TARTU ÜLIKOOL

Loodus- ja täppisteaduste valdkond

Ökoloogia ja maateaduste instituut

Geoloogia osakond

Markus Ausmeel

Lewisian'i gneisikompleksi tsirkooni megakristallide sobivuse hindamine *in-house* U - Pb dateerimise standardina LA-ICP-MS meetodil

Bakalaureusetöö geoloogias (12 EAP)

Juhendajad: Timmu Kreitsmann,

Päärn Paiste

Kaitsmisele lubatud:

Juhendajad:

Allkiri, kuupäev

TARTU 2020

Lewisian'i gneisikompleksi tsirkooni megakristallide sobivuse hindamine *in-house* U - Pb dateerimise standardina LA-ICP-MS meetodil

Käesoleva bakalaureusetöö eesmärgiks oli kontrollida Loode-Šotimaalt *Loch an Daimh Mor'i* järve lähedalt *Lewisian*'i gneisikompleksist kogutud proovides sisalduvate tsirkooni megakristallide sobivust *in-house* laboristandardina U - Pb dateerimisel LA-ICP-MS meetodiga. Kahe tsirkoonitera analüüsimisel selgus, et väiksem tsirkooni kristall (SS) on vanuseliselt homogeenne, selle vanus langeb kokku varasemalt avaldatuga ja on sobilik *in-house* standardiks. Suuremas kristallis (SL) tuvastati vanuse tsonaalsus, mistõttu see standardiks ei sobi. See viitab, et kõik uuritud kivimkompleksist pärinevad tsirkooni terad ei ole, vastupidiselt varasemale teadmisele vanuseliselt homogeensed ja standardina sobilikud.

Märksõnad: tsirkoon, U - Pb dateerimine, LA-ICP-MS P420 Petroloogia, mineraloogia, geokeemia

Validation of Lewisian complex zircon megacrystals as in-house standard for U - Pb dating with LA- ICP-MS

The aim of this bachelor thesis was to test the suitability of the zircon megacrysts collected from Lewisian complex near Loch an Daimh Mor in NW Scotland as an inhouse laboratory standard for U - Pb dating with the LA-ICP-MS method. Analysis of two zircon grains revealed that the smaller zircon crystal (SS) is age-homogeneous, coincides with previously published results and is suitable for an in-house standard. In the larger crystal (SL) an age zonality was detected and is therefore not suitable as a laboratory standard. This indicates that not all zircon grains from the studied rock complex are contrary to previous knowledge age-homogeneous and suitable as standard.

Keywords: zircon, U - Pb dating, LA-ICP-MS P420 Petrology, mineralogy, geochemistry

Sisukord

1. Sissejuhatus
2. Dateerimise põhimõtted6
2.1. Radioaktiivne lagunemine ja absoluutse vanuse määrmine
2.2. Uraan - plii meetod7
2.2.1 Konkordia ja diskonkordia8
2.3. Plii - plii meetod9
2.4. Tsirkoon ja selle dateerimine9
2.4.1. Tsirkooni dateerimine laserablatsiooni ICP-MS meetodil11
3. Materjal ja meetodid
3.1. Standardtsirkooni päritolu ja vanus14
4. Tulemused
4.1. Mineraloogia ja petrograafia14
4.2. Jälgelemendid16
4.3. Geokronoloogia
4.3.1. Kristalli SS vanus18
4.3.2. Kristalli SL vanus20
4.3.2.1. Kristalli SL vanuste jaotumine25
5. Arutelu
6. Kokkuvõte ja järeldused
Summary
Tänuavaldused
Kasutatud materjalid
Veebiviited35
Lisad

1. Sissejuhatus

Kivimite vanuste teadmine on Maa ajaloos toimunud protsesside ja sündmuste täpsemaks mõistmiseks võtmetähtsusega. Tänapäeval on vanuste uurimiseks erinevaid võimalusi, kuid mida vanemad on kivimid, seda vähem on sobivaid meetodeid. Üks sobiv viis on kasutada uraan - plii dateerimismeetodit, mis põhineb uraani radioaktiivsel lagunemisel. Vanuste leidmiseks mõõdetakse tsirkooni kristallides uraani ja plii erinevate isotoopide kontsentratsioonid. (White, 2015)

Elementide kontsentratsioonide määramiseks on laialdaselt kasutuses laserablatsiooni induktiivsidestatud plasma massispektromeetria (LA-ICP-MS), kus proovi tulistatakse võimsa laserkiirega ja eraldunud materjal ioniseeritakse ning mõõdetakse erineva massiga aatomite sisaldused (*Australian Scientific Instruments*, 2020). Võrreldes teiste dateerimiseks kasutatavate meetoditega, on LA-ICP-MS'i kasutamine lihtsam, kiirem ja odavam (White, 2015), säilitades suhteliselt hea täpsuse (Chang *et al.*, 2006).

Tartu Ülikooli Geoloogia osakonnas ei ole varasemalt dateerimiseks LA-ICP-MS'i kasutatud. Laialdasemaks meetodi rakendamiseks on vaja luua *in-house* laboristandard, mida saaks kasutada analüüside teostamisel kalibratsioonistandardina või kvaliteedikontrolli standardina, et võrrelda edaspidisel tsirkooni kristallide vanuste dateerimisel saadud tulemuste õigsust. Kuna ainsaks kommertsiaalselt saadavaks tsirkooni standardiks on tsirkoon 91500 (Wiedenbeck *et al.*, 1995), mille saadavus on väga piiratud, on tsirkoonide dateerimisega tegelevates laborites vajalik erinevate *in-house* tsirkooni standardite olemasolu. Standardiks sobivad homogeensed tsirkooni kristallid, mille vanus on väga täpselt teada.

Antud bakalaureusetöö eesmärgiks on kontrollida Loode-Šotimaalt *Loch an Daimh Mor*'i järve lähedalt *Lewisian*'i gneisikompleksist kogutud tsirkooni megakristallide sobivust *in-house* laboristandardiks U - Pb dateerimisel LA-ICP-MS meetodiga. Selle tarbeks kirjeldatakse proovi esmalt valgusmikroskoobi ja skaneeriva elektronmikroskoobiga (SEM) ning määratakse proovi jälgelementide ning U ja Pb isotoopide suhted erinevatel LA-ICP-MS analüütilistel parameetritel. Tsirkoonide

vanuse määramisel kasutatakse kalibreerimisstandardina rahvusvahelist standardit 91500, ja kvaliteedikontrolli proovina GeoChron kvaliteedikontrolli programmi standardit Rak-17. Saadud tulemusi võrreldakse varem publitseeritud andmetega, et hinnata tulemuste usaldusväärsust ja analüüsitavate terade homogeensust ning sobivust *in-house* standardiks.

2. Dateerimise põhimõtted

2.1. Radioaktiivne lagunemine ja absoluutse vanuse määrmine

Radioaktiivsus on aatomi tuuma iseeneslik muundumine teise aatomi tuumaks. Radioaktiivsel lagunemisel ei muutu aatomitevahelised sidemed, vaid aatomi tuumad. Radioaktiivne lagunemine toimub iseeneslikult, ilma välise põhjuseta ja kulgeb juhuslikult. Seega pole võimalik ette ennustada, milline aatom järgmisena laguneb. Radioaktiivsust saab kirjeldada vaid statistiliselt, suure aatomite arvu korral. (Visk, 2007)

Radioaktiivse lagunemise kiirust iseloomustavad poolestusaeg ($\tau_{1/2}$) ja lagunemisekonstant (λ). Poolestusaeg on ajavahemik, mille jooksul väheneb radioaktiivsete tuumade arv kaks korda. Lagunemisel radioaktiivsete tuumade arv küll väheneb, aga ei muutu lõpliku aja jooksul nulliks. Lagunemiskonstant on tõenäosus, et üks tuum laguneb järgmise ajaühiku jooksul. Tihti on radioaktiivsete elementide lagunemisel tekkinud uued elemendid omakorda radioaktiivsed. Nõnda moodustuvad radioaktiivsed read, milles iga lagunemisreaktsioon tekitab uusi radioaktiivseid tütarelemente ja uusi lagunemisreaktsioone. Rea viimane tütarelement ei ole radioaktiivne. Seega teades radioaktiivsete elementide ning nende tütarelementide suhteid, saab radioaktiivset lagunemist kasutada dateerimisel. (Visk, 2007)

Radioaktiivse dateerimise põhimõte tugineb mitmel eeldusel. Esiteks peab uuritav proov olema keemiliselt suletud süsteem, see tähendab, et lähte- ja tütarelementide sisaldused muutuvad ainult radioaktiivsel lagunemisel. Teiseks ei tohi proovi lähtekivim või -mineraal olla isotoopselt fraktsioneerunud. Lisaks peab teadma kasutatavate radioaktiivsete isotoopide täpseid lagunemiskonstante ja poolestusaja väärtuseid ning ka mõõdetud tulemused peavad olema täpsed. Kui eeldused on täidetud, tuleb uuritavas proovis mõõta lähteelementideks olnud radioaktiivsete isotoopide ja nende stabiilsete tütarelementide sisaldused ning teades antud radioaktiivse isotoobi poolestusaega (või lagunemiskonstanti), saab välja arvutada uuritava proovi vanuse. (White, 2015)

2.2. Uraan - plii meetod

Uraan - plii dateerimismeetod on geoloogilise vanuse määramise meetod, milles kasutatakse uraani (U) isotoopide ²³⁸U ja ²³⁵U ning tooriumi (Th) isotoobi ²³²Th radioaktiivset lagunemist plii (Pb) stabiilseteks isotoopideks, vastavalt ²⁰⁶Pb, ²⁰⁷Pb ja ²⁰⁸Pb (White, 2015). Lagunemissüsteemid, lagunemiskonstandid ja poolestusajad on toodud tabelis 1.

Lagunemis-	Lähte-	Stabiilsed	Lähteelemendi	Lähte-
rea nimi	element	tütarelemendid	lagunemis-	elemendi
			konstant	poolestusaeg
Tooriumirida	²³² Th	²⁰⁸ Pb, 8 ⁴ He	4,948 x 10 ⁻¹¹ a ⁻¹	1 <i>,</i> 40 Ga
Uraanirida	²³⁸ U	²⁰⁶ Pb, 6 ⁴ He	1,55125 x 10 ⁻¹⁰ a ⁻¹	4,47 Ga
Aktiiniumirida	²³⁵ U	²⁰⁷ Pb, 7 ⁴ He	9,8485 x 10 ⁻¹⁰ a ⁻¹	707 Ma

Tabel 1. U - Pb dateerimismeetodite lagunemisread (White, 2015).

Kuna U - Pb meetod baseerub kolmel erineval isotoopsel lagunemisreaktsioonil, on võimalik saada kolm teineteisest sõltumatut määrangut:

²⁰⁸Pb/²³²Th =
$$e^{\lambda(232) \times t} - 1$$
,
²⁰⁶Pb/²³⁸U = $e^{\lambda(238) \times t} - 1$,
²⁰⁷Pb/²³⁵U = $e^{\lambda(235) \times t} - 1$,

kus λ on vastava lähteelemendi lagunemiskonstant ja t on vanus (White, 2015). Antud töös kasutatakse ²³⁸U - ²⁰⁶Pb ja ²³⁵U - ²⁰⁷Pb meetodit ning ²³⁵U kontsentratsiooni ei mõõdeta, vaid see arvutatakse läbi ²³⁸U/²³⁵U konstantse suhte (137,818 ± 0,045; Hiess *et al.*, 2012). Suletud süsteemis, kus ei ole toimunud uraani ja/või plii vahetust, on nende kahe meetodi määrangud vea piires ühesugused ning saadud vanused on konkordsed. Kui vanused on erinevad, siis nimetatakse neid diskonkordseteks. (White, 2015)

2.2.1 Konkordia ja diskonkordia

Konkordia diagramm (joonis 1) on graafik, mille telgedeks on ²⁰⁶Pb/²³⁸U ja ²⁰⁷Pb /²³⁵U väärtused. Graafik on kumer joon, mille põhjuseks on ²³⁵U väiksem poolestusaeg võrreldes ²³⁸U isotoobiga. Vastavalt moodustub ka ²⁰⁷Pb kiiremini kui ²⁰⁶Pb.

Joonis 1. Konkordia. Pb* on radioaktiivsel lagunemisel tekkinud plii. Kuna tsirkooni mineraalid ei sisalda tekkimisel pliid on kogu plii radiogeenne (White, 2015).

Kui mineraali arengus on toimunud plii või uraani vabanemine, siis vanuse määrang ei asetu konkordia diagrammile. Sellegi poolest on võimalik mineraali tekkimise vanust määrata. Kui ühendada need n-ö valed määrangud graafikul sirgeks, tekib diskonkordia diagramm (joonis 2). Diskonkordia ja konkordia graafikute ülemine lõikepunkt näitabki kivimi vanust. Alumine lõikepunkt märgib plii vabanemise vanust, juhul kui see toimus üheastmeliselt lühikese aja jooksul. (White, 2015)

Joonis 2. Diskonkordia. Pb* on radioaktiivsel lagunemisel tekkinud plii. (White, 2015).

2.3. Plii - plii meetod

Lisaks U - Pb dateermismeetoditele kasutatakse antud töös ka 207 Pb - 206 Pb dateerimismeetodit. Oma olemuselt on see meetod justkui meetodite 207 Pb - 235 U ja 206 Pb - 238 U suhe, aga kuna 238 U/ 235 U on konstant (137,818; Hiess *et al.*, 2012), saab 207 Pb/ 206 Pb suhet esitada kujul:

207
Pb/ 206 Pb = (e ^{λ (235) x t} - 1) / 137,818 x (e ^{λ (238) x t} - 1),

kus $\lambda(235)$ ja $\lambda(238)$ on vastavalt ²³⁵U ja ²³⁸U lagunemiskonstandid ja t on vanus. Seega ei ole ²⁰⁷Pb - ²⁰⁶Pb meetodil vanuse määramiseks uraani isotoopide kontsentratsioone vaja määrata. (White, 2015)

2.4. Tsirkoon ja selle dateerimine

Tsirkoon on saarsilikaatide hulka kuuluv tetragonaalse süngoonia mineraal. Tsirkooni empiiriline valem on Zr_{0,9}Hf_{0,05}REE_{0,05}SiO₄ (REE – haruldased muldmetallid; *rare earth elements*). Kristallstruktuuris võib tsirkoonium asenduda kuni 5% ulatuses hafniumiga ja kuni 5% ulatuses raskete haruldaste muldmetallidega. Tsirkoonid on

tavaliselt ka nõrgalt radioaktiivsed, sest sisaldavad jälgelementidena uraani kui ka vähesel määral tooriumit. (*Webmineral*, 2020)

Tsirkoon on maailmas laialt levinud mineraal, mis esineb väikestes kogustes nii tard- ja moonde- kui ka settekivimites (*Geology and Earth Science News and Information*, 2020). Primaarse aktsessoorse mineraalina on tsrikoon kõige omasem happelistele granitoidsetele kivimitele (Hoskin & Schaltegger, 2003), kuid neid leidub ka ultraaluselistes kivimites (Liu *et al.*, 2009). Tsirkooni terade suurus jääb enamasti alla ühe millimeetri. Need esinevad tihti suletistena teistes mineraalides (üldiselt biotiidis). Oma väiksusest hoolimata on tsirkoon väga vastupidav mineraal. Selle suhteline kõvadus Mosh'i skaalal on 7,5. Kui tsirkoone sisaldav kivim mureneb, vabanevad sealt tsirkooni terad, mis võivad puutumatult säilida pinnases, setetes ja uutes settekivimites miljardeid aastaid. (*Geology and Earth Science News and Information*, 2020)

Tsirkoon on väga vastupidav nii füüsikalisele ja keemilisele murenemisele kui ka metamorfismile. Seega on tõenäoline, et tsirkooni kristallid on tekkimisest saadik olnud suletud süsteemid. See on geokronoloogia seisukohalt väga oluline ning sellest tulenevalt kasutatakse tsirkooni laialdaselt kivimite dateerimisel. Kõige tähtsam on, et äsja tekkinud tsirkooni mineraalis on kontsentreerunud uraan ja vähesemal määral ka toorium ning see ei sisalda pliid. See tähendab, et uraani ja plii isotoopide suhe on tsirkooni mineraali tekkimisel lõpmatult suur ning tänu uraani radioaktiivsele lagunemisele pliiks hakkab nende suhe vähenema. Üldjuhul võib eeldada, et kogu tsirkoonis olev plii on radiogeenne (Pb \approx Pb*). Kasutades erinevaid uraani ja plii isotoopide suhteid, on võimalik määrata tsirkooni vanust (White, 2015).

Tsirkooni kristallid on tänu oma mehaanilisele ja keemilisele stabiilsusele kõige vanemad maise päritoluga Maalt leitud materjalid (White, 2015). Kõige vanemad tsirkoonid on leitud Lääne-Austraaliast, *Jack Hills*'ist, kus kõige suuremaks vanuseks on mõõdetud 4,404 ± 0,008 Ga (Wilde *et al.*, 2001).

Tsirkoonide dateerimiseks on arendatud mitmeid meetodeid. Kõige vanem on termilise ionisatsiooni massispektromeetria (TIMS), kus U ja Pb kontsentratsioonid määratakse lahustatud proovi kuumutamisel. Kuigi selle meetodiga on võimalik saavutada kõige täpsemaid tulemusi, puudub sellel ruumiline

eraldusvõime. Seega kui tsirkoon on vanuseliselt heterogeenne on saadud tulemused ebatäpsed. Diskreetse prooviala analüüsimiseks on võimalik kasutada sekundaarse ionisatsiooni massispektromeetriat (SIMS), mille puhul poleeritud proovi pinda tulistatakse ioonkiirega, mis eemaldab proovi pinnalt materjali ja ioniseerib selle. Sel meetodil saadud isotoopsuhted on ebatäpsemad kui TIMS'iga saadud tulemused, kuid vanused võivad olla täpsemad, sest nii saab analüüsida proovi üksikutes punktides. SIMS'i kasutatakse siiski väga vähestes laborites, sest see meetod on keerukas ja väga kallis. (White, 2015)

2.4.1. Tsirkooni dateerimine laserablatsiooni ICP-MS meetodil

Laserablatsiooni induktiivsidestatud plasma massispektromeetria (LA-ICP-MS) on analüütiline meetod tahkete proovide keemilise ja isotoopse koostise määramiseks. Proovi pinnalt eemaldatakse laserimpulsiga (laserkiire läbimõõt on tavaliselt 10 - 100 µm) materjal, mis kantakse peene aerosoolina heeliumi gaasivooga analüüsimiseks ICP-MS'i. Aerosool siseneb väga kõrge temperatuuriga (suurusjärgus 10000 K) induktiivsidestatud argooni plasmasse (ICP), mis ioniseerib proovi - lagundab molekulid laiali üksikuteks ioniseeritud aatomiteks. Ioniseeritud osakesed suunatakse seejärel massilahutusseadmesse (MS), mis kasutab erinevaid võtteid, et eristada ioone nende massi ja laengu suhte alusel. Sel viisil on võimalik määrata proovis erinevate elementide isotoopsuhteid kui ka keemilist koostist. Meetodi analüütiline võimekus sõltub kasutatavast massispektromeetrist, kuid enamikke elemente on võimalik kvantitatiivselt määrata suurusjärgus osakestena miljardi kohta (ppb - *parts per billion*) ehk µg/kg. (*Australian Scientific Instruments*, 2020)

Kuigi LA-ICP-MS meetodil on võrreldes SIMS'iga väiksem lateraalne eraldusvõime ehk resolutsioon, on see oluliselt kiirem ja odavam (White, 2015). Tsirkoonide dateerimise eelised U - Pb ja Pb - Pb meetoditel LA-ICP-MS'iga on proovide lihtne ettevalmistamine ning kiire analüüsimine, säilitades siiski suhteliselt täpse analüüsivõimekuse (Chang *et al.*, 2006).

3. Materjal ja meetodid

Antud bakalaureusetöö eesmärk oli välja töötada n-ö *in-house* standard kivimite vanuste määramiseks. Valitud laboristandardi vanuse määramisel kasutati kalibreerimisstandardina rahvusvahelist standardit 91500 (vanusega 1060 Ma; Wiedenbeck *et al.*, 1995) ja kvaliteedikontrollina GeoChron kvaliteedikontrolli programmi standardit Rak-17 (vanusega 295,5 Ma; Webb *et al.*, 2019). Töö käigus saadud tulemusi võrreldi varem publitseeritud andmetega (Faithfull *et al.*, 2018), et hinnata määrangute usaldusväärsust.

Uuritavad tsirkoonid on pärit Loode-Šotimaalt, Loch an Daimh Mor'i järvest lõunas asuvast Lewisian'i gneisikompleksist (58° 20' 9,6" N, 005° 08' 48,1" W), Arhaikumi ultraaluselistest kivimitest. Enne analüüsimist murti suuremast kivitükist lahti väiksem kild, mille küljes oli kaks tsirkooni megakristalli. Neist suurem (SL -Scottish large) (joonis 3 b) on 4 x 6 mm suurune, ristlõikepindalaga 22,4 mm² ning väiksem (SS - Scottish small) (joonis 3 a) on 2 x 2 mm suurune, ristlõikepindalaga 3,3 mm². Proovi pind lihviti liivapaberitega kareduseni 4000 ning seejärel lihviti pinda monokristalliliste teemant-abrasiivgeelidega. Abrasiivgeelide terade suurused olid lihvimise järjekorras vastavalt 6 µm, 3 µm ja 1 µm. Pinda vaadeldi ning pildistati valgusmikroskoobis (joonis 3) ja skaneerivas elektronmikroskoobis (ZEISS EVO 15MA) koos Oxford Aztec MAX80 energiadispersiivse detektoriga (EDS) kõrg- ja madalvaakumrežiimis (joonis 5) ning lisaks hinnati tsirkoonikristallide tsonaalsust vahelduv rõhul sekundaarelektronide (variable pressure secondary electron; VPSE) detektoriga laadumiskontrastmeetodil (joonis 4) (Watt et al., 2000). Seejärel teostati punktmõõtmised kolmel erineval analüütilisel sessioonil uraani ja plii isotoopide mõõtmiseks ning jälgelementide sisalduste kvantifitseerimiseks (lisa 1 ja 2) Agilent 8800 ICP-MS süsteemiga, mis oli integreeritud Cetac LSX213 G2+ laseri ja HelEx II ablatsioonikambriga. Isotoopsuhted arvutati programmiga Iolite v3.36, kasutades andmeanalüüsi metoodikat x_U_Pb_Geochron. U/Pb isotoopsuhete mõõtmisaja fraktsioneerumise paranduseks kasutati eksponentsiaalset parandit. Jälgelementide sisalduste kvantifitseerimise andmetöötlus teostati programmiga Glitter, kasutades kalibratsioonistandardina USGS GSD-1G standardit ning sisestandardi elemendina

räni. Uuritavate proovide SL ja SS puhul kasutati SiO₂ sisaldusena väärtust 31,57% (*Webmineral*, 2020). Isotoopsuhete tulemuste alusel koostati konkordia diagrammid veebiprogrammiga IsoplotR ning joonised kujundati programmiga Adobe Illustrator.

Anlüüside täpsus on otseses sõltuvuses mõõdetava signaali intensiivsusega. Suurema laserkiire diameetriga on eeldatav suurem täpsus kuid praktikas dikteerib analüüsitavate tsirkooni terade suurus maksimaalse kasutatava laserkiire diameetri. Käesolevas töös kasutati analüüside teostamisel laserkiire diameetreid 20 µm ja 40 µm. Dateerimise analüüsid teostati järgmistel analüütilistel tingimustel. Esimesel ja teisel mõõtmisel oli laserkiire apertuuri suurus 20 µm, laserkiire energiaga proovi pinnal 4 J/cm² ning tulistamissagedusega 10 Hz. Kolmandal mõõtmisel oli laserkiire apertuuri suurus 40 μ m, laserkiire energiaga proovi pinnal 4 J/cm² ning tulistamissagedusega 10 Hz. Esimesel mõõtmisel registreeriti järgmised massi ja laengu suhted ning nendele vastavad elemendid: ²⁷Al, ³¹P, ⁴⁵Sc, ⁴⁹Ti, ⁹⁰Zr, ¹⁴⁰Ce, ²⁰²Hg mõõteajaga 4 ms; ²⁰⁴Pb, ²⁰⁸Pb, ²³²Th mõõteajaga 10 ms; ²⁰⁶Pb mõõteajaga 40 ms; ²⁰⁷Pb mõõteajaga 80 ms; ²³⁸U mõõteajaga 30 ms. Teisel ja kolmandal korral määrati lisaks eelnevatele ²⁸Si massi ja laengu suhted mõõteajaga 4 ms ja ei määratud ⁹⁰Zr. Esimesel ja kolmandal mõõtmisel konfigureeriti ICP-MS kõrgeimale võimalikule U ja Pb signaalitundlikkusele, teisel mõõtmisel võimalikult vähesele plasmapõhisele elementfraktsioneerumisele, mida hinnati NIST 612 standardi ²³²Th ja ²³⁸U signaalide intensiivsuste suhte alusel ja optimiseeriti väärtusele 1. Kasutatud konfiguratsiooni puhul olid erinevatel mõõtmistel standardist 91500 mõõdetud ²³⁸U signaalid vastavalt 26230, 23640 ja 123000 ning ²⁰⁶Pb signaalid vastavalt 5580, 2440 ja 16920 signaalimpulssi sekundis. Kristallist SL teostati igal analüütilisel sessioonil 12 punktmõõtmist ja kristallist SS 6 mõõtmist.

Lisaks teostati punktmõõtmised jälgelementide sisalduste kvantifitseerimiseks järgmistel parameetritel: laserkiire apertuuri suurus 40 μm, laserkiire energiaga proovi pinnal 3 J/cm² ning tulistamissagedusega 10 Hz. Analüüsi käigus registreeriti järgmised massi ja laengu suhted ning nendele vastavad elemendid: ⁷Li, ¹¹B, ²³Na, ²⁴Mg, ²⁷Al, ²⁸Si, ³¹P, ³⁹K, ⁴³Ca, ⁴⁵Sc, ⁴⁹Ti, ⁵¹V, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni, ⁶³Cu, ⁶⁶Zn, ⁸⁵Rb, ⁸⁸Sr, ⁸⁹Y, ⁹⁰Zr, ⁹³Nb, ¹³⁷Ba, ¹³⁹La, ¹⁴⁰Ce, ¹⁴¹Pr, ¹⁴⁶Nd, ¹⁴⁷Sm, ¹⁵³Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶³Dy, ¹⁶⁵Ho, ¹⁶⁶Er, ¹⁷²Yb, ¹⁷⁵Lu, ¹⁷⁸Hf, ²⁰⁸Pb ja ²³²Th mõõteajaga 10

ms; ²⁰⁴Pb mõõteajaga 7,9 ms; ²⁰⁶Pb mõõteajaga 40 ms, ²⁰⁷Pb mõõteajaga 90 ms; ²³⁸U mõõteajaga 30 ms.

3.1. Standardtsirkooni päritolu ja vanus

Lewisian'i gneisi kompleks koosneb valdavalt tonaliidi, trondhjemiidi ja granodioriidi (TTG) ortogneissidest, aga ka settekivimite ning aluseliste ja ultraaluseliste kivimite arvelt tekkinud gneissidest (Peach *et al.*, 1907, *cit.* Faithfull *et al.*, 2018). Gneisi kompleksi keskel asub umbes 2500 m² suurusel alal peridotiidi keha, mida läbivad tihedalt paiknevad osaliselt serpentiniidistunud, oranžikas-pruunid ortopürokseniidi sooned. Soonte paksus on 1 kuni 40 cm. Need on levinud kogu peridotiidikeha ulatuses, moodustades tihedaid võrgustikke. Ortopürokseniidi sooned sisaldavad roosasid tsirkooni megakristalle. Nende ²⁰⁷Pb - ²⁰⁶Pb vanus on varasemalt dateeritud 2464 ± 12 Ma. (Faithfull *et al.*, 2018).

Faithfull *et al.* (2016) pakuvad välja, et need intrusiivid on moodustunud TTGgneisside arvelt tekkinud magama migreerumisel oliviinirikastesse ultraaluselistesse kivimitesse. Selle magma reaktsioonil oliviiniga tekib ortopürokseen ja väheneb SiO₂ aktiivsus, mis pärsib tsirkooni kristalliseerumist. See võimaldab magmas tsirkooniumi rikastumist ja moodustuvad üksikud tsirkooni fenokristallid, paljude väikeste kristallide asemel. (Faithfull *et al.*, 2016)

4. Tulemused

4.1. Mineraloogia ja petrograafia

Tsirkooni kristallide mineraloogiat ja petrograafiat uuriti esmalt valgusmikroskoobiga (joonis 3). Tsirkooni idiomorfsed punakasroosad megakristallid (mõõtmetega umbes 2 x 2 mm (SS) ning umbes 4 x 6 mm (SL)) paiknvad hajusalt tumerohelises peamiselt ortopürokseenist koosnevas ümbriskivimis. Tsirkooni kristallidele on iseloomulik selge lõhelisus.

Joonis 3. Valgusmikroskoobi fotod tsirkooni kristallist SS (a) ja kristallist SL (b).

Seejärel uuriti kristalle skaneerivas elektronmikroskoobis (SEM) energiadispersiivse detektoriga (EDS). SEM'i vaatluse põhjal koosneb uuritav pala peamiselt ortopürokseenist, mis on osaliselt serpentiniidistunud. Lisaks leidub ka Carikkamaid klinopürokseeni kristalle, flogopiiti kui ka sekundaarsetele protsessidele viitavat kordieriiti (joonis 5). Aktsessoorsete faasidena esineb kaltsiit ning pentlandiit. Tsirkooni kristallides esinevad üksikud ümbriskivimi suletised. Tsirkooni terade laadumiskontrasti uurides on näha, et suurem tsirkooni tera on heterogeensem, mis väljendub tsonaalsusena ning heledamate laikudena kristallis (joonis 4 b). Väiksem tsirkooni tera on homogeensem, aga seda iseloomustab nõrk direktiivsus (joonis 4 a).

Joonis 4. SEM'i laadumiskontrasti pilt kristallist SS (a) ja kristallist SL (b).

Joonis 5. EDS elementide kaart kristallist SL.

4.2. Jälgelemendid

Mõlemas tsirkooni megakristallis on kõrged REE'de (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) (joonis 6; lisa 10) ja ütriumi (Y) sisaldused. Väiksemas kristallis (SS) on summaarne REE'de sisaldus vahemikus 187,2 kuni 339,9 ppm'i (ppm - osakest miljoni kohta; *parts per million*) ja suuremas kiristallis (SL) 262,9 kuni 446,1 ppm'i. REE'de sisaldused ei sisalda Tm väärtusi. REE'de kontsentratsioonid normaliseeriti kondriidi suhtes (Taylor & McLennan, 1985) ning tulemused on esitatud joonisel 6. Keskmine positiivne tseeriumi anomaalia (Ce_N/Ce^{*}) on kristallis SL 78,3 ja kristallis SS 52,6. Mõlemat tsirkooni kristalli iseloomustab negatiivne euroopiumi anomaalia (Eu_N/Eu^{*}), mille keskmine väärtus kristallis SL on 0,31 ja kristallis SS 0,38. Tseeriumi anomaalia arvutamiseks kasutati valemit Ce^{*} = (La_N x

 Pr_N)^{1/2} ning euroopiumi anomaalia arvutamiseks valemit Eu* = $(Sm_N \times Gd_N)^{1/2}$, kus N tähendab normaliseeritud väärtuseid (Bea, 2015). Lisaks tulevad jooniselt 6 välja kõrged Sm/La suhted (149,29 SL'is ja 99,64 SS'is) ning madalad Lu/Gd suhted (14,44 SL'is ja 13,14 SS'is), mis näitavad, et antud tsirkoonid on rikastunud rasketest REE'dest (Tb, Dy, Ho, Er, Tm, Yb, Lu) ja vaesustunud kergetest REE'dest (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd). Kristalli SL REE'de arvutustes ei ole kasutatud mõõdistuspunktis SL5 saadud andmeid, sest see asub suletiste soone peal (lisa 2).

Joonis 6. Kondriidi suhtes normaliseeritud (Taylor & McLennan, 1985) keskmised jälgelementide sisaldused kristallides SL ja SS ning Faithfull *et al.*, (2018) uuritud tsirkooni kristallides. Tuuliumi sisaldused ei ole kristallides SS ja SL mõõdetud, vaid on arvutuslikud ($Tm_N^* = (Er_N + Yb_N) / 2$).

Y sisaldus on SS'is keskmiselt 313,1 ppm'i ja SL'is keskmiselt 526,7 ppm'i. Hafniumi (Hf) sisaldused on natukene suuremad kristallis SS, vastavalt keskmiselt 10135 ppm'i ja SL'is keskmiselt 9901 ppm'i. Skandiumi (Sc) sisaldus on proportsioonis Hf sisaldusega: SS'is keskmiselt 180,1 ppm ja SL'is keskmiselt 175,5 ppm'i. Titaani (Ti) keskmine sisaldus kristallis SS on 12,0 ppm'i ja SL 14,5 ppm'i. Alumiiniumi (Al) keskmiste sisalduste erinevus on kahe kristalli vahel kõige suurem: kristallis SS on 42,6 ppm'i ja kristallis SL 11,4 ppm'i (Ti ja Al keskmiste arvutamiseks SL'is ei ole kasutatud punkti SL12 andmeid, sest mõõdistuspunkt asus Al-Mg-Ti-Zn-rikkal suletisel). Liitiumi (Li) keskmised sisaldused on kristallides sarnased: SS'is keskmiselt 5,2 ppm'i ja SL,is keskmiselt 4,9 ppm'i.

4.3. Geokronoloogia

Vanuste määramiseks teostati mõlemale kristallile kolmel erineval analüütilisel sessioonil analüüsid (lisa 1 ja 2) ning iga kord arvutati konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanus. Konkordia vanuste arvutamiseks kasutati veebiprogrammi IsoplotR. Kõik vanused esitatakse standardhälbega 2 σ (sigma), usaldusintervalliga 95%. Suurem osa U - Pb meetoditel arvutatud vanused jäävad vea piires konkordia diagrammile. See viitab, et ei ole toimunud olulist plii vabanemist ning konkordia vanused näitavad tsirkoonide tekkimise vanust. Üheski analüüsitud proovipunktis ei tuvastatud ²⁰⁴Pb signaali, mis näitaks mitteradiogeense Pb olemasolu. Diskonkordseid ehk konkordia diagrammist vea piires (5%) kõrvale jäävaid väärtusi vanuste arvutustes ei kasutatud. Analüüsi diskonkordia arvutati valemiga:

(1 - (²⁰⁶Pb - ²³⁸U vanus) / (²⁰⁷Pb - ²⁰⁶Pb vanus)) x 100% ja diskonkordia kriteeriumiks loeti 5% erinevust.

4.3.1. Kristalli SS vanus

Väiksemale kristallile SS tehti iga mõõtekord mõõtmisi kuues punktis (lisa 1). Esimesel ja teisel mõõtmisel oli laseri apertuuri suurus 20 μ m, kolmandal mõõtmisel 40 μ m. Esimesel mõõtmisel saadud konkordia vanus on 2481,88 ± 17,30 Ma (joonis 7) ning ²⁰⁷Pb - ²⁰⁶Pb vanus 2461,83 ± 106,02 Ma. Teisel mõõtmisel saadud konkordia vanus on 2505,85 ± 16,99 Ma (joonis 8) ning ²⁰⁷Pb - ²⁰⁶Pb vanus 2468,67 ± 112,77 Ma. Kolmandal mõõtmisel saadud konkordia vanus on 2464,76 ± 6,92 Ma (joonis 9) ning ²⁰⁷Pb - ²⁰⁶Pb vanus 2465,00 ± 16,97 Ma. Esimesel, teisel ja kolmandal mõõtmisel kristallis SS saadud tulemused on toodud lisades 4, 6, ja 8.

Joonis 7. Kristalli SS konkordia vanus esimesel mõõtmisel.

Joonis 8. Kristalli SS konkordia vanus teisel mõõtmisel.

Joonis 9. Kristalli SS konkordia vanus kolmandal mõõtmisel.

4.3.2. Kristalli SL vanus

Suuremale kristallile SL tehti iga mõõtekord mõõtmisi kaheteistkümnes punktis (lisa 2). Esimesel ja teisel mõõtmisel oli laseri apertuuri suurus 20 μ m, kolmandal mõõtmisel 40 μ m. Esimesel mõõtmisel saadud konkordia vanus on 2465,62 ± 12,37 Ma (joonis 10) ning ²⁰⁷Pb - ²⁰⁶Pb vanus 2432,44 ± 74,42 Ma. Esimesel mõõtmisel saadud tulemustest (lisa 5) ei kasutatud vanuste arvutusteks punktides 4, 7 ja 10 saadud tulemusi, sest need jäid vea piires konkordia diagrammist eemale.

Joonis 10. Kristalli SL konkordia vanus esimesel mõõtmisel.

Teisel mõõtmisel saadud tulemused (lisa 7) ei anna ühtset konkordia vanust, vaid moodustavad kaks vanusepopulatsiooni. Vanema populatsiooni konkordia vanus on 2526,07 ± 15,62 Ma (joonis 11) ning ²⁰⁷Pb - ²⁰⁶Pb vanus 2530,43 ± 89,80 Ma, kus vanuste arvutamiseks kasutati punktides 3, 6, 7, 8, 9, 10 ja 12 saadud tulemusi. Noorema populatsiooni konkordia vanus on 2420,90 ± 32,50 Ma (joonis 12) ning ²⁰⁷Pb - ²⁰⁶Pb vanus 2423,67 ± 97,58 Ma, kus vanuste arvutamiseks kasutati punktides 1, 2 ja 11 saadud tulemusi. Teisel mõõtmisel saadud populatsioonide ühine ²⁰⁷Pb - ²⁰⁶Pb vanus on 2498,40 ± 134,65 Ma. Teisel mõõtmisel saadud tulemusi, sest need jäid vea piires konkordia diagrammist eemale.

Joonis 11. Kristalli SL vanema populatsiooni konkordia vanus teisel mõõtmisel.

Joonis 12. Kristalli SL noorema populatsiooni konkordia vanus teisel mõõtimisel.

Ka kolmandal mõõtmisel saadud tulemused (lisa 9) ei anna ühtset konkordia vanust, vaid moodustavad kolm vanusepopulatsiooni. Vanima populatsiooni konkordia vanus on 2524,58 ± 11,62 Ma (joonis 13) ning ²⁰⁷Pb - ²⁰⁶Pb vanus 2526,67 ± 30,29 Ma, kus vanuste arvutamiseks kasutati punktides 3, 4 ja 5 saadud tulemusi. Keskmise populatsiooni konkordia vanus on 2497,44 ± 9,14 Ma (joonis 14) ning ²⁰⁷Pb - ²⁰⁶Pb vanus 2489,60 ± 15,59 Ma, kus vanuste arvutamiseks kasutati punktides 2, 6, 7, 9 ja 12 saadud tulemusi. Noorima populatsiooni konkordia vanus on 2469,59 ± 12,25 Ma (joonis 15) ning ²⁰⁷Pb - ²⁰⁶Pb vanus 2460,67 ± 4,62 Ma, kus vanuste arvutamiseks kasutati punktides 1, 10 ja 11 saadud tulemusi. Kolmandal mõõtmisel saadud populatsioonide ühine ²⁰⁷Pb - ²⁰⁶Pb vanus on 2491,82 ± 54,01 Ma. Kolmandal mõõtmisel saadud tulemustest ei kasutatud vanuste arvutusteks punktis 8 saadud tulemusi, sest need jäid vea piires konkordia diagrammist eemale. Mõõtmistingimustest tulenevalt on kolmandal mõõtmisel saadud tulemused kõige usaldusväärsemad ning teisel mõõtmisel saadud tulemused kõige ebausaldusväärsemad.

Joonis 13. Kristalli SL vanima populatsiooni konkordia vanus kolmandal mõõtmisel.

Joonis 14. Kristalli SL keskmise populatsiooni konkordia vanus kolmandal mõõtmisel.

Joonis 15. Kristalli SL noorima populatsiooni konkordia vanus kolmandal mõõtmisel.

4.3.2.1. Kristalli SL vanuste jaotumine

Kuna selgus, et kristall SL ei ole vanuseliselt homogeenne, uuriti mõõtepunktide paiknemist kristalli pinnal, et leida kristalli vanemad ja nooremad piirkonnad. Selleks jaotati esmalt igal mõõtekorral saadud tulemused konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste alusel kolme vanuserühma (nooremad, keskmised, vanemad) (lisa 11). Seejärel märgiti need vanuserühmad erinevate värvikoodidega tsirkooni kristallile punktidesse, kus vastavad mõõtmised teostati. Jooniste 16, 17 ja 18 esimestele piltidele (a) märgiti vastavad konkordia vanused, keskmistele piltidele (b) vastavad ²⁰⁷Pb - ²⁰⁶Pb vanuste alusel ning viimastele piltidele (c) konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste ühisosa. Ühisosa all mõistetakse neid punkte, mis kuuluvad konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste alusel samasse vanuserühma.

Esimesel mõõtmisel (joonis 16) saadud tulemustest kuuluvad konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste ühisossa 5 punkti - noorimasse vanuserühma punktid 1 ja 12 ning vanimasse vanuserühma punktid 5, 6 ja 7. Teisel mõõtmisel (joonis 17) saadud tulemustest kuuluvad konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste ühisossa 10 punkti - noorimasse vanuserühma punktid 1, 2, 11 ja 12, keskmisesse vanuserühma punktid 3, 6 ja 8 ning vanimasse vanuserühma punktid 5, 7 ja 10. Kolmandal mõõtmisel (joonis 18) saadud tulemustest kuuluvad konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste ühisossa kõik punktid. Mõõtmistingimustest tulenevalt on kõige usaldusväärsemad kolmandal mõõtmisel saadud tulemused, kus vanuseline diferentseerumine ka kõige paremini esile tuleb. Siiski tuleb vanuseline tsonaalsus välja ka esimese ja teise mõõtmise tulemustest. Kõigi kolme mõõtmise konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste ühisosade paiknemine on toodud lisas 3.

Joonis 16. Kristalli SL esimesel mõõtmisel saadud tulemuste vanuseline jaotumine (nooremad - valged, keskmised - sinised, vanemad - mustad), a) konkordia vanuse alusel, b) ²⁰⁷Pb - ²⁰⁶Pb vanuse alusel, c) konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste ühisosa alusel. Vanusevahemikud on toodud lisas 11.

Joonis 17. Kristalli SL teisel mõõtmisel saadud tulemuste vanuseline jaotumine (nooremad - valged, keskmised - sinised, vanemad - mustad), a) konkordia vanuse alusel, b) ²⁰⁷Pb - ²⁰⁶Pb vanuse alusel, c) konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste ühisosa alusel. Vanusevahemikud on toodud lisas 11.

Joonis 18. Kristalli SL kolmandal mõõtmisel saadud tulemuste vanuseline jaotumine (nooremad - valged, keskmised - sinised, vanemad - mustad), a) konkordia vanuse alusel, b) ²⁰⁷Pb - ²⁰⁶Pb vanuse alusel, c) konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste ühisosa alusel. Vanusevahemikud on toodud lisas 11.

5. Arutelu

Haruldaste muldmetallide mustrite uurimine võimaldab leida sarnasusi erinevate kristallide vahel. Kui REE'de mustrid on sarnased, võib üldjuhul eeldada, et kristallid on sarnase tekke ja vanusega. Kristallide SS ja SL kondriidi suhtes normaliseeritud REE'de mustrid on sarnased varem uurituga (Faithfull *et al.*, 2018). Kõigil kolmel juhul tulevad välja sarnased positiivsed tseeriumi anomaaliad (SL'is keskmiselt 78,3, SS'is keskmiselt 52,6 ja Faithfull *et al.* (2018) hinnangul keskmiselt 57,8) ning sarnased negatiivsed euroopiumi anomaaliad (SL'is keskmiselt 0,31, SS'is keskmiselt 0,38 ja Faithfull *et al.* (2018) hinnangul keskmiselt 0,31, SS'is keskmiselt 0,38 ja Faithfull *et al.* (2018) hinnangul keskmiselt 0,28). Lisaks on kõik kristallid rikastunud rasketest REE'dest (keskmine Lu/Gd suhe SL'is on 14,44, SS'is 13,14 ja Faithfull *et al.* (2018) hinnangul 17,9) ning vaesustunud kergetest REE'dest (keskmine Sm/La suhe SL'is on 149,29, SS'is 99,64 ja Faithfull *et al.* (2018) hinnangul 65,9). Sarnased REE'de mustrid on üheks argumendiks sellele, et Faithfull *et al.* (2018) publitseeritud vanust saab kasutada *in-house* laboristandardi loomiseks.

Mõlemale kristallile teostati vanuste arvutamiseks punktmõõdistused kolmel erineval meetodil, eesmärgiga katsetada standardi sobivust erinevatel analüütiliste tingimustel. Mõlema kristalli puhul saadi kõige usaldusväärsemad tulemused kolmandal mõõtmisel, kus standardist 91500 mõõdetud ²³⁸U ja ²⁰⁶Pb signaal oli kõige tugevam. Samadel alustel on usaldusväärsuselt järgmised esimesel mõõtmisel saadud tulemused ning kõige ebausaldusväärsemad olid teisel mõõtmisel saadud tulemused, kus standardist mõõdetud signaal oli kõige nõrgem. Mõlemale tsirkooni kristallile LA-ICP-MS meetodil teostatud mõõdistuste tulemused näitavad, et kaks ühes palas uuritud tsirkooni kristalli, ei ole vanuseliselt identsed.

Kristall SS on vanuseliselt homogeenne, mis tähendab, et kolmandal mõõtmisel kõikides mõõdistuspunktides saadud vanused on vea piires ühesugused ja konkordsed. SS'i homogeensus tuli välja ka SEM'iga uurimisel (joonis 4 a). Kristallis SS kolmandal mõõtmiskorral saadud konkordia vanus on 2464,76 ± 6,92 Ma (joonis 9) ja ²⁰⁷Pb - ²⁰⁶Pb vanus 2465,00 ± 16,97 Ma. Need langevad kokku varem uuritud, samast piirkonnast pärit tsirkooni kristallide vanusega, kus ²⁰⁷Pb - ²⁰⁶Pb vanuseks määrati 2464 ± 12 Ma (Faithfull *et al.*, 2018). Seega sobib kristall SS *in-house* laboristandardiks.

Vastupidiselt kristallile SS, ei ole kristall SL vanuseliselt homogeenne, vaid jaguneb kolmanda mõõtmise tulemuste alusel kolmeks piirkonnaks (lisa 3) (vanuseline tsonaalsus tuleb välja ka teistel mõõtmistel). Ka SEM'i fotolt (joonis 4 b) tuleb välja, et võrreldes kristalliga SS on SL selgelt heterogeensem. Vanuselist tsonaalsust ei ole varem samast piirkonnast uuritud tsirkooni kristallides täheldatud. Faithfull *et al.* (2018) on sõnastanud, et kõik peamised vastavate tsirkooni megakristallide arengu etapid on toimunud fluidi- või sulafaasis, kus pole tõendeid pärilike komponentide kohta ja, et U - Pb vanused on kristalli erinevates piirkondades identsed (Faithfull *et al.*, 2018). Siiski ilmneb, et kristallis SL on toimunud midagi anomaalset.

Kolmandal mõõtmisel saadud kristalli SL konkordia vanuste erinevus vanima ja noorima piirkonna vahel on umbes 55 Ma, kus vanima piirkonna vanuseks saadi 2524,58 \pm 11,62 Ma (joonis 13) ning noorima piirkonna vanuseks 2469,59 \pm 12,25 Ma (joonis 15). ²⁰⁷Pb - ²⁰⁶Pb vanuste erinevus on umbes 66 Ma, kus vanima piirkonna

vanuseks mõõdeti 2526,67 ± 30,29 Ma ning noorima piirkonna vanuseks 2460,67 ± 4,62 Ma. Kuna on ebatõenäoline, et ühe kristalli kristalliseerumine on toimunud nii pika aja jooksul, peab kristall SL sisaldama ümbriskivimist assimileeritud signaali. Sellele viitab ka see, et kristalli SL n-ö vanemad piirkonnad ei asu mitte täpselt kristalli keskel, vaid ühel äärel (lisa 3).

Kristalli SL kõige noorem piirkond, konkordia vanusega 2469,59 ± 12,25 Ma (joonis 15) ning ²⁰⁷Pb - ²⁰⁶Pb vanusega 2460,67 ± 4,62 Ma, on üheealine kristalliga SS ja langeb kokku ka varem avaldatud vanusega (Faithfull *et al.*, 2018). Seega on kristalli SL kasvades fluidis oleva päriliku signaali sisaldus vähenenud ja kõige õigema vanuse annab kõige noorem piirkond kristalli äärtel (lisa 3). Vaatamata sellele, et tsirkoonist SL on võimalik määrata ka õiget vanust, ei ole see *in-house* laboristandardiks sobilik, sest vanuseliste piirkondade paiknemine ei ole täpselt teada.

Kristalli SL vanuseline tsonaalsus näitab, et mitte kõik *Lewisian*'i gneisikompleksist pärinevad tsirkoonid ei ole homogeensed ning sobilikud *in-house* standardiks. Uute kristallide sobivuse hindamiseks on vaja teostada lateraalne vanuste kaardistamine. Vanuselise tsonaalsuse täpsemate põhjuste ja sageduse välja selgitamine vajab täiendavaid uuringuid. Konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste hea kokkulangemise alusel on võimalik väita, et uuritud kristallides ei ole toimunud tekkejärgset U ja Pb kadu ega sissekannet.

6. Kokkuvõte ja järeldused

Käesolevas töös uuriti Loode-Šotimaalt *Loch an Daimh Mor*'i järve lähedalt *Lewisian*'i gneisikompleksist kogutud proovides sisaldunud kahe tsirkooni megakristalli vanuseid ²³⁸U - ²⁰⁶Pb, ²³⁵U - ²⁰⁷Pb ja ²⁰⁷Pb - ²⁰⁶Pb meetoditel. Eesmärgiks oli kontrollida uuritud tsirkoonide sobivust *in-house* laboristandardina kivimite U - Pb vanuste määramiseks laserablatsiooni ICP-MS meetodil. Petrograafiat uuriti valgusmikroskoobi ja skaneeriva elektronmikroskoobi (SEM) abil. Uraani, plii ja jälgelementide mõõdistused tehti laser-ablatsiooni induktiivsidestatud plasma massispektromeetriga (LA-ICP-MS).

Väiksema kristalli (SS - *Scottish small*) vanus kõigis mõõdetud punktides oli vea piires ühesugune ja selle vanus ühtis varem avaldatud tulemustega. Suuremas kristallis (SL - *Scottish large*) esines vanuseline diferentseerumine, kus esinesid eri vanusega piirkonnad. Neid pole varasemalt kirjeldatud ning need vajaks detailsemaid edasisi uuringuid.

Uuringutulemused kinnitavad, et väiksem tsirkooni kristall on vanuseliselt homogeenne ja sobilik *in-house* standardiks. Suuremas kristallis esineva vanuse tsonaalsuse tõttu see standardiks ei sobi ning näitab, et kõik uuritud kivimkompleksist pärinevad tsirkooni terad ei ole vanuseliselt homogeensed ja standardina sobilikud.

Summary

In the present thesis, the ages of two zircon megacrysts, that were collected from Lewisian complex near Loch an Daimh Mor in NW Scotland, were studied by using ²³⁸U - ²⁰⁶Pb, ²³⁵U - ²⁰⁷Pb and ²⁰⁷Pb - ²⁰⁶Pb methods. The aim was to develop an inhouse laboratory standard for determining the U - Pb ages of rocks by means of laser ablation ICP-MS. The petrography was studied with light microscope and scanning electron microscope (SEM). Uranium, lead and trace element measurements were performed with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

Studies showed that all of the ages measured by U - Pb methods were concordant. The ages of smaller crystal (SS - Scottish small) within the error bars were equal in all measurements and in line with the previously studied results. In the larger crystal (SL - Scottish large), there was an age differentiation, with areas of different ages. This has not been described before and would require more detailed further studies.

The results confirm that the smaller zircon crystal is age-homogeneous and would be an excellent in-house standard. The larger crystal is not suitable as a laboratory standard due to its age zonality.

Tänuavaldused

Töö autor soovib tänada juhendajaid Timmu Kreitsmanni ja Päärn Paistet. Samuti Kalle Kirsimäed, kes andis saadud tulemustele tagasisidet.

Kasutatud materjalid

Bea, F. (2015). Geochemistry of the Lanthanide Elements. XXXV Reunión de la Sociedad Española de Mineralogía.

Chang, Z., Vervoort, J. D., McClelland, W. C., Knaack, C. (2006). U-Pb dating of zircon by LA-ICP-MS. *Geochemistry, Geophysics, Geosystems 7, No 5.* DOI: https://doi.org/10.1029/2005GC001100

Faithfull, J. W., Dempster, T. J., Reilly, M. (2016). Giant Zircon Crystals in Ultramafic Rocks Within the Lewisian Complex: Occurrence and Implications. *NAC+ 2016*, Edinburgh, Suurbritannia.

Faithfull, J. W., Dempster, T. J., MacDonald, J. M., Reilly, M., EIMF (2018). Metasomatism and the crystallization of zircon megacrysts in Archaean peridotites from the Lewisian complex, NW Scotland. *Contributions to Mineralogy and Petrology 173.*

DOI: https://doi.org/10.1007/s00410-018-1527-5

Hiess, J., Condon, D. J., McLean, N., Noble, S. R. (2012). ²³⁸U/²³⁵U Systematics in Terrestrial Uranium-Bearing Minerals. *Sience 335, No 6076:* 1610–1614. DOI: 10.1126/science.1215507

Hoskin, P. W. O., Schaltegger, U. (2003). The Composition of Zircon and Igneous and Metamorphic Petrogenesis. *Reviews in Mineralogy and Geochemistry 53, No 1*: 27–62.

DOI: https://doi.org/10.2113/0530027

Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., Wang, D. (2009). Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China

orogeny: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. *Journal of Petrology 51, No 1–2*: 537–571. DOI: https://doi.org/10.1093/petrology/egp082

Taylor, S. R., McLennan, S. M. (1985). The Continental Crust: Its Composition and Evolution. USA.

Visk, U. (2007) Täiendavaid teemasid koolifüüsikale III: Radioaktiivsus. *Tartu Ülikooli teaduskool,* Tartu.

Watt, G. R., Griffin, B. J., Kinny, P. D. (2000). Charge contrast imaging of geological materials in the environmental scanning electron microscope. *American Mineralogist 85, No 11–12*: 1784–1794.

DOI: https://doi.org/10.2138/am-2000-11-1221

Webb, P., Wiedenbeck, M., Glodny. J. (2019). An International Proficiency Test for U-Pb Geochronology Laboratories – Report on the 2019 Round of G-Chron based on Palaeozoic Zircon Rak-17. *G-Chron 2019 – Round 1*.

White, W. M. (2015). Isotope Geochemistry. Department of Earth and Atmospheric Sciences, Cornell University, Ithica, New York, USA.

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C., Spiegel, W. (1995). Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. *Geostandards Newsletter 19*: 1–23. DOI: https://doi.org/10.1111/j.1751-908X.1995.tb00147.x

Wilde, S. A., Valley, J. W., Peck, H., Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. *Nature 409*: 175–178.

DOI: https://doi.org/10.1038%2F35051550

Veebiviited

Australian Scientific Instruments, Inroduction to LA-ICP-MS, https://asi-pl.com.au/introduction-to-la-icp-ms (29.05.2020).

Geology and Earth Science News and Information, Zircon, https://geology.com/minerals/zircon.shtml (29.05.2020).

Webmineral,ZirconMineralData,http://webmineral.com/data/Zircon.shtml#.Xsauhi9h2YV (29.05.2020).

Lisad

Lisa 1. Kristallile SS tehtud mõõtmiste asukohad.

Lisa 2. Kristallile SL tehtud mõõtmiste asukohad.

Lisa 3. Kristallis SL kolmel mõõtmisel saadud tulemuste vanuseline jaotumine vastavate mõõtmiskordade konkordia ja ²⁰⁷Pb - ²⁰⁶Pb vanuste ühisosade alusel (nooremad - valged, keskmised - sinised, vanemad - mustad).

Mõõdistus-	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	vea	²⁰⁷ Pb -
punkt		standardhälve		standardhälve	korrelatsioon	²⁰⁶ Pb
		(2 σ)		(2 σ)		vanus
SS1	10,67	0,51	0,479	0,013	0,39783	2419
SS2	10,92	0,37	0,468	0,014	0,32652	2527
SS3	10,53	0,52	0,457	0,016	0,38821	2498
SS4	10,35	0,55	0,474	0,015	0,26128	2391
SS5	10,43	0,59	0,461	0,017	0,0098998	2440
SS6	10,39	0,41	0,452	0,013	0,19912	2496

Lisa 4. Esimesel mõõtmisel kristallis SS saadud tulemused.

Lisa 5. Esimesel mõõtmisel kristallis SL saadud tulemused.

Mõõdistus-	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	vea	²⁰⁷ Pb -
punkt		standardhälve		standardhälve	korrelatsioon	²⁰⁶ Pb
		(2 σ)		(2 σ)		vanus
SL1	10.04	0.37	0.4559	0.0098	0.13668	2410
SL2	10.25	0.49	0.461	0.015	0.32887	2430
SL3	10.66	0.51	0.474	0.014	0.29966	2446
SL4	10.33	0.38	0.45	0.013	0.43652	2509
SL5	10.7	0.38	0.468	0.013	0.052589	2478
SL6	10.61	0.45	0.469	0.013	0.23097	2469
SL7	11.32	0.44	0.469	0.013	0.28554	2588
SL8	10.42	0.47	0.467	0.014	0.36251	2425
SL9	10.64	0.45	0.471	0.015	0.26033	2458
SL10	10.43	0.49	0.445	0.014	0.1624	2504
SL11	10.29	0.4	0.467	0.015	0.33816	2422
SL12	9.81	0.4	0.462	0.012	0.53174	2354

Mõõdistus-	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	vea	²⁰⁷ Pb -
punkt		standardhälve		standardhälve	korrelatsioon	²⁰⁶ Pb
		(2 σ)		(2 σ)		vanus
SS1	10.73	0.51	0.463	0.015	0.22477	2503
SS2	10.99	0.34	0.474	0.011	0.28122	2517
SS3	10.55	0.52	0.452	0.015	0.23554	2509
SS4	11.02	0.59	0.462	0.016	0.17682	2565
SS5	11.42	0.53	0.49	0.02	0.30362	2542
SS6	10.74	0.47	0.472	0.016	0.22777	2467

Lisa 6. Teisel mõõtmisel kristallis SS saadud tulemused.

Lisa 7. Teisel mõõtmisel kristallis SL saadud tulemused.

	Mõõdistus-	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	vea	²⁰⁷ Pb -
	punkt		standardhälve		standardhälve	korrelatsioon	²⁰⁶ Pb
			(2 σ)		(2 σ)		vanus
,	SL1	9.99	0.57	0.455	0.016	0.15313	2396
	SL2	9.69	0.46	0.44	0.014	0.25533	2395
	SL3	11.17	0.46	0.465	0.015	0.25516	2556
	SL4	10.78	0.48	0.454	0.015	0.27141	2535
	SL5	11.71	0.54	0.474	0.013	0.25011	2588
	SL6	11.36	0.55	0.471	0.015	0.10157	2552
	SL7	11.62	0.56	0.48	0.016	0.21005	2572
	SL8	11.38	0.5	0.477	0.013	0.16617	2537
	SL9	10.82	0.5	0.473	0.016	0.1497	2458
	SL10	11.42	0.52	0.474	0.014	0.29933	2562
	SL11	10.39	0.55	0.453	0.018	0.22242	2480
	SL12	10.73	0.46	0.467	0.012	0.22359	2476

Mõõdistus-	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	vea	²⁰⁷ Pb -
punkt		standardhälve		standardhälve	korrelatsioon	²⁰⁶ Pb
		(2 σ)		(2 σ)		vanus
SS1	10.38	0.2	0.468	0.006	0.31389	2455
SS2	10.4	0.17	0.463	0.0053	0.32438	2480
SS3	10.44	0.25	0.4654	0.0069	0.26241	2462
SS4	10.41	0.23	0.4658	0.0066	0.28024	2461
SS5	10.31	0.19	0.461	0.0064	0.20391	2464
SS6	10.33	0.15	0.4618	0.0045	0.063774	2468

Lisa 8. Kolmandal mõõtmisel kristallis SS saadud tulemused.

Lisa 9. Kolmandal mõõtmisel kristallis SL saadud tulemused.

Mõõdistus-	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	vea	²⁰⁷ Pb -
punkt		standardhälve		standardhälve	korrelatsioon	²⁰⁶ Pb
		(2 σ)		(2 σ)		vanus
SL1	10.38	0.21	0.4664	0.0058	0.28321	2458
SL2	10.79	0.24	0.4778	0.0073	0.2553	2484
SL3	11	0.19	0.4759	0.006	0.31952	2520
SL4	11.01	0.2	0.4787	0.0056	0.38189	2516
SL5	11.15	0.2	0.4759	0.0062	0.21486	2544
SL6	10.62	0.21	0.4738	0.0065	0.15287	2484
SL7	10.76	0.2	0.4708	0.0058	0.13027	2496
SL8	11.29	0.23	0.4745	0.0056	0.19633	2564
SL9	10.66	0.24	0.4716	0.0053	0.33885	2484
SL10	10.37	0.19	0.4648	0.0066	0.37002	2462
SL11	10.42	0.19	0.4671	0.006	0.32927	2462
SL12	10.71	0.31	0.4756	0.0093	0.71253	2500

Element	SS1	SS2	SS3	SS4	SS5	SS6	SL1	SL2	SL3	SL4	SL5*	SL6	SL7	SL8	SL9	SL10	SL11	SL12
¹³⁹ La	0,0356	0,0091	0,0444	0,045	0,0407	0,0841	0,131	0,0086	0,0152	0,0357	0,0143	0,0176	0,0186	0,0105	0,0082	0,0544	0,0106	0,131
¹⁴⁰ Ce	15,27	17,54	19,29	19,13	17,37	32,01	12,61	14,62	12,75	13,54	12,1	12,41	12,92	12,86	13,35	16,04	17,57	12,61
¹⁴¹ Pr	0,158	0,1004	0,192	0,183	0,18	0,301	0,117	0,1003	0,1111	0,0742	0,0962	0,0863	0,0829	0,0838	0,1063	0,076	0,0492	0,117
¹⁴⁶ Nd	1,99	1,445	2,54	2,23	2,35	3,21	1,67	1,81	1,76	1,71	1,411	1,44	1,43	1,44	1,77	1,048	1,077	1,67
¹⁴⁷ Sm	2,52	2,57	2,51	2,51	2,56	3,57	2,41	3,38	3,01	3,68	2,52	2,61	2,37	2,56	3,77	2,09	2,14	2,41
¹⁵³ Eu	0,569	0,618	0,579	0,59	0,589	0,967	0,555	0,78	0,652	0,864	0,582	0,606	0,57	0,604	0,923	0,539	0,532	0,555
¹⁵⁷ Gd	9,41	13,29	8,78	8,56	9,88	11,28	10,56	17,35	13,46	19,53	12,99	14,24	12,09	14,3	21,07	12,03	14,54	10,56
¹⁵⁹ Tb	2,55	3,72	2,19	2,104	2,58	2,79	3,02	4,85	3,69	5,4	3,69	3,99	3,46	4,2	5,6	3,5	4,36	3,02
¹⁶³ Dy	27,59	42,87	24,15	22,67	27,99	29,03	33,41	55,31	40,19	60,79	42,59	45,08	38,73	47,86	63,36	40,58	52,62	33,41
¹⁶⁵ Ho	9,65	15,75	7,9	7,68	9,49	9,17	11,76	19,47	13,98	21,1	15,03	16,16	14	17,46	21,96	14,71	19,1	11,76
¹⁶⁶ Er	44,96	73,61	36,65	35,83	44,63	41,29	55,15	88,7	62,73	94,26	69,82	75,28	66,06	79,02	98,4	70,16	88,98	55,15
¹⁷² Yb	92,05	142,35	74,28	72,47	88,31	77,17	111,57	165,3	123,79	178,11	136,07	144,56	130,83	153,19	183,7	135,85	169,25	111,57
¹⁷⁵ Lu	16,55	26,04	13,75	13,23	16,22	14,31	19,9	30,04	22,26	31,14	24,32	25,96	23,59	27,01	32,07	24,73	30,44	19,9

Lisa 10. Kristallides mõõdetud jälgelementide sisaldused ppm'ides. Punktis SL5 mõõdetud sisaldust jälgelementide arvutustes ei kasutatud.

	Noorim	Keskmine	Vanim
1. mõõtmise konkordia vanusevahemikud	2422 – 2442 Ma	2455 – 2472 Ma	2487 – 2534 Ma
1. mõõtmise ²⁰⁷ Pb - ²⁰⁶ Pb vanusevahemikud	2354 – 2430 Ma	2446 – 2458 Ma	2469 – 2588 Ma
 mõõtmise konkordia vanusevahemikud 	2390 – 2490 Ma	2505 – 2542 Ma	2543 – 2562 Ma
2. mõõtmise ²⁰⁷ Pb - ²⁰⁶ Pb vanusevahemikud	2395 – 2480 Ma	2535 – 2556 Ma	2562 – 2588 Ma
 mõõtmise konkordia vanusevahemikud 	2467 – 2472 Ma	2493 – 2508 Ma	2523 – 2532 Ma
3. mõõtmise ²⁰⁷ Pb - ²⁰⁶ Pb vanusevahemikud	2458 – 2462 Ma	2484 – 2500 Ma	2516 – 2564 Ma

Lisa 11. Kristalli SL vanuse jaotumise leidmiseks kasutatud vanusevahemikud.

Lihtlitsents lõputöö reprodutseerimiseks ja üldsusele kättesaadavaks tegemiseks

Mina, Markus Ausmeel,

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) minu loodud teose

Lewisian'i gneisikompleksi tsirkooni megakristallide sobivuse hindamine *in-house* U - Pb dateerimise standardina LA-ICP-MS meetodil,

mille juhendajad on Timmu Kreitsmann ja Päärn Paiste,

reprodutseerimiseks eesmärgiga seda säilitada, sealhulgas lisada digitaalarhiivi DSpace kuni autoriõiguse kehtivuse lõppemiseni.

- 2. Annan Tartu Ülikoolile loa teha punktis 1 nimetatud teos üldsusele kättesaadavaks Tartu Ülikooli veebikeskkonna, sealhulgas digitaalarhiivi DSpace kaudu Creative Commonsi litsentsiga CC BY NC ND 3.0, mis lubab autorile viidates teost reprodutseerida, levitada ja üldsusele suunata ning keelab luua tuletatud teost ja kasutada teost ärieesmärgil, kuni autoriõiguse kehtivuse lõppemiseni.
- 3. Olen teadlik, et punktides 1 ja 2 nimetatud õigused jäävad alles ka autorile.
- 4. Kinnitan, et lihtlitsentsi andmisega ei riku ma teiste isikute intellektuaalomandi ega isikuandmete kaitse õigusaktidest tulenevaid õigusi.

Markus Ausmeel
01.06.2020