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ACTA ET COMMENTATIONES UNIVERSITÄTIS TARTUENSIS 

1991, 928, 3-14 

CHARACTERIZATION OF MATRIX TRANSFORMATIONS 

OF SUMMABILITY FIELDS 

Ants Aasaa 

Let с and bv denote respectively the space of 

convergent sequences and the space of absolutely convergent 

sequences, let 

c° = { x = (xk) I Цш X, -- 0 } 

and 

bv° = ^ x = (x^) j x « bv and lim xk = 0 j-. 
Furthermore, let A = (-<nk) be a reversible matrix over C, 

i.e. the system 

(shortly zn = Anx) has unique solution for every convergent 

sequence <zn) and В = be a matrix over С. Moreover, 

let 

зд = ^ x = (xk>j Anx exists for each n « W J, 
сд = ^ x = (x^) I x « Зд and (Anx) « с 

(cA,cb' «respectively (ЬУд.Ср) or (bv&,bVg)) be the set of 

matrices M - (mnk) over С for which the transformation 

yn = E »„A (2) 

maps Сд into Cg (respectively bvft into Cg or bv4 into bvg) 

and let 

bjj = { x = (x,,)! x e sH and = 0(1)|. 

Necessary and sufficient conditions in order that M 

would belong to <сД1св>.. (bvA,Cg) or (bv4>bvg) for a 

triangular matrix В are given in CI, 3, 4^6]. The aim of the 

present paper is to find sufficient conditions in order that 
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Ш would belong to <Од.°д>. ^1,vAl0B> or <bvA,bvB* for an 

infinite matrix B. 

Further не shall need the followins auxiliary results. 

LSMMA 1 ([2], p. 257 - 258). Let M = (m^) be a matrix 

over С. In order that the aer lea 

E ( E tnmnk )x, (3) 

converges for every absolutely convergent aeries E tn it is 

neceaaary and sufficient that <xv) « by and = 0k(1). 

At this, if the series (3) is convergent for each 

convergent series. I t, then 

E ( E Vnfc = E tnMnx. 

LEMMA 2 ([7J, p. 12 - 17 and 30 - 34). Let 11 = (ank) be 

a sequence-to-sequence transformation. In order that1 

У « (c° ,c) (respectively IX e (bv° ,с)) it is necessary and 

sufficient that 

1) there exist finite limits lim ank = ak, 

к 
2) E |ank| - 0(1) (respectively E an|n = 0(1) ). 

At this, l£m Упх = E akxk for each x = (xk) « с 

(respectively for each x = (xk) e bv°). 

LEMMA 3 ([7], p. 37). Let Я1 - (a^) be a sequence-to-

sequence transformation. for %t « (bv , bv) it is necessary 

and sufficient that 

where r ± k = 0 and 

E K, - *_u,l = 04) 

r - =  

1. Let (Dn) and k) for fixed к be solutions of the 

system (1) in the case when г = <5 and z = <5 Ti Dft Л Г»К 

'Here and onwards (г,ч) denotes the set of such 

matrixes, which transform the space of sequences r into the 

space of sequences v. 



respectively (here £nk - 1 if n = к and 6nk = 0 if n * k> 

Moreover, let 

вы = E ̂ kmki' В" = (Bnl). 

»Ck = ,E VW 
I =o 

Mn = E m ,77,. • к , ш nt lk I =o 

for each k, l,n,s « IN . At the same time we use these notations 

in the case when all series above are convergent. 

It is easy to see that the transformation (2) exists 

for each x « Сд (x e bvft) if and only if the numbers mnk for 

fixed n e IN are convergence factors for Сд (respectively for 

bvft). Therefore, by Theorems 5 and 6 from [8] we have 

LEMMA 4. Let A = (°>nk) be a reversible matrix and 

M = (mnk) be a matrix over <C. For the existence of the 

transformation (2) for each (xk) s Сд (respectively 

(xk) e ЬУд) it is necessary and sufficient that 

1) there exist finite limits lira M-k = Mnk and series 

is true for a triangular matrix В if the transformation (2> 

exists. But in the case when В is not a triangular matrix it 

is not always so. Next we shall find the conditions for В 

and M in order that the equality (4) would be valid. By 

Lemma 1 we have 

LKMMA 5. Let A - (-i^), В - (Pnk) and M = (m^) be 

matrices over С , If £ \fi | < to for each n e IN then the 
к 

equality (4) holds for each x e Сд (.respectively x e ЬУд) if 

and only if mnk = 0k (1) and Сд £ by (respectively ЬУд S by) . 

LEMMA 6. Let A = («<nk) be a reversible matrix and 

M - (mnk) be a matrix over С. In order that сд s by it is 

necessary and sufficient that condition 1) of Lemma 4 and 

conditions 

i i 
2) E |M^k j = 0n(l> (respectively E ̂  = 0n(1)). 

E ты>\ are convergent, 

It is easy to see that the equality 

£ ргЛ =• £ Bnkxk 
(4) 

2 
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1) Ё Vk:.0(l) 
к *о 

and 

2 )  Е |М" I = 0(1) 
к 

are fulfilled. 

Proof. Necessity. Let сд s Then the transformation 

(2) exists for each x « сд by the definition of by and from 

(r?n) « Од follows that (i?n) e by. Therefore conditions 1) of 

Lemma 4 and 1) of Lemma 6 are fulfilled. 

It is known (cf. [8], p.197) that the elements xk of the 

sequence x = (x^) « Сд (for a reversible matrix A) may be 

represented in the form 

X,, = Z»k + E 4kl(xl - Z) (5) 

where z. = A.x, Z = Iim z. and E 1*1,. I < <*>• Now, it is easy 
ii I 1 I " 

to see that the series E 1bl (z, - Z) are convergent. 
t 

Therefore the equality 

ЕшпА = Z ЕтЛ • EM^ - Z) (6) 
k=o k=o к 

holds for each x = (a^) « Сд. Hence 

E M" (z - Z) = 0(1) 
к 

for each (zk - Z) « c° by condition 1) because A is 

reversible. As t£, defined by M^(x) = E^ for each 

x = (xk) e c°, are continuous linear functionals on c° by 

the principle of uniform boundedness we obtain that the 

sequence of norms of functionals is uniformly bounded. 

Consequently (cf.[9],p. 260), condition 2) holds. 

Sufficiency. Let condition 1) of Lemma 4 and conditions 

1) and 2) be fulf illed.- Then condition 2) of Lemma 4 is also 

fulfilled. Hence (2) exists for each (xfc) « Сд by Lemma 4. 

As the equality (6) holds for each (xk) « сД1 (t>n) e by 

by 1) and 

|H>k - Z)| 5 E lCk||zk - ZI = 0(1) 

by 2) (as (zk - Z) « c°), we have Сд £ by. 

LKMMA 7. Let A = (-^) be a reversible matrix and 

M = (mn|[) be a matrix over С. jFor ЬУд £ by it is necessary 
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and sufficient that 

E M* = 0(1) 
k = 0 

and condi tlons 1) of Lemma 4 and 1) of Lemma 6 are 

fulfilled. 

Proof. As А = <$nr> (where v ~ (т)п)) and 

E \6 - 6 . 1= 1 (6 =0) we have n « bv,. There-^ 1 nn n-i,n<-t 1 -1,-i A 

fore the proof of Lemma 7 Is similar to the proof of Lemma 6 

THSOBBM 1. Let A = <*"„k) b° a reversible matrix, 

В = (/?nk) asd M = (mfik) be matrices over С. Zf £ ® 

/or escA n « Mp mnk - 0k(1) and condition 1) of Lemma 4 and 

conditions 1) and 2) of Lemma в are fulfilled then there 

exist finite limits 11m r k̂ = rnk. Moreover, if in addition 

1) there exist finite limits lim xnk = rk, 

2) there exists finite limit l^m £ B^^, 

3) E |xnk| - 0(1) 

then M g (Сд.Сд). 

Proof. The equality (4) is true for each x « Сд by 

Lemmas 5 and 6. Consequently, it is sufficient to show that 

Сд £ Cg.. The elements xk of the sequence x = (xk) e Сд are 

of the form (5) because A is reversible. Hence the equality 

(compare with (6)) 

Ё BnkXk = Z E ВпЛ + E^k(Zk - Z), (7) 
k = 0  k = 0  к  

where zk = ^x and Z = ljlm zk, holds for each x e Сд. As 

E < 00 (8) 

for each k,n,s s IN and 

E iv:J = o„"> о) 

by condition 2) of Lemma 6 we have 

C = pnXk <10) 

and there exist finite limits l£m = r . by condition 1) 

of Lemma 4. Moreover, the condition £ |^k| = 0n(l) is 

fulfilled because 

2* 
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E I"JE К J = °„(1> 

by condition 2) of Lemma 6. Therefore from (7) we obtain 

(by Lemma 2 and condition 2)) that the equality 

P«A = z £ ВпЛ + ры,Ч - *> <"> 

holds for each x = (xk) e Сд. At this, conditions 1) and 3) 

imply the existence of the finite limit lim £ rnk (гу - Z) 

for each x e Сд by Lemma 2 (since (zk - Z) « c° for each 

x « Сд). Consequently Сд £ cß, by 2). This means that 

M с (Сд,Cg). 

THKOftKM 2. Let A - (-"nk) be a reversible matrix, 

В = (f?^) and M = (mnk) be matrices over С, -Г/ £ l^nkl < 00 

/or eacA n e IN, mnk = 0k(l) and condition 1) of Lemma 4, 

condition 1) of Lemma 6, condition of Lemma 7 aod conditions 

1) and 2) of Theorem 1 are fulfilled then there exist finite 

limits lim r k̂ - Упк . Moreover, if in addition 

E rnl 0(1) 
i=o 

then M e (bvA,Cg) . 

Proof. The equality (4) holds for each x e Ьуд by 

Lemmas 5 and 7. Consequently, it is sufficient to show that 

ЬУд s Cg.. It is easy to see that the equality (7) is true 

for each x e Ьуд since Ьуд £ Сд. As (8) is true (since 

£ \РгЛс I < <*> for each n e IN) and 

kj = I = oa) 

by Lemma 7 the conditious (9) and (10) are valid. Hence 

there exist finite limits lim r^k = rnk by condition 1) of 

Lemma 4. Moreover, as 

E jj-Vul < с 

for each k,n,s, e IN we have 

= E p„r jo«:v 

Thus the condition £ = 0^(1) holds by Lemma 7. 
t=o 6 

Therefore (7) implies the equality (11) for each x « bvfi by 
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Lemma 2 and condition 2) of Theorem 1. Hence, from condition 

1) of Theorem 1 and from the condition of Theorem we obtain 

by Lemma 2 that there exists the finite limit 

l^m E ~ Z) for each (xk) e Ьуд . For that reason 

Ьчд S Cg. by condition 2) of Theorem 1. Consequently 

M « (bv A , C g ) .  

REMABK 1. If В = (Pnk) is a matrix which has the 

property E |PnllI = 0(1) then condition 3) of Theorem 1 

and the condition of Theorem 2 are redundant. 

By Lemma 3 we have 

THEOREM 3. Let A = (*<пк) be a reversible matrix, 

В = (Pnk) and M - (mnk) be matrices over <C. If E | n̂k | < 00 

for each n  e  IN,  m n k  = 0 k ( l )  and condition 1) of Lemma 4 , 

condition 1) of Lemma 6 and the condition of Lemma 7 are 

fulfilled then there exist finite limits lim z^k = . 

Moreover, if in addition 

1> E IE <Bnl - Вмд )t?1 I < », 

= Kk * <Wl = 0<1)-

where p_^ k - 0 and 

j. 

4Лел M e (ЬУд,ЬУр). 

2. Let (pn) be a sequence of non-zero complex numbers, 

Pn = P0 + • . . + Pn * 0 for each n e M, p ̂  = 0 and 

(B ,Pn) - (-<nk) be the series-to—sequence Riesz method 

generated by (p ), i . e .  

Г 1 - Pk_t/Pn if к < n, 

" V k  " j o  i f  к  >  n .  

We note that (R,pn> is a normal method. Therefore (E,pn) has 

the inverse matrix (R,pn)"i = - (nn|t> where (cf. [73, p.116) 

3 
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Vpk 
-pku/pk • l/pk„) 

0 

if n = к, 

if n : к + 1, 

if n = к + 2, 

if n < к or n > к + 2. 

(12) 

Нои не shall give some results for the case A = <R,Pn> 

ТЯЯОВКН 4. Let (B, pn) be a conservative method, 

В = and M = (m^). Moreover, let gj/^l < » for each 

n « IN .If* 

1> = 0(p.P,). 

Am nk 
2 ) Z  |P/—I = 0(1), 

3) there exist finite limits lim Bnk = Bk, 

ABnk 

4) L JPkA~r~l = 0(1) 
k 

pk 

then H 6 (c(R p j,oB). 

Proof. It is sufficient to shot* that all the 

assumptions and conditions of Theorem 1 are fulfilled. As 

(R,pn> is a conservative method there exists a number M > 0 

such that 

Rn = E |Pkl < M|PJ. neW. 
k=o 

(cf. [7], Theorem 17.1). Hence 

|Pn/pJ >.J + Rm/m|pJ > n « «. 

Consequently, from condition 1) не obtain 

mne = 0(1). (13) 

For that reason = 0k(l) and the condition 1) of Lemma 6 

is fulfilled (since ••= <5^ (cf . [7] ,p. 58)). Moreover, in 

that case by (12) we have 

2 Here and onwards Axn = xn - xwl. 



Mnk if к < э - 1, 

. if к = в - 1, 

•" = 1 P.™n./P. if к = ., 

О if к > s 

where 

and 

? 
Дтпк 

«и = v-^r 

АВ. 

У -  Р А 
к рк 

Now it is easy to see that conditions 1) - 3) of Theorem 1 

(by conditions 3) and 4)) and condition 1) of Lemma 4 are 

fulfilled. As 

•-1 ^"лк е-1 f е-1 ^Ппк . •-1 е-1 
Е РкА— - Е pj Е А— J = Е Аты - — Е Pt = 

к=о р
к 1 = о *• 1с=1 рк ' l=o Fe 1=о 

we have 

т - о Am no n,e+l p n» 

P. .-1 A"nk 

—Дт = m - m - E P. A . (14) 
p ne no n,e+l , к P. c в k=0 ck 

Therefore 

Р.Лвп./Р. = 0(1) (16) 

by conditions 2) and (13). Onwards, it is easy to see that 

P . P P e - 1 s • 
—=— m : — m - —Дт - m (16) 
p  ̂ r>,e-n Pe r>e pe ™ n,«*l l'v' 

Consequently 

e-i P. 1 P„ 
P ICJ £ "Ё* IMnkI + \~ m I + mn.| = 0(1) 
к k=o ö 

by conditions 1) - 2), (13) and (15). So the condition 2) of 

Lemma 6 is fulfilled too and Me (c,0 ..cn) by Theorem 1. ( K - P n )  Б 

THE ОВЕН 5. Let (R, pn) be a absolute convergence 

preserving method, В = (ftrk) and M - (mnk) be matrices over 

C. Moreover, let El/*,,I < ® for each n e IN and conditions 1) 
и 

i* 
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and 3) of Theorem 4 be fulfilled. If 

1) Р.Дт^ = 0(p.), 

" B„k = °<1>. 

3> Р.ДВ,. = 0(P.) 

then M « <bv(B,pri)-cB)-

Proof. It is sufficient to show that all the 

assumptions and conditions of Theorem 2 are fulfilled. It is 

clear that condition 1) of Lemma 4 is satisfied. We see that 

conditions 1) and 2) of Theorem 1 are also satisfied by 

condition 3) of Theorem 4 because = 6 . As (R, pn) 

preserves absolute convergence, we have (cf . [7], Theorem 

17.2) 
p 

Pk-1 J, IPX^I = 0(1>-

Hence there exists a number M > 0 such that |pk/Рк | < M and 

so |Pk/pk| > 1/И independently of k. Consequently, from 

condition 1) of Theorem 4 we conclude that (13) holds. 

Therefore mnk = 0k (1 )• and condition 1) of Lemma 6 is 

fulfilled. 

As equalities (14) and (16) hold then the condition of 

Lemma 7 is fulfilled by conditions (13) and 1). It is easy 

to see that the condition of Theorem 2 is also fulfilled. 

Indeed, the equality 

ДВ P е-1 nk • 
E РЛ = В - В - —ДВ„ (17) к no n,e+4 F» 

is true (compare with (14)). Consequently, by conditions 2) 

and 3) condition 1) of Theorem 2 is fulfilled. This implies 

that M € (bv(R p ),c0) by Theorem 2. 

REMARK 2. If В = (f?nk) is a matrix such that 

El/*nkI = 0(1) then condition 4) of Theorem 4 and conditions 

2) and 3) of Theorem 6 are redundant. 

THEOREM 6. Let (R,pn) be an absolute conregence 

preserving method, В - (/>пк) and M = (mnk) be matrices over 

С. Moreover, let E| n̂kl < 00 for each n « IN and the condition 

12 



1) of Theorem 4 and condition 1) of Theorem 5 be fulfilled. 

If 

1> C|Bnk - Bn„lk| = 0(1). 

г; PkE|*(Bnk - Bn.1>k)| = 0(pk), 

3) there exist finite limits lim dnk = dn, where 

p
k 

dnk r + 5^ДВлк, 

then M « (bv(E p j.bvg). 

Proof. We shall show that all the assumptions and 

conditions of Theorem 3 are fulfilled. In the proof of 

Theorem Б it has been shown that mnk = 0k (1) and condition 

1) of Lemma 4, condition 1) of Lemma 6 and the condition of 

Lemma 7 are fulfilled. It is easy to see that condition 1) 

of Theorem 3 is fulfilled by condition 1) because v n  =  6 n o .  

Condition 2) of Theorem 3 is fulfilled too. Indeed, by (17) 

the equality 

k-1 
E * . = В - d . 

, nl r,o nk 
1 = 0 

is true. Therefore we have 

k- S 
p . - £ * , - E * , = lim (В - d , ) -nk •* nl , ** nl , no nk I t = 0# к 

-  ( В  - d . ) = d , - d  
no nk nk n 

by condition 3). Onwards, by conditions 1) and 2) we obtain 

E ldnk - dn-l.J -- 0<!> 

from which it follows by condition 3) that £ |dn - dn_ |<®. 

For that reason 

= Kk - ^-,,kl 5 E ldnk - «W + E К - dn_J = 0(1). 

So condition 2) of Theorem 3 is fulfilled. Consequently, 

M g (bv(p p .) • bvB) by Theorem 3. 
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Summeeruvusvaljade maatriksteisenduste iseloomustus 

Ants Aasraa 

Resümee 

Olgu A = (^nk>-kompleksarvuline reversiivne maatriks, 

s.t. süsteemil (1) on ühene lahend iga koonduva Jada (zn> 

korral. Olgu В = (/?nk) ja M = (mnk> komp leksarvu 1 ised 

maatriksid, Сд maatriksi A summeeruvusvä 1 i ja ЬУд maatriksi А 

absoluutse summeeruvuse väli. Artiklis antakse piisavad 

tingimused selleks, et maa tr iks te isendus (2) teostaks 

kujutused Сд -» Cg, bvA -» Cg ja Ыгд -» bvg. 
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OH COMMUTATIVE LOCALLY M-COHVM ALGEBRAS 

Jorma Arhlppainen 

Let A be a commutative locally m-convex topological 

algebra over the complex numbers. We also assume that A has 

a unit element which will be denoted by e. Let 

P = </\l X e A) be a family of seminorms which defines the 

topolo'gy in A. We assume that this topology is a Hausdorff 

topology, in other words, if /\(х) = 0 for all X e A then 

x = 0. Furthermore we assume that f\(e> = 1 for all X « A. 

General properties of locally m-convex aligebras can be 

found in [2,3,13] or in [153. 

If x e A then the following notations will be used: 

Nx = {x e AI f\U) - 0}, 

A^ = A/Nx is the quotient algebra of A by Nx, 

Ax is the completion of Ax. 

Obviously Ax is a normed algebra with the norm defined by 

/\(x + Nx) = f\(x) for each x + Nx e Ax. Furthermore, we 

shall denote by Д(А) the set of all nontrivial continuous 

homomorphisms from A into C. The set A(A> will be provided 

by the relative »(A',A)-topology. Then Д(А) is a completely 

regular space. As it is generally known this is the weakest 

topology for which each function x : Д(А) -» С defined by the 

equation х(т) = т(х) for each т e Д(А) is continuous 

whenever x e A. The mapping $ : x -» x will be called the 

Self and mapping and A(A) the carrier apace of A. Let 

A = <xl x « A}. Then A £ C(A(A)). For any set S we shall 

denote by cl(S) the closure of S . If I is an ideal of A then 

h(I) = {t s Д(А)| x(t) = 0 for each x e 1} 

is the hull of I. The kernel k(E) of a subset E of A(A) is 

defined by 

4* 
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k(K) = {х е А j х(т) = 0 for each т « Е> 

and for the empty net не define k( 0) = A. 

1. Auxiliary results. If У = X e A> Is a family 

of aeminoriaa which generates the topology in A we will 

denote this topology by T(^) and the corresponding 

topological algebra by (А,ТС»)). If (A,T(^1>) and <B,T(*2>) 

are two locally m-convex algebras with corresponding 

families of seminorms = (л^| x « A^} (i - 1,2) then a 

mapping S : (A.TO^)) * (B.T <*"2) > will be called 

seal-Isometric mapping if there is a bijection p from A^ 

onto Ag such that 

Ap(X)(Sx) = /^(x) for all x « A and X e Аг. (1.1) 

Semi-isometric mappings have, for example, the following 

properties: 

LEHMA 1.1. Let (A,T(5>
1) and (B,T<5>2)> be two locally 

m-convex algebras and let S : (A.T^j) * (B,T(J>2)) be » 

semi-isometric algebra-hooomorphism. Then 

(a) S is continuous, 

(b) S is a bijection from A onto S(A) с В, 

(c) S~* from (S(A),T(512>) onto (A.TC-*^)) Is semi-

isometric, 

(d) S 1 is continuous. 

The proof can be carried out by exactly the same 

fashion as for an isometric map between two normed algebras. 

We shall say that two locally m-convex algebras are 

semi-isometrleally isomorphic if there is a semi-isometri-

cal isomorphism between these two algebras. 

LKMMA 1.2. If (A ,T(5>j) and (B,T(5>2)) are two 

commutative semi-i3ometrically isomorphic locally m-convex 

algebras then the carrier spaces A(A) and MB) are 

homeomorphic. 

Proof. Let S be a semi-isometric linear isomorphism 

from (A,T(5'1)) onto (B,T(?2>>- For each т e Д(В) we denote 

by <">т the C-homomorphism defined by "T (x) = т (Sx) for each 

16 



x « A. Then it is easy to see that the mapping т -» is a 

homeoroorphism from A(B) onto Д(А). 

Next we shall consider some properties of the carrier 

space A(A). One of the roost fundamental results dealing with 

this subject is 

LEMMA 1.3. Let (А,Т(*)) be a commutative locally 

m-convex algebra where- *> - {f\ I X « A) . Then 

Л<А) = U (Kx| X <s A} 

where K x  -  A(A)  f l  Is compact for each X e  A and is 

the polar of Vx = {x e A| f\(x) 5 1}. 

Proof. See [2], p.227, or [5], p.28. 

LKMMA 1.4. Let (A,T W) be as in Lemma 1.2. Then Kx = 

= h(Nx) for all X m A. 

Proof. By [15] we have A(AX) = {т^| r e Kx> where тх 

is the mapping from Ax into С defined by T
x(x + Nx) =; т (x) 

for each x + Nx e Ax. On the other hand, we have h(Nx) = 

= {тI T
x 

e A(Ax)} by [13], Theorem 4.1. So we can see that 

Kx  = h(Nx) for all X « A. 

RBMABK. We shall always assume that the family 3> = 

= j X E A) is saturated, in other words, if , /ч, e 

then Лу = max{fij,fb>] e ? where fiy is the seminorm of A 

defined» by o^tx) = maxt/i.^ (x> ,f4> (x)} for each x « A. 

Let Vy = {x«A| Лу(x) < 1> and Ky = Д(А) П Then 

we have 

LEMMA 1.5. KM = U Kg where Ki = Д(А) n V? with 

i = 1,2. 

Proof. Let NM = {x e A| ̂ (x) и 0}. Then it is easy to 

see that NM = H1 П Ng where = (x e A| fi^x) = 0} with 

i = 1,2. Thus, 

KM = h(V = h(Nl П N2> = h(Nl} U h(N2) = K1 U K2. 

5 
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COBOLLAHY 1.1. The family SK(A) - {Kx| X e A} is closed 

under a finite union. 

2. On function algebras. Let X be a completely regular 

space and let C(X) be the algebra of all continuous 

complex-valued functions defined on X. As it is generally 

known С(X) can be equipped by several kind of topologies, 

usually by the so-called compact-open topology which is 

defined by the family У(Х) = {л^| К e 9С(Х)} of seminoma 

where 

/чЛх) = sup |x(t)| 
* t=K 

for each x e С(X) and X(X) is the set of all compact subsets 

of X. 

Let S"Cq с 9C(X) be a family of compact subsets of X with 

properties 

U {K| К <5 3CQ} = X (2.1) 

and 

if g 9Cq then tq U K2 e 9CQ . (2.2) 

If J К g 9Cq} then we shall denote by T (3>q) the 

topology in С (X) generated by the family -Pq . The properties 

of topological algebra (С (X), T (-Pq )) were considered in [16]. 

Obviously T(*0) equals the compact-open topology if for each 

К G 9C(X) there is e 9CQ such that К £ Kj . The properties 

of С(X) with the compact-open topology can be found, for 

example, in [7] or in [18]. In the following we shall give 

some results concerning the algebra (С (X), T (J>q )) . 

LEHMA 2.1. Let X be a completely regular space. Then 

(a) A(C(X),T(*0)> = {rt| t g X} where (g) = g(t) for 

each g g C(X), 

(b) if I is a closed ideal of (C(X) ,T(*q) ) then 

k(h(I)) = I, 

(c) if g ?0 and fiy - maxtfi^ , > then - л-g у r • 

Proof. For the proof of part (a) see [15], Example 

7.6. Part (b) can be proved in a similar fashion as the 

corresponding result for the compact-open topology (cf . [13], 

p. 333). Part (c) is obvious. 
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It is well known that С(X) with the compact-open 

topology is complete if and only if X is the so-called 

kg-space. The space X is called a kp-space if from 

g|K « С (К) for each К e 9t(X) follows that g e С (X) (cf., for 

example, [2] or [6]). We shall call X a k(9CQ )g-space if the 

condition g |K « C(K) for each К «= 9Cq implies that g e C(X). 

THKOBEM 2.1. Let X be a completely regular space. Then 

(C(X) .TCJ'q )) Is complete if and only if X is a k(9Cg )p-space. 

Proof. Suppose that X is а к(9Ср )g-space . Now it is 

easy to see that (C^.TCSq )) is complete when C* is the 

algebra of all C-valued functions defined on X. Obviously 

CC(X),T(*q)) is a closed subalgebra of (C^.TC-Pq )) from which 
it follows that (С(X),T(*-)) is complete. Suppose now that 

(С(Х),Т(^д)) is complete and let g e С be a function for 

which g|K 6 C(K) for all К e 9Cq . Since each К e 9Cq is 

compact and X is completely regular there is an extension 

Gg g C(X) of g for all К by Tietzes extension theorem (see 

[5], Theorem 5.1). The family is partially ordered by set 

inclusion. It is also directed . because has property 

(2.2). So is a net in C(X). Obviously we have 

linigGg = g. Since (C(X) ,T(JPq)) is complete we can see that 

g e C(X). Thus X is a k(9Cg )g-space . 

3. On functional representation of a locally в-convex 

algebra. It was earlier noted that A s C(A(A)) when A is a 

commutative locally m-convex algebra. If we now define a 

topology in С(Д(А)) by the family ̂ (Л) = {fi^ | л. e Л> of 

seminorms where 

fiy (g) = sup Ig(T > J 

TeKx 
for each g s С(Д (A)) and denote this topology by Т(Л) then 

(C(A(A)),T(A)) is a topological algebra of the same kind as 

was considered in Chapter 2. Namely, the family 9С(Л) has by 

Lemmas 1.3 and 1.5 the following properties: 

и {Kx| X G Л} = A(A) (3.1) 

and 

if KVK2 e K(A) then Kx U Kg e 9С(Л) , (3.2) 

Since A is a subalgebra of С (A(A)) we can also equip it with 



the topolpgy Т(Л). So we can next consider a locally 

m-convex algebra (A,T(A) ) . 

LEHMA 3.1. Let (A,T(?) ) be a commutative locally 

m-convex algebra. Then the Gel fand mapping from (A,T(3>)) 

onto (A,T(Л)) is continuous. 

Proof. Since |т (x) I S r\(x) for all r e Kx, x « A and 

X с Л we have (x) - supTeK |х(т) | < f\(x) for all x « A 

and x с A from which the result follows . 

If each seminorm e has the property 

. z. . .2 
f\(x ) = f\(x) 

for each x e A we shall call (A,T<*)) a square algebra. For 

square algebras we have 

THEOREM 3.1. Let (A,T(J>)) be a commutative locally 

m-convex algebra. Then (A.TW ) is a square algebra if and 

only if 

f\(x) - ( x >  for all x  e  A  and x e  A .  (3.3) 

Moreover, if (A,T(*)) is a square algebra then the Gelfand 

mapping is a semi-isomorphism from (A,T(^)) onto (A,T(A)). 

Proof. If (A, T (.»>)) is a square algebra then 

Лх((х + Nx)2) = <\(x2) = f\(x)2 = (fi(x + Nx))2 

for all X e A and we can see that Ax and therefore also Ax 

are normed square algebras. In the proof of Lemma 1.4 we saw 

that A(AX) = {txj г g Kx) for all x s A where T
x(x + Nx) = 

г(x). Now the mapping т + тх is a homeomorphism from Kx onto 

Д(АХ). As Д(АХ) and A(AX) are homeomorphic by Corollary Ž.1 

of [13] then the elements of Д(АХ) will be denoted also by 

rx. Now by using Theorem 5.1.2 of [9] we have 

f\(x + Nx) = sup |(x + Nx)*(tx) J. 

Tx^(Ax) 

But (x + NX)~(TX) = X(T ) for all T E Kx. So 

f\ (x) = f\ Cx + N, ) = sup |x(t ) j - (\ (x). 
x x л TGKx X 
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Suppose now that the equality (3.3) holds. Then 

f\<x*) = (x2) = (x)z = f\<x)2 

for all x e A and x e A which shows that (A.TC^)) is a 

square algebra. 

If now (3.3) is valid then for each seminorm there 

is a unique seminorm qx = such that #\(x) = qx(x) for 

each x e A. So, if (A.TW) is a square algebra then the 

Gelfand mapping is a semi-isometric isomorphism from 

(A,T(*)> onto (A,T(A)). 

COHOLLABY 3.1. Let (A,T(J>)) be a square algebra. Then 

k(h(N x>) = N x  for all x  e  A ,  

Proof. We only have to show that k(h(Nx)) £ Nx. Let 

x e k(h(Nx)> be arbitrary. Then х(т) = 0 for all т e h(Nx) = 

. Therefore 

f\(x) = (x) = sup |х(т)| z 0. 
X tgKx 

So we can see that x e Nx which completes the proof. 

RKHABK. Some properties of (A,T(A)) have been studied 

in [9]. 

4. On algebras with involution. Let (A, T (3>)) be a 

locally m-convex algebra and x •* x* be an involution in A. 

We say that (A,T(J>)) is a star algebra if 
/  * ,  /  f\ (xx ) = r\ (x) 

for each x g A and X  <= A. It is easy to see that a star 

algebra is a square algebra (cf. [2], p.222). Moreover, if 

(A,T(^)) is a complete star algebra then each Ax is complete 

(cf.[4] or [16], p.179). So, for a complete star algebra, 

each factor algebra Ax is a B*-algebra. 

Next we shall consider the functional representation 

of algebra (A,T(*)). This subject has been studied, for 

example, in the following papers•[1,2,6,9,12,13,15,16,19]. 

THEOBBM 4.1. Let (A,T( ) )  b e  a  c o m m u t a t i v e  c o m p l e t e  

star algebra. Then the Gelfand mapping is semi-isometric 

isomorph ism from (A,T(J>)) onto (С (Д (A)), T (A)) . 
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Proof. By Theorem 3.1. the Gelfand mapping is a 

semi-isometric isomorphism from (A.TW > onto (A,T(A)). So 

it suffices to prove that A = C(A(A)). This result has been 

proved in [9] or in С153 by using the so-called projective 

limits. For the properties of projective limits see, for 

example, [8] or [15]. We shall however use here a more 

direct method. 

Let g e С (A (A)) be arbitrary. Since A* is a 
* л 

commutative В -algebra for all x « A we have Ax = С(Д(АХ)) 

for each X e A by the Gelfand-Naimark Theorem (cf.,for 

example,[10], p.277, or [17], p. 230-232). 

Let now x e A and т e Kx. Then as above there exists 

Tx e д(Ах) such that т(х) = Tx(x + Nx) for each x « A. 

Moreover, let *x(*) - x + Nx for each x g A. Then 

у = 7"x (*x) = **(T
X). As g ° g C(A(AX)) then there exists 

an element xx « A such that g • ** = (xx + tix) . 

Consequently, for each x e A and т G Kx we have 

g(T) : g . **(TX) = (XX + NX> (TX> = T(xx) = xx(T). 

The index set A can be partially ordered by setting 

X^ < Х  ̂•• (f) 5 (f) for all f G C(A(A))_ Then A is a 

directed set by (3.2). So Cxx>xejx is a net in (A,T(A)). Let 

now M be a fixed element in A. It is easy to see that 

Oy <xx - в) = 0 for all X > fj. Therefore limxxx = g. 

Because (A,T(5>)) and (A,T(A)) are semi-isometrically 

isomorphic by Theorem 3.1 they can be identified as 

topological algebras and therefore from the completeness of 

(A.TC^)) it follows that (A,T(A)) is also complete. So 

(A,T(A)) is a closed subalgebra of (C(A(A)) ,T(A)) and since 

g is the limit of a net in (A,T(A)) we can see that g e A 

which completes the proof. 

REMARK. Since 

(x + Nxf (R A )  = (x + Nx) * ( T X )  

for all X e A we can see that 

(X * ) " ( T )  =  X (T )  

for all x G A and т G Д(А) where the bar denotes the complex 

conjugation. Thus, the Gelfand mapping is also a 

- isomorphism. 
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Proof. This result can be shown by similar fashion as 

for commutative B*-a Igebras. 

COROLLARY 4.3. Let <A,T<5>)) be as in Corollary 4.2. 

Let I be a closed ideal of A and let AQ be as In Corollary 

4.1. Then 

I = П <1 + Nx| x « V 

Proof. We only have to note that h(I + Nx) = h(I) fj 

h(Nx) = Ex for all x e Л from which the result follows, 

since 

I + Nx = k(h(I + Nx)) = k(Ex) = Ix 

for all X « A. 

COROLLARY 4.4. Let (A,T(5>)) be as in Corollary 4.1. 

Then Ax is complete for each X s A. 

Proof. It is easy to see that by Theorem 3.1 the 

mapping x + Nx -» x|h(Nx) where x + Nx e Ax is an isometric 

isomorphism from Ax onto C(h(Nx>) from which the result 

follows. 

In Chapter 2 we gave the necessary and sufficient 

condition for algebra (С (X,T (-Pq )) to be complete. By using 

Theorem 2.1 we obtain now the following result: 

COROLLARY 4.5. A commutative star algebra (A,T(*)) for 

which A = C(A(A)) is complete If and only if the carrier 

space Д(А) is a k(9C(A) )p-space. 

5. On quotient algebras. Let (A,T(*>)) be a commutative 

locally m-convex algebra and let I с A be a closed ideal. 

Then the quotient algebra A/I will also be a locally 

m-convex algebra if we define the topology in A/I by the 

family ? of seminorms where 3> = {я-х | X <= Л} and 

(x + I) = inf f\ (x + у) 
ye I 

for all x + I e A/I and X e Л. We shall denote this topology 

by T (3>) . Furthermore , we shall denote 

Nx = {x + I j r^(.x + I) = 0}, 

6* 
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THEOREM 4.2. Let (А,Т(-Р)) be a commutative star 

algebra for which A = С(Д(А)). Then k(h(I>) = I for all 

closed Ideals of A. 

Proof. Let I be an arbitrary closed ideal of A. To 

prove the theorem it suffices to show that k(h(I)) £ I. • So 

let x « k(h(I)). Then х(т) = 0 for all т « h(I). If we now 

define the mapping т -• ь>т for each т e д(А), where "T is 

defined by "T(x) = r(x) for each x « A, then by Theorem 3.1 

and Lemma 1.2 this mapping is a homeomorphism from 4(A) onto 

Д(А) = Д(С(Д(А))). Therefore we have 

h( i )  = {«т| г e h(I)> 

where I = S(I) is a closed ideal in С(Д(А)) . From the 

condition "T(x) = r(x) = х(т) = 0 for each т e h(I), it 

follows that i e k(h(I)). As k(h(I>) = I by Corollary 8.3.1 

in [10] then x « I, so x « I whereas $ is an one-to-one 

mapping (cf. [23, p. 263). 

COROLLARY 4.1. Let I be a closed ideal of a 

commutative star algebra (А,Т(-У)) for which A = C(A(A)) . 

Furthermore, let Bx - h(I) f) Kx for each x e A and let 

\Q - {X e A| Ex * 0 >. 

If we define Ix = k(Ex) then 

I = n ax| x e A0>. 

Proof. We have 

I = k(h(I)) = k(UXeA(jEx) = fX«Aok(Ex) = rVeA^X-

We shall say that a locally m-convex algebra (A,T(*)) 

is normal if the elements of A separate any two disjoint 

closed subsets F^ and Fg of the carrier space Д(А). It is 

easy to see that for a normal locally m-convex algebra the 

carrier space is a normal topological space. For normal star 

algebra we have 

COROLLARY 4.2. Let <A,T(*>)) be a commutative normal 

algebra for which A = С (A(A)) and let Ij and Ig be two 

closed ideals in A. Then Ij ® Ig Is also a domed ideal of A 

or It ® Ig = A. 
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vx = ( x  + I |  f \ ( x  + 1 ) 5  1 ) .  

Kx = A(A/I) П V°. 

If не define a mapping Т Ц  for o> G Д(А/ 1 )  as following 

тш(х) = "(x + I) 

for each x « A then by [13] (Theorem 4.1, p. 339) the 

mapping » is a homeomorphism from Д(А/1) onto h(I). 

ТНВОВЕИ 5.1. Iet (A,ТС)) be a commutative locally 

m-convex algebra and let I be a cloeed ideal of A. Then 

{rj o> e h(Hx)> = h(I) n Kx 

for all X G  A .  

Proof. Let X e A be fixed and " g h(Nx) be arbitrary. 

Then we have w(x + I) = 0 for all x + I g Nx. Now 

тщ(и + v) = "(u + V  + I) - " ( V  + I) 

for each u e I, v G Nx . But |"(v + I) | S f\(v + I) < fi^(v)= 

- 0. Thus, to(v + I) = 0 and we have T
aj(u + v) = 0 for all 

u « I, v e Nx from which it follows that с h(I + Nx ). But 

h(I + Nx) = h(I) n h(Nx) = h(I) n Kx. 

Let now r g h(I) П Kx be arbitrary. Since h(I) -

= {т^| ш e Д (A/I)} we can see that there is в e Д (A/I) such 

that г - т. It now suffices to prove that "(x + I) = 0 for 

all x + I g Nx. Let x + I g Nx . Then for each e > 0 there is 

Уд G I such that (x + Уд) < *. So 

|"(X + I ) I = |ты(х) I = |т (x) I = |т (x + Уд ) I 5 (x + Уд) < £ 

which completes the proof. 

COROLLARY 5.1. Let A and I be as in Theorem 5.1. Then 

the mapping ш •* тш is a homeomorphism from h(Nx) = Kx onto 

H( I) N K X  for each X G Л .  

Next we shall consider the functional representation 

of the quotient algebra A/I. Let I be a closed ideal of 

algebra (A,TO). Then the following notations will be used: 

Ex = h(I) П Kx for each x G Л, лд - {X G Л| Ex * 0} and 

T (5=q ) is the topology in A/I generated by the family of 

seminorms - {я^| X G Aq>. Furthermore, we shall denote by 

T (Aj) the topology in С (h( I)) generated by {fig | X « A^J. 

25 
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THKOBKM 5.2. If (А,Т(5>)) be a commutative normal star 

algebra for vhich A = C(Ä(A))and I be a closed ideal of A 

then T() is a locally m-convex topology in A/I and the 

mapping 

x + I •» x| h(I) (5.1) 

is a semi-isometric Isomorphism from (A/I,T(i^)) onto 

(C(h(I)),T(Ag)) such that 

r\ (x + I) = fig (x> for all x + I « A/I and X e A^ . (5.2) 

Furthermore, we Aave 

f\((x + I) (x + I)*) = л^(х + I)* /or aJJ x + I e A/I and 

x e Aq. (5.3) 

Proof. Obviously T(5>0) has all the properties of a 

locally m-convex topology. We only have to prove that from 

the condition f\(x + I) = 0 for all x « A^ it follows that 

x + I = 0 or equivalently that x « I. We shall show this 

after we have proved (5.2). 

It is easy to see that the mapping x + I -» x| h(I) is 

a linear homomorphism from A/I Into С(h(I)). If x| h(I) - 0, 

then х(т) - 0 for all т <= h(I). So x <e k(h(I)) = I by 

Theorem 4.2 from which it follows that x + I = 0 and we have 

shown that the mapping defined in (5.1) is an injection. To 

prove the surjectivity let g « С(h(I)) be arbitrary. Since 

h(I) is a closed subset of normal space A(A) there is a 

function G « С(A(A)) by Tietzes extension theorem such that 

G| h(I) = g. Now A = C(A(A)). So there is x e A for which 

x = G. Therefore 

(x + I) (<•>) = x(tu) = g(T(j) 

for each <•> « Д(А/1) since h(I) = (T
wl " G Д(А/1)>. This 

completes the proof of surjectivity. 

Next we shall prove (5.2). If x <= A and у e I then 

/\(х + y) = f^ (x + у) г л^(х + y) = ^(x) ((у(т) = 0 for 

all T g Ex since Ex с h(I)). Thus, 

f\(x + I) = inf f\(x + y) ž fig (x). 
ye I X  

Let now * > 0, x « A and 

(JX = {T E A(A) J |х(т) - Х(Т') I < « for some T' E  Ex }. 

Then Ux is an open subset of A (A) and Ex <= 0. Now for any 
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т e Ux п Kx there is т' е Ех such that |х(т) j < |х(т')| + £. 

As Д(А) is a regular space and h(I) is a closed subset of 

Д(А) there is an open subset V of Д(А) such that h(I) с V. 

It is easy to see that W = (X\(UxUV)) U (KX\UX) is a closed 

subset of Д(А) and W n h(I) is empty. Therefore by Urysohns 

lemma there is у <s A for which y(т) = 1 for each т e h(I) 

and у(т) = 0 for each т e W. Then (xy) (т) = х(т) for each 

г e h(I) and therefore x - xy e k(h(I)) - I for which 

x + I = xy + I. So 

f\(x + I) = f\(xy + I) £ /^(xy) = Ag (xy) = fiy^nK^(xy) -

= sup |х(т)| < sup |x(T)| + £ - fl_ (x) + e 
т«ихпкх теЕх_ X 

by Theorem 3.1. Thus /\(х + I) 5 Oj.(x) which completes the 

proof of (5 .2) .X 

Suppose that /\(х + I) = 0 for all x e A^ . Then 

х(т) = 0 for all T e Ex where x e Aq. Because UXeAEx = h(I), 

we can see that х(т) = 0 for all т e h(I) whence x e I which 

shows that T(-?>q) is a Hausdorff topology. The result (5.3) 

follows from (5.2). 
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Kommutatiivsetest lokaalselt m-kumeratest algebratest 

Jorma Arhippainen 

Resümee 

Olgu A kommutatiivne lokaalselt m-kumer ühikuga 

C-algebra. Käesolevas töös uuritakse algebra A 

funktsionaalseid esitusi, Gelfandi teisenduse omadusi, 

kinniste ideaalide kirjeldusi ning faktoralgebra A/I 

funktsionaalseid esitusi kinnise ideaali I korral. 
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ACTA ГГ COMMENTATJONES UNIVBRSITATIS TARTUBNSIS 

1991, 926, 29-40 

Product and direct sum of L^-K(X)-spaces 

and related K(X)-spaces 

Johann Boos and Toivo Leiger* 

1. Let (X,r) be a locally convex space. With X' and X* we denote the topological dual 

of (X, T) and the algebraic dual of X , respectively. A subset S of X is called sequentially 

г -closed if Xk € S (k € IN) and xk —• a (r) implies a 6 S and sequentially т -dense, if 

for each a G X there exists a sequence (ж*) in S with xk —• a (r). 
u 

If S is any subspace of X then S denotes the smallest sequentially т -closed subspace of 
u 

X containing S. Obviously, S is the intersection of all sequentially r -closed subspaces of 

X including S (see [3]). 

2. As usually, tv(X) and <p(X) denotes the set of all sequences x — (ж*) in X and the 

set of all finite sequences in X, respectively. A subspace of cv(X) is called sequence space 

(over X). 

A locally convex sequence space (J5, rE) over X is a K(X)-space if the coordinate mappings 

*к ' (E,rE) —> (X,t) , x = (xi) —• xk (k € IN) 

are continuous. In case of a sequence space E (over X) the ß-dual is defined by 

Eß ^(V7*) € w(X') I у;фк{хк) converges for each x = (xk) € . 

Each (фк) € E& defines a linear functional 

ф: E —• IK, x = (xk) —• ; 
к 

therefore in case of <p(X) С E, this representation of ф is uniquely determined and we may 

identify E@ as a subspace of . If E is a K(X)-space containing <p(X) then 

v(X') С Eß n E' С E' and E' = thus E' = . 

" During the preparation of this paper the authors were supported by the DAAD (Deutscher Akademischer. 
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DEFINITION (see [1]). Let E bea K(X)-spacecontaining <p(X). E has ß-sequentially 

dense dual if П E' is sequentially a{E',E)~dense in E'. 

E has а у» -sequentially dense dual if y(X') is sequentially <y{E\ E) -dense in E'. 
I I o(E*,E) 

E is called Lv-space, if E' П <p(X') = E'. 

Obviously, any subspace of an Zv-K(X)-space (£, r) containing <p(X) is an X¥,-K(X)-

space, and E is also an £v-space if we replace r by any weaker K(X)-topology. 

3. Let Xa (a € A) be linear spaces. For the product X := Xa one defines for each 

a 6 Л the following linear operators: 

pra:X —• Xa , ж := (ж5) := (xs)SeA —• xa , 

g9 : Xa —» X , a —• x = (ж5) with xa = a and x6 = 0 for S ф a. 

Furthermore, we put X0 XQ where marks the direct sum. 

For each a € A let (Xa, Ya) be a (total) duality. Then we may identify Ya and XQ as a 

subspace of Xf and Y*, respectively. In a natural way X and Y0 := Ya are a dual 

pair (X, Уо) with the bilinear mapping { , ) defined by 

(x,y) := Y, К.Л 

whereby on the right ( , ) denotes the bilinear mapping of t>he duality (Xa,YQ) and Ay is 

a finite subset of A such that ya — 0 for each a € A \ Ay . On the base of the statements 

(рг0ж,ya) = (жrgaya) and (a,pray) = (gaa,y) 

we get for each a € Л the continuity of the projections 

pra ; (X,a(X,y0)) — (Xa,<r{Xa,Ya)) , 

pr. : (У0,<7(У„,Х)) —» (Ya,a(Ya,Xa)), 

and of the Injections 

S„ : (Xa,o(Xa,Ya)) —» (Л>(Х,У0)) , 

g* : (У«,-7(У„,Х„)) —> (У0,а(У0,Х)). 

Proving, for example, the continuity of the operator listed at last, we assume ж € X and 

that (а^)^€Г is a net in (Уа,сг(Уа,Xa)) converging to a 6 Ya . Thus we get 

(i,5„ah)) = (pr<,z,a(*l')) (prax,a) = (jt,j„a) 
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and therefore. gaa^ i/a<i (<т(У0, X)) which proves the weak continuity nf the injection 

ga:Ya—*Yo. 

On account of the continuity of the operators listed above, the spaces (X„,<r(A'„, Ya)) and 

(tf»(Xe),<r(X,K>)l»„(jr„)) and the spaces (Ув,<7(У„,Хв)) and (g„(Ya),a(Y0, X)|5=(y„)) are 

in each case algebraicly and topologically isomorphic. 

PROPOSITION 1. The statement 
I "X*"*1 I I °(Уа,Х а) 

0 Л-. = 0 Na 

holds for all subspaces Na of Ya (a 6 Л). 

/TN 1— 1  Proof. First of ail, we prove that Na is sequentially <t( Yq,  X )  -closed. 

If yW —* у (<т(Уо,-^))) for y<Ä) 6 ф Na and у = (у") € >o then we obtain 

6 К , pr„y("> "-=5 y° (<7(У„, X„)) , 

I—I / I l\ I I 

implying ya 6 Na (a E Л). Consequently, у E I Jj Na 1 П Y0 = ф Na after which 

I I a ° I t 
the sequential <г(1о, X) -closedness of 0 Na is verified. By that and N„ С Na 

we get 0 Na С 0 Na . 

To prove the converse inclusion we remark first of all that 
I I »(Го,*) /| ИУ„,Л-„)> 

9a(N0) — 9a \ 

/1—1 
У. 9a I Na is valid for each a € A. Namely, ga I Na J is sequentially <r(Yo,X)-closed in Yo because 

of the weak continuity of the projection pra : Y0 —• Ya; therefore we have ga(Na) С 

9a С ga(Ya). Since ga : (У„,<т(У„, XQ)) —> (ga(Ya),cr(Y0, is an algebraic 

and topological isomorphism, we have proved (*). 
I—I 

Now, let у = {у") 6 (у Na • Then we may represent у by у = % gay" whereby A, is 

a suitable finite subset of A. On account of (*) we get 

9аУа e So (tv, j = ga(Na) С 0^,. 
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Since Na is a subspace of Ya we obtain у E Na with which the inclusion 

1 '* u_i 
M* Э M* is verified. • 

In "the following proposition we are dealing with the case Л := IN . 

PROPOSITION 2. If 'Mi (i E IN) are subs-paces of X, then 
I I <7(Х,Уо) I I »(*,-,У<) 

П м- = П м-

Proof The inclusion 1С' may be proved analoguously to the corresponding inclusion in 

Proposition 1. For a prove of the converse inclusion, first of all, we check the statement 
I I I—I 

Ф Mi is sequentially <T(X,IO) -dense in Mi. (**) 

I—1 
Let x = (z1) € Mi . Then x^ := (ж1,... ,xm, 0,...) (m 6 IN) are members of the 

/-TN 1—1 * subspace bft М,- . For any given у € Y0 there exists an n E IN such that yx = 0 for i > n. 

Therefore, 
min{n,m} n 

($н,у) = (x'>y') m-=^) ^2ix\y') = (x>y) 
i=l «=1 , 

ajid consequently a:'"1' "^5° x (<г(Х,У^)) . By it, (**) is proved. 

With Proposition 1 we get 

I ИФ^.Пх) I ]"(ад) I __j<Wo) 

0 Mi = 0M ' с 0 Mi с П M< 

1 1 i_I 
By it and (**) we get the desired inclusion JT M, D Д . • 

4. Let Xa (a € Л) be locally convex spaces. We endow the product space X := J| Xa 

with the product topology, that is, with the coarsest topology such that all projections 

pra : X —> Xa (a E Л) are continuous. It is well-known that X' = Xj, that means, 

X' is algebraicly isomorphic to the direct sum Xj. 

Now, for each a E Л let F a  be a 7if(Xa)-space containing f{X a) . We put 
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F'  := П - {x" = (*")-• = (M)*In) o £ „ I X°  := Wh € ,  a  € Л} 

and endow F" with the product topology, too. Furthermore, we put » := for x" 6 f 

and 

f {x (Xk) I X"€F„, a € л} . 

Obviously, F together with 

X + v := ((*?)„ + to)„X, Ax := (AW).). (x,« € F, A 6 IK) 

is a vector space being algebraicly isomorphic to F".  Namely, the mapping 

J : F —• F*, x = («)*)* — X* = («)*)„. 

is a linear bijection. On the linear space F we define a locally convex topology Tp by 

the neighbourhood basis | J~l{Uß) | ß € S j whereby | /? 6 sj is a neighbourhood 

basis of the product topology of F*. Thus, with these topologies F and F* are topologically 

isomorphic, too. Among other things we get by it 

f € F' *=> 3 /* G F*'  :  f  = f* о J 

and, since F*' = 

f € F' <F=> fix) = f'(xl = 53 fa(x") for each x 6 -F 
абЛ/ 

where f a  is a continuous linear functional on (a € Л) and Л/ is a suitable finite subset 

of A such that fa = 0 (a € Л \ Л/). 

Obviously, F is a sequence space over X = Xa containing '-p(X). We are going to prove 

that (F, tf) is a K(X)-space. The coordinate mappings 

f t k - . F — X  =  ( x O  —  X *  =  W ) .  ( к  G  I N )  

may be represented by тг* = ir£ о J whereby 

'• F" —• ПXa , x* —> x* (fceiN). 

For each к G IN the mapping ttJ , therefore тг*, is continuous since for each a E Л the 

projections prÄ : F* •—* Fa and the coordinate mapping ir% : Fa —> Xa are continuous and 

since in the product space X convergence of nets is equivalent to coordinatewise convergence 

of nets. • 

Now, we consider the /?-Dual 

F 0  I (/fc) e ш(Х') I УЧ fkiXh) converges for all X € 

9 
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of F . Each F K  = (/£) о € X '  S S  0 X J  may be represented by 

лы = 53 
ee-A* 

where and Л* is a suitable finite subset of Л with = 0 (a G Л \ Л*). 

Therefore, (/*) G tv(X') is a member of F^ if and only if the series N, / . fk(xk) con" 
к айЛк 

verges for all x = ((ж£)а)* G F. Each (/t) G F& defines a linear functional 

Ф  :  F  — I K ,  x — » £ А Ы .  
к 

thus, we have got the inclusion y>(X') С F0 П F'. Immediately, we may state 

#') = <£ ¥>(*„'). (i) 

PROPOSITION 3. F  ß  П F '  = 0 [FJ 1  n FJ) .  

Proof. I f  Ф  e f f l f "  t h e n  w e  h a v e  o n  o n e  h a n d  

Ф(х) = 53 53 /*Ю for each X e F 
A a€v4* 

with ({fk)a)k G F^ and a suitably chosen finite subset Ak of Л, and on the other hand 

Ф(х) = 2^ Фа(х°) for each x £ F (* * *) 

where G Fa' (a G Лф) and ЛФ is a suitable finite subset of Л with фа = 0 (a G Л\ЛФ) . 

For a fixed a G Л and a G Fa we consider the sequence £ — ((J G f such that 

£* = (C5)S€A G F* satisfies fa = a € Fa and f5 = 0 for 6 ф a. 

From the representations of Ф we get 

ф(0 = V«(a) = 53 /?(«*) (a := Ы € F„), 
к 

that is фа 6 F,/. Using (* * *) we obtain Ф 6 0(F,/ n F„') • 

Conversely, let Ф € П FJ) .  Then Ф € F '  and 

Ф(х) = 53 for each x 6 F 

with /" G Fa^ П Fa' and suitable finite subset Лф of Л. Since each fa G Fj* may be 

represented by 

fix") = 53/*(4) foreachX°eFa 
к 
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with /£ € XJ (k € IN) we obtain 

•(x> = E E A°(4) = E E /fW) f o r e a ^ x e f ,  
О €-4* * fc a€-4* 

thus Ф € F". Therefore, we have proved Ф € Fe П F'. • 

THEOREM 4. 

(a) F has /?-sequentially dense dual if and only if this is true for Fa (a € A ) .  

(b) F has у-sequentially dense dual if and only if this coincides for Fa (a 6 A) .  

(c) F is an space if and only if F„ is an Z,,,-space for each а € Л. 

Proof, (a) First of all, we assume that F has /9-sequentially dense dual, that is, F" Л 

F' is sequentially <r(F', F) -dense in F'. Let а 6 «4 be fixed and let фа 6 F„', then 

дафа 6 F„'; thus we may choose a sequence (Ф'"') in F" П F' such that Ф'"' —> 

ЗаФа (»(F', F)) . On account of the continuity of the projection pra : 0 Fa' —> FJ we get 

рг„ф'п> —• фа (<r{FJ, F„)) and therefore - since рг0Ф("> 6 F0" П FJ (see Proposition 3) -

that Fq"П FJ is sequentially a{FJ, F^j-dense in FJ. Thus F„ has ß-sequentially dense 

dual. 

Conversely, for each A 6 A let FJ3 П FJ be sequentially T(FJ ,  FJ)  -dense in FJ .  Further­

more, let / 6 F', that is 

fix) = E /=0t°) for each x e F 
а€Л/ 

with suitably chosen /а 6 F0
Z and finite set Л/. For each а G А/ we may choose a sequence 

(Vq1*) in Fa
pC\FJ such that ф^ п-^ fa {a(Fa', Fa)) . Furthermore, we define (фМ) by 

Ф<"> := E Заф{:] € (${F/nFJ). 

Obviously, Ф'"' ——> / (<r(F ', F)) . This proves F^ П F' to be sequentially u(F',F)-dense 

in F'. 

(b) The proof of (b) is based on (1) and runs up quite similar as the proof of (a). 

(c) We assume F to be an Lv-space and we fix A € A . 

Let Na be a subspace of F* containing <p(XJ) and being sequentially <r(Fa
#, F„) -closed 

I 1<-№.#Л,) 
in Fa*, and let N := (J) Ns where Ns := ip(XJ) for 6 ф a. 

SzA 
From Proposition 1 we obtain 

9* 
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V.F) 1 '»(©V.F) L_I« #,F) 
N ' = фNs = 0 N, = N ; 

5 

therefore, TV is sequentially a Fa*, FJ-closed and because of Fa
# С F* also se­

quentially <x(F*,F)-closed. Since F is an L^-space we get from N D ip(Xj) the inclu-

I |<T(Fa#,Fa) 
sion N Э F' which implies Na D FJ. Thus, we have proved the inclusion 4>{XJ) D 

FJ, that is, Fa is an Z^-space. 

Conversely, for each a € Л let Fa be an Lip -space. With Proposition 1 we get 

'  (® _l °(K*.F«) 
0vW) * • = 0 v(xj) 

i e у 
I l°(Fa*,F„) 

and on account of ip(Xj) D FJ (a E A) we obtain 

F' = 0 FJ С 0 vM = 0 ¥>(*„') 

implying (see (1)) 
I Jo(f* Л ! i„(F*,F) 

F' С = V(X') 

Thus F is an Z^-space. 

5«, For each a E Xa let Xa be a locally convex space. 

We endow the direct sum Xo := with the sum topology, that is the strongest locally 

convex topology such that each injection ga : Xa —» X0 is continuous. If {Up | ß € B) 

denotes a neighbourhood basis of XQ for a E -4, then the absolutely convex hulls 

Та9а(Щ) := |E ̂9*0° I £>„l 5 1, «" e Щj 

of (J gQ(Uß) forß&B form a zero neighbourhood basis of the sum topology (see [2], 
абЛ 

18.5(1)). As everybody knows, X0* and ЦХа
# as well as X0' and ЦХ0' are algebraicly 

isomorphic. 

Now, let Fa be K( Xa )-spaces containing <p{Xa). We put 

FÕ := 0 Fa = |x" € F* I x" Ф 0 f°r (at most) finite many a 6 A j 
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and 

Fo := J-\FS) 

where J : F —• F* is defined as in section 4. Consequently, Fo is a subßpace of F, and 

X := ((®J)a)jt E F is a member of F0, if and only if there exists a finite subset Ax of A 

such that = 0 for each к E IN and a € A \ Ax. A simple proof shows v?(Xo) С Fo С 

ш(А'о). We endow Fq with the sum topology and define a locally convex topology on Fo 

by the zero neighbourhood basis {J-1 (Up) \ ß £ В] whereby |(/g | ß E У j is a zero 

neighbourhood basis of the sum topology on Fq . Therefore, F0 and F£ are algebraicly and 

topologically isomorphic, which implies 

/ € F 0 '  ^  3 f m  e F q : f = f' o j  

<=> /(x) = E /-(*") (x e Fo) 

where /<* G Fa . 

PROPOSITION 5. Fo is а tf(X0)-space. 

Proof. The coordinate mappings : Fo —* Xq may be represented by тг* = тг£ о J 

whereby 

: F0" —Xo,x* —Xt (ЛeIN). 

We have to prove the continuity of ir% (к E IN). 

For that we fix к E IN and assume U to be a zero neighbourhood in X q with respect to the 

sum topology which has the form U := TagQ(UQ), that is 

U = {EW? I E 1л»1 51, xž e t/„ 

where Ua is a zero neighbourhood in Xa. Furthermore, we put V := Taga{Va) - where 

Va := JJ U'a, U* := Ua and U'a = Xa for all г / £. Since Fa is a K(Xa) -space Va 

is a zero neighbourhood in Fa . Thus, V is a zero neighbourhood in F". Therefore, the 

statement of Proposition 5 is proved if TJ(K) С U holds. 

Each x" € V may be represented by x' = E A«ffaX° with E I'M 5 1 and 

x° = (z")i 6 V0. Consequently, we get if •€ £/*, thus x% € (/„ . This implies 

T*x* = E e V 

for each x* € У. • 

For the following examinations, we consider the ß-dual 

10  
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F0" := |(Д) 6 ш(Х„) I Е A(xt) converges for each x € F0 j 

of Fo where Д 6 X0' has a representation of the type. 

ЛЫ = E />«) (x = ЫeF0,*eiN) 

with /f 6 Xa' and a suitable finite subset Ax of A. Obviously, we have 

*W) С F0» 

and each (/t) € defines a linear operator 

Ф : F0—»IK,* — ЕЛЫ-
к 

As one may check immediately, we have 

vW) = ГЫ*:). (2) 

PROPOSITION 6. 

(a) F/ = ЦР/. 

(b) F0" П F0' = n(F/nF„'). 

Proof, (a) Because of 

5>Ы = E E^W) (* = M e F0) 
к а€Лх A; 

we get Ф := (/*) E Fq'3 if and only if the series fk(xt) converges for each x° = (я?) € 
fc 

and о: E Л. Since thereby Ф may be represented by 

*(x) = E /"(*") (x* = (x") e F„*that is X 6 Fo) 

with 

rw) ••= E ^ w )  
к 

we obtain 

Ф e F0" <t=> Ф e Д F„". 

The statement (b) follows from (a) and the identity F0' = FJ : 

F0"nF0' = (П F/) П (П F„') = n ^') • P 
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THEOREM 7. 

(a) Fo has ß-sequentially dense dual if and only if this is true for Fa (a € A). 

(b) FQ has -sequentially dense dual if and only if this coincides for F„ (« 6 A). 

(c) In case of A = IN the space Fo is an L„-space if and only if Fa is an /-v-space for 

each a € IN . 

Proof, (a) First of all, we assume that Fo has /?-sequential dense dual, that is, F0^ Л F0' 

is sequentially <r(F0', F0)-dense in F0'. For a fixed a € A let фа 6 Fa'. Then дафа 6 

F0' and therefore there exists a sequence (Ф'"') in F0" Л F0' such that Ф'"' ? дафа 

(<r(F0',Fo)) . On account of the weak continuity of the projection pra : JJF„' —> FJ we 

get рг„ф'"' ^5' ф а  ("(FJ, F a)) and since ргаФ'п' 6 Fj 3  П FJ according to Proposition 

6(b), we have established that Fj 3  Л FJ is sequentially "(FJ, FJ) -dense in FJ. Thus, F a  

has ß -sequential dense dual. 

Conversely, for each a £ Л let Fj 1  Л FJ be sequential <r(FJ, F a) -dense in FJ and let 

/ 6 FJ, that is 

fix) = E faix") (x* = (x") e F0*, that is xe Fo) 
o€Ax 

with fa 6 FJ. For each a G >I we choose (V>a^) in Fj* П FJ such that ф^ n-^+ fa 

(cr(FJ, Fa)) . Then for each x 6 fo we obtain 

4>"%) := E <n,(x0) ̂  E /«(X") = Ях). 

Because of Ф*"* = (фа^)а € Fq10 П jF0' = JJ(/V П FQ
Z) (see Proposition 6(b)) we have 

established that Fo
0 Г1 F0' is sequentially <r(F0\ F0)-dense in FJ, 

(b) The proof of statement (b) runs up quite similar to the proof of (a), and therefore we 

omit it. 

(c) First of all , we assume that F0 is a L^-space and we fix а к E IN. Furthermore let 

Nk be a sequentially a(Fk^,Fk) -closed subspace of Fk* containing <p(Xk') . Furthermore, 
I \<Fi *Л) 

we put Ni y>(X/) for i ф к (i € IN) and define N := JJM. According to 

Proposition 2 we get 
Lj<r(Fo#,Fo) 
N = П M = = N< 

10* 
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thus N is sequentially ( T ( F Q  ,  F Q ) -closed. Since F Q  is a Z^-space we obtain N  D  F 0 '  from 

the inclusion N D • By that and (2), 

N k  = pr k (N) D pric(F 0 ' )  = F k ' ,  
I i 

therefore <p(X k )  D F k  .  This proves F k  to be an L^-space (k € IN). 

Conversely, for each г € IN let F{ be an Z^-space. According to Proposition 2 we get 
I j<r(F0

#,F0) , j<r(Fe*Fa) 

Пу№') = IJv ') 3 Ц р /  =  Р 0' .  

Thus FQ  is an Z^-space. • 
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L<p-К(X)-ruumide ning nendega sarnaste К(X)-ruumide otsekorrutis ja ot-
sesumma 

Johann Boos ja Toivo Leiger 

Resümee 
Käesolevas artiklis vaadeldakse lokaalselt kumeraid jadar.uume F, mille elementideks on 
mingi lokaalselt kumera ruumi X elementide jadad x = (ж*). Sellist ruumi nimetatakse 
K(X)-ruumiks, kui koordinaatoperaatorid тгk : F —* X, x xk [k 6 IN) on pide­
vad.  Sel  juhul  s isaldab ruumi F (topoloogi l ine)  kaasruum F'  ruumi X kaasruumi X'  

koigi lõplike jadade hulga y(Xz). Olgu <f(X f )  ruumi F algebralise kaasruumi F* koigi 
jadaliselt cr(F*,  F)  -kinniste, hulka <p{X')  sisaldavate alamruumide ühisosa. К(X)-ruumi F 

I I 
nimetatakse -ruumiks, kui y(Xz) П F' — F*.  Tõestatakse (teoreemid 4 ja 7), et suvalise 
arvu Lv -ruumide otsekorrutis ning loenduva arvu Lv -ruumide otsesumrna on Lv -ruumid. 
Analoogilised väited kehtivad ka selliste K(X)~ruumide F korral, kus vastavalt y(Xz) ja 
/3-kaasruum F0 on jadaliselt o(F\F) -tihedad. 
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ТНК STATISTICAL CONVERGENCE IM BANACH SPACES 

Enno Kolk 

Introduction. The notion of statistical convergence 

was introduced by Fast [3] and has been investigated in the 

papers [1,5,7,10,11]. Following Freedman and Sember [4] the 

author [7], taking in Fast's definition of statistically 

convergent sequence and in Fridy's definition of 

statistically Cauchy sequence an arbitrary non-negative 

regular matrix A instead of Cesaro matrix С , introduced the 

notions of A-statistically convergent and A-statistically 

Cauchy sequences in normed spaces. Independently Maddox [10] 

introduced the statistical convergence in locally convex 

spaces . 

In Section 2 of this paper it is proved that in a 

Banach space X the sets of A-statistically convergent and 

A-statistically Cauchy sequences coincide. It is also shown 

that a sequence (xk), xk e X, converges A-statistically to 

xQe X if and only if there exists an infinite index set {k.} 

with the A-density 1 guch that the subsequence (xk ) 

converges to xQ. These results were presented in [7] and 

they generalize corresponding results of Fridy [5] and Salat 

[11] about number sequences (in the case A = Ct). 

In Section 3 the relations between A-statistical 

convergence and strong A-summability defined by a sequence 

of moduli are studied. Our results extend some results of 

Connor ([1], Theorem 2.1, Corollary 2.2) and of Maddox 

([10], Theorems 1 and 2). 

1. Notation and preliminaries. Let X be a Banach space 

over the field ОС, where К = С or К = К . By s(X>, m(X) and 

c(X) we denote the vector spaces of all X-valued sequences 

x = (xk) z (xk)kdN, of all bounded sequences in X and of all 

convergent sequences in X, respectively. In the case X = К 

II 
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we write з, го and с instead of s (X), m(X) and с (X). 

Let X(X) and м(Х) be two subsets of s(X) and A = (a^) 

an infinite matrix with ank e К, If for each x = (xk) e X(X) 

the series 

00 

V = E апк*к = kE »пкЧ «»•«> 

converge in X and the sequence 

Ax = (Anx) 

belongs to p(X) then we say that A maps X(X) into /u(X) and 

write A: X(X) -» й(Х). 

A matrix A (or matrix map A) is called regular on s(X) 

if А: с(X) - c(X) and lim Anx = ljLm x^ in X for all 

x «= с(X). It is known that a matrix A is regular on s(X) if 

and only if it is regular on s. The well-known Silvermann-

-Toepliz's theorem asserts that A =(ank) is regular on s if 

and only if (see [23, Theorem 4.1, II) 

(Rl) lim ank = 0 (к e IN), 

(H2> lim Eank = !. 

(83) sup E |ank| < oo. 

A matrix A is called uniformly regular if it satisfies the 

conditions (R2 ), (R3) and 

(R4> lim SJAP |ank| = 0. 

We denote by -7" and V-T, respectively, the sets of all regular 

matrices and all uniformly regular matrices. We use also the 

notation 

T+ - {A € T-. ank ž 0>, 

w+ г гст Л т+. 
For example, the Cesaro matrix Ct, defined by 

Г 1/n if к 5 n, 

ank 1 0 otherwise, 

is uniformly regular and non-negative, so C4 e UT+ . 

A sequence x = (xk) e s(X) is said to be strongly 

A-summable with index p > 0 to x0 « X if (cf. [9]) 

lim E ank»xk - xo«p = 0 . 
" к " 

The set of all strongly A-summable sequences in X is denoted 

42 



by Нд(Х). We write «д = w£(K), wp(X) = w£ (X) and wp- wp(K). 

We recall that the modulus f is a function 

f: [0.®) * CO,®) such that (see С 8]) 

(i) f(t) = 0 if and only if t = 0; 

(ii) f(t + u) 5 f(t) + f(u) for all t ž 0, u ž 0; 

(iii) f is increasingj 

(iv) f is continuous from the right at 0. 

Maddox [8,10] Used the modulus f to construct the sequence 

space 

wp(f) = {x e s: l^m n"*E [f (^ - xo|)]P = 0 for some x0>. 

In [6] this idea was generalized by taking in place of one 

modulus a sequence of moduli F = (fk). Here we consider 

together with w£(X) a more general space 

wp(F,X) = (X с s(X) - lim E a^Cf.Ox, -

- x0«)]p = 0 for some x0« X>. 

In the case where x e w^(F.X) we write w£(F)-lim xk = xQ. 

We write also w£(f, X) instead of w^(F,X) in the case where 

fk = f (k € IN). Thus wp(f) = w£(f,K) and wp = wp(f) for 

f(t) - t. 

In the following we mean by an index set a finite, or 

infinite subset {k} of IN with к < kUl. Thus an infinite 

index set {k } is precisely the sequence (k ) of indices. 

The set of all к « К with к 5 n is denoted by K(£n). 

Let К = {к} be an index set and let Фк be the 

characteristic sequence of K, i.e. фк - (**), where 

Г 1 if J = kt (1 - «). 

j ~ 1 0 otherwise. 

If фк is C1-summable then the limit 

lim n"1 E ФК 

j = . J 

is called the asymptotic density of К and is denoted by 

6(K). 

For a non-negative regular matrix A, following 

Freedman and Sember [4], an index set К = {к} will be said 

to have A-densitу 

<SA(K) = lim АпФ* 

11* 
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when АФк « с. Thus 

VK> = 1*» E ak = 4* E an>lt . 
k«K i I 

Brudno (see [23, p. 155-156) proved the following 

result: for every A « T* there exists a normal matrix 

A' « T* such that CA-П m = CA П B and 

l£m A;x = l^m Anx (x « cA n n>. 

where cA = (x « s: Ax « c> (a matrix A = (a^) is called, 

normal, if a^ = 0 for к > n and ann »*0). By Brudno'6 

theorem we may assume that the matrix A in the definition of 

A-density is normal. 

In [3] the definition of statistical convergence was 

given: a sequence x = (xk) e s is said to be statistically 

convergent to a number x0 if <$(Ke) = 0 for every * > 0, 

where 

K« = tk: |x„ - x0| ž *}. 

The notion of statistically Cauchy sequence was introduced 

by Fridy [53: a sequence x •= (xJ[) « s is said to be 

statistically Cauchy if for every « > 0 there exists an 

index n(e) such that StK^,) = 0, where 

K««, = <k: I^Sc * ž *>• 

If we take here A-density instead of asymptotic density then 

we arrive to the following definitions [73. A sequence 

x = (xk) e a(X) is said to be A-statistically convergent ttf 

x0, briefly stA(X)-lim xk = x0, if 6
A(Le) = 0 for every 

* > 0, where 
Le = (к: I xk - x0« 2 e>. 

A sequence x = (x^) « s(X) is said to be A-statistically 

Cauchy if for every « > 0 there exists an index n(e) such 

that <5A(Lri(e>) = 0, where 

Ln<s> = {k: К - Xn<J ž e}-

By the symbol stA(X) we denote the set of all 

A-statistically convergent sequences in X and by st°(X) the 

set of all A-statistically null sequences in X. 

It should be noted that A-statistical convergence is 

defined only for A e r+. It is clear that с(X) с stA(X). A 

theorem of Agnew (see [23, Theorem 8.5, III) shows that for 
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all A « 1£Г+ the Inclusion c(X) с atA(X) Is strict. 

2. A-statistically convergent and A-statistically 

Cauchy sequences in Banach space. Modifying the arguments of 

Salat [11], Lemma 1.1, we prove a useful lemma. 

Г.КММА 2.1 Let (yk ) be a double sequence in a Banach 

space X. The following two statements are equivalent: 

(i) for every с > 0 there exists an index n<*) such 

that 

V{k; Xn,*," < *>> =• 

(ii) there is an infinite index set К = tk} such that 

6Д(К) = 1 and for every* > 0 there exist indices 

1(<) and k0 ^ kQ(c) such that 

"•W" (к e К, к г k0). 

Proof. If (ii) holds then 

K0 = (к e К: к 2 k0) С (к: #Ук>1.*>8 < *} 

and by <SA(K0) = 1 we have 

6*<<k: Ч.К«," < *» = I-
Thus (ii) implies (i) with n(e) = 1(c). 

Next suppose that (i) is true . Then <sA(Kin) = 1 (m e IN) 

where 

К = {к:. »y. , 8 < 1 }. m k,n<l /m > П1 
If we define 

s i  =  Л  K „  ( J * « )  

then S4 = S2 = . . .=> Sj =>. . . and 6д (S.) =1 (je IN), i.e. 

lim An(S.) r 1, (2.1) 

where 

A (S ) = E a . . 
" J kfe nk 

J 
Let us choose an arbitrary number vl e Si with v > 1. In 

view of (2.1) there exists a number v2 e S2 such that 

v2 > vt and 

An(S3) > j (n > v2). 

Further, again by (2.1), there exists a number vg e S3 with 

v, > v. and 
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W >3 (n > V 
а.з.о. Thus we can construct by induction a sequence (v.) of 

indices such that v « S , v < v , and j J J j+« 

Ап(8Л > ̂  (n 2: v., J « IN). (2.2) 

Now we def ine 

CO 
K= U (S n tv V  ) ) ,  

j=o 

where vQ - 1 and S0 = IN . Then for v; i n 5 vj+1 we have 

K(5n) => ЗЛ5п). So by (2.2) we get 

А (К) = E a . > E a . = A (S.) > , , 
kŽK nk kfe nk n 1 J 

j 

from which it follows that (K) = 1. 

Let с > 0 and choose a number J with 1/J0 i c. If k0 

is the least element in п С v. , v^ ^) then* by 

we have 

c c K, U 2 Jo) 

"у. .. II < \ < с (к e К, к > к ). 
'k.nfi/j > J о 

Thus (ii) holds with 1(c) = n(l/jQ). The lemma is proved. 

Let x = (x^) be a sequence in a Banach space X. For 

y, . = x, - x. the statement (i) of Lemma 2.1 means that x 
'k,j к i 

is a A-statistically Cauchy sequence. At that time the 

equivalent statement (ii) means that x contains a Cauchy 

subsequence (xk ) with <5Д ({к>) = 1. By completeness of X 

subsequence (x ) must converge to an element xo e X. The 
j 

same meaning has (ii) for yk . - x^ - x0. But (i) states in 

this case tha t x is A-statistically convergent to x0. Hence 

we have proved the following results. 

THEOREM 2.2. In a Banach space X the sets of 

A-statistically convergent and A-statistically Cauchy 

sequences coincides. 

THEOREM 2.3. The sequence x = (xk) converges 

A-statistically to x_ in a Banach space X If and only if 
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there exists an infinite index set К = (k } with <SA (K) = 1 

such that the subsequence (xk ) converges to xQ . 

3. A-etatistical convergence and strong A-summability. 

In this section не investigate the relations between 

A-statistical convergence and strong A-summability defined 

by a sequence F = (fk) of moduli. 

THEOREM 3.1. Let X be a Banach space and F = (fk) a 

sequence of moduli. Then 

wA(F)-lim x^ x0 •* stA-lim xk= xQ (p > 0, A e J"+ ) (3.1) 

If and only If 

(Fl) igf fk(t) >0 (t > 0). 

Proof. If (Fl) holds then there exists a number so > 0 

such that 

fk(t) > so (t > 0, keM). 

Let s >0. If wA(F)-lim xk= xo and Le = {k: 1^ - x0l i *) 

then 

к keLs 

whence 

E ank < a;\ ( n « M ) .  
keL, 

So by lim t»n = 0 we get 

W = E ank = 0. 
k€L* 

Thus stA-lim xk= xQ and the sufficiency of (Fl) is proved. 

To prove necessity we suppose that (3.1) holds but 

(Fl) fails. Then there exist a number t > 0 and an 

infinite index set К = (к > such that к > к + 1 and 

lim ffc (t0) = 0. (3.2) 

For an arbitrary sequence of indices 1^ (n e IN) with 

kn < 1 

where 

к < 1 < к we consider the infinite matrix В = (b , ), n r> n+i nk ' 

12* 
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f 1/2 if к = kn or к = ln, 

1 0 otherwise. 

It is difficult to see that В « T* and 

Sg(K) = 1/2. (3.3) 

Now we define у - (yk) by yk = tQz for к = kj and yk = e 

otherwise, where z « X, »z» = 1. Then »yk « = t0, and so by 

(3.2) we get ljj.ni f k (11 Ук") = 0, whence ljm Cfk(• yk' )]p = 0. 

By regularity of В it follows that 

= 0. 

i.e. Wg (F)- lim Ук - e • At that time for any < with 

0 < с S t we have 

Le = {k: UуьВ > с} = K. 

From (3.3) it follows that <5g(Le) = i * 0, which implies 

stA-lim yk * 0, contrary to (3.1). Thus (Fl) must hold and 

the proof is complete. 

If fk = f (к e IN) for a modulus f then (Fl) is automa­

tically fulfilled. Thus we get 

COROLLARY 3.2. Let f be a modulus. Theo 

wA(f )-lim x^ x0 •» stA-lim x]t= xQ (p > 0, A e J"+) 

In a Banach space X. 

Maddox ([10], Theorem 1) proved Corollary 3.2 for a 

locally convex space X in the case p = 1 and A = С . Connor 

([1], Theorem 2.1) examined the case where X = К, A = C4 and 

f(t) = t. 

THEOREH 3.3. The implication 

stA-lim xk= x0 •» wA (f)- lim xk= x0 (p > 0, A e гиг*) (3.4) 

holds in a Banach space X if and only if 

(F2) syp fk(t) = 0, 

(F3) syp syp fk(t) < ®. 

Proof. First we prove the necessity of (F2). By a 

theorem of Steinhaus (see [2], Theorem 4.4, III) for every 
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A « ^*+there exists a sequence s - (sk> of O's and l's which 

is not A-summable, i.e. the sequence As = (A^s) is not 

convergent. If we suppose that (F2) fails then there exist a 

number * > 0, a positive null sequence (t^) and an index set 

{k(i)J such that 

W - (*o),/P <i«N>. (3.5) 

For an element z e X with 8 zB = 1 and for the index set 

{L> = (i: 3l : 1) we consider the sequence x = (xk), where 

f V " 
(. 9 ot 

к = k(L), 

otherwise. 

Then ljm x4 = e, and so stA-lim xk = e. By (3.4) it follows 

that 

o-n = E a^CffcU'x^l )]p - ° (n - oo). (3.6) 

But according to (3.5) we have 

» = E a Cf. . (t )]p > « E a . s. = e A s. n n,k<t i kti .> i, о ы nk к о n 
J J J J К 

Since (Ans) is not convergent, this implies lim * e, 

contrary to (3.6) . Thus (3.4) implies (F2) . 

The necessity of (F3) we also prove by contradiction. 

Let A «= UT*. We may assume that A is normal, and so 

lim ann = 0. If (F3) is true then, using also a theorem of 

Agnew (see [2], Theorem 8.5, III), we find an index set 

К = tk } with <5Д (К) = 0 and numbers 0<ti<...<t<t41<... 

such that 

i/p 
fk (tt) 2 (l/ak л ) (i € IN). (3.7) 

By Theorem 2.3 the sequence x = (xk) with xk = ttz for 

к = к and xk = ö otherwise, where z e X, Hz8 = 1, converges 

A-statistically to e. So by assumption (3.4) we have 

lim E ankEfk(8xk)]p = 0, which implies 

lim ar>n[fk(8xkll)]p = 0. (3.8) 

But in view of (3.7) we get 

ak k Cfk («хк H)]p = ak k Cfk (t. )]p >1 (i e IN), 

contrary to (3.8). Thus the necessity of (F3) is also 

13 
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proved 

Let stA~lim \ - *0 and choose e >0. We split the sum 

О : Г a , [f, (Их, ~ x„ll)]p into two sums £ and 2Г over 
n £ г>к к к О Ж 2 

L - {k: Hx^ - xQH ž e) and {k: Hx^ - xQH < *}, respectively. 

Since by (F3) there exists a constant M > 0 such that 

fk(t) < H (k G IN, t > 0), we find 

further, if we write h(t) = syp fk(t), then by the increase 

of fk we have 

s h<*) Z ank. 

Consequently, by ЙА(Ь£) = 0 and (F2)-we get lim < h(e). 

By (F2) it follows that lim »n = 0, i.e. w^(F)-lim x^ = x0. 

The theorem is proved. 

From Theorems 3.1 and 3.3 we deduce the following 

result. 

COROLLARY 3.4. Let X be- a Banach space and F - (f^) a 

sequence of moduli. Then 

stA(x) = w^(F,X> (p > 0, A G. UT+) 

if and only if the conditions (fcl), (F2), and (F3) are 

satisfied. 

In the case ffc = f (k s IN) the conditions (Fl) and 

(F2) hold. Thus we get 

Corollary 3.5. Let £ be a modulus. Then stA(X)=wA(f,X) 

(p > 0, A e WX+) in a Banach space X if and only if f is 

bounded. 

For p - 1 and A = С Corollary 3.5 is contained in 

Theorem 2 of Maddox [10]. 

The next theorem characterizes the relation between 

A-statistical convergence and strong A-summability for 

bounded sequences. 
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THEOREM 3.6. The implication 

stA- lim = x0 •* wA (F)- lim xk = xo (p > 0, A e T +) 

holds in m(X) if and only If (F2) is satisfied. 

Proof. The necessity of (F2) is already proved in 

Theorem 3.3. 

Assume that (F2) holds. Then 

h(t) = syp fk(t) <a> (t > 0). (3.9) 

If stx- lim xk = x0 in X and II s M, then 

idx, - x » ) 5 f„(H + «X II ) 5 h(M + Их I) < 0D, к к о . к о о 

and wA (F)-lim хк = х0 follows from the proof of necessity in 

Theorem 3.3 with h(M + ™ x0«) instead of M. The proof is 

complete. 

Using also Theorem 3.1 we get 

COROLLARY 3.7. Let X be a Banach space and F = (fk) a 

sequence of moduli. Then 

stA(X> n m(X) = wA<F,X) n m(X) <p > 0, A « T+) 

if and only if (Fl) and (F2) are satisfied. 

In the case fy - f (к e IN) from Corollary 3.7 we 

deduce 

COROLLARY 3.8. For any modulus f we have 

stA n m(X) = w*(f ,X) n m(X) (p > О, A e У1") 

in a Banach space X. 

Connor ([1], Corollary 2.2) proved this result in the 

case where X = К, A = C4 and f(t) = t. 
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Statistiline koonduvus Banachi ruumides 

Enno Kolk 

Resümee 

Artikli esimeses osas tõestatakse autori poolt 

konverentsi teesides [7] sõnastatud teoreemid A-statlstilise 

koonduvuse kohta. Teises osas uuritakse A-statistilise 

koonduvuse ning tugeva A-summeeruvuse vahekorda. 
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T-DDAL SPACES WITH RATI AMD T-SKCTIOHALLY ЯriMHARf.lt SPACES 

WITH RATE IN THE CASE OF DOUBLE SEQUENCES 

Ivar Lepaaaon 

1. Introduction. G. Kangro introduced the notions of 

space cXy of simple sequences x-convergent by the method T 

[53 and space mX^, of simple sequences X-bounded by the 

method T [4]. S. Baron til has studied X-boundedness in the 

case of double sequences. Starting with it we introduce the 

notion of spaces which are called r . - and ß . -dual. Also 
"r T x 

we introduce the notions of X-T-sectional boundedness (T B) 

and X-T-sectional boundedly convergence (TXK). In the 

present work we investigate the connections between these 

notions. In the case of simple sequences the analogous 

result has been proved by M. Buntinas [2] and in the case of 

simple sequences with rate by the author [6]. 

2. Definitions. Let T = (t^H) be a triangular 

infinite matrix where tmnW= 0 when m < к or n < 1, let E be 

a Hausdorff locally convex double sequence space (1. c. d. 

s. s.) and x = (xkl) a double sequence of real (or complex) 

numbers.We say that E = [E;pmn] is an FK-space if there is a 

finite number or a denumerable set of quasinorms pmn(x) with 

following properties: 

1° when Pmn(x) = 0 then always x - e, 

2° E is perfect, 

3° when x'r,e1-* x in E then always x'j^e>-» xkl (r,s •> ®). 

Let X - (Xmn) be a double sequence of positive numbers, 

monotonically increasing both by the indices m and n. In this 

case X is called a rate. A double sequence x is said to be 

14 
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X- bdunded if 

- if? V = 0 ( 1 )-
x-convergent if there exists 

if« 

and b-boundedly convergent if x is x-bounded and 

X-convergent. In this article the convergence means the 

convergence in Pringsheiro's sense. 

We def ine '• 

tmn - (tmnkl) are double sequences; 

x y = 4,-Уц); ymn =kE t^x^; 

у  1 V' If* y- : ^ ; - r,); 

mn m, n 

У = E Чтк1*к1е 

к , V =0 

f 1, if к = го and 1 = n, 
• WH У -WH « J *ИГ| I A 
where e = («kl) and 6kl = i Q'_ otherwise; 

cXT = { x: 3 lira r }; 1 fflf Г1 ТИП 

mX
T = { x: rn„ = 0(1) >; 

bcX^, = { x: x 6 cXj and x e mX^, }; 

p X 
E  ̂  = { x : V z e E ,  х г е  b c X ^ ,  > ;  

\x x 

E = { x: V z € E, xz e m ̂  }; 

E , = { x: (tmnx) is x-bounded in E ); 
ТВ 

E - = { x: Vf e E', f (tmr,x) is a x-boundedly con-
FT К 

vergent double sequence }; 

E , ' = { x : x (у - y) is boundedly convergent in E>; 
mn 

E* = { x: 3 f e E-, xkl = f (еИ), к, 1 e Z+>; 

ЕД0 is the closure of the span of the sequences e'™"; 

A double sequence x in E is said to have the property 

TXB (T-sectional boundedness with the rate X )  if x e E , , 
X  Т В  
T К (T-sectional bounded convergence with the rate X )  if 
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x « Б and the property FTXK (functional T-eectional 
T К 

bounded convergence with the rate X) if x « E . . If 
FT К 

Е с Е .  ( Е = Е ч  ,  E  с  E  .  ,  E  -  E , n )  t h e n  E  i s  c a l l e d  
ТВ TK FT К AD 

TXB-space (TXK-space, FTXK-space, AD-space). E is called 

z_x "t
x"Tx 

r x-space (P x-space) if В = E (В = E ). Bach double 
T T 

sequence space E considered here will be assumed to contain 

all unit double sequences ekl, 

3. Y x - and P x - duality. 
T T 

, v 
THEORKH 3.1. For each E, E x = (E ) . 

ТВ 

Proof. A subset of a 1. с. d. в. s. is bounded if and 

only if it is weakly boundedHence, x « E . if and only 
ТВ 

if 

- if$? tmnx)>| = 

= sug |Xmn{f(tMnx) - lipo f (t""x)>| < oo , f с E' «-» 

~ lXmn('K ^klVkl * if» E tMpiklXkiy)[l ) I < ->, 
к , l к , I 

$ 
v у 6 E . 

COROLLARY 3.2. For each E, E » is a r v-space. 
ТВ T 

COROLLARY 3.3. For each E 
Г x Г xr x 

$ T T T 
E  с  E  ,  * *  E  с  E  1  «  !  1  c E .  

ТВ ТВ 

Proof. If E с E then, for every x e E and у « E*, 
ТВ 

у x r X 
X Ф T в T 

x-y « in ц, . Hence E с E .If 8 с E then 

5 5  
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У \У х У х r xr х 
т т е т т т 

В 1 1 с (Б ) 1 = Б х . While Б с Е 1 1 then Е с J . . 
Т 6 ТВ 

ft X 

ТНКОВЮ 3.4. For each К, Е , = (В*) Т . 
FT К 

Proof. We have х « Е х if and only if V у e Б®, 
FT К 

3 Aft? ̂ ^^и^Уи - j, fS ~ for every 

у « E®, x y e bcXT. 

ft X 
COBOLLABY 3.5. For each Б, Б . = Б Т Т . 

FT К 

COSOLLABY З.в. For each Б, 

ft х ^ \ft х 
Ф т т т 

Е С Е х «-• Е с Е 1 «-» Е 1 с Е . . 
FT К FT К 

Proof. Similar to Corollary 3.3. 

THEOBEM 3.7. Suppose that Is an FK-space and there 

exist lim tmnkl * 0 . Then 

V * (a) E 1 с E ; 

Y tj X ft \P X 
T T T T 

(b) E x с E 1 1 and Б x с E 1 1 ; 
T B FT К 

У x У У?  X 

(c) Б с E x *-»ES = ET «-» E T T = E x ; 
ТВ ТВ 

ft x У xr x 
$ T T T 

(d) E <= E x W E : E 4-» E = E x ; 
FT К ТЛВ 

^ Л. ^ X 
(e) E с E , «-+ E® = E T = ET «-• E с E x and 

FT К ТЛВ 

ft \ У x 
T T Б = E . 

У x Y 
Proof, (a )We have ETcET={x:VyeE, xy « >, 
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thus (analogically with the case of simple sequences [2]) 
г X у 
T T $ 

E 1 с E С E . 

(b) is a corollary from (a). 

(c) The equivalences follow from Corollary 3.3, (a) 

and (b). 

(d) The equivalences follow from Corollary 3.6. , (a) 

and (b) . 
ft x У x 
T T 

(e) If E с E and E = E then, by (c), 

ftlB r x ft X 
S T T T $ T $ 
E : E 1 . Thus E 1 = E 1 = E . If E 1 = E then, by 

ft X У X P \ R  \ 
T $ T T T 

(d > ! с ! x and E 1 = E = E 1 «-» E <= E x and E 1 = E 1 . 
FT К Т В 

For example, if E and F are sequence spaces, the 

multiplier space (E -» F) is the space of all sequences x 

such that, for all у in E, x-y e F. The multiplier spaces 

(E -» сХц,) and (E •* mX^,) are the ft x- and r x-duals of E, 

respectively. By theorem, if 
1 

X = -
(m+1) * + (n+1 )~ 

and T = С11 then mX is a TXB-space (see [1]) and 
T 

, X ,$ , X x . 
(m ) = ( m •* m ). 

T TT 

DBFIHITION. Let p be a continuous seminorm on 1. с . d . 

s. s. E. Then p™ is a seminorm on E . defined (analogously 
ТВ 

to the case of x-bounded simple sequences [4]) by 

P^(x) = sug { p [Xmn( tmnx - lim tm"x)3; p(j.im t""x) >. 

THEOBKH 3.8. Suppose E is a BK - space and there 

exist lim tmnkl * 0 . Then E$ is a BK - space and 

У x 
$ T $ 

(E ) x = (E,n) 1 с E . 
ТВ AD 

Proof. If E is a BK-space, then ЕД1) is a BK-space with 

the norm of E. (ЕД1))' can be identified with E$ and hence E$ 
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is a BK-apace (analogously to the case of simple sequences 

[2], Proposition 1 or [7]). Let f t Г be defined by 
tmnz 

' m = E ^1япк1гк1*1с1 • 
t г к . I 

then 

V 
г * (Ead) gUR |Xmn(ft™"z(x) - j,iR ft""z(x)| = 

= kE tmnklZklX|[l)| <=» vx e ead. 

Due to the uniform boundedness this is equivalent to the 

>UJ 
r 

condition that (tmnz) is X-bounded in E$. Thus 

<EVB 
= 

(Ead)  tX c  (EAD)$ = E$-

THEOREM 3.9. Let lim t .. = 1. Suppose E is a m, n mrtkl 

BK-space and E = Elr,. Then E = E x iff E# с (E$) x 
AU T К Т В 

Proof. If E = Ead, then E = E^ if E^ = E = E^. By 

Theorem 3. 7, (c). and Theorem 3.8 E = ЕДр and E с E x if 

and only if 
rx 

ж T $ 
(E ) . =. E 1 = E . 

ТВ 

THEOREM 3.10. If there exists a FK-space which is also 

a TXB - space, then 1 с bcX^. 

Proof. If for every ekl « E x then 
IB 

f?? f?P l\,n(tmnkl - 1*9 tmnkl'l < 00' 

then gup pXj (tm") < oo.Thus 1 с bcX^ . (3 .1, С3]) 
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Kiirusega T-duaalsed ruumid ja kiirusega 13ike 

T-summeeruvad ruumid kahekordsete jadade korral 

Ivar Lepasson 

Resümee 

Käesolevas artiklis on sisse toodud r - ja f t  . -
T T 

duaalsete ruumide mSiste. Samuti on sisse toodud X- T-lõike 
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tökeatatuse (TXB), Х- Т- laike tSkestatult koonduvuse (TXK) 

Ja х- T- laike tSkestatult koonduvate funktslonaallde (FTXK) 

mõisted. Töös uuritakse nendevahelisi seoseid. 
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ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS 

1991, 928, 61-66 

OH COBES OF SUMICONTIHOOGS SEQUENTIAL 

SOMMABILITY METHODS 

Lelki Loone 

This pappr in an Englich version of the paper [5] 

which is unreadable by reason of unsatisfactory printing. 

Let A = (a„ ,) (m = 0,1,...) be matrices, where 
m mnk 

amnk e K * sequence of real numbers x = (If ̂ ) is called 

«'-summmable to a. if 

lim E amnk^k - a uniformly in n (1) 

(see [1]). Let <0 be the set of all operators q : IN -» IN and 

let B„ = (a„„/_w>- It means that the set q mq(m)к 

{Bq : q G <D> 

is the family of all possible matrices which can be produced 

by selecting the first row of the matrix from the rows of 

the matrix A^, the second row from the rows of the matrix Ag 

etc. The following theorem is due to Petersen (see [I]). 

THEOBEM 1. A sequence x = «^) is ы-summable to a iff 

for each q e <D it is Ъ^-summable to a. 

Let <n. be the set of bounded sequences with the norm 

tlx« = sup If ,1 . 
к k 

Let К be the set of all linear continuous functionals on «• 

satisfying the following conditions: 
1° <ek,f > = 0 Vk : 0,1, ... , 

2° <e,f> = 1, 

3° #fa - l, 

where ev = (0 0,1,0,...) and e = (1,1,.... 1,...).This 
о к 

set К determines the Knopp's core in <«-. This means that for 

an arbitrary bounded sequence x the set 

K°(x) = {<x,f > : f e K°} 
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is the Knopp's core for x (зее[3)) . It is well-known that a 

sequence x converges to a number a. iff its core K°(x) is a 

singleton which contains only a. (see [2, Ch.6]). 

Let tA be the conjugate matrix to a matrix A. The set 

гА(К°) = (tAf : f = K°) 

determines A-summability in the sence of sequence x being 

A-summable to a iff the set 

{<x,f> : f 6 *A (K° ) } 

is a singleton which contains only a, The concept of the 

core К^(х) was introduced in [4], based on Theorem I. This 

core is the set 

K^x) - {<x,f > : f € K^}, 

where 

КЫ  - С leo U {^(К") : q е Ф} . (2) 

Here "clco" denotes the close and convex hull of the set. 

This core determines .--summability in m in the sence that a 

sequence x is -<-suramable to a iff K^(x) is a singleton which 

contains a (see [4]). 

Let U_(r0) be an arbitrary fixed left-hand 

neighbourhood of a number Tq e K. Suppose that for every 

т e W_(Tq) there is a matrix А(т) : 'ank'T^ su°h that 

sup E lank<T)l < 00 Vt G 

n k 

DEFINITION 1. It is said that a sequence x = (f^) is 

summable by a semicontinuous sequential summability method 

(А(т)) (for short: "«<.(r )-summable ") to a number a if 

lim Eak(r)< =» 

o~ 
uniformly in n. 

The set of all -»(т )-summable sequences is denoted by 

с-с(т)' Semicontinuous sequential summability method (А(т)) 

is called regular if every convergent sequence is 

-<(т )-summable to the previous limit. 

In special case of 

a nj$ ( r )  г  а ^ ( т  ) Vn e  I N  
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the ^(т )-9ummability method (А(т ) ) turns into ordinal semi-

continuous summability method (а^(т)). 

Let v be the set of all sequences(т )  с  и_(Тд) which 

are convergent to r^. It means that 

V - (w = (T ) : T » г — т « tZ (т.) Vm « IN), 
г о  ш и ш  и  

Let w : (т ) be an arbitrarily fixed element from > 

and let us define the -«-method ( A )  where a . = a , (т ). If 
ro roil к ii Jk го 

a sequence x is -«-summable by this -«-method С Am) we say for 

short that it is w-summable. The set which defines the core 

for the w-summability is denoted by . 

THSOREH 2. A sequence x = ^3 зиттаЫе to a 

number <*• iff it is v-summable to ". for every w g V. 

Proof. It follows from the concept of limit given by 

He ine . 

COBOLLABY 2.1. A sequence x - (?,,) 1з «<<т)-summable to 

a iff 

K#(x) = {a} Vw g V. 

Let us introduce now the concept of core for the 

semicontinuous sequential auromability method. This concept 

is based on Theorem 2. 

DEFINITION 2. The core for the =<(т)-method (А(т)) is 

the core defined by the set 

К г с leo U CKw : w e <Г}, (3) 

THEOREM 3. The set сы(г) coincides with the set of all 

sequences x for which .the core K(x) is a singleton. 

Proof. If K(x) = {»}, it follows from (3) that 

Кц(x) = {a> for each w from v. Hence, by Corollary 2.1, x is 

«<(т )-summable . 

Suppose now that x is -<(т)-summable to a. and 

Л «= K(x) . It means that in the set 

U (Ки : w G V}  

there exist sequences (gn) and (hn) such that 
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lim <x,X g  + (1-  )h > = t 
n n n II n 

for some (X ) with 0 £ X^ < 1 for all n « IN . As < x,gn> = a 

and <x,hn> = a. for every n, we have 6 - a. It means that 

K(x) - {a> which gives us the desired result. 

COROLLARY 3.1. If x « со1(т) an<^ ' 1) holds then 

K(x) - {»}. 

COROLLARY 3.2. The core which determines a 

semicontinuous summability method A = (а^(т)) is the core 

defined by the set 

KA = с leo U {гВн(К°) : w б V}, (4) 

where Ви = (bmk) and bmk = a^). 

Proof. For an arbitrary w = (т^) с v the --method 

(A(T )) is the matrix method В = (b , ), where b , = а, (т ) . 
m W шк ШК к ID 

Hence, the set К given by the formula (3) has the form (4) 

and now Corollary 3.1 completes the proof. 

THEOREM 4. An «< (т )-method A = (ank(r)) is regular iff 

1° lim sup la ,(T)I =0 Vk = 0,1,..., 
T->To" n 

2° lim £ a ,(т) = 1 uniformly in n, 
т-т - k 

3° sup E |ank(r ) J < M for every т e г/_(т0 ). 

Proof is entailed by Theorem 2 if one applies to 

necessary and sufficient conditions for the regularity of 

the --method (see [ 43) . 

THEOREM 5. The inclusion 

K(x) с K° (x) Vx € «I (5) 

holds iff 

1 °  - ( T ) -method is regular, ( 6 )  

2° lim sup E la , (г) | = 1. (7) 
Т-»То- П k nR 

Proof. The inclusion (5) is equivalent to the 
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inc lus ion К с K° . 

Necessity. Let К с K°. Then K(x) = K°(x) for every 

x « c. It means that the -(т )-method is regular. It follows 

from the inclusion К с K° that K# с K° for every w e V, Con­

sequently, 

1mID 8nP к = 1 V '•Tm) c V 

(see [43). The condition (7) follows now from the concept of 

limit given by Heine. 

Sufficiency. If -»(T)-method is regular and (7) holds 

then for every (т ) « *r --method > is core-regular 

(see [4]). Then 

Ц с J° V , « *, 

The set K°is closed and convex, therefore 

clco U {K# : H « V} с K°, 

it means that К с K°. 

COROLLARY 5.1. For a semicontinuous matrix method 

A = (а^(т)) the inclusion 

Кд(х) с K°(x) V x « л (в) 

holds Iff 

1° method A Is regular, 

2° lim £ |а.(т)| = 1. 
т-то k K 

Let L(x) be the set of Banach limits of a sequence x. 

This set is the core of almost convergency of x (see [1;4]). 

THEOREM 6. The inclusion 

K(x) с L(x> V x e «R. (9) 

holds iff 

1° -(t)-method is regular, 

2° lim sup E |a . (г) | = 1, 
т-то- П k nK 

3° lim sup £ |a - (r) -a , (r)| = 0. 
T-»T - n k 

Proof is analoguous to the proof of Theorem 5. In the 

case we need the necessary and sufficient conditions for the 

inclusion Kw <= L (see [4]) instead of K# <= K° in Theorem 5. 
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Poolpidevad jadamenetlused ja nende tuumad 

Leiki Loone 

Resümee 

Antud töös defineeritakse poolpideva jadalise 

summeeruvusmenetluse ja/sellega määratud tuuma mSiste ( vt. 

definitsioonid 1 ja 2). 

Selle tuuma järgi koonduvate jadade hulk ühtib -><(т)-

summeeruvate jadade hulgaga (vt. teoreem 3 ja järeldus 

3.1.). 

Kasutades teoreemi 2 ja tulemusi artiklist [4] antakse 

tarvilikud ja piisavad tingimused «<(т )-menetluse regulaarsu­

seks (teoreem 4). On antud ka tarvilikud ja piisavad 

tingimused sisalduvusteks (5), (8) ja (9). 
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ACTA ET COMMENTATJONES UNIVERSITÄT IS TARTUENSIG 

1991, 928, 67-72 

INCLUSION BETWEEN THE CORES CONCERNING 

WEIGHTED MEANS AND POWER SERIES 

Leiki Loone 

Suppose throughout that <Pk> Is a sequence of real 

numbers with pk > 0 for all к - 0,1,2 Let 

к 

and let 

p ( r )  r  £  p. r  < o o  V r e  (0 , 1 )  ( 1 )  

к K 

lim P„ r oo, (2) 
m 

where 

p. - io 
Let x = ('be a sequence of real numbers. The 

weighted mean summability method (R,pk) and the power series 

method (J,Pk) are defined as follows . 

We say that x я (f^) is (R,p^)-summable to a number a 

if 
1 m 

lim p- £ p ?. = a. 
m k=0 K K 

The set of all (R.p^)-summable sequences is denoted by Cp, 

and the set of all (R,p^)-bounded sequences is denoted by 

"ip. It means that 

= {X r « ) : sup Ip- £ pkrk| < »>. 
m  m  U  

We say that x = «is (J,P^)~summable to Q- if the 

series 

E РкткСк (3) 

is convergent for every т <= (0,1) and 

lim 577T E Ркт ifk = a. 
T-l- ptl ; к K K 

The set of all (J,Pk)~summable sequences is denoted by . 
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The set of all x - for which the series (3) is 

convergent for every re (0,1) is denoted by Oj. 

Let К (x) be the Knopp'з core of the sequence x = (f^) 

and let Kg(x) be the Knopp's core of the sequence у = (i?ro) 

where 
1 m 

~ P~~ ^ к • m m k=0 

Let the set v be defined as follows 

V я {W Я (Tm) : Tm- 1, Tm 6 (0,1), m = 0,1 >. 

For an arbitrary w = (т ) e "У the Knopp'в core of the 

sequence у* = (ч*), where 

"• = P(rm) kF0 
PkTi^k' 

is denoted by K^(x). 

DEFINITION 1. The core Kj (x) of a sequence 

x = (f ̂) с о j. is the set 

с leo и СК#(х) : w е V}. 

It is obvious that x e Cj iff Kj(x) is a singleton. 

The core concerning a semicontinuous summability 

method was defined in [3] only for the bounded sequences 

x <e m.. Definition 1 gives the concept of the core for the 

method (J,p ) in the space Oj. It is obvious that m- с Oj. 

The next theorem shows the relations between those 

conceptions . 

THEOREM 1. For every x e m the core Kj(x) is identical 

to the core defined by the set 

К = с leo U {гБн(К°) : w = V}, 

where 

\ = <bmk> bmk = PkTm '*<V' 

Proof is entailed by Corollary 3.2 from paper [3] if 

one applies the Definition 1 in this paper. 

It is well-known that с Cj (see [2]). This result 

can be strenghtened as follows. 
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THKOBBM 2. The Inclusion 

Kj(x) с KR(x) (4) 

holds tor all * « «j n "j. 

Proof. Let A = (ат^> be the Riesz matrix i.e. 

. Г l f  k 5  "• 
1 Ö if k > m. 

The inverse matrix A 1 = (x^) to Riesz matrix is as 

follows 

mk 

Pm/pm if k = m, 

?n-l/pn 
0 if k < m-1 or k > 

(see [4]). The inclusion (4) is equivalent to the following 

Kj(x) с K°(Ax) v * 6 4j fl "j 

and this is identical to the inclusion 

Kj(A"*x) с K°(x) V x, A-1x e äj П • (5) 

To prove that (5) holds we have to show according to 

Definition 1 that for all w e И the inclusion 

Кн(А"*х) с K° (x) V x, A~*x « «j о . (6) 

holds. Let w be an arbitrarily fixed element from v. Let С 

be the matrix method С = (ст^), where c^ = Р^Тщ /p(r^), and 

let G = (g^) be such that G = CA"1. It means that 

5mk = 5 °юЛк " t P<V "vk ' p(Tm)pk " pk+lp_(Tm> 

Pk k 
K (1 - T ). 

pkTm Pk pk+lTm lpk 

р(тт) m m 

It is obvious that the inclusion (6) holds if for all 

w = (T^) the method G is core regular in л i.e. 

K°(Gx) с K°(x) V x <s т., (7) 

The necessary and sufficient conditions for (7) are as 

follows (see [5]) 
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1 lim gmk = 0 v к = 0.1.• (8) 
m-»«> 

2° lib, Z gmk = 1, (9) 
m-»oo к 

3° lim Z |gmkl = 1. (10) 
m-rn к 

Since (т ) e (0,1) and P<T
m> "* 00 83 m -» », the 

equality (8) holds for any к = 0,1 As lerokl - gmk the 

conditions (9) and (10) coincide. 

"" $*- = F- r- k-r
k 

m 

We have chosen (Pk) such that (1) holds, therefore 

£PkTm = ГТ^к^ = 
1 „ p(V 

к  »  ™  i 1 "  1  -  T m  

and consequently (9) is valid. It means that for an 

arbitrary w method G is core regular in » and due to it (4) 

holds for all x e ®j П • 

COROLLARY 2.1. If 

p(T 2) 

LI "?(7У 1 

then 

Kj(x) = Kg(x) V x e oj n «ig 

Proof. It is known that if (11) holds then 

Kj(x) = Kg(x) V x e с j 

(see [1]). As -Cg с Cj, it follows that Cj = . Therefore, 

for all w e V the method G in the proof of Theorem 2 is 

equivalent to the convergency. As g . ž 0 for all 

m,k = 0,1,... this equivalence gives us 

K°(Gx) = K°(x) V x e m, 

(see [4],p.125) and due to it (12) holds. 

( 1 1 )  

( 1 2 )  
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Rieszi menetluse ja astmerea abil defineeritud 

poolpideva menetluse poolt määratud tuumade sisalduvus 

Leiki Loone 

Resümee 

Olgu (pk) positiivsete reaalarvude jada. Olgu 

р(т) = £ PvTk < ш V r e (0,1) 
k K 

ja olgu lim P_ = oo, 
_ ro 
m 

kusjuures 
m 

Pm ~ ,_E, Pk' fcO 

me, et arvjada 

artvuks * kui 

Me ütleme, et arv jada x = (f ̂ ) on (R,p, )-summeeruv 

1 m 
üm E Pfc?v = a-
m m k=0 K K 

Olgu «ip kikide (R,p^)-tökestatud jadade hulk, s.t. 

= {x = «k) : sup |p- E Pkfkl < «}. 
m m k=0 

Hulka, mis koosneb kikidest jadadest x = (f^), mille 
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korral rida 

РктЧ 

on koonduv iga т e (0,1) korral, tähistame sümboliga »j. 

Me ütleme,et jada x « on (J.p^i-summeeruv arvuks 

a, kui ta kuulub hulka »j, ja kui 

1 v 

lil ̂  кPkT ?k = a' 

Antud töös defineeritakse tuuma mõiste poolpideva 

menetluse (J.Pn> jaoks ruumis Oj (vt. definitsioon 1)., 

Tõestatakse sisalduvus 

Kj(x) с Kg(x) Vx e mg n Oj 

ja sellest järelduv võrdus (12) tingimusel (11). Nendes 

seostes on Kj(x) definitsioonis 1 antud tuum ja Kg(x) on 

Rieszi menetlusega määratud tuum. 
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ACTA ET COMMENTATIOHES UNIVERSITATIS TARTUENSIS 

1991, 928, 73-88 

A DESCRIPTION OF MEASURE SPACES WITH LIFTINGS 

Aleksander Monakcv-Rogozkln 

Since Fremlin [13 has cpnstructed an example of a 

measure-complete locally determined Maharam measure space 

which is not decomposable (or equivalently has no lifting), 

the question arises how to describe all measure-complete 

decomposable spaces and their liftings. A solution of this 

problem is presented in Section 6 of this paper where a 

description of all measure-complete decomposable spaces with 

a given Stone space is obtained. Finally an example of a 

Maharam measure space with lifting which is neither measure-

-complete nor locally determined is given. 

1. Notations and definitions. Throughout this paper we 

use the terminology of Fremlin's book [23, * is the end of 

the proof. For a measure space ? =(T,£,/u) we put 

9 t ( M )  = [E e  Z :  pE =  0 > ,  Z £  =  ( E  e  Z :  # jE < 0 0 }  . Let 3 ( / j )  r  Z / p  

be the associated measure algebra and : z 3 ) the 

canonical homomorphism. We write also E^ instead of n^ (E ) 

and E ~ G (mod #J) if = G^, E,G e Z. If there is no 

confusion, we use the notations л, E and E ~ G. 

A measure space T is a Maharam measure space if 

the following conditions are satisfied 

1) ? is a semi-finite measure space, i.e. for every 

E e Z with мЕ > 0 there is a set В « Z such that В с E and 

0 < pB < oo; 

2) -S(^) is a Dedekind complete Boolean algebra. 

Let us note that in general we do not assume for a 

measure space to be complete. A semi-finite measure space is 

locally determined if E « Z whenever E с T and E n T « Z for 
f 

every FeZ. We say that a measure space J" is 

decomposable (strictly localisable) if there is a partition 
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<T^>.^ej of T into sets of finite measure euch that 

Z = {E : E с T, E {)Tj « I for each 1 « I), 

мЕ = E f<E n T,) for E • Г. 
i«I 

Every decomposable space is Maharam and locally 

determined [2]. A complete locally determined measure space 

is decomposable iff there is a lifting of this space [33. 

i.e. a Boolean hotoomorphis» p : *(AJ) •* I such that p(T) s T, 

p( 0) = в and . p s idjg^j. 

He say that two measure spaces and ? ̂ are 

measure-isomorphic ±f there is a measure-preserving 

isomorphism between their measure algebras. 

Let T = (T,£,M> be a measure spaoe- and X a subset of 

T. Put 

Ex = (E Л X : 8 « D. 

PXF = inf {#jE : E e Z, E = Fl, F • Zj. 

Then X - ( X , i s  a  subspace of a measure space T 

(cf.Cll). 

Let J" = (T,£,#v) be a measure space and p : У •* T a map 

from a nonempty set Y into T. Put X = p(Y), 

S = p~* (Гх) = (p"'(E) : E « Zx), 

»<P~*(E>> = MjjE, E « Zx. 

Then У - (У,3,77) is a measure space wh-ich will be called a 

preimage of the space X (under the map p). It is clear that 

S' is also a preimage of the subspace X = (Х.Г^,^) of x 

under the sur jective map p : У •» X. 

2. The Stone space of Hnhnrna measure space. Let 

T = (T,E,p) be a Maharam measure space and Q the Stone space 

of the Boolean algebra s(^), i.e. an extremally disconnected 

Hausdorff topological space with a compact topology * such 

that the algebra Л of all open-closed subsets of Q Is 

isomorphic to £(yu). The isomorphism т : S(ju) * transfers 

the measure fj onto J* . Let -*Q be the collection of all 

subsets of the first category of Q and 

fi = {А Д M '• A G j*. M e -MQ}. 

where A AM denotes the symmetrical difference of the sets A 

and M. Then О is the a-algebra of subsets of Q generated by 
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л and -*q  (see e.g. [43) and there exists a unique extension 

of the measure v - т(ц) from * onto n. The space Q is 

"hyperstonean", in particular, every set from is nowhere 

dense in Q. Now the topological measure space Q = (ä,0,i>,*) 

is the Stone space of the Maharam measure • space T. It is 

clear that ? is measure-isomorphic to its Stone space. 

Let В = S(Q) be the class of all Maharam measure 

spaces that have the same Stone space Q. The class Ж always 

contains a measure-complete decomposable spaces, e.g. the 

space (Q.O.u). For every G « Л there is a unique A « * such 

that A " G (mod v) and the equality "q(G) = A defines the 

unique strong lifting "q of the space Q. In the paper Cl] D. 

H. Fremlin has constructed an example of a measure-complete 

locally determined Maharam space which is not decomposable 

and thus has no liftings. Therefore the question arises how 

to describe all measure-complete decomposable spaces of a 

given class 11 = Ht(Q). We shall see that this problem is 

connected with the construction of all pairs W,p) where 

Г « ГО and p is a lifting of J", 

The notations of this section will be essentially used 

be low. 

Given a space т <e ГО one can obtain some new spaces 

belonging to the same class ГО. The assertions of the next 

proposition are well known. 

PROPOSITION 1 . Let T - (T,Z,n) be a Maharam measure 

space and (Q.O.v,*) its Stone space. 

(a) If the set X с T is thick in the space T then the 

corresponding subspace X = (X,r^,p^) is measure-isomorphic 

to T. 

(b) The set X с Q is thick in the space (Q,n,v) iff it 

is dense in the topological space (Q,*). 

Let 5" = and У - (Y,2, X )  be two measure-isomor­

phic spaces. We say that a measure-preserving isomorphism 

u : -$(p) -» ® (X) is genera ted by the map <p : У -» T if 

u<E„> = (1) 

for every E e £ (cf.[53). Let us note that the formula (1) 
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defines a measure-preserving isomorphism between S(M) and 

3(X) iff the following condition» are satiefied: 

С.1) F * (E) «2 for every Eel; 

С.2) X(F-1(E)) = ME for every E « Г; 

С.3) for every G « £ there is a set E « £ such that 

F"(E) ~ G (mod x). 

The next proposition follows immediately from the 

definition of a pre image of a measure space. 

PROPOSITION 2. Let 3/ - (Y,»,n) be the pre image of a 

space T - (Т,£,м) under the aap•$> - Y .» T auch that the1 set 

*>(Y) is thick in the space Т. Then the map u : 3(P) - -S(TI) 

defined by the equalities 

u(i^) = Ср"*(Е)]ч, £ « X, (2) 

is a measure-preserving isomorphism of S(p) onto Ж(г>). Zf T 

is decomposable then so is 3/. 

3. Pointwize maps connected with liftings. The example 

in Section 7 below shows that there are Maharam measure 

spaces with liftings which complete or even locally 

determined. Therefore we shall consider some constructions 

connected with liftings of Maharam spaces. 

Let p be a lifting of a Maharam space T = (Т,£„м) and 

Q = (Q,n,v,*) the Stone space of •7". For each t e T the set 

Jf - {E e S(ju): t « p(E)} is a maximal ideal of the 
P , t  

Boolean algebra я(й) and we shall identify it with the point 

z e Q. Thus we write z = Jf t and we obtain a map <pp: T -» Q 

where Fp(t) = Jtp t = = z. In the following propositions we 

use the notations of the previous section. 

PROPOSITION 3. Let p be a lifting of a Haharam measure 

space J* = (Т.1.Я). Then the corresponding map T -» Q has 

the following properties•' 

(a) tiie set Fp(T) is dense in Q; 
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(b) p(B) = Fp*(T(i)) for every Е « £; 

(c) P~*(V) « Г /or every U • <; 

(d) i/ H с Q ia such that the inner measure 

A^tFp'm)) = 0, 6Аел M « 

(e) /or every M « -*q  tAe set Fp
1(M) la locally negli­

gible in the space T , 

NOTE, (a) is essentially due to [3], (b>-(e> are taken 

from [6]. 

PROPOSITION 4. Let p be a lifting of measure-complete 

decomposable space T = (T and Q = (Q.O,^,*) the Stone 

space of T. Put X = pp(T). Then 

(a) for M в о we have "M = 0 iff p(p™ä(M)) = 0; 

(b) Fp*(G) e Z /or every в e fi; 

(c) tie »ap рр: T -» Q generates a measure-preserving 

isomorphisms v: S(v) -» S (/j ) and g: я(v^) -* whereas the 

шар Oq = T о v js tie strong lifting of the space Q. 

НОТЕ. This result is taken from [3] and [63. For the 

other properties of the map %>p and for the proof of the 

following theorem see also [63. 

THEOREM 1. Let 3" - (T,Z,/j) be a Maharam measure space, 

(Q.O,",*) its Stone space and p : T -» в a map with the 

following properties-

(i) p-1(G) e Z for every G e П; 

(ii) if E « Z and > 0, then E ß P *(T (E^)) * 0. 

Then the equalities 

Р(ЕЙ) = р"*(т<Е^)), E e z, (3) 

define the lifting p of the space T whereas p = p. 

This theorem shows that any lifting p of the space т 

is uniquely determined by the pointwise map p : T -» Q. 

4. Sxtreeal extensions of measure space. We shall say 

that a measure space T - (T ,Z ,/J ) is an extremal extension of 
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a space •T q  - (T.ZQ.AIQ) if the measure <U extends /UQ and for 
every 8 • Г there is a set BQ  « such that В ' BQ  (mod u). 

MOTE. It seems to be more natural to use the term 
"equivalent extension", but under the conditions of the 
previous definition the measure v represents a well known 
extremal extension of measure AIQ (of. e.g. [7], [8]). 

The following proposition is an easy consequence of 
the above definition. 

РвОРОВГГГОН 6. Let T be an extremal extension of Tq, 

Thea 

(a) the spaces T and are measure-isomorphic; 

(b) T la a seal-finite measure space Iff J"g Is; 

(c) J" Is a Maharam Iff is. 

HOTK. In (a) the isomorphism w : *(HQ) StA») is 
generated by the identity map e : T -• T. 

For any ipeasure space T = (T ,Г ) its completion 
r = (T,£,*j) is obviously an extremal extension of T. A 
partial case of an extremal extension of a Maharam measure 
space T is a locally determined version _ (T, 5°, И°) of 3" 

where 
E°= {E с T : E f) F « X for every F « Z* }, 

#/*E = sup {A"(E nP) :  F« rf>, E « £° 

(see [1]). The same property has a complete locally 

determined version •7" = (T',м*) of a Maharam space (see 
CID) which may be defined as (J*)° or (•7*"). 

Now we shall describe how to construct an extremal 
extension of a measure space. For a family S of subsets of T 
we denote by sa$ the »-algebra of subsets of T generated by 
$. 

PROPOSITION 6 .  Let = (T.Eq ./Jq ) be a measure space 

and 51 a family of subsets of T frith the following 

properties-
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(J) 51 la closed under at aost countable unions; 
(J J) every element of 91 Is of Inner measure яего. 

Set Г r sa(£g U J»). Then the measure Hg can be uniquely 

extended to the measure н on £ and the space T = (T,н) is 
an extremal extension of J"g . 

Conversely, If a space T = (ТЛ.н) is an extremal 

extension of a space TQ = (T,Zg,Hg), then T may be obtained 

from Tq and /гол a suitable family Л as described above. 

Proof. The first assertion is well known (see e.g. 
[91). To prove the converse, denote 51 = 51(H). Then Ä 
satisfies (j) and (Jd). Clearly sa  g USt) с E. For every 
В « I there is a set Eg « Eg such that 8 ~ Bg (mod u). Now 
we have E = Eg A N, where H « 51(H) =• St. Thus 8 * aa(Eg U 5t) 
so that Г = за (Гд U*) .» 

REMARK. If 51 is a o- ideal of subsets of T, then (j j) 
means that 51 f| с 5t(Hg). We have sa(Zg U 31) = {А A N : 
A s Zj, N e 51} and the extension н of Hg is defined by 
н(А A N) = йдА. In this case the measure space T - (Т,£,н) 
is complete if one of the following sufficient conditions 
aresatisfied: (a) J*g is measure-complete; (b) 5t(Hg) <= 51 i.e. 
51 fi Eg = 5t(Hg). In this case 51 = 51(H). 

THEOREM 2. Let •T'g - (T.Eg.Hg) be a measure space and 51 
а 'У-Ideal of subsets of T such that 5t ft ^-g r 9l(Hg). Then the 
space T = (Т,£,н), »here E = sa(Zg U 5») and н(А A N) = HgA 
for A e Zg, N e 51, is a measure-complete extremal extension 
of the space J"g whereas St r 51(H). Conversely, if T - (T ,X ,н) 
is a measure-complete extremal extension of a measure-space 

T g = (T.Zg.Mg), tAen it coincides with the extremal 

extension of J"g constructed by Eg and by the o-ideal 

51 = 51(H). 

Proof. From Proposition 6 we obtain that the space 
? - (ТД.Н) is an extremal extension of Tq . The equality 
31 = 51(H) and thus the completeness of т are both obvious. 

Conversely, let T be a measure-complete extremal 
extension of . Put 51 = 5Г(н). Then 91 is a o--ideal of 
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subsets of T, R(AIQ ) с 9t(/u) = St, Zq с E, the measure 

extends HQ and for each E e r there is a set A « such 

that H(A i E) : 0, Hence AKAXE) = н(ЕХА) = 0. Set AXE = 

= Nx « 9t, EXA = N2 « 9» and » = Sj U Nj в », Then E = А A N. 

From this не conclude that 

Z. с {A A N : A « rQ, N « $1} = satZy U St) 

Since the converse- inclusion is obvious, we have 

£ = ва(£Д U St). It is clear that St f) = ^(MQ) and 

H(A A N) = HQA for every A « Eg, N « St.* 

5. Constructing new spaces with liftings.Now we shall 

show how to construct new measure spaces with liftings using 

a given space T with a lifting p. 

PROPOSITION 7. Let X be a thick subset of a measure 

space Г = (T,£,p). If J" has a lifting, then so has the space 

X = (ХЛх,нх>. 

Proof. Let p be a lifting of T. Applying to Pro­

position 1 (or Proposition 2) we denote by h : -»(н^) -»3(H) 

the measure-preserving isomorphism (induced by inclusion 

X с T). Let л* : -» •*(/J]j) be the canonical homomorphism. 

Put A* = л*(A) and 

P'(A*> = p(h(A*)) n X. A = rx. 

It is easy to check that p' S(p^) -» is a lifting of the 

space X. * 

PROPOSITION 8. Let 3/ = (Y.E.r?) be the preimage of a 

measure space T = (T,£,/u) under the map <p : Y -» T sucb tZist 

f>(Y) is a thick subset of T. Let also u - $(p) •» $(r>> be the 

measure-preserving isomorphism generated by <p, and p a 

lifting of the space T. Then the equalities 

CT(G ) = P"1(P(U"1(G7?)))> G E S, (4) 

define a lifting of the space 3/. 

Proof. It is clear that "(Y ) = Y, c( 0^) = в and с is 
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a Boolean homomorphism. Therefore we must prove only that 

n . a = , in other words that " G (mod т?) for 
7? * ) if 
every G « E. Take a set К « £ suoh that G = t> (E).By 

Proposition 2, we have 

G„ = C^K)],, : u(i(u), 

whence E^ = u-1 (Q^) and 

»(G^) Д G = »(G^) Д F"*(E) = f>~*(E Д ̂ (u'NG^))) = 

= F"*(E Д Р(В^)) . 

As E Д p(EJU|) ~ 0 (mod н), we conclude that »(G^) ~ G 

(mod 17). * 

PROPOBITIOH 9. Let Tq •- (T.Zq.Hq) -be а являйте space, 

T = (Т,£,н) j ts ejftreeaJ extension and w : 3(Hq ) -» •8(H) fcAe 
measure-preserving isomorphism generated by the identity map 

e : T -» T. ГЛел /or every lifting Pq О/ tAe space J*G there 

exists a unique lifting p of the space г such that 

p(k„> = p0(«"(iM)) 

/or every E « £. Moreover, if т .- 3(^) -» and Tg : 5(HQ ) -» л 

are the canonical maps then w = r 1 « Tg . 

The proof is easy. Let us remark that for any lifting 

p of the space J" one can'consider the map p' : Z -» г defined 

as follows 

P'(E) = P(ip>, E « Z. 

The map p' is called a lifting of the c-a Igebra Г (cf. [3]). 

Thus, Proposition 9 may be formulated as follows. Let 

5"q = (T.Zq.avq) be a measure space and T - (Т,£,н) its 

extremal extension. Then every lifting pg of Eg can be 

uniquely extended to the lifting P' of S. 

6. Д description of . Maharam measure spaces with 
liftings. Now we shall prove the main theorems. 

PROPOSITION 10. Let a measure space T - (T ,н) be an 

extremal extension of the preimage of some dense subspace 
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x - of hyperatoneaa apace Q - (Q.n.v,*) under some 
surjectlve aap p : T -» X. Then there is a lifting p of the 
apace т auch that P - . 

Proof. Denote by Tg = (T.Zg.Hg) the preimage of the 
apace * under the шар p T •» X. It ie clear that J"Q is a lao 
the pre image of the apace Q. By Propositions 1, 2 and 5, the 
spaces •7", 3"0, X and Q are measure-isomorphic. Consider the 
canonical maps я : Г -» »(#j) , itg : ZQ -» Л(нд) and the 
canonical isomorphisms т : *(*») •* Тд : Л(Нд) -» . Let 
CQ : Ä(V) -» •>* be the strong lifting, of the space Q. Put 
i = 11(E), A* = Лд (A) for E « £, A • 1q . Let u : *(") -» S(Hq ) 
be the measure-preaerving isomorphism generated by p. 

pQ (E*) = p"t(o-0(u"1(E*)>>, E 6 Eg, 

define a lifting of the apace . From the assertion (c) of 
Proposition 4 не obtain <?д = Tg • u, so that "Q ° = Tq  

and 
P 0  (E*) = P"*(T 0(E*)) 

for every I « 
Let и : S(Hq ) -» S(H) be the measure-preserving 

isomorphism generated by the identity map e : T * T. By 
Proposition 9, there is a unique lifting p of the space T 
such that 

P(E)  = P 0 (H - 1 ( i>> 

for every E e Z. Since н = т~* . Тд не have Тд « н - 1  = т and 

р(Е) = Рд(н"(Ё)) = р'^ТдСн"1«))) = p"*(T(i)). (5) 

From (5) and the assertion (b) of Proposition 3 it follows 

that p"*(0) - for every open-closed set U e j# . The 

Stone space Q is a Hausdorff topological space and ** is a 

base of its topology. Therefore p = pp.* 

THEOREM 3. Let т г (ТЛ,м) be a measure-complete 

locally determined Maharam measure space. The following 

assertions are equivalent: 

(1) T is decomposable. 
(2) There is a lifting of the space T. 

(3) The space T is an extremal extension of the 

preimage of some dense subspace X = (X.O .̂u )̂ of the Stone 
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space Q = (Q,n, v ,н) of T under some 

p : T -» X. 
surjectlve aap 

Proof. (1) 4» (2) is well known (see e.g. [3]). 
(3) * (2) follows from Proposition 10. 

Check that (2) •» (3). Let p be a lifting of the space 
T and f>p T - Q the corresponding map. Put X s Fp(T) and 
X = (X.n^.Wjj). By Propositions 1 and 3, the set X is dense 
in Q. Let •T'q ,£q ,Hq ) be the pre image of the space X under the 
map pp. Applying to Proposition 4 we obtain that 
Fp*(G П X) = f'p (G) « Z for every G « C> and therefore 
pp*<G) « Z for every G e so that Zg e Z. Clearly is 
also the preimage of ft under the map pp-

Consider the canonical homomorphism " Z -» 3(H) and 
put К = п(Е), for E * Z. By the assertion (b) of Proposition 
3 we have P(S(H)) с Xq . Hence for each E « Z there is a set 
Eq « ZQ such that E ~ Eg (mod м), namely we can take 
Eq = p(E). Now we have only to prove that the measure н 
extends Mg. 

In fact, if E, i e Zq  and E ~ F (mod и), then 
м(Е A F) = 0. As E A F e Zg there is a set M « П such that 
E A F = p~*(M). By the assertion (a) of Proposition 4 we 
have vM = 0. This yields that Mq(E A F) = vM = 0. Since 
E ~ p(E> (mod и) for every E e Zg, it follows that E ~ (E) 
(mod Hg), whence h qE = Hq(P(E)). 

Finally for every E e ZQ  we have by Propositions 3 and 
4 нЕ = н(р(Е>) = ^ x(p p(p(E))) = HQ (p~'(p p(p(i)))) = 
= Hq(P(E)) = н 0Е. 
Thus, the measure н extends Hq•* 

Since the completeness of a measure is not used in the 
proof of the implication (2) * (1) in Theorem 3, we have 
also the following theorem. 

THEOREM 4. A locally determined Maharam measure space 

which has a lifting, is decomposable. 

THEOREM 5. Let T = (T, z, p) be a Maharam measure 

space and Q - (Q,n,v,*) its Stone space. The following 

assertions are equivalent: 

Cl) T is measure-complete and decomposable. 

( 2 )  T coincides with the complete locally determined 
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version of an extremal extension of the preimage of the 

Stone space 4 under such map p : T •* Q that p(T) is p dense 

subset in Q. 

Proof. (1) * (2) follows from Theorem 3. The 

Implication (2) * (1) follows from Propositions 1, 2, 8, 9, 

Theorem 4 and the definition of complete locally determined 

version.* 

From Theorem 5 it follows that every measure-complete 

decomposable space may be obtained in four steps at most: 1) 

take a suitable dense subset X of the corresponding Stone 

space, 2) take a preimage of the subspace x - (X.o^.v^) 

under some surjectlve map p • T X, 3) take a suitable 

extremal extension of the previous space, 4) take the 

complete locally determined version of the last space. 

In the paper [10] V. L. Levin has stated the question 

whether there always exists a separating lifting of the 

measure-complete decomposable space T = (T.z.v), i.e. such 

lifting p that fot every t^,tg « T (t^ * tg) there is a set 

E « Z with t^ € p(E) and tg « P(E). Clearly p is a 

separating lifting iff the map r>p : T •* Q is injective. Now 

we can easily see that the answer is in general "no". Let J" 

be the preimage of a hyperstonean space (Q.n.v,*) under a 

surjectlve map p : T •* Q. Then T is decomposable, but if 

card T > card Q, then there is no separating lifting of the 

space J". The completion 5" of T is obviously a roeasure-

-complete decomposable space which has no separating 

liftings . 

Finally we shall describe all Maharam measure spaces 

T z. (T,Z,#J) with a given Stone space (Q.O.v,*) that have a 

lifting. Let •*> be the »-algebra of Baire sets in Q and 

the restriction of к to S. Then the space (Q,2>,V>Q) has 

obviously the natural strong lifting о : 3 (vQ) -» л and 

(Q,n,v) is an extremal extension of (Q.S.VQ). 

ТВЮВЕМ 6. Let T = (T, м) be a Maharam measure space, 

Q = (Q.O.u,*) its Stone space and (Q,Z>,v0) the *corresponding 

measure space wl tb Ba ire se ts as measurable ones, Then 3" has 

a lifting iff it is an extremal extension of the preimage of 
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the apace. (Q,f, Vq ) under such map *> • T -» Q that p(T) is a 

dense subset of Q. 

Proof. Let p be a lifting of ? and T^ - (T.Zq,Hq) the 

preimage of (Q.JD.Vq) under the map pp • T - Q. Then 

Fp1 (G) e I for every G « 5> so that с I, It is clear that 

for every E « X there is a set Eq « Eq such that E ~ Eq 
(mod H) (one can take EQ = p(Ep) ). 

Now we shall prove that p extends Hq. If E « Eq and 

мЕ = 0 then HqE = 0 . In fact, E = p~*(A) for some A e 3> с о 

and if we assume that HqE * 0, then "A * 0. In this case we 

have Int A * 0 and there is a set G « J* , G * 0, such that 

G с A. Then E => p^'tG) = p(H) for some H e £ whereas 

p(H) * 0, whence нр(Н) > 0 and нЕ > 0 . Now we have E ~ p(E) 

(mod M) for every E e EG, i.e. E A P(E) ~ 0 (mod м) .From 

this it follows that E Д p(E) ~ 0 (mod Hq ), i.e. 

HgE = HgP(E). Finally for every E e Eg we obtain 

pE = pp(E) - v (T (i) )= fgp(p(E )) = MqP^1 (pp(p(E))) = Hgp(E) = 

= HqE . 

The converse assertion follows immediately from 

Propositions 1, 8 and 9.* 

Let us remark that from Theorem 6 it follows that the 

spaces (X,SV,и ), where X is dense subset in Q, are the 
Ä UX 

"poorest" spaces with liftings that have the given Stone 

space (Q.O.u,*). 

7. Example. Let Q - (Q,0,v,x) be a hyprestonean 

extremally disconnected compact space with a sufficiently 

positive semi-finite measure ^ and let us assume that и is 

not c-finite. Then there is a disjoint family of 

open- -closed subsets of Q with < со, i s I, such that 

v(Q \ U Q.) = 0 
i=I 1 

(cf. [4]). Let Tj and Tg be two disjoint dense subsets of Q 

such that T^ U Tg = Q; note that T^.Tg « О. Denote by 3t the 

collection of all subsets of Tg that have nonempty 

intersection with at most countable family of sets Q.. Then 

31 is a »-ideal of subsets of Tg and Q. Consider the space 

•7" = (Q.E.p) where E г за (П U 31) and M(E A N) = vE, E e П, 

N e 9t, constructed as in Proposition 6 (see also the 
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corresponding remark). The space ? is an extremal extension 

of the space Q and by Proposition 9, there is a lifting of 

the space T. It is clear that т is a measure-complete 

Maharam space. 

Now we show that T is not locally determined. We shall 

verify that the set Tg is locally negligible (whence it is 

locally measurable), otherwise it is easy to see that Tg « 9t 

and Tg « £. 

Let F e , then F = E A N where E « c? and N e St. By 

the definition of the o-algebra о (see Section 2) we haVe 

also E =A A M where A « *, и к < ® and H < 3t(v) = Лу. As the 

space Q is decomposable, there exists an at most countable 

set J с I and a set К « such that 

i : U (A oQ.I UK. 
iej 1 

We have 

T2 n i = T2 n <<A д й> д H) = (T2 n д (T2 fi (M A H)). 

Put L = Tg n (M Д N). As M A N « 9t(/j) and T is measure-

complete , we deduce that L « 5t(/j). Now we have T2 f| F = 

= (Tg л A) A L and 

T, л A = T, n с U (A n ̂  > U К] = 
^ z i«J 1 

= [ U А л (T, Л Qi U (T9 л К). 
ieJ 

Again because T is measure-complete we have Tg л К e 9t(/u). 

As Tg л c Ж»') for each i « I and 3t is a o- ideal, we 

obtain that Tg л A e 1(/j). Therefore Tg Л * * 9t(p), 

consequently, Tg л ̂  e Thus Tg л F e z for every F « 

but Tg « which means that the space T is not locally 

determined. 

If we take the pre image 3/ - (Y.E.IJ) of the space T 

under a surjectlve but not injective map %> • Y -» Q, we 

obtain a Maharam measure space which has a lifting but is 

neither measure-complete nor locally determined. 
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Liftingut omavate mpSduga ruumide kirjeldus 

Aleksander Monakov-Rogozkin 

Resümee 

Artiklis {1] on D. H. Fremlin konstrueerinud naite 

sellisest täieliku rooduga lckaliseeruvast (artikli [10] 
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mBttes) Maharami ruumist, mis pole rangelt lokaliseeruv ning 

seepärast ei oma 1iftingut. Käesolevas artiklis uuritakse 

1 if tinguga ruumide konstrueerimist ja antakse näiteks kõigi 

täieliku mõõduga rangelt lokaliseeruvate ruumide kirjeldus, 

millel on üks Ja seesama Stone'i ruum. On toodud näide 

niisugusest Maharami ruumist, mis omab 1iftingut, kuid pole 

täielik möödu järgi ega lokaliseeruv. 
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ACTA ET COMMENTATIONES UNIVERSITÄTIS TARTUENSIS 

1991, 928, 89-96 

BEMARKS ON THE DÜAL OF THE SPACE 

OF CONTINUOUS LINEAR OPERATORS 

Eve Oja 

1. Let L(E,F) and K(E,F) be the Banach spaces of 

continuous linear and compact operators from a Banach space 

E into a Banach space F. In [5] не obtained three 

decomposition theorems for the dual L(E,F)* into the direct 

sum of K(E,F)X and a subspace K(E,F)* isometriually 

isomorphic to K(E,F)* in the case where E or F are closed 

subspaces in Banach spaces having certain variants of metric 

compact approximation property (MCAP in short). 

The present note is an appendix to [5]. We shall prove 

a result announced in [5] in a slightly more general form. 

This permits us to deduce the quotient spaces variants of 

the composition theorems of [5]. This permits us also to 

show that the property "K(X,X) is an M-ideal in L(X,X)" is 

preserved by passing to closed subspaces of X which are as 

well quotients of X and which have the MCAP. This answers 

partially a question mentioned in [7]. 

2. Let X be a Banach space. Let 1^ denote the identity 

on X. Let j : E - X denote the canonical injection for a 

closed subspace E of X, and let q : X •» E denote the 

canonical surjection for a quotient E of X. The following 

result was announced in [5] for the subspace case. 

PROPOSITION. Let X or X have the Radon-Nikodym 

property. Suppose that there is a net (A^) in K(X,X) such 

that 

lim^A* xf - x* for all x* = X* . (1) 

Let E be a closed subspace oi- a quotient »/X. If E has the 
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MCAP and the unique extension property (UEP in short), then 

there are a net (Рт>твД of convex combinations of (A^) and a 

net (Sm>meü Jn the unit ball of K(E,E) such that 

lim «Р J - JS II = 0 or lim «qP - S q« = 0 . (2) 
* M ГО . rrt W 

теД 

Proof. Let (T^) be a net in the unit ball of K(E,E) 

such that lim^T^e = e for all e « E. The w*-compacteness of 

the unit ball of L(E**,E**) = (E* » E** )* and the UEP permit 

us to conclude that T^ -» I ж in the и*-topology (cf . [2], 

Theorem 2.2). Let ^ = A^j - JT^ in the subspace case 

or - qA^ - T^q in the quotient case. where {(•<,/?)} is 

directed by the product ordering. Consider X*® E** and 
* ** •* * 
E « X as vector subspaces of K(E,X) and K(X,E) 

respectively. These subspaces are norm-dense since X* and E* 

(or E**and X**) have the Radon-Nikodym property (cf. e.g. 

121, p.674). Therefore it is clear that ^ -» 0 weakly in 

K(E,X) for the subspace case, and С^ ̂  -» 0 weakly in 

K(X,E)' for the quotient case. The convex combinations of 

these nets which converge to zero in norm (cf. [1], p.40) 

will give us the nets satisfying (2) (note that 

л  =  { ( - < , / ? ) }  X M ) .  

3. Using Proposition, one can prove in the similar 

fashion the quotient spaces variants of Theorems 1 and 2 of 

С53. For formulate these results, one must simply replace 

the word "closed subspace" by " quotient" in Theorems 1 and 

2 of [5]. So we do not reformulate these results here and we 

mention only some of their corollaries. 

COROLLARY 1. Let E be a Banach space and F a quotient 

or a closed subspace of lp(Г) or d (w,p), 1< p < If F has 

the CAP then K(E,F) is an HB-subspace. 

COROLLARY 2. Let F be a Banach space and E a quotient 

or a closed subspace of lp(Г) or d(w,p) *, 1< p < ®. If E has 

the CAP then K(E,F) is an HB-subspace. 
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The following result is * generalization of Theorem 3 

from [5] and Proposition 1.2 from [6]. For « L(X,X) 

(where -< is an index) we put A - 1^ -A^. 

THEOREM 1. Let X and Y be tuo Banach spaces such that 

X* or X** and Y* or Y** have the Radon-Nikodym property. 

Suppose that there are two nets (A_) and (B^) in the unit 

balls of K(X,X) and K(Y,Y) respectively, satisfying the 

conditions (1) and 

B^y -* у for all у g y, (3) 

B^y* •> y* for all y*e Y*. (4) 

Suppose moreover that there are X > 0 and two 

functions Nl and N2 on [0 ,™>) X [0 ,a>) such that N2 is convex, 

N2(a,b) 5 Ha(c,d) 5 Hjto.dA) for a 5 с, bid, and that for 

all £ > 0 there are -<0 and PQ such that for all <x > -<0 a/id 

ß > ßa we have 

Nt(« A^x » , II A^x II ) 5 (1 + £) » x » , 

II Вßy + B^z II < (1 + с) N2 (II у И , II z II ) 

for all x e X and у,z e у. Let E and F be quotients or 

closed subspaces of X a.nd Y respectively. If E and F have 

the MCAP and the UEP then K(E, F) has the property SU and 

II g II + X II h II £ II f II fort- S + h e L(E.F)*, g e K(E,F)f 

h e KtE.F)"1. 

Proof. By Proposition, there are the nets (Pr), (S; ) 

and (Qn), (Tn) corresponding to (A^) and (B,,) respectively. 

In view of the nets variant of Theorem 2 in [11], we have to 

show that E with (Sm) and F with (T^) satisfy (1) and (3), 

(4) respectively, which is obvious, and that 

lim lim »TrSSm + XTnTS"li <1 (5) 

for all S and T in the unit ball of L(E,F). 

Let us first consider the case where F is a subspace . 

Then we have 

Tim IITrS£m + XTnTS™li < 
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s l^m sup «QnSSme •» xQnTS e« ь 
He« < 1 

5 HB sup «B^SS e + XB^TS"e" . 
ft II e И < 1 ' ™ 

Let T be any positive number. Then for all ft > fto, m and 

e « E, И e U < 1, не have 

«B^SS^e + XB/iTS™e« s (1 + *) (^ («Sme« ,x«S™e« ). 

Denote = liPmJ - JSm» if E is a subspace and -

- if К is a quotient (не may suppose .that 

e < 1). Then for some x « X, » x И s 1, and all m 

N («S ell ,X»Smeii ) s N.(* + нр XU, X* + хир"хи = 2  m  2  T f t  T f i  T t t  

- N (« (1 + HP x#)+ (1-  )»p X«, £ (X+X«pm
xll )+(l-e )XWP™XII) < 2 m m ш nt ro lYi 

5 с N (1+ lip X«, X+Xlip™x«) + (1- £ )tr (HP xll, X«pmxll) 5 
m 2  m m 2  m 

5  £ N ( 3 ,  4X) + ( 1 -  * ) N ( IIP X «  , Xlip"xll). m2 m 2 m ' 

And since 

Tim sup N (»P X«, Xlipmxll) < 
™ »xll<l 2 

5 lim sup N, (»A xll, х#д ХИ), 
ы 1хН<1 

we are done . 

Let us finally suppose that F is a quotient. Let e < 1 

be any positive number. We have 

Tpn »TnSSm + XTnTSm« 5 

5 lim sup.'Qny + XQnzll 5 

s lim sup BB-y + XB^zH £ 
ft P 

5 (1 + s) sup Nz (* у* , xigfl), 

where the supremum is taken over all those у and z in Y that 

the canonical surjection sends to SSme and TS"e respectively 



for some e e E, He# < 1, so that the conditions II у II 5 

5 lISS^eH + £ and Hz 8 5 II TS "ell + * are fulfilled. Since 

N  ( " у " ,  X I I  ZH )  5  N2 (E +  " s „ e " .  + x I I S ™ e l l ) ,  

не can conclude as above (supposing that +• « < 1). 

REMARK. If X - Y in Theorem 1 then the hypotheses of 

the Radon-Nikodym property for X* or X** and of the UEP for 

E and F are superfluous. For, one can show similarly to 

Theorem 5 in [10] that K(X,X) has the property SU in L(X,X). 

But then X is Hahn-Banach smooth [4]. Therefore X* has the 

Radon-Nikodym property [8] and all quotients and closed 

subspaces of X have the UEP [2]. 

Applying Theorem 1 with Nt(a,b)= (ap+bp)i/p and N2(a,b)-

= (a^+b4 J1'4 yields 

COROLLARY 3. Let E be a quotient or a closed subspace 

of lp(r,) or d(v,p') , and let F be a quotient or a closed 

subspace of lq(r
2> or d(w,q), where 1 < p 5 q < a> and 

1/p + 1/p' = 1. If E and F have CAP then K(E,F) is an 

M-ideal in L(E,F). 

4. It was shown in [3] that a Banach space X with 

K(X) = K(X,X) being an M-ideal in L(X) = L(X,X) necessarily 

must enjoy the MCAP. It is clear from Corollary 3 that for 

quotients and closed subspaces of 1р(Г), 1 < p < oo, the MCAP 

already ensures this property. In [7], there was mentioned 

the question whether the property "K(X) is an M-ideal in 

L(X)" is preserved by passing to quotients and closed 

subspaces of X having the MCAP. By the following result, we 

give a partial affirmative answer to this question. 

THEOREM 2. Let K(X) be an M-ideal in L(X). Let E be a 

quotient and F a closed subspace ofX. If К and F have the 

MCAP then K(E,F) is an M-ideal in L(E,F). In particular, if 

E is a quotient as well as a closed subspace of X, and E has 

the MCAP, then К (E) is an M- ideal in L(E) . 

Proof. Since K(X) is an M-ideal in L(X), there is a 
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net (B^j) in the unit ball of K(X) satisfying the conditions 

(3), (4) and 

Hm И B„A + B^B i s 1 
ft ' 

for all A and В in the unit ball of L(X) (cf. СЭ]) . By 

Proposition, there are the nets (Pm), (Sm) for E and (Qn), 

(T^) for F corresponding to (B^) . As in the proof of Theorem 

1, it is sufficient to prove (5) (with X-1, for this time). 

Let q : X - E and J : F -• X be the canonical 

surjection and injection. Let ^ be any positive number. 

Since 

Tim USmqU - Tim llqP"ll 5 lim IIP™« 5 lim «в"» 5 l, 
m m m ^ 

there is an mQ such that IISmqll £ 1 + e for m : mo . We have 

for m > mo 

Ilm «TnSSm + T"TSmn £ 

£ Цт HQnjSSm + Q^jTS™!! £ 

£ Hin «BfijSS + B^JTS™» = 
ft 1 " 

- Ilm «B-jSS q + B^jTSmqll £ 1+«, 
ß ß m 

and thus we are done. 
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Märkmeid pidevate lineaarsete operaatorite ruumi 

kaasruumi kohta 

Eve Oja 

Resümee 

Tõestatakse üks autori artiklis [5] sõnastatud tulemus 

mSnevSrra üldisemal kujul. See lubab tuletada artikli [5] 
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lahutus teoreemide jaoks faktorruumlde variandid. See lubab 

ka osaliselt vastata ühele artiklis [7] püstitatud 

küsimusele järgmisel kujul. 

TBOBEEM 2. Moodustagu kompaktsete operaatorite alamruum 

K(X,X) M-ideaali kSigi Banachi ruumis X tegutsevate pidevate 

lineaarsete operaatorite ruumis L(X,X). Olgu E ruumi X 

faktorruum ja F ruumi X kinnine alaroruuro. Kui ruumidel В ja 

F on meetriline kompaktne approksimatsiooniomadus, siis 

K(E,F) on M-ideaal ruumis L(E,F). 
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ACTA ET COMMENTATTONES UNIVERSITATIS TARTUENSIS 

1991, 928, 97-102 

SUMMABILITY FACTORS FOR STRONG SOMMABILITY 

Virge Soomer 

Let A = (a^), ank 2 0, be an infinite matrix and let 

p =: (pk) be a sequence of positive numbers. A sequence 

x = (xk) is called strongly Л-summable (to 1) with exponent 

P if 

Um EankK - if"- 0. 

Let -< = (Av) be a sequence of matrices At = (anlk), 

anik 2 0. A sequence x = (xk) is called strongly ^-summable 

with exponent p if 

4" Ea„J\ - MPk= 0 

uniformly in i.The sets of strongly Л-summable, strongly 

Л-summable to aero, strongly •*-summa ble and strongly 

-i-summable to zero sequences are denoted respectively by 

[сд]р, Ссд]р, tcjp and [cjp. 

REMARK. If - = (A), A = (ank), then CcJp - Ссд]р. 

The purpose of this paper is to characterize the 

sequences « = (^k) which have the following properties: 

X - (xk) e [c^]P implies -ex - (^X,^) e [c^ü4 (1) 

or 

x - (x^) -= [c^]p implies en - (skxk) «= . (2) 

We call a sequence « - (^k) satisfying (1), resp. (2), a 

summability factor (notation (с. ) «г ([с ]p, [с ]q), resp. 

For p = (pk), q = (q^.), 0 < qt < pk we have the 

following two theorems . 

THEOREM 1. Suppose that 0 : q. < pk S M < <*>, r -
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= sup (qk /рк ) < 1 and X = lnf(q|i/pk) ) 0 .If the conditions 

\ 

sup E »„ikkj1"' < ® (3) 

and 

"k 

sup E a„u,lekl,-X < 00 (4) 

are fulfilled then Uk) « ([cjp, [c J^). 

pk 

Proof. Put 11^1 = wk and \ = qk /pk . Let x = (xk) « 

« Cc^]p, then 

E VvkK1 " = = 0 (5> 

uniformly In 1. Define 

and 

f "k ."k2 4 
1° -Hk < !• 

Г "к -"к < 1' 

lo ,w. Ž 1. 

xk xk xk 

Then ик = uk + vk wk = uk + vk . Now it follows that 

Xk Xk ' x 
uk 

5 % , v
k - vj, .and by Holder's inequality we obtain 

E »„ikK^I " = £ amklSkl " "к" = 

= E »niklil " V + E anlkkj k vk" < 

4 E <amkuk)r *nik
Ur\'k\ " * E <antkvk)X k £ 

"k 

1 (= *~л)' (E-^KI777)1"* 
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• ( E amk«jr (E«mhK|1_r j1"-

4k 

' (р~лГ (f *,l.KIrx}1"x • 

NOH it follows by (5) that conditions (3) and (4) are 

sufficient for (*k) « ([сы]р, Ссы]^). This completes the 

proof. 

Let e - (1,1,1,...), then e « [с^]р, <e = «, and 

consequently from (*k) « ([c<><]p, [c^]4) it follows that 

(*k) 6 [cj4, i.e. ([cjp,[cj4) с [cj4. 

Let x = (x^) e [c^]p and e = (<k) « ([c^]p, [c^]4) с 

с [c^]4. Then there exist some numbers 1 and v such that 

E аткК - II "= 0 

uniformly in i and 

чк 

lim E anik|ck - T)j = 0  uniformly in i. ( 6 )  

For H = sup q and К = max (1, 2H~*) we have (see [2]) 
к 

К + bj £ К (|акГк + |bk|"k). (7) 

It follows from (7) that 

£ antkK*k - ̂ 1 "= £ аыкК*к - V + ^k1 -т>1Гк s 

5 K< = *MkK<V ̂ l4" + а«ИЦЧк1: anikI'k - *f">-

Since (xk - 1) e [с^Зу it follows by Theorem 1 and by the 

condition (6) that conditions (3) and (4) are sufficient for 

(<k) g (Ссы1р,[c^]4). Thus we have proved 

THEOREM 2. Suppose that 0 < qk < pk £ M < oo, r = 

= sup(qk/pk) < 1 and X = inf(qk/pk) > 0. Лгел conditions (3) 

алс/ (4) are sufficient for (efc) «= ([c^]1*, [c^]4) . 

BEMARK. Using Holder's inequality it is easy to show 

that in case sup £ arvk < a> the condition (4) follows from 
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(3) . In this case every bounded sequence ) € 

e ([cJp,CcJ4). 

For 0 <pk 5 qk we have the following result: 

THEOREM 3. Suppose that 0 <r 5 pk < qfe < M ч сю. If 

where ak = sup anCk, then C«k) e ([c^]p, [c^]4) . 

Proof. Let x = (xk) e [c^]p.Then there exists 1 and 
pk 

such that ak |— 1J < Kffor all k. Since 0 < r 5 pk, 

there exists a number KQ so that 

1 /р. 1 /p. 
ak К - 1| < К, < K0. (9) 

We obtained that for every (*k) s (Cc^]p, Сс^З4) condition 

(6) is fulfilled and so it follows from (6), (7), (8) and 

(9) that 

£ -"1!4k 5 

5 K (e amkKI4,t K" Xl " + suJ?li| " £ anilcK - "I k) = 
Se к к ' 

К qw % ~pk = k £ anvkixk- n ki к- и + o<i) = 
Pk »'«Y Ч-Р 

= 0(1) E anlkK- 1| (ak 
k|V 1|) + o(l) = 

= 0(1) E a^K- if" + o(l) = o(l). 

Hence (8) implies that (*k) « ([с^Дс^''). The proof is 

completed. 

REMARK. Let - = (A), A = (ank). Then [c_><]p = СсдЗр and 

in case pk = const, qk = const, (3.) (for qk < Pk) and (8) 

(for qk 2 Pk) are necessary and sufficient for 

(£k) e ([сдЗР,[сй]*) (see [1]). 
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Summeeruvustegurid tugeva summeeruvuse korral 

Virge Soomer 

Resümee 

Olgu =< - (АЛ - maatriksite At - (anik) jada, kusjuures 

anik ž 0, ja olgu p = (pk) positiivsete arvude jada. Jada 

x = (x^) nimetatakse tugevalt »--suromeeruvaks arvuks 1, kui 

4* £ - l|Pk= 0 

ühtlaselt i suhtes. 

Tähistame kõigi tugevalt summeeruvate jadade hulga 

sümboliga [c^]p. Käesolevas artiklis on leitud piisavad 

tingimused, et arvud ck oleksid ([c^]1*, [c^]4 )-tüüpi summee­

ruvustegurid , s.t. selleks, et sisalduvusest (x^) « [c^]®1 

järelduks sisalduvus ) « Cc^]4. 

TEOREEM 2. Olgu 0 < qk < pk 5 M < ®, r = sup(qk/pk) < 1 

ja X = inf(qk/pk) > 0. Siis selleks, et jada (<=k ) oleks 

(Cc^]p, [c=<34)-tüüpi summeeruvustegur, on piisav, et oleksid 
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täidetud tingimused (3) ja (4) . 

TEOREEM 3. Olgu 0 <r S pk < qk < M < =. Siis on 

tingimus (S) piisav selleks, et jada (ck) oleks 

([c^]1", [c^]4 )-tüüpi summeeruvustegur . 
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WEYL FACTORS FOR SUMMABILITY WITH SPEED OF 

ORTHOGONAL SERIES 

Heino Turupu 

1. Let p = {*>k} be an orthogonal system in e = ta.b]. 

We consider the orthogonal series 

E Vk<t) (1) 

where x = (fk) e l2. 

Let A and В be regular* summability methods, given by 

triangular matrices <«'rik) and ), respectively. 

The series (1) is called ii-summable almost everywhere 

(a.e.) in e, if the limit 

J/nkW*' (2) 

exists a .e . in e . 

Let X = (Xk) be a sequence of real numbers with 

0 < xk 5" «>. 

We say that the series (1) is Л0-зиттаЫе a.e. in e 

with speed X or, in short, ^-summable a.e. in e, if the 

limit (2) exists a.e. in e and 

lim \ (с -„kW*' - f(t>) = (3) 
П400 4 k=0 J 

a.e. in e where f is the sum of the series (1). 

We say that ("k) with 0 < &>k s* ш is a sequence of Weyl 

factors for the Л^-summability a.e. in e if the condition 

E < « 

implies the summability a.e. in e of the series (1). 

In the case where A is the Riesz summability method P 

with 

1 We use definitions from [3]. 
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Vi 
- 1 -г,к - -1 Р 

«here 0 < Рь 
? ® is a sequence of real numbers, the Weyl 

factors are well known (see e.g.[1,2,6]). 

In [2] the following Theorem A was proved. 

THEOREM A. Let "k- XklnlnPk where 

\ 
p- 41 0. 
к 

Then («k) is a sequence of Meyl factors for summa­

bility a.e. in e of the series (1). 

In this paper we shall generalize Theorem A. 

The series 

r nk (4) 

where r?k are real numbers is called X-convergent if the 

series (4) is convergent and, furthermore, the limit 

lim Xn E 7)k. 
n-»co k = n+l 

exists . 

We say that the summability method A is X-convergence 

preserving if for every X-convergent series (4) the limit 

lim Xri ( £ -r)k7?k - y) 
л->CO к = О 

exists where у is the sum of the series (4). 

Let A be a summability method for which 

a. :  = sup la .  I  = о (1) (5) 

We prove the following 

THEOREM. Let A be a A*-convergence preserving 

summability method for which (5) is fulfilled and 

X* /ехр E a." 0. (6) 

к 
Then the sequence " = X In E a is a sequence of Weyl 

к It 1 
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factors for the summability a.e. in e of the aeries 

( 1 )  .  

2. To prove Theorem не consider the Biesz summability 

method P where2 

к 
Pk : E a, 

ISO 

From (5) it evidently follows that there exist constants 

1>0 and L >0 so that 
P„ 

lak s — SK- <7) 

k- i 

From Theorem A it follows that if the condition (6) 

holds and 

к 

4 k'^k"1"** E eXln2 E ax » (8) 

then 
P n r к - 1 

I E fl- 1 Vk(t) - f(t)| = o/l) 
k = i <• p J v 

(9) 

a.e. in e. 

Let ® denote a decomposition of e, i.e. 

Я! - { , n-0 ,1 m} , 

U n = e 

and 

m , fi m — 0 mk 1  1  mn 
if к * n. 

We use the following results. 

LEMMA 1 (see [7]) . Let (fn> be a sequence of integrable 

functions in e. Then 

fn(t) = 0t(l) 

a.e. in e iff for each <o0 there exists a measurable subset 

2 If the summability method P is X2-convergence 

preserving then the condition (6) holds (see [5], p.140) 

105 



Тес е where тез Т£>Ь-а-е and a constant >0 so that the 

inequality 

I JTs Ee«„(t)fn<t)dt, 5 

holds uniformly for all the decompositions Я of e where 

x = x 

1R mr 

LEMMA 2 (see [5] ) . If a regular triangular summability 

method A is ̂ -convergence preserving then the conditions 

1° 3 lim X*( £ a^-1) 

and 

n |ank I 
2° x2  E —— = 0(1) 

П к = О Xf 

hold. 

LEMMA 3 (see C4,p.361]). Let Dn (D « W) be continuous 

homogeneous operators from a Banach space X into the space 

of all functions measurable in e for which the 

inequality 

|D (x+x,,t>| s |D (x ,t) j + |D (x,,t) I 1 m 1 2 1 • m l » 1 m 2 1 

holds. If 

1° Dn(x,t) = 0t(l) 

a.e. in e for any x e X and 

2° lim Dn(x",t) = 0 
n - * 0 0  

a.e. in e for any x' from a total set in X then 

lim Dn(x,t) = 0 

a.e. in e for each x = X. 

Lemma 4. Let A be a triangular regular Xz-convergence 

preserving summability method for which (5) and (6) hold. 

Then 

Ari(x,t> = 0t(l), (10) 

where 
P Г> к i-l 

A (x,t) - X £a, E — г. i> . r.k . £\ t t ,1». (t) (in 

and 
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к .  
Рк = ехр Е at, 

L = О 

holds a.e. in е for each x = (£k) « 1 with 

E < "• (12) 

Proof. From Lemma 1 it follows that (10) holds for 

fixed x iff for each *>0 there exists a measurable subset 

T£ с e where mesT^>b-a-« and a constant М£>0 so that the 

inequality 

B®(x) s M£l 

where 

Be(x) = If- E* (t) A (x.t)dtl, 

holds uniformly for all the decompositions * of e. 

Using Cauchy-Bunyakovsky inequality we get 

p 
к i-i ^2 1 1/2 r m n , к i-i >z у 

B>) 5 = *-(t> =„ E x>,j( E —dt| 
v  £  r .  =  0  k = 0  4  =  0  J  J  

where 
| a r , l  1  

с = x E 
L=o X* 

From the condition 2° of Lemma 2 ' and (5) it follows 

that 

P m  m  -  к t - i  r  m m -  к i - l  .  -ч 

л x *  Е ^ ^ ш е  — f^(t)j2 d tr V .  с k = o r, = k 4=0 P k  
J  J 

к PL-i 

- 0 ( 1>{ JT J xX( 
v s  к =o v  v =o P^ s  J 

From Besse 1's inequality we get 

к Pi 1 
<(X) 5 0(1) Ne{ E X=ak E —-?i }'/2 5 

I  k = 0  i  = 0  P f c  J  

m акЧ ,, , 
/2 

/- m m к к 

5 0<1) 4 J/X, kE — j1 

Since from (6) and (7) it follows that 
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a. X X P. X , m к к L m к t m - 1 1 -
E --- s — E — s — E — = 
k=i P* IP k=l P* IP K-L 1 P. , P„ J к t к v к - 1 к 

IP Р . Р J 

we finally have by using (12) that 

I 

{»Tl - L - 1 I - % л -x 1 

E f + 1} 
;-o 1 I P.Pt P P 'J 

P P L - 1 L - 1 .И/2 
В (x) = 0(1) N 

5 0(1) NC{ E } = 0(1)NC - M£ . 
^ V i -o L 1 J 

The proof of Lemma 4 is complete. 

3. Proof of Theorem. We have 

n n к 
X I E - .(Л'Ч - f<t)l = x I E a . E?f (t) • f(t)l 5 n " r.k к к n r.k t L к =o к =o L = О 

< An(x,t) + Bn(x,t) + Cn(x,t) (13) 

where A^(x,t) is defined by formula (11), 

Bn(x,t) = xj E ank - II If(t)l 
k = o 

and 

к P t_ £  

C„(t) = X | E ank ( E (l - ~]f^(t) - f(t))l. 
к =o 4 

v =o v P^ ' 

From the condition 1° of Lemma 2 it follows that 

Bn(x,t) = 0t(l) 

holds a.e. in e. 

As the inequality (8) holds, the condition (12) is 

fulfilled and from Lemma 4 we get that 

An(x,t) = 0t(l) 

ct. с . in 6 . 

Since the summability method A is regular and 

л2 convergence preserving and 
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Iank I r> nk ( r\ л , z rv rik ^ . 

\ E "к s { E 1^.1 },A к E —— }lA, 
k=to к к = о У v к-О X ' 

к 

it follows from the condition 2 of Lemma 2 that 

„ 1^1 

But since 

x  £  =  0 ( 1 ) .  n . X к = о к 

rv ' a r>k '  к ,  -1-ft FIR *. j. V — Ж -
1  (x,t)l 5 X £ — XI E I 1- 1 f *> (t) - f Ct) I , 

Г' к Го Xk k vTol- Pk, J V L 

we finally get using the inequality (9) that 

r, Kk I 
1  (x, t) I s 0,(1) x J£ = 0,(1) 

kto Xk 

a.e. in e for each x for which the inequality (8) holds. 

Now by using the inequality (13) we have that 

Fri(x, t) = 0t(l) (14) 

a.e. in e for each x for which the inequality (8) holds, 

where 

F„(*.t) = xj EVA(t) - (15) 

к =o 

It is evident that for each n € # the equality (15) 

defines a bounded linear operator Fn from 1^ into Me where 

1^ is the Banach space of all sequences for which the 

inequality (8) holds. 

The set {e } is a total set in 1* where е.- (6 .) 
J " J kj 

and <5k_ is the Kronecker's symbol and 

lim F (e. ,t) = lim x f £ - ,<5. <p. (t) - p. (t)l = n v . n I " rtk kl i i J n-fcao n-*oo v k=o ' 

= lim x^ ie>L (t) (»<ni - 1). 

Since the method Ä is X2-convergence preserving and the 

series £ <5,. is Xz-convergent we have 
к Kl 

lim Xn (t) (= 1) = lim X Г £ ы & - l] г О 
r> I , Г,к ki J Г»-*00 v k-O J 
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and therefore 

lim Fn(e. ,t) - 0 

a.e. in e, i.e. the condition 2° of the Lemma 4 holds. By 

using Lemma 4 we get from inequality (14) that 

lim Fn(x,t) = 0 

a.e. in e for all x for which the inequality (8) is 

fulfilled, i.e. 

к 
«к = In £ at 

is a sequence of Weyl factors for the summability a.e. in 

e. 

The proof of our Theorem is complete. 
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Weyli tegurid ortogonaalridade 

kiiruvusega summeeruvuseks 

Heino Türnpu 

Resümee 

Olgu <P - {*>k} leigus e = [a,b] defineeritud, 

ortonormaalne süsteem. 

Olgu A regulaarne kolmnurkne summeerimismenetlus, mis 

on antud maatriksiga 

öeldakse, et rida 

Е ? Л < * >  

on ^-summeeruv p.k. ISigul e, kui eksisteerivad piirväärtu­

sed 

ja 

LIM \ (E -rbWV - *<*>).= 0. 
r>->00 4 k =0 ' 

öeldakse, et jada <w
k>, kus 0 < o>k * <*>, on Weyli 

tegurite jada ^-summeeruvuseks p.k. laigul e, kui tingimus 

E to2 

garanteerib rea E ?kf°k(t) v4o-summeeruvuse p.k. ISigul e. 

Me tSestame, et kehtib järgmine 
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TEOREEM. Olgu A niisugune x2-koonduvust säilitav 

summeerimismenetlus, mille korral on täidetud tingimused (5) 

Ja (6). Siis Jada (ь>к), kus 
к 

"к = Ч1п E a. , 
l =o 

on Weyli tegurite Jada AX-summeeruvuseks p.k. ISigul e. 
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