in chromosome. This tree will contain
each of the methylation sites for the given chromosome. The keys after which
the tree is sorted are the methylation site locations and the values for these keys
are two lists. The first list will contain unique identification numbers for the
reads whereas the second list contains methylation values as booleans for those
locations. In this context, true represents the existence of methylation and false
represents a non-methylated site.

Thirdly, the algorithm will read in each of the mapped reads, line by line.
The reads are then split up to parameters.Then the algorithm checks whether the
current chromosome has changed. If this has occured, the algorithm writes out the
information for the current chromosome and releases memory in order to manage
with a minimal memory requirement. However, if the chromosome has not
changed, the algorithm will store the current position within the chromosome and
traverse the XM parameter of the mapped read to find methylation site locations
along with their values. Then the algorithm checks whether the expected site has
already been found. If so, the algorithm adds an element to both of the defined
lists to express the found methylation site in the tree.

Finally, if the tree is populated and the algorithm would print out the values
to a designated file, it will traverse the tree in an In-order fashion. This means
that the adjacent methylation sites will be adjacent in the traversal as well. So,
the algorithm will process each of the adjacent methylation pairs in the given
chromosome. The processing consists of finding equal read identificators in one
of the value lists. Based on these identificators, the algorithm creates a confusion
matrix with the hypothesis that the two sites will have the same methylation value.
These results are then appended to the output of the algorithm ,which is written to
the designated file.

3.2.5 Analysis of Complexity
The analysis of complexity is carried through to convince the reader in the

positive properties of the algorithm and let the reader assert, whether they are
interested in using such an algorithm.
Firstly, let us denote the number of reads corresponding to a given chromosome
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as Nc, where c ∈ chromosomes. This means that
∑

c∈chrs
Nc = N , which is the

total number of reads. Let’s also denote that the number of chromosomes is
equal to C Such a distinction enables us to split up the problem in order to give
adequate bounds to the complexity of the algorithm.

Now, we look at each chromosome separately.

For each chromosome, we initialize a Red-Black tree, which is a balanced
tree structure, granting the user a guaranteed logarithmic insertion and find. The
structure itself can also be traversed in an in-order fashion to receive a sorted list
of elements.

Using this knowledge, we can now define an upper bound for the complexity
of our task.

Let us assume that the maximal size of a read across all reads is M .

We also note that the maximal number of insertions is Nc ·M , since there is a
total on Nc reads, whose maximal length is M .

We note that the worst case for inserting Nc · M elements occurs when all
the elements are distinct. Then we would have to search for each element before
adding it. Thus, instead of one logarithmic operation of finding the element
and modifying its value, we have to try find the element and then add it. Thus,
we can assume that the complexity of adding one element is no larger than
O(2 logNc ·M) = O(log (Nc ·M)). We also note that the maximal number of
elements in this tree can be at most Nc ·M . So, the complexity of filling one map

is O(
Nc·M∑
i=1

logi) ≤ O(
Nc·M∑
i=1

log (Nc ·M)) ≤ O(Nc ·M · log (Nc ·M)). We have

yet to include the post processing of the structure.
As for the post processing step, we traverse the methylation sites as pairs and
compute the corresponding confusion matrices. The sorted traversal of all the
methylation sites is with a complexity O(Nc ·M) since our data structure already
sorts the data on insertion. However, computing the confusion matrices is trickier.

We store the reads mapped to each methylation site in a list variable inside the
methylation site object. What we have to find are the reads that match on both of
the methylation sites. In order to achieve this, we can just sort the list containing
the reads. Such a sorting can be done in O(Nc · logNc) since every read can
contain the methylation site only once. After sorting, the complexity of finding
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equal read identifiers is O(Nc +Nc) = O(Nc) because traversing both of the lists
once is sufficient to find all equal elements. If done in a fashion that in case of
inequality, the list pointer is moved to the next element in the list whose current
element is smaller. In case of equality, both of the list pointers are moved. This
gives us a total complexity of O(Nc +Nc · logNc) = O(Nc · logNc)

We can now find the complexity of processing one chromosome. That
is O(Nc · logNc + Nc · M · log (Nc ·M)) since the steps are exclusive,
we can add instead of multiply). For the complexity of the algorithm in
general, let us assume that maxcinchromNc = Nx. Now, we can say that
O(

∑
c∈chrs

(Nc · logNc +Nc ·M · log (Nc ·M))) ≤ O(
∑

c∈chrs
(Nx · logNx +Nx ·M ·

log (Nx ·M))) ≤ O(C ·Nx · logNx + C ·M ·Nx · log (Nx ·M))

Let us also note that we cannot reduce this formula any further, since it would
not make sense to add bounds to the M variable. Even it it is zero, some processing
is done.

3.2.6 Implementation
The result is an R package, which due to the goal to maximize performance,

also requires a Java Virtual Machine(JVM) to be present in the machine it is run
on. This is due to the usage of the RJava library, which enables the usage of Java
inside R. Thus, all of the computations done by the package are actually written
in Java and wrapped inside an R package.

The choice of Java was made based on the availability of the JVM. R was
chosen as the language to host the package mainly because most of the tools
dealing with methylation are presented as R packages. Thus, the motivation for
using R is consistency across already existing tools.[16,17,18,19]

The package is located at[20].
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4 Overview of the analysis pipeline

4.1 Pipeline
The purpose of this section is to describe the overall process of conducting an

experiment with DNA methylation. It is necessary due to the complex nature of
such experiments and the number of steps required to get a result, yet alone, an
adequate one.

4.1.1 Introductory steps
This section will concentrate on the steps done by biologists to produce the

data we are going to experiment on.

The pipeline starts with the hypothesis for an experiment. This is a clearly,
unambiguously defined goal for the experiment, which defines the organism
studied and the state of the organism. A good example would be changes
in methylation in human breast cancer patients. The motivation for such an
experiment is derived from the frequent association of cancer with the change in
methylation patterns. Having defined a goal, we can proceed to gathering data.
This involves taking DNA samples from the patients, and is carried out by the
biologists.

Before sequencing the DNA, it must be treated with bisulfite. This causes a
chemical reaction in the nucleobases, which transforms unmethylated cytosines to
uracil, but leaves the methylated ones as they were. After such a conversion, the
DNA is ready to be sequenced. This can be done with any sequencing technique.
More modern machines are recommended due to the advantage in accuracy that
they provide. Such a method is prone to error, as it relies on the quality of con-
version. This means that unmehtylated cytosines that have not been treated, still
read as cytosines, which means that they are counted as methylated, while in re-
ality, they are not. The machine produces reads, which are fragments of the DNA
provided to the machine, usually in FASTQ format.
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4.1.2 Acquiring reads and quality control
Such sequencing runs are then stored in databases, usually in either FASTA,

FASTQ, or the compressed SRA[11] file formats. Thus, the data is made
accessible for bioinformaticians or enthusiasts all over the world. However, while
being accessible, the reads are still not ready to be mapped to a reference genome
of the corresponding organism.

DNA sequencing also produces reads that are not of high quality. These reads
should not be used in an analysis. An easy tool to use for trimming the reads of
the parts with a low quality score is trim-galore![12], what is an automated quality
control script. Quality control and the assertion of the quality of raw/trimmed
reads can be performed by FastQC[13]. This program gives the user a simple
visual understanding of the current state of the reads. It also displays maximal
recommended variations in the reads to assist the user even more.

4.1.3 Mapping the reads
Mapping is done with specific software. For an experiment with methylation

data, it requires a few extra steps.

Firstly, since the DNA was treated with bisulfite, the reference genome needs
to be transformed to a shape to cope with the difference. This means that the
reference genome has to store data about methylation. Thus, the non-methylated
cytosines that are converted to uracil are read as thymine by the sequencer. This
means that the preprocessing of the reference genome will create another genome
with all the cytosines converted to thymine. If such a conversion is done on each
read as well, it will enable the program to identify methylation. The reads are
then mapped to both genomes and the results merged together. For example, if
a read has two possible methylation sites, of which only one is methylated, then
most of the mapping overlaps, but the differences on the cytosine site mappings
defines the methylation values.

This pipeline is executed by Bismark, a software for mapping bisulfite treated
reads. The mapping itself is done by Bowtie, which is a general purpose aligner.

The result is a list of mapped reads. This means that the reads have a region in
the reference genome where they fitted with a given number of mismatches. Since
it is unreasonable to assume that an organism matches a reference in each point,
we allow mismatches. They are nessecary for finding systematic annomalies as
well, because else we would ignore the discrepency.
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4.2 An example of an experiment
This section will describe an example workflow of for obtaining pairwise

methylation data from a sequencing experiment. We will go through each of the
steps, with command and code samples to compliment the process.

4.2.1 Gathering data
In order to conduct an experiment, we need a dataset. Since we are interested

in methylation, the dataset has to contain bisulfite treated reads. There database
of SRA reads is here[14].

As an example, let us take the dataset here[15].
We can download this with wget using the following command:

wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-
instant/reads/ByStudy/sra/SRP%2FSRP028

Having downloaded the dataset, we have to unpack it to FASTQ format for
further usage. The SRA Toolkit is used for such purposes. This can be done like
this:

fastq-dump -I --split-3 SRR949194.sra

The number of files in the split parameter specifically set to the maximum
value of three. This is done due to the nature of the program. If it is supposed
to produce one file, it will do so, but if we specify that we only want one file and
there are supposed to be more, the program will just append the other files to one
file.

4.2.2 Trimming the reads
The trimming of reads can be done manually with FastQC[12], or automati-

cally with trim galore[13].

It is clearly shown on the image how one should approach trimming. Re-
moving everything that touches the red areas and consider whether they a lower
mapping percentage but potentially more reads for the yellow region.
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Figure 4.1: Screenshot of FastQC

4.2.3 Mapping reads to the genome
After trimming the reads, we should prepare our genome for the mapping

process. With Bismark, this can be done with:
bismark_genome_preparation --path_to_bowtie /shared_group/software/aligners/bowtie
--verbose /data/hg19

After the genome preparation has been executed, we can map the reads to the
genome. For single stranded reads, we specify one input file, but for the double
stranded ones, we speficy two files, one for each strand:
.bismark -n 3 -l 50 --path_to_bowtie /shared_group/software/aligners/bowtie
~/data/hg19 -1 ~/SRR949194_1.fastq -2 ~/SRR949194_2.fastq

Here the n parameter corresponds to the number of mismatched allowed(legal
values are from 0 to 3). and the -l parameter corresponds to the number of bases
in the high quality end of the read.

4.2.4 Extracting pairwise methylation
Finally, after preparing mapping bisulfite treated reads, we can get the

pairwise methylation values. For this, we import the described R package and
call producePairwiseMethylation, with a possible of three parameters. The first
parameter is mandatory and it is the SAM file under analysis. The other two
parameters are context names and the output file name. These parameters can be
omitted as default values are provided.
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This step yields the confusion matrices that can be analyzed by the various
ways discussed below.
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5 Analysis and Metrics

5.1 Metrics

5.1.1 Matthew’s Correlation Coefficient
Matthew’s Correlation Coefficient(MCC)[21] is a statistical measure used

for the assertion of binary classifications. Our initial hypothesis also considered
a task of binary classification to either methylated or unmethylated, based on a
previous observation. This implies that the usage of such a metric is adequate for
assessing the confusion matrices produced.

Another important property of MCC is that it does not suffer from the
accuracy paradox. This is important, since varying from organism to organism,
we can expect an average methylation up 90% across the whole organism. This
implies that the dataset might be inherently biased.

Matthew’s Correlation Coefficient itself is represented by the following for-
mula,

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)

The range of the values is [−1, 1] where the extremal values represent a strong
correlation and 0 represents no correlation.

5.1.2 Linkage Disequilibrium
The other metric we will explore in greater detail is Linkage Disequilib-

rium.[22]
Linkage Disequilibrium is a measure of non-random association between loci.

In our case, the loci represent the positions of pairs of adjacent methylation sites.
It makes sense to use this measure in our case because the measure is developed
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for the analysis of similarity between loci.

Linkage Disequilibrium is calculated on frequencies, so the matrix of occur-
rences needs to be converted to a matrix of frequencies. This can be done by
dividing each element in the matrix with the number of total occurrences. Since
we need allele frequencies instead of the confusion matrix frequency values,
we convert them using the following formulas. These values are calculated as
follows: Let X = TP + FP + FN + TN or in other words, X is the count of
observations. The frequencies are computed by dividing the field with the number
of total observations. TPf = TP

X
. The same is done for all the other elements as

well.
Now we can define individual event frequencies like follows:

p1 = TPf + FPf

q1 = TPf + FNf

p2 = FNf + TNf

q2 = FPf + TNf

Here, the p-s represent the first observation while the q-s represent the second
one. Also, a subscript number one represents methylation while a subscript num-
ber 2 represents the absence of methylation. Follwing this, we can define Linkage
Disequilibrium as follows:

D = TPf − p1 · q1

However, this measure is not very informative since it is dependent on the
number of alleles. A common method to get rid of this problem is to normalize D
by dividing it with the theoretical maximum.

D′ =
D

Dmax

Where Dmax = min (p1 · p2, q1 · q2) when D < 0 and
Dmax = min (p1 · q2, q1 · p2) when D > 0
When D = 0, the coefficient is also 0. This gives us a measure in the range [0, 1]
where 0 corresponds to total Linkage Equilibrium or in other words, represents
that the methylation of the sites is completely independent of one another, while
a value of 1 represents complete dependence.
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5.2 Aggregation of data
Another way to make sense of the data would be to use these metrics but

aggregate the data to one big confusion matrix. Instead of giving specific
information about a certain pair of methylation sites, such aggregations can
give insight on the behaviour of methylation on a wider scale. For example, if
we would aggregate the values by just summing the matrices, we would get a
matrix that corresponds to all the methylation pairs within that region. Running
a correlation test on such a matrix would yield us a value that corresponds to
the average pairwise methylation in that region. This is possible, since the
correlation tests discussed have a normalized range of values and don’t exhibit
biases caused by the number of elements nor the proportions of positive and
negative classifications.
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6 Further Work

This chapter discusses future approaches to dealing with pairwise methylation
and analysis. The goal is to give insight to what this thesis contributed to and
what possibilities this opens up. Currently, the topic of pairwise methylation
in orgainsms is still relatively unknown. This article describes the now known
notion of methylation islands inside organisms, which was the initial motivator
for exploring this topic. Methylation islands are essentially regions within the
genome with a high percentage of possible methylation sites being methylated.
This poses a hypothesis that maybe methylated sites tend to be near each
other. Namely, next to each other, in such a manner that transitions between
methylation values are uncommon. Further work would also include comparing
different pairwise methylation profiles. This could help identify diseases or
mutations based on methylation profiles and lead to the association of methyla-
tion profiles with these mutations. Much like what is currently studied in genetics.

Another possibility would be to associate genetic mutations with changes in
the methylation profiles.

Amongst other thing, it would be interesting to try out different classification
laws or even classifiers. Such experiments would require some prior knowledge
about pairwise DNA methylation, which we currently lack. Thus, this would be a
good thing to test when we know more about methylation in a pairwise context.
Currently, we even lack a base measurement to compare these methods with.

Unfortunately, these ideas by the author are purely hypothetical, because the
topic of pairwise methylation is still very much unexplored.
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7 Conclusion

The purpose of this thesis was to provide adequate insight on methylation
data analysis with a practical application of producing an R package to extract
methylation scores of methylation site pairs. The thesis also meant to give
an introduction to methylation analysis with and give insight about analyzing
pairwise methylation with various correlation measures. The result of this thesis
is an R package designed to carry out a step in the analysis pipeline.

The thesis firstly introcudes concepts of DNA and methylation. Then, the
notion of pairwise methylation is introduced with motivation why such an anal-
ysis would be beneficial. The chapter ends with an algorithm to obtain pairwise
methylation results. The third chapter provides a general outline of a methylation
analysis pipeline along with an example run of this pipeline.
The fourth and the final chapter gives insight on how to interpret the pairwise
methylation data, introducing Matthew’s Correlation Coefficient and Linkage Dis-
equilibrium along with an alternative take on the data as a whole. Preliminaries
contain example codes that can be used to interpret the results.
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