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Chapter 1

Introduction

1.1 Background

The approximation property or “la condition d’approximation” as a term was
introduced in 1955 by A. Grothendieck in his famous Memoir |G, Chapter
I, p. 167]. But the origins of the notion trace back to the Lwow School of
Mathematics of 1930s.

Recall that a Banach space is said to have the approzimation property if its
identity operator can be approximated by finite-rank operators uniformly on
compact sets.

In fact, Grothendieck showed |G, Chapter 1, p. 165] that the question whether
every Banach space has the approximation property is equivalent to several
open problems emerging from the work of S. Banach, S. Mazur, and others.

One of them, the approzimation problem, asks whether all compact operators
between arbitrary Banach spaces can be approximated, in the norm topology
of operators, by finite-rank operators.

The other one, like many other fine problems, has its origin in The Scottish
Coffee House located near the University building in Lwoéw. It is the Problem
153 of the Scottish book, and it goes as follows.

Given a continuous function f = f(s,t) defined on [0, 1] x [0, 1] and a number
€ > 0; do there exist numbers aq,...,a,; by,...,b,; c1,...,cy, such that

n

Fls,t) = > apf(s,b) f(cr,t)| <€

k=1
for all s,¢ € [0, 1]7

11



12 1. INTRODUCTION

The problem 153 was posed by Mazur on November 6, 1936. According to
Pelczynski (see, e.g., [Pi2, p. 285]), Mazur knew that the positive answer to
Problem 153 would imply the positive answer to the approximation problem.
This might be the reason for the extraordinary prize he offered on Problem
153: a live goose (see, e.g., [Scottish]).

A related open question, the basis problem (see B, p. 111]), asked whether
every separable Banach space has a Schauder basis. A negative solution
to the approximation problem is also a negative solution to the basis prob-
lem, since a Banach space with a Schauder basis satisfies the approximation
property.

Although Grothendieck connected the above questions to each other, showing
that their positive answers yield a series of very nice properties in Banach
spaces, the questions still remained open. Grothendieck himself conjectured
that the approximation problem has the negative answer in general, but
every reflexive space might have the approximation property |G, Chapter II,
p. 135].

The sensation came 17 years after, in May 1972, when P. Enflo discovered
a separable reflexive Banach space without the approximation property [E|,
and therefore solved the approximation problem and the basis problem in
the negative. The live goose was then indeed awarded to Enflo by Mazur
(see, e.g., [Katuza| for a photo of this event).

According to A. Pietsch [Pi2, p. 287|: Life in Banach spaces with certain
approximation properties is much easier. Thus the effect of Enflo’s coun-
terexample can be described as the banishment from Paradise.

On the other hand, Enflo’s result stimulated further research on the topic.
In particular, T. Figiel and W. B. Johnson in 1973 [FJ] showed that the
approximation property and the metric approximation property are, in gen-
eral, different. (A Banach space has the metric approximation property if its
identity can be approximated by finite-rank operators of norm not exceeding
1 uniformly on compact sets.)

Also, it was noticed that Enflo’s space is actually a counterexample to the
compact approximation property, i.e., to the fact that an identity operator
of a Banach space can be approximated by compact operators uniformly on
compact sets. The example of a Banach space failing the approximation
property but having the compact approximation property was constructed
in 1992 by G. Willis [W].

The field contains a number of longstanding open problems, which attract
the attention of researchers. One of the most famous of them goes as follows.
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Problem 1.1. For the dual space of a Banach space, does the approximation
property imply the metric approximation property?

1.2 Summary of the thesis

The main aim of the thesis is to develop a unified approach to diverse ver-
sions of the approximation property, such as the compact approximation
property, approximation properties defined by an operator ideal, or the pos-
itive approximation property of Banach lattices. Our principal notion is the
approximation property defined by a convex set of operators containing 0,
the convex approximation property. It turns out that this concept admits
good counterparts of some important results on the classical approximation
property. We also consider the approximation properties defined by linear
subspaces as well as by arbitrary sets of operators.

The thesis has been organized as follows.

Chapter 1 briefly retells the historic background of the approximation prob-
lem, provides a summary of the thesis, and describes the notation used in
the thesis.

In Chapter 2 we recall supplementary notation and results needed in most of
the following chapters. These include operator ideals and space ideals, tensor
products, weak*-to-weak continuous operators, some of the most important
locally convex topologies defined on operator spaces, and the Davis—Figiel-
Johnson—Pelczyriski factorization lemma in its isometric version due to Lima,
Nygaard, and Oja.

In Chapter 3 we consider several versions of approximation properties. We
go on to define the convex approximation property and the convex approx-
imation property with conjugate operators, and present some of the basic
results concerning the approximation properties. This chapter is based on
introductory parts of [L| and [LMO].

The results presented in Chapter 4 extend the classical description of the
approximation property of a Banach and its dual space via approximability
of compact operators by finite-rank operators [G]. We provide versions, which
hold for the approximation properties defined by an arbitrary collection of
bounded linear operators, as well as their improvements in the case of the
convex approximation properties. This chapter is inspired by [LO4, LLN,
OPe], and based on [L] and [LMO].

In Chapter 5 we prove one of the main results of the thesis. It is a description
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of the approximation property defined by a linear subspace of operators via
the approximability of weakly compact operators. For this end, we recall the
definition of the Radon—Nikodym property and the description of continuous
linear functionals on the space of compact operators between Banach spaces
due to Feder and Saphar, which is possible under the influence of the latter
property. This chapter is based on [LMO|.

In Chapter 6 we look at the strong approximation property and the weak
bounded approximation property (these notions were introduced in [O3] and
[LO6]). We develop a unified approach to the treatment of their convex
versions, and following [O2], we observe the impact of the Radon-Nikodym
property on the interplay between these notions and the convex (bounded)
approximation properties. The results obtained as the product of these in-

vestigations will be important for us in Chapter 7. This chapter is based on
[L].

In Chapter 7 we extend the famous Johnson’s lifting theorem, which permits
to lift the metric approximation property to the dual space, as well as the
Lima-Oja [LO6] theorem on lifting the weak metric approximation property
to the dual space. We apply these results to obtain a partial solution to a
convex version of Problem 1.1, showing that under the impact of the Radon—
Nikodym property, the convex approximation property of a dual space is
always metric. The prototype of the latter method can be found in [O2].
This chapter is based on [LisO.

In Chapter 8 we apply the theory of convex approximation properties to the
positive approximation property of Banach lattices and to the approximation
property defined for pairs of Banach spaces. In order to do so, we recall some
of the classical theorems on Banach lattices. This chapter is based on |[LisO].

1.3 Notation

Our notation is standard.

For vector spaces X and Y (we consider vector spaces over K = R or C),
by L(X,Y) we will denote the vector space of all linear operators between
X and Y. If X and Y are normed linear spaces, then £(X,Y) denotes
the Banach space of all bounded linear operators between them. For an
operator 7' : X — Y we denote kerT = {z € X : Tz = 0}, the kernel of
T. The restriction of T' to a subset K C X will be denoted by T|k. For
vector spaces X, Y, Z, and sets A C L(Y,X), B C L(Z,Y), we denote
AoB={TS:TeA, SeB}CL(ZX).
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A Banach space X will be regarded as a subspace of its bidual X** under
the canonical embedding jx : X — X**. The identity operator on X is
denoted by Ix. The closed unit ball and the unit sphere of X are denoted
By and Sy, respectively. The closure of a set K C X is denoted by K, its
linear span by span K, its convex hull by conv K, and its absolutely convex
hull by absconv K. The norm closures of the three latter sets are denoted
by spank, conv K, and absconv K, respectively. For closures with respect to

other topologies, we mark the topology separately, such as conv® K, etc.

We assume that the reader is familiar with well-known basic notions and
theorems from the theory of Banach spaces and topological vector spaces
(such as dual pairs, the Hausdorff theorem, the Minkowski functional or
the gauge, the Hahn-Banach theorem, the Alaoglu theorem, the Goldstine
theorem, etc.), and we shall sometimes use them without proper references.

Let us also mention that additional notation will be introduced in the forth-
coming chapter.






Chapter 2

Preliminaries

In this chapter we recall supplementary notation and results needed
in most of the following chapters. These include operator ideals and
space ideals, tensor products, weak*-to-weak continuous operators,
some of the most important locally convex topologies defined on op-
erator spaces, and the Davis—Figiel-Johnson—Petczynski factorization
lemma in its isometric version due to Lima, Nygaard, and Oja.

2.1 Operator and space ideals

Although not of immediate interest, the notions of this section are funda-
mental in dealing with classes of operators beyond the finite-dimensional
operators.

This section is a quick overview of basic definitions and results in [Pil].

Let £ be the class of the bounded linear operators between arbitrary Banach
spaces.

Definition 2.1. A subclass A of L is said to be an operator ideal if the
following holds:

(i) Ix € A for the one-dimensional Banach space K,

(ii) the components A(X,Y) = L(X,Y) N A are linear subspaces of
L(X,Y) for all Banach spaces X and Y,

17



18 2. PRELIMINARIES

(iii) A is closed under compositions with operators from £, meaning that for
all Banach spaces W, X, Y, and Z, and for all operators T" € L(W, X),
S e AX,Y), and R € L(Y, Z) one has

RST € AW, Z).
As a convenience, we also denote A(X) := A(X, X) for an operator ideal A
and a Banach space X.

Example 2.2. The classes of finite-rank operators JF, approximable oper-
ators F, compact operators K, weakly compact operators W, completely
continuous operators V, separable operators X, and all bounded linear oper-
ators L are operator ideals.

Definition 2.3. A subclass A of Banach spaces L is said to be a space ideal
if the following holds:

(i) K € A for the one-dimensional Banach space K,
(ii) X xY eAforal X,Y €A,

(iii) if X € A and Y is isomorphic to a complemented subspace of X, then
Y e A

Example 2.4. The classes of finite-dimensional spaces F, reflexive spaces W,
spaces with the Schur property V, separable spaces X, and all Banach spaces
L are space ideals.

It is possible to pass from an operator ideal to a space ideal and vice versa.
Let A be an operator ideal and let A be a space ideal. The class

Space(A) :={X eL: Iy € A(X)}
is a space ideal and the class
Op(A) ={TS: X,YelL, ZeA Sel(X,2), TeLl(ZY)}
is an operator ideal. Moreover, Space(Op(A)) = A and Op(Space(A)) C A.

The examples above are in the following correspondence:

(i) F = Space(F) = Space(F) = Space(K) and Op(F) = F,
(i) W = Space(W) and W = Op(W),
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(iii) X = Space(X) and X = Op(X).

Given two operator ideals A and B one can compose a new operator ideal in
any of the following way: intersection AN B, product

AoB:={TS: XY, ZelL, T AZY), SeB(X,2)},
left-hand quotient
AoB ' ={TeL(X,)Y): X, Y €LLVZeLVSeB(Z,X)TS € A(Z,Y)},
and right-hand quotient

A 0B ={TeL(X,Y): X,Y €LVZeLVS € AY,Z) ST € B(X, Z)}.

The dual operator ideal A consists of all operators T € £ having its
conjugate operator 7% in A. The dual space ideal A1 consists of all Ba-
nach spaces X having its dual space X* in A. An operator ideal A is called
symmetric if A C AT and completely symmetric if A = A, The sym-
metric and completely symmetric space ideals are defined in an analogous
way. Moreover, if an operator ideal A is (completely) symmetric, then so is
the space ideal Space(.A).

Among the examples above, the operator ideals F, F, K, W, and the space
ideal XN'W are completely symmetric. The operator ideals X and V are not
symmetric.

Definition 2.5. An operator ideal A together with a mapping ||-|| 4 from A
to non-negative real numbers is called a normed operator ideal if

(i) the components [A(X,Y), ||| 4] are normed spaces for all Banach
spaces X and Y,

(ii) for all Banach spaces W, X, Y, and Z, and for all operators T €
LW, X), Se A(X,Y), and R € L(Y, Z) one has

[RST 4 < RIS A NT-

If, in addition, in (i) the components [[A(X,Y),[|-|| ,] are Banach spaces, then
[A, |||l 4] is called a Banach operator ideal. If ||-|| ; coincides with the usual
operator norm ||-||, then A is called a classical (normed or Banach) operator
ideal.
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2.2  Weak*-to-weak continuous operators

Let X and Y be Banach spaces.

Recall that a net (x,) C X converges to a point x € X in the weak topology
o(X, X*) if 2*(z,) — 2*(x) for each z* € X*. Similarly, a net (z}) C
X* converges to a functional x* € X* in the weak* topology o(X*, X) if
xi(z) — xf(x) for every x € X. The dual pair (X, X*) gives the equality
(X*,0(X*, X))* = X, which can be rewritten as

Proposition 2.6. A functional z** € X** is weakly™ continuous if and only
if x* € jx(X).

Definition 2.7. An operator 7' € L£(X*,Y) is said to be weak*-to-weak
continuous if it is continuous as a mapping between locally convex spaces
(X*,0(X*, X)) and (Y,o(Y,Y™)). The subspace of L(X*Y) consisting of
all such operators is denoted L,«(X*,Y).

Let A be an operator ideal. We will denote A,«(X*,Y) := L,+(X*,Y) N A.

Clearly, L,«(X*,Y) = W,«(X*,Y). Indeed, by the Alaoglu theorem the
unit ball By« is compact in the weak™ topology. Therefore, if T' € L(X*,Y)
is weak*-to-weak continuous, then T'(Bx~) is weakly compact.

The following is a well-known criterion of weak*-to-weak continuous opera-
tors. We provide a short proof to this folklore result.

Proposition 2.8. An operator T € L(X*,Y) is weak*-to-weak continuous
if and only if T*(Y™*) C jx(X).

Proof. Take T' € L(X*,Y) and observe that by proposition 2.6 the condition
T*(Y*) C jx(X) is equivalent to the condition that the functional T*y* =
y* o T is weakly™ continuous for every y* € Y*. Clearly, the latter is exactly
the weak™*-to-weak continuity of 7. O

Let U and V' be vector spaces, and let W be a subspace of V. f T': U — V
is a linear operator such that T'(U) C W then one can consider a linear
operator Ty : U — W with the same values as T'. The operator Ty is called
the astriction of T to the space W. Clearly, if U and V' are Banach spaces
and T is continuous, then so is Tyy.

Definition 2.9. For an operator T € L,«(X*,Y) by its dual astriction we
will denote the operator T° € L(Y™*, X) such that T* = jxT°.
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Note. In the literature the notion is addressed simply as the dual operator
T*. We make a distinction for the sake of clarity.

We state some simple yet useful properties of dual astrictions.

Proposition 2.10. Let T\U € L,(X*Y), S € L(Y), and R €
L (X*,Y*). Then the following holds.

(i) T°" = jyT,
(if) 7° € Ly, ( LX),
(i) T% =
(iv) (|7 = HTII
) (AT 4 U)° = AT° + U°,
) (ST)° =T°S*,
) (Rejy)" =

(v
(vi

(vii

Proof. (i). For every z* € X* and y* € Y* we have
Uy (Tz")(y") =y (Tz") = (T7y")(z7) = (GxT7")(z") = (T727)(y").

Property (ii) is equivalent to 7°*(X*) C jy(Y), which follows from (i). We
have (iii) because (i) implies jyT = jyT°° and jy is isometric. Properties
(iv), (v), and (vi) follow from the matching properties of dual operators.

(vii). Since jy jy« = Iy«, we have (R°jy)* = j3 R** = jyjy«R = R. O

In particular, these properties show that the operation of taking the dual
astriction establishes an isometric isomorphism between A,-(X*,Y) and
A« (Y*, X) for any completely symmetric operator ideal A (e.g., F, K or W).
Indeed, if T € A,+«(X*,Y) then T = jyT € A, so that T° € A,(Y*, X)
because A is completely symmetric.

Proposition 2.8 is to be compared with the classical criterion of weakly com-
pact operators:

Proposition 2.11 (see, e.g., |DS, page 482|). An operator T € L(X,Y) is
weakly compact if and only if T**(X**) C jy(Y).

This and property (vii) imply that the operators in L,«(Y™*, X*) are exactly
all the adjoints to operators in W(X,Y). Therefore, for any operator ideal
A C W, the adjoint operation is a natural isometry between the spaces
AW (X YY) and A,-(Y*, X¥).
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2.3 Tensor product

Let X and Y be Banach spaces. The algebraic tensor product X ® Y can be
constructed in many equivalent ways. See |G| or [Ryan| for some of them.
For our aims, we prefer the following quick definition, and refer the reader to
[Ryan| for a modern introduction to tensor products of Banach spaces and
proofs of the statements in this section.

Let x € X and y € Y. By the simple tensor x @ y € L(X*,Y) we mean an
operator of rank one defined as

(z@y)(z") = 2" (z)y
for all z* € X*. A subspace
XY =spa{z®@y:zeX, yecY}=F,(X"Y)

is called the algebraic tensor product of X and Y.

Clearly, any tensor u € X ® Y has can be represented as
u:z:pi@)yi, neN ;e X, y,€Y,1=1,...,n,
i=1

in many different ways.

Observe that X* @Y = F,-(X*™,Y) = F(X,Y) with

<Z T; ® yz-> (z) = Z z} (7)y;

for " 2 ®y, € X*®Y and z € X.

The injective tensor product X®Y := X ® Y is the completion of X @ YV
under the norm induced by £(X*,Y).

The projective norm ||-||. on X ® Y is defined as

n
lull,, = in Y | il
i=1

for all u € X ® Y, where infimum is taken over all possible representations
w=>" 7 ®y;. The projective tensor product X®Y is the completion of
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X ® Y under the projective norm. For any element u € X®Y and every
€ > 0, there exists a representation

n=1

with "7 [lzal| lunll < ||ull, + €. Note that we can actually choose a repre-
sentation, where "> ||z, || < |Jull. +¢&, sup, [|ya| <1, and y,, — 0, or vice
versa.

Let X; and Y] be Banach spaces, let S € L£(X,X;), and let T" € L(Y,Y1).
Then a bounded linear operator S ® T between X®Y and X;®Y; is well
defined by

(S®T)u=Y (Sz,) @ (Ty,) € X181
n=1
foru =73 " 2, ®y, € X®Y. If S happens to be an identity operator of
some Banach space, we just write T in place of S ® T', and vice versa. The
trace functional on X*®X is defined as

trace(u) = Zx;(:pn)

foru=>3 " 25 ®x, € X*@X with Y °°, |2} ||zn]| < oo. It is well defined

n=1
and does not depend on the representation of w.

2.4 Topologies on L(X,Y)

Apart from the usual norm topology, the operator space L(X,Y) possesses
three natural locally convex topologies which play an important role in the
study of the approximation properties.

The strong operator topology (SOT) is defined by the system of seminorms
{pr: F C X, F is finite}

with
pr(S) = su}p) |1Sz||, Se€L(X,Y).
TE
In £(X,Y), a net (S,) converges to S in the SOT if and only if it converges
pointwise, i.e., Spx — Sz for all z € X. We will denote this topology by
75(X,Y), or simply by 7, when no confusion is likely to arise.
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The weak operator topology (WOT) is defined by the system of seminorms
{ppu: F C X,H CY" F and H are finite}

with

pru(S) =sup{|ly*(Sz)|:x € F,y* € H}, S e L(X,Y).
In £(X,Y), a net (S,) converges to S in the WOT if and only if it converges
weakly pointwise, i.e., y*(S,x) — y*(Sz) for all z € X and y* € Y*. We will
denote this topology by 7,(X,Y), or simply by 7,,.

The topology of uniform convergence on compact sets, also known as the
topology of compact convergence, is defined by the system of seminorms

{pk : K C X, K is compact}

with

pr(S) = Sullz |Sz||, Se€L(X,Y).
re

We will denote this topology by 7.. The nets converging in 7. will be said to
converge compactly.

It is clear that 7, is weaker than 7,, 7, is weaker than 7., and 7, is weaker
than the norm topology. The following three propositions date back to
Grothendieck’s memoir |G, Chapter I, Lemma 20, Proposition 22, and Propo-
sition 23].

Proposition 2.12 (see, e.g., |DS, Corollary VI.1.5]). A convex subset of
L(X,Y) has the same closure in T, as it does in Ts.

Proposition 2.13. On bounded subsets of L(X,Y), 75 coincides with 7.

Proof. Since 1, > 74, it is enough to show that any element 7" in the 7¢-closure

of a norm-bounded set A C £(X,Y) is also in its 7.-closure.

Let A be norm-bounded by M > 0 and let T € A”. We may assume
that ||| < M. Fix a compact set K C X and ¢ > 0. Let F be a finite
17-net of K. By assumption, we can find S € A such that pp(S —T) =
SUp,cp ||[Sz — Tzl < /2. Then for all + € K there is xy € F such that

|z — 20| < 537, and we have

|Sz —Tz|| < |Sx— Sxol + || Sxo — Txo| + |Tx0 — Tx||
edSH+17 L e
AM 2~
Hence, px (T — S) = sup,cx [Tz — Sz| < e, so that T € A™. O
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Proposition 2.14 (see, e.g., |[LT, Proposition 1.e.3|). Let X and Y be Ba-
nach spaces. There is a surjective linear operator V from Y*®X to the space
(L(X,Y), 7.)* of T.-continuous linear functionals on L(X,Y) defined by

(Vu)(T) = trace(Tu)
forueY*®X and T € L(X,Y).

2.5 Factorization lemma

In this section we introduce one of the main tools used throughout the the-
sis. It is the famous Davis-Figiel-Johnson-Pelczytiski factorization lemma
[DFJP, Lemma 1] in its isometric version due to Lima, Nygaard, and Oja
[LNO, Lemmas 1.1, 1.2|. Let us recall the relevant construction.

Let a be the unique solution of the equation

i (@ 1) ;=1a>1

Let X be a Banach space and let K be a closed absolutely convex subset of
Bx. For each n € N, put B, = a™?K + a~"/?Byx. The gauge of B, gives an
equivalent norm || - ||, on X. Set

> 1/2
el = (D lel2) ™,
n=1

define Xx = {z € X : ||z||x < oo}, and let Jx : Xx — X denote the
identity embedding.

Lemma 2.15 (see [DFJP| and [LNOJ). With notation as above, the
following holds.

(i) Xk = (Xk, || - llx) is a Banach space and ||Jk| < 1.

(i) K C Bx, C Bx.

(iii) BXK C B, for alln € N.

(iv) Jj(X*) is norm dense in Xj,.

(v) Jk is compact if and only if K is compact; in this case Xk is separable.
(vi) Xg is reflexive if and only if K is weakly compact.

For future applications of this lemma, it is useful to recall a classical result
on compactness of closed absolutely convex hulls (see, e.g., [M, p. 254]).
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Proposition 2.16 (Mazur, Krein, Smulian). The closed absolutely convex
hull of a (weakly) compact subset of a Banach space is (weakly) compact.

In many cases, we use Lemma 2.15 in the following special form.

Lemma 2.17. Let X be a Banach space and let K C Bx be a compact set.
There exists a linear subspace Xy of the space X equipped with a norm ||-|| x
such that Xg is a separable reflexive Banach space with respect to this norm
and the following holds.

(i) The identity embedding Jx : Xx — X is compact and ||Jk|| = 1.

(i) K C By, C Bx.

Proof of Lemma 2.17. Let K' = absconv(K) be a closed absolutely convex
hull of K. Then K’ C Bx. Hence, there is a Banach space Xg such that the
statements of Lemma 2.15 are true for the set K’. We define the space X
to be the space X:. Now since K C K’ and K’ is compact by Proposition
2.16, we obtain the required conditions. O

As the name suggests, the lemma can be used to factorize operators. Let
T be a bounded linear operator between Banach spaces Y and X and let
IT']] = 1. Denote K := absconvT(By) and construct Xy and Jx as in
Lemma 2.15.

Lemma 2.18 (see |[LNO, Theorem 2.2|). With respect to the above notation
there exists an operator t € L(Y, Xi) such that |[t| =1 and T = Jkt.

Proof. The inclusion T(By) C K C By, implies T(Y) C Xk and we can
define linear operator t to have the same values as 1. Now for y € By we
have Ty € K, so that t(y) € Bx,. That is, ||t]| < 1. On the other hand,
L= [T = [|Jxtll < [| [ N]El] = [I2]]- O



Chapter 3

Approximation property

In this chapter we consider several versions of approximation proper-
ties. We go on to define the convex approximation property and the
convex approximation property with conjugate operators, and present
some of the basic results concerning the approximation properties.
This chapter is based on introductory parts of [L] and [LMO].

3.1 Classical notions and examples

Throughout the thesis, by shorthand “AP” we mean “approximation prop-
erty”. We still continue to use the latter variant whenever we find appropriate;
for example, inside definitions.

Definition 3.1. A Banach space X is said to have the approzimation prop-
erty (AP) if for every compact subset K of X and for every € > 0, there is
a finite-rank operator S on X such that ||Sz — z|| < ¢ for all z € K.

Let A > 1. If operator S above can be chosen with [|S|| < A, then X is said
to have the bounded approzimation property (BAP) and, in particular, the
A-bounded approximation property.

The 1-bounded AP is called the metric approximation property (MAP).

If operator S above is allowed to be compact, then X is said to have the
compact approzimation property (CAP). Its bounded and metric versions are
defined in an obvious way.

Definition 3.2. A sequence (e,) in a Banach space X is called a Schauder

27
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basis if for every element x € X, there exists a unique sequence (a,) C K

such that
oo
T = Z €.
k=1

Observe that a Banach space X with a Schauder basis (e,,) satisfies the AP
with the basis projections P, € F(X), P,x =Y ;_, axex, v € X, playing the
role of finite-rank operators S in the definition of the AP.

A Schauder basis is called monotone if its basis projections are of norm 1.

Naturally, as both the approximation problem and the basis problem were
open for such a long time, most classical spaces, such as ¢g, C[0, 1], ¢,, L,[0, 1],
where 1 < p < 00, are known to have a monotone Schauder basis (if the space
is separable) or to satisfy the MAP.

We postpone the discussion of any positive results on the AP to the forth-
coming section, and focus here on the negative examples.

The most notable of this examples is the original construction by Enflo [E|.
Note that, while being discovered as a counterexample to the AP, Enflo’s
space actually failed the CAP.

Example 3.3. There exists a separable reflexive Banach space failing the

CAP.

Other examples followed Enflo’s construction. In fact, the space ¢, with
1 < p < oo, p# 2, contains a closed subspace failing the CAP. This was
proven by Davie [Davie] for p € (2, 00), and by Szankowski [Sz2] for p € [1, 2).
Szankowski [Sz3| also proved that the space L£({3) fails the AP .

The next example is due to Figiel and Johnson [FJ].

Example 3.4. There exists a Banach space having the AP but failing the
BAP.

Very recently, Figiel, Johnson, and Pelczyriski [FJP| constructed a closed
subspace of ¢y with properties as in Example 3.4.

In [FJ], authors also showed that the BAP does not imply the MAP. Johnson
and Schechtman constructed a closed subspace of ¢y having the BAP but
failing the MAP. As shown by Godefroy [Go], the Johnson—Schechtman space
has the 8-bounded AP. This result was subsequently improved by Zolk [Z] to
the following version.
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Example 3.5. There exists a Banach space having the 6-bounded AP but
failing the MAP.

Lindenstrauss |Lin| noticed that, in general, the AP cannot be lifted to the
dual space.

Example 3.6. There exists a Banach space having the monotone Schauder
basis such that its dual space fails the AP.

Willis [W] showed that the CAP and the AP are different properties.

Example 3.7. There exists a Banach space having the CAP but failing the
AP.

3.2 Convex approximation property

In this section, let X be a Banach space, let A C L£(X) be a collection of
bounded linear operators on X, and let A be an operator ideal.

Definition 3.8. We say that X has the A-approzimation property (A-AP)
if for every compact subset K C X and for every ¢ > 0, there is an operator
S € A such that ||Sz —z|| < e forall z € K.

In other words, X has the A-AP if and only if Iy is in the 7.-closure of A.

Definition 3.9. We emphasize that the A-approximation property of X is
conver if A is convex and contains 0.

Definition 3.10. A Banach space X is said to have the A-approximation
property (A-AP) if it has the A(X)-AP.

Observe that the F-AP is exactly the AP, and the K-AP is the CAP. Also, all
the notions mentioned in Definition 3.1 are convex approximation properties.

In general, the bounded versions of convex approximation properties are
convex approximation properties. Hence, they can be treated using the same
methods.

Definition 3.11. Let A € [1,00). We say that X has the A\-bounded A-AP
if X has the (ABgx) N A)-AP.

We say that X has the metric A-AP if X has the 1-bounded A-AP.
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We say that X has the bounded A-AP if X has the p-bounded A-AP for
some p € [1,00).

The bounded and metric versions of the A-AP are defined in a similar way.

The A-approximation property, and also the A-approximation property with
A C L(X) being a linear subspace, were studied, for instance, by Reinov
[R2] and by Grenbeek and Willis [GW]. Its bounded version has recently
been studied in [LO5] and [O1], and it has been proven useful in the studies
on the duality of the distance to closed operator ideals due to Tylli [T1, T3|.
In particular, the non-self-duality was established for the essential norm of
bounded linear operators on Banach spaces (see [T1]).

The convex A-approximation property was introduced in [LMO] and studied
in [LMO]| and |[LisO]. It is the central notion of the thesis. However, a
number of results we present are universal enough to work in the case, when
A is an arbitrary subset of £(X). The following is one of them (Section 4.1
is devoted to this case).

Proposition 3.12. Let X be a Banach space and let A,B C L(X). If X
has both the A-AP and the B-AP, then X also has the Ao B-AP.

Proof. Let us check the definition. Fix a compact set K C X and ¢ > 0.
Find T € A such that |7z — z|| < &/2 for all z € K. Find S € B such that

for all x € K. Then for all x € K one has

ITSz —all = |T(S2 —2) + T —al <+ =&,

as desired. n

In particular, the next observation points out the A-AP passes on to com-
plemented subspaces.

Proposition 3.13. Let X be a Banach space, let Y be a subspace of X
complemented by a projection P € L(X), and let A be a subset of L(X). If
X has the A-AP, then'Y has the {PS|y : S € A}-AP.

Proof. Take a compact set K C Y and ¢ > 0. Since Y is closed, K is compact
in X. By the assumption, we can find S € A such that ||Sx — z|| < ¢/ || P]|
for all z € K. Then |[|[PSz — z|| = ||PSz — Pz|| < e. O
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If A is bounded, Proposition 2.13 implies that X has the A-AP if and only
if Iy can be pointwise approximated by operators in A. However, in the
general case (when A is unbounded), this is not so.

Proposition 3.14. Let X be a Banach space. Then Ix is in the Ts-closure

of F(X).

Proof. Fix a finite set ' C X and ¢ > 0. We have to find S € F(X) such
that ||[Sz — z|| < ¢ for all z € F. Since every finite-dimensional subspace of
a Banach space is complemented, we can find a projection P € F(X) onto
span F'. That is, we actually have much more than needed: Px = x for all
x € span F. O

Let A C L(X) be convex (Section 4.2 is also devoted to this case). In this
case, we can use the Hahn—Banach theorem to employ Grothendieck’s de-
scription of linear functionals on £(X) which are continuous in the topology
of compact convergence 7.

Lemma 3.15. Let X be Banach space and let A C L(X) be a convex set.
The space X has the A-AP if and only if for all sequences (z) C X* and
(z,) C X such that Y7 ||zk] ||zn]] < oo one has

inf =0.
SeA

i z (Sx, — xy)
n=1

Proof. Note that the A-AP of the space X means that the identity operator
Iy is in the closure of the convex set A in the space (£(X), 7.). This happens
if and only if, for every 7.-continuous linear functional ¢ on £(X), one has

Rep(Ix) < supRep(S),
SeA
which is implied by
inf [p(Ix = S)[ = 0.
Since the latter condition clearly follows from the A-AP of X, applying the
description of (L(X),7.)* (see Proposition 2.14) completes the proof. O

Remark 3.1. Let us notice that in the assumption of Lemma 3.15 one may
put > 07 |jzk|| < M, x, — 0, and sup ||z,|| < N for any M >0 and N > 0,
or vice versa.
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Lemma 3.16. Let X be a Banach space and let A C L(X) be a convex set.
The space X has the A-AP if and only if for all sequences (z}) C X* and
(z,,) C X with Y07 ||ak | |zn]] < oo, there is a net (S,) C A such that

(i) for every n € N one has

zr (Saln — ) — 0,

«

— 0.
N—o00

Z Ty (Saty — )

sup
Y n>N

Proof. Necessity. Let sequences (zf) C X* and (z,) C X be such that
> llzkll < 1 and x, — 0. The A-approximation property provides a net
(Sa) C A converging to Ix in the topology of compact convergence. Since
the set K := {0,z1,2,...} is compact, there is a subnet (S,) such that
IS,z —x|| < 1 for all z € K and for all indexes v. Clearly, this subnet
satisfies both (i) and (ii).

Sufficiency. Let us employ Lemma 3.15 to show that X has the A-AP. Take
sequences (z) C X* and (z,) C X such that ), ||z} | [|z,| < co. Fix
¢ > 0. Choose N € N such that

Z ) (S — )| < %
n>N
for all a. Choose a such that 7 (Sqxn — 2,) < 55 forn =1,..., N. Then
o) N c
* _ < _ * _
an(Saxn xn)| < Z 5N + Z Tr (Saln — Tn)| < &,
n=1 n=1 n>N
as required. i

The following proposition expresses the fact that the convex A-bounded AP
is “continuous” with respect to .

Proposition 3.17. Let X be a Banach space and let A be a convexr subset
of L(X) containing 0. Let A > 1. If X has the (1 4 )A-bounded A-AP for
every € > 0, then X has the \-bounded A-AP.
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Proof. Fix a compact set K C By and € > 0. Since X has the (1 + &)\
bounded A-AP, there is T' € A such that ||T|| < (1+¢)X and || Tz — z|| < &2

for all z € K. Let S = 11-T. Then [|S|| < X and S € A, since A is convex

and contains 0. Also, for all x € K one has

1 2
1Sz — 2| = —— T2 — 0 —exl| < 5 — ¢,
1+e 1+¢

as needed. OJ

3.3 AP with conjugate operators

Let X be a Banach space.

In order to investigate the interplay between the approximation properties
of a Banach space and the approximation properties of its dual space, it
is convenient to introduce the notion of the approximation property with
conjugate operators.

Definition 3.18. Let A C £(X). We say that the space X* has the A-
approzrimation property with conjugate operators if it has the A*-AP, where
A* C L(X*) is defined as

A* = {S*: S € A},

Let us notice that as a simple application of Lemma 3.15 we have the follow-
ing.

Proposition 3.19. Let A C L(X) be convex. If X* has the A-AP with
conjugate operators, then X has the A-AP.

Proof. Take a tensor Y ooz} ® z, € X*®X with Dozl llza]l < oo
And observe that we can regard it as an element of X**®X*. Therefore, by
assumption

inf =0.
SeA

i ) (ST, — xp)
n=1

LS
Z Jxan (S Ty, — 7))
n=1

inf
SeA
]

It is obvious but still worth mentioning that Proposition 3.19 also applies to
A-bounded A-AP for some A > 1.
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Let A be an operator ideal. The A-AP with conjugate operators of X*, as
well as the AP with conjugate operators and other related notions, are defined
in an obvious manner.

The AP with conjugate operators is actually the same property as the AP
(see Proposition 3.22 below). However, already in the case, when A = K, the
A-AP and the A-AP with conjugate operators differ. In fact, Grgnbcek and
Willis [GW] exhibit a Banach space Xgw having a basis such that Xy, has
the bounded K-AP but does not have the -AP with conjugate operators.

It is easy to see that X, does not have the W-AP with conjugate operators
either. Indeed, for a Banach space X, we have W(X)* = L,-(X*) and
L(X*) 0 Ly (X*) C Ly (X*) (see Section 2.2). Therefore,

K(X") 0 W(X)® C K (X*) = K(X)?,

so that by Proposition 3.12, for X*, the W-AP with conjugate operators and
the K-AP would imply the IC-AP with conjugate operators.

Let us turn our attention to the equivalence of the (A-bounded) AP and the
(A-bounded) AP with conjugate operators (see Proposition 3.22). This is a
well-known fact due to Johnson [J1]. Similar results hold also for positive AP
of Banach lattices and the AP for pairs of Banach spaces (see Chapter 8),
and are important for application of our main theorems to those cases. We
will provide a fairly detailed proof here, which will serve as a template in the
sequel.

For the proof, we shall employ, as is usual by now, the principle of local reflex-
wity. It might be of interest that alternative proofs not using the principle
of local reflexivity also exist. See [GW, Theorem 3.3| for a proof involving
Banach algebra techniques, and [O1, Corollary 2.3] for a proof employing
the description of (F(X))* as the space of integral operators on X* due to
Grothendieck |G].

Let us mention that the principle of local reflexivity is due to Lindenstrauss
and Rosenthal [LR|. Their lemma was subsequently improved by Johnson,
Rosenthal, and Zippin [JRZ]. Many other variants and proofs are presented
in the literature. We refer the reader to [OP] for a good summary of the
topic.

Lemma 3.20 (Principle of local reflexivity (as in [JRZ])). Let X be a Banach
space, let B C X* and ' C X* be finite-dimensional subspaces, and let
e > 0. Then there exists a one-to-one operator J € F(E,X) such that ||J]|,
| <1+e Jr ==z foralz e ENX, and x*(Ja**) = x**(z*) for all
e FE andz* € F.
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In effect, the claim of the promised Proposition 3.22 is contained in the next
result which tells us that finite-rank operators between dual Banach spaces
are “locally conjugate”. This fact is essentially due to Johnson, Rosenthal,
and Zippin [JRZ, Lemma 3.1 and Corollary 3.2] (where X is assumed to be
finite-dimensional; see [OP, Theorem 2.1] for the general result and an easier
proof).

Lemma 3.21. Let X and Y be a Banach spaces. Let T € F(Y*, X*) and
€ > 0. Then T 1s in the closure of the set

{5 e FXY) IS < (L+ o) [T}

i the topology of compact convergence.

Proof. Let A denote the set above. Since A is bounded, Proposition 2.13
implies that it is enough to prove that 1" can be approximated by operators
from A in the strong operator topology. Let us do so. Fix a finite set
G C Y*. We shall prove that there is S € A such that Sy* = Ty* for all
y* € G. Consider a representation

T = zn:yi;* ® T,
=1

with y* € Y** and 2} € X* forv=1,...,n, and n € N. Put F = spanG
and £ = T*(X*™) = span{yj*,...,y:*}. Lemma 3.20 gives us an operator
J € F(E,Y) such that ||J|| < 1+ and y*(Jy**) = y*™*(y*) for all y** € E and
y* € F. Consider an operator S = (J(T*)gjx)*, where (T*)p € F(X**, E)
is the astriction of T to K. Clearly, S € A and

S = Z Jyr @ xr.
i=1
Then for any y* € G we have

n

Ty — Sy = (' (") — v (Jy;))ay = 0,

i=1

as required.
Ll
Proposition 3.22 (Johnson). Let X be a Banach space and let X > 1. Then

X* has the (A-bounded) AP with conjugate operators if and only if it has the
(A-bounded) AP.
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Proof. Necessity is obvious.

Sufficiency. The assumption means that Iy- is in the 7.-closure of F(X*)
(respectively ABr(x+)). Lemma 3.21 yields that the latter set (and therefore
also Ix-) is in the 7.-closure of F(X)* (respectively (1 4 €)AB% y for every
e > 0). The claim now follows from Proposition 3.17.

]

Observe that Proposition 3.22 and Proposition 3.19 enable us to say that
the AP of the dual space X* implies the AP of X. It is an open question
whether the same is true for the compact AP (see [C, Problem 8.5]).



Chapter 4

Approximability of compact
operators

The results of this chapter extend the classical description of the
approximation property of a Banach and its dual space via approx-
imability of compact operators by finite-rank operators. We present
results for the approximation properties defined by an arbitrary collec-
tion of bounded linear operators, as well as their improvements in the
case of the convex approximation properties. This chapter is based on
[L] and [LMO].

4.1 Approximability in norm

The next theorem is the main source of inspiration for the results of this
section. It says that a Banach space X has the AP when certain compact
operators are approximated by the operators of finite rank. In other words,
it establishes the relation between the AP and the approximation problem.

Theorem 4.1 (Grothendieck [G]). Let X be a Banach space. The following
conditions are equivalent.

(a) The space X has the AP.

(b) For every Banach space Y one has K(Y, X) = F(Y, X).

(c) For every Banach space Y one has K« (X*,Y) = Fue (X*,Y).

37
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Naturally, the straightforward generalization of this criterion is not possible
even to the case of the compact approximation property. Indeed, for in-
stance, condition (b) of such a generalization, i.e., (Y, X) = K(Y, X) for
any Y, would be satisfied for every space X. But, as we mentioned above,
Enflo’s original example (see [E]) was a Banach space without the compact

approximation property.

However, modified criteria with seemingly stronger conditions (b) and (c) are
possible for any A-approximation property.

Theorem 4.2. Let X be a Banach space and let A C L(X) be an arbitrary
collection of bounded linear operators on X. The following statements are
equivalent.

(a) The space X has the A-AP.

(b) For every Banach space Y and for every T € K(Y,X) one has T €
{ST: S € A}.

(b") For every separable reflexive Banach space Z and for every T €
K(Z,X) one has T € {ST: S € A}.

(c) For every Banach space Y and for every T € Ky (X*,Y) one has
T e{TS*: S e A}.

(¢) For every separable reflexive Banach space Z and for every T €
Kuw(X*,Z) one has T € {T'S*: S € A}.

Proof. (a) = (b). Take T' € K(Y, X). Then the set K := T'(By) is compact.
Since the space X has the A-AP, for every € > 0 there is an operator S € A
such that ||Sx — z|| < e for all z € K. Now we have

IST — Tl = sup [|STy - Ty|) < sup |5 — x| <.
yEBy zeK

which means that T € {ST : S € A}.
(b) = (¢). Take T' € K+ (X*,Y). Then T° € K, (Y™*, X), and condition (b)
implies
T° € {ST°: S € A}.
Since T'S* — T = (ST° — T°)° for every S € A, the previous condition is

equivalent to
T e{TS*:S e A}.
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The same proof is suitable for the implication (b") = (¢’) because XMW is
symmetric. The implications (b) = (b) and (¢) = (¢’) are obvious.

(') = (a). We verify the definition of the A-AP. Take a compact set K C X.
Then for some A > 0 the set AK is a compact subset of the unit ball Bx. By
Lemma 2.17 there is a separable and reflexive space Z linearly included in
X such that AK C Bz and the identity embedding J : Z — X is compact.
Then J* € K, (X*, Z*), and we know that the space Z* is reflexive and
separable because Z is. Therefore condition (¢’) implies

J e {JS*: 8 e A},
which is equivalent to the condition
Je (ST SEal
Fix € > 0. Then there is an operator S € A such that
|Jz = SJz|| < ||J = SJ|| < e

for every z € By. Take an arbitrary point € K. Then Ax € AK C By. It
remains to observe that

|Sx — z|| = At IS(Ax) — (\z)|| = A1 |IST(A\x) — J(A\z)|| < A led =¢,
as needed. O

Remark 4.1. In the special case when A = KC(X) the equivalence (a) < (b)
of Theorem 4.2 has been established by Lima, Lima, and Nygaard |[LLN,
Theorem 2.1].

We can similarly describe the approximation property of the dual space X*
by approximating compact operators acting from the original space X.

Corollary 4.3. Let X be a Banach space and let A C L(X™) be a collection of
bounded linear operators on the dual space X*. Then the following statements
are equivalent.

(a) The space X* has the A-AP.

(b) For every Banach space Y and for every T € K(X,Y'), one has T* €
{ST*: S € A}.

(b") For every separable reflexive Banach space Z and for every T €
K(X,Z), one has T* € {ST*: S € A}.
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Proof. (a) = (b). Take T' € K(X,Y). Then T* € K(Y*, X*). The claim is
immediate from (a) = (b) of Theorem 4.2 applied to the A-AP of the space
X*.

(b) = (b') is obvious.

(b’) = (a). We apply Theorem 4.2 to the A-AP of the space X* and verify

its condition (b'), i.e., for every separable and reflexive space Z and for every
operator T' € K(Z, X*) one has

T e{ST:S € A}

Take T' € K(Z, X*). Then T* € C(X™, Z*) and T*jx € K(X, Z*). Since Z*
is separable and reflexive, the hypothesis implies

(T*jx) € {S(T*jx)*: S € A}.

But

because Z is reflexive. Hence,
T e€{ST:S e A},
as needed. OJ

Remark 4.2. In the special case when A = IC(X*) it has been shown in [LLN,
Theorem 3.1] that condition (a) is equivalent to the following condition: for
every space Y and for every operator 7' € K(X,Y') one has

jyT € {T*5: 5 € K(X, X*)}.

It is easy to see that this condition is equivalent to condition (b) of Corollary
4.3.

Remark 4.3. Observe that in Corollary 4.3 we only provided the analogues
for conditions (b) and (b') of Theorem 4.2. Actually, conditions (c) and
(¢) would yield the same analogues, since K(X,Y") is naturally isometric to
Ko (X*,Y).

The next corollary is a straightforward application of Corollary 4.3 to the
A-approximation property with conjugate operators.

Corollary 4.4. Let X be a Banach space and let A C L(X) be a collection
of bounded linear operators on X. The following statements are equivalent.
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(a) The space X* has the A-AP with conjugate operators.

(b) For every space Y and for every T € K(X,Y) one has T €
{TS: S e A}.

(b)) For every separable reflexive Banach space Z and for every T €
K(X,Z) one has T € {T'S: S € A}.

Remark 4.4. In the special case when A = IC(X) the equivalence (a) < (b)
of Corollary 4.4 has been proven in |[LLN, Theorem 3.3].

Remark 4.5. Tt is trivial but still worth mentioning that in the case of convex
approximation properties, the approximability of compact operators is always
somewhat “metric”’, meaning that we can choose the approximating operators
with norms not exceeding the norm of their limit (see Proposition 4.5 below).
This fact becomes harder to establish once we go beyond compact operators
(see Section 5.3).

Proposition 4.5. Let € C X be a conver subset of a Banach space X
containing 0 and let x € C. Then there is a sequence (x,) C C such that
Ty = x and sup,, ||z, || < [|lz].

Proof. We can assume that x # 0. There is a sequence (y,) C C such
that y, — x. In that case ||y,|| — ||z||, so that there is a null sequence
(€n) C (0,00) such that [|y,| < ||z|| + €, for any n € N. Denoting

for n € N, we get sup,, ||z,|| < ||z| and z,, — z, as needed. O

4.2 Approximability in other topologies

When A C L£(X) is convex, we can relax sufficient conditions for the A-
approximation property.

We prove the implication (¢) = (a) of the following theorem by developing
the approach of Oja and Pelander from [OPe, Theorem 3, (c3) = (a)].

Theorem 4.6. Let X be a Banach space and let A be a convex subset of
L(X). The following statements are equivalent.

(a) The space X has the A-AP.
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(b’) For every separable reflexive Banach space Z and for every operator

T € K(Z,X) there is a net (S,) C A such that sup,, ||S.T|| < oo and
SoT — T in the weak operator topology on L(Y, X).

(c) For every separable reflexive Banach space Z and for every operator
T € Ky«(X*,Z) there is a net (S,) C A such that sup, || T'S%|| < oo
and TS: — T in the weak operator topology on L(X*)Y).

Proof. (a) = (b’). This is immediate from implication (a) = (b) of Theorem
4.2.

(b)) = (¢/). Take T' € Ky(X*, Z), then T° € K, (Z*, X). Hence there is
a net (S,) C A such that sup, ||[S.T°| < oo and S,T° — T° in 7,(Z*, X).
This means that (S,7°)° — T°° or, what is the same (see Proposition 2.10),
TS — T in 7,(X*, Z), as needed.

(/) = (a). We apply Lemma 3.16 to show that X has the A-approximation
property. Take (z,) C X and (z}) C X* such that z,, = 0, ||z,|| <1 for all
neN, and ) 7, ||z}l < co. We have to show that

sup

— 0,
—00

Z 2 (Saln — Tn) .

n>N

and for all n € N one has
x5 (San — ) — 0.

By adding the limit value 0 to the sequence (z,) we get a compact set K =
{0,21,23,..., } which resides in the unit ball Bx. By Lemma 2.17, we can
now obtain a separable reflexive Banach space Z linearly included in X such
that K C Bz C By, the identity embedding J : Z — X is compact and
||J|| = 1. Let (z,) C Bz be such that Jz, =z, for all n € N.

Since J* € Ky (X*, Z*) (see Section 2.2) and Z* is separable and reflexive,
there is a net (S,) C A such that M := sup, ||S.J|| < o0 and J*S% — J* in
Tw(X*, Z*). This clearly implies the convergence S,J — J in 7,(Z, X).

Observe that, for every n € N and for every index « one has
r (Saln — Tp) = ) (Sadzn — J2n),
so that

) (San — ) — 0

o
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and
sup | Y @ (Sattn — x0)| < sup Y (IJ7Sal + 1)) |23
@ p>N @ >N
< *
< M+ Yl 0,
n>N
as needed. O]

Remark 4.6. In the special case when A = IC(X) in [LLN, Theorem 2.3]
it is shown that the A-AP is equivalent to a condition similar to (b’) of
Theorem 4.6 where the convergence is in the strong operator topology and the
approximability is “metric” (see Remark 4.5). Clearly, in this special case, this
condition follows from (b) of Theorem 4.2 and implies (b’) of Theorem 4.6.

By the uniform boundedness principle any sequence converging in the weak
operator topology is bounded in norm. This enables us to state the following
result concerning sequences.

Corollary 4.7. Let X be a Banach space and let A be a convexr subset of
L(X). The following statements are equivalent.

(a) The space X has the A-AP.

(b) For every separable reflexive Banach space Z and for every operator
T € K(Z,X) there is a sequence (S,) C A such that S, T — T in the
weak operator topology on L(Z,X).

(¢c) For every separable reflexive Banach space Z and for every operator
T € Ky«(X*,Z) there is a sequence (S,) C A such that TS} — T in
the weak operator topology on L(X*, 7).

(d) For every compact subset K C X there is a sequence (S,) C A such
that Sp,x — x weakly for every x € K.

Proof. The equivalences (a) < (b) < (c) are clear from Theorems 4.2 and 4.6,
and the uniform boundedness principle. The implication (a) = (d) follows
directly from the definition of the A-AP. To prove (d) = (b), take T'(By) as
the compact set in (d). O

Remark 4.7. In the special case when A = F(X), the equivalence (a) < (d)
has been pointed out in [FJPP]. In the same special case when A = F(X)
the sequence (S,T") in condition (c) of Corollary 4.7 can be replaced by a
sequence (T,,) C F(Z,X) (see |Pe, Corollary 2|).
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A simple argument based on Proposition 3.14 yields that, in general, the
boundedness of the approximating net in conditions (b) and (c) of Theo-
rem 4.6 cannot be removed.

Proposition 4.8. Let X be a Banach space.

(b) For every Banach space Y and for every operator T' € K(Y, X)) there is
a net (Sy) C F(X) such that S,T — T in the strong operator topology
on LY, X).

(c) For every Banach space Y and for every operator T € K (X*,Y)
there is a net (Sy) C F(X) such that TS — T in the strong operator
topology on L(X*,Y).

Proof. Let Y be a Banach space.

(b). Proposition 3.14 gives us a net (S,) C F(X) such that S, — Ix in 7.
Then also S,7" — T in 7 for all T € K(Y, X).

(c). Proposition 3.14 applied to X* and Lemma 3.21 give us a net (S,) C
F(X) such that S — Ix« in 7. The rest follows as in (b). O

Corollary 4.9. Let X be a Banach space and let A C L(X™*) be a convex
set. Then the following statements are equivalent.

(a) The space X* has the A-AP.

(b) For every separable reflexive Banach space Z and for every operator
T € K(X,Z) there is a sequence (S,) C A such that S,,T* — T* in the
weak operator topology on L(Y*, X*).

(c) For every separable reflexive Banach space Z and for every operator
T € K(X,Z) there is a net (S,) C A such that sup,, ||SoT*|| < 0o and
SoT* — T* in the weak operator topology on L(Y™*, X*).

Proof. The implication (a) = (b) follows from Corollary 4.3 and the impli-
cation (b) = (c) follows from the uniform boundedness principle.

(¢) = (a). We apply Theorem 4.6 to the space X* and check its condition (b’).
Let Z be a separable reflexive Banach space. Take an operator T' € K(Z, X*).
Similarly to the proof of the implication (b’) = (a) of Corollary 4.3, there
is a net (S,) C A such that sup, |[|S.T|| < oo and S,T — T in the weak
operator topology, as needed. O
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Remark 4.8. In the special case when A = IC(X*) in [LLN, Theorem 3.2, (i)
< (v)] it is shown that the A-AP of X* is equivalent to a condition similar
to (c) of Corollary 4.9 where the approximability is in the strong operator
topology and “metric”. Clearly, Corollaries 4.3 and 4.9 imply the equivalence

(i) < (v) of [LLN, Theorem 3.2].

The following is a direct application of Corollary 4.9 to the A-approximation
property with conjugate operators.

Corollary 4.10. Let X be a Banach space and let A C L(X) be a convex
set. The following statements are equivalent.

(a) The space X* has the A-AP with conjugate operators.

(b) For every separable reflexive Banach space Z and for every operator
T € K(X, Z) there is a sequence (S,) C A such that S;T* — T* in the
weak operator topology on L(Z*, X*).

(c) For every separable reflexive Banach space Z and for every operator
T € K(X,Z) there is a net (S,) C A such that sup,, ||T'S,|| < oo and
SET* — T* in the weak operator topology on L(Z*, X*).

Remark 4.9. In the special case when A = K(X) in [LLN, Theorem 3.4, (i)
< (v)] it is shown that A-AP with conjugate operators of X is equivalent to
a condition similar to (c¢) of Corollary 4.10 where the approximability is in
the strong operator topology and “metric”. Clearly, Corollaries 4.4 and 4.10
imply the equivalence (i) < (v) of [LLN, Theorem 3.4].






Chapter 5

Approximating larger class of
operators

In this chapter we present one of the main results of the thesis. It is a
description of the approximation property defined by a linear subspace
via the approximability of weakly compact operators. For this end, we
recall the definition of the Radon—Nikodym property and the descrip-
tion of (K(X,Y))* due to Feder and Saphar, which is possible under
the influence of the latter property. This chapter is based on [LMO].

5.1 Radon—Nikodym property

The Radon—Nikodym property of Banach spaces has many equivalent defi-
nitions and as a concept combines the properties of reflexive spaces and sep-
arable duals. See [DU]| for a fairly complete review of this property. In the
sequel, we are not so much interested in the inner workings of the Radon—
Nikodym property itself, but rather in the effects it has on the ability to
describe functionals on certain spaces of operators (see Section 5.2 below).
Therefore, we follow [Pil, pp. 335-338] in our brief introduction of the topic
and refer to the latter for proofs of any claims in this section.

Let Q = (€, 1) be a measure space. Let X and Y be Banach spaces.
A function x : Q — X is said to be p-simple if

x(w) = Z Lo, (w)x;,

47
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where z1,...,2, € X and lg,,...,Llq, are indicator functions of pu-
measurable subsets (2y,...,8, of Q. In this case, the p-integral of x is
defined as

/ﬂaz(w)du(w) = ZMI(QZ)J@ € X.

A function x : Q2 — X is called p-measurable if there exists a sequence of -
simple functions x,, :  — X such that (w) = lim «,,(w) almost everywhere.
Observe that then the function ||-|| o & : @ — R is also u-measurable.

A p-measurable function x : 2 — X is said to be u-integrable if there exists
a sequence of u-simple functions x,, : 2 — X such that

liTan/Q () — ()] dyi(w) = 0.

If that is the case, then we can define the p-integral of x by

/Qaz(w)d,u(w) = lirlin/ T (w)dp(w).

Q

The latter definition is correct: if « is p-integrable, then the limit

im | @, ()dule)

exists and does not depend on the choice of the sequence (x,,).

Recall that L,(€2, 1) denotes the Banach space of all p-integrable functions
f:Q — K with the norm

HNﬂZAUWﬂWW)

To be more precise, the elements of Ly (€2, i) are equivalence classes consisting
of p-integrable functions f : 2 — K which coincide almost everywhere.

Definition 5.1. An operator T € L(X,Y) is called a Radon-Nikodym
operator if for every measure space (€2, 1) and for every operator S €
L(L1(82, 1), X) there exists a y-measurable function y : Q@ — Y such that

JﬁfzéfWMWMMw

for all f € L1(Q, p).
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The class RN of all Radon—Nikodym operators between Banach spaces is an
operator ideal.

Definition 5.2. A Banach space X is said to have the Radon—Nikodjm
property (RNP) if X belongs to the space ideal RN := Space(RN).

Examples of spaces having the RNP include all separable dual spaces and
all reflexive spaces. Observe that the latter and W = Op(W) also imply
W C RN.

Let us note that RN # W and RN # L because, for instance, ¢, is a non-
reflexive separable dual space and ¢y does not have the RNP.

5.2 Description of (K(X,Y))*

The following theorem due to Feder and Saphar [F'S] tells us that the sufficient
impact of the Radon—Nikodym property enables one to interpret the bounded

linear functionals on IC(X,Y") as elements of the projective tensor product

Lemma 5.3 (Feder and Saphar). Let X and Y be Banach spaces such that
X** or Y* has the RNP. Let V denote the linear operator from Y*®X** to
(K(X,Y))* defined by

(Vu)(T) = trace(T*"u)

for all u € Y*®X** and for all T € K(X,Y). Then V is surjective. More-
over, for all ¢ € (K(X,Y))*, there exists u € Y*®X** such that p = Vu
and [|¢|| = |lull,-

5.3 Main result

So far, we have considered criteria for approximation properties via approx-
imability of compact operators. Actually, Grothendieck showed that the AP
is closely related to the approximability of weakly compact operators in the
strong operator topology. Namely, he proved (see |G, Chapter I, p. 141])
that if the dual space X™* of X has the approximation property, then for every
Banach space Y, the closed unit ball Bry,x) of F(Y, X) is dense in Byy(y,x)
in the strong operator topology. Grothendieck also claimed a stronger result
(see |G, Chapter I, p. 184]) that the latter condition would be implied by the
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approximation property of X. But his proof only goes through for the partic-
ular case, when Y is complemented in Y** by a norm one projection. (This
proof was thoroughly analyzed by Reinov [R1]; for a discussion of related
questions see [R3].)

The Grothendieck’s result was strengthened by Lima, Nygaard, and Oja
[LNO| who proved that X has the AP if and only if Bry x) is dense in
Byy(v,x) in the strong operator topology. This may be considered as a “met-
ric” characterization of the AP. Recently also the CAP was described in
terms of the approximability of weakly compact operators in the strong op-
erator topology by Lima, Lima, and Nygaard |[LLN| using similar “metric”
conditions.

With Theorems 5.4 and 5.6 below we aim to provide the analogues of the
discussed results in the case of the approximation property defined by a linear
subspace of operators.

Theorem 5.4. Let X be a Banach space and let A be a linear subspace of
L(X) containing F(X). Let B be an operator ideal containing K such that

{ST°: S €A, TeB,(X*Y)}CKY* X)

for all Banach spaces Y. The following assertions are equivalent.

(a) The space X has the A-AP.

(b) For every Banach space Y and for every operator T € By«(X*,Y),
there is a net (S,) C A such that sup, |T'SE|| < ||T|| and S,T° — T°
in the strong operator topology on L(Y™*, X).

Proof. The implication (b) = (a) immediately follows from Theorem 4.6,
(') = (a).

(a) = (b). We present the outline of the proof and then prove the required
steps.

We clearly may assume that ||7']| = 1. Denote K = T°(By~). Then K is
a closed absolutely convex subset of Bx. Since K is also weakly compact,
the space X is reflexive (see Lemma 2.15) and T° factorizes through X, as
T° = Jkt so that |[t| = ||T°|| = || /x| = 1 (see Lemma 2.18).

Consider the linear subspace Z := {SJx : S € A} C L(Xg, X).

Step 1. We show that Z C K(Xgk, X).
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Since X is reflexive, the space (K(Xg, X))* admits the description due to
Feder and Saphar (see Lemma 5.3).

According to this description, the trace mapping V' from the projective tensor
product X*® X to (K(Xg, X))*, defined by

(Vu)(S) = trace (Su), u € X*®@Xg, S € K(Xk, X),

is surjective and, moreover, for all g € (K(Xg,X))*, there exists u, €
X*®Xy such that g = Vu, and ||g|| = ||ug|l-

Let g € Z*. By passing to a norm-preserving extension, we may assume that
g € (K(Xk, X))*. Define

(@9) (M) = A(Vuy)(Jx), A€ K.

Step 2. Using the A-AP of X, we show that ® : Z* — (span{Jx})" is a
correctly defined linear mapping with || @] < 1.

Since ®*(Jg) € Bz«, the Goldstine theorem implies that there is a net
(Sa) C Asuch that (S,Jk) C Bz and S, Jx — ®*(Jk) in the weak™ topology
of Z**.

Step 3. We show (b) using the net (S,).

Proof of Step 1. Let S € A. We show that SJx € K(Xg, X). By assump-
tion, ST € K(Y*, X). We know (see Lemma 2.15) that

JK(BXK) (- Bn = an/QTO(By*) + ain/QBX
for all n € N. Hence
(SJk)(Bx,) C a"*(ST°)(By-) + a "?||S|| Bx

for all n € N. This implies that (SJk)(Bx, ) has, for all ¢ > 0, a compact
e-net, and therefore it is relatively compact in X. Hence SJx € K(Xg, X)
as needed. 0]

Proof of Step 2. By (a), there is anet (S3) C A such that S — Iy uniformly
on compact subsets of X.

Fix g € Z*. We may assume that

oo
*
Ug = E T, & Zpn,
n=1
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where 27 € X* and z, € Xy satisfy Y ||| = 1 and 2z, — 0. Let us
show that

(®g)(JK) = 11/?1 9(SpJK).

This can be done similarly to [LNO, proof of Theorem 1.2]. Indeed,

|(Viug)(Jk) = 9(SsTk)| = |(Vug) (i = SpJi)| = ’ > @h((Ix = Sp) i)

n=1

< sup [|(Ix = Sp)(Jxzn)|| =50

because {0, Jxz1, Jxza,...} is a compact subset of X. This means that the
value of ®g does not depend on the choice of u,. Hence, ® is correctly defined
and linear. Since

|(@9) ()| = [(Viug) (Jre)| < gl = llgll

we also have ||®| < 1. O

Proof of Step 3. For all x* € X* and z € Xk, consider the functional 2*®z €
(K(Xk,X))*. Let g = (2" ® 2)|z € Z*. Since X* ® X = F(X) C A(X), we
clearly have Jj:(X*)® X C Z. But Xj; = J5(X*) (see Lemma 2.15). Hence
X5 ® X C Zin K(Xg, X). This implies that

lgll = ll(z" @ 2)|z] = [I(+" © 2)

xpox|l = 2" [lllz]l = [l+" @ 2|

Consequently, * ® z is a norm-preserving extension of g, and we may take
ug, = ¥ ® 2z € X*®Xg. But then, since S,Jx — ®*(Jk) in the weak*
topology of Z**,

2" (Satkz) = 9(Sadk) —a (*(JK))(9)
= (®9)(Jx) = (Vug)(Jk) = 2" (Ji2).

This means that (S,Jx) converges to Jx in the weak operator topology on
L(Xk,X). By passing to convex combinations, we may assume that (S, Jx)
converges to Ji in the strong operator topology on L(Xf, X). Recalling
that T° = Jgt, this implies that (S,7°) converges to T° in the strong op-
erator topology on L£(Y*, X). Moreover, since T'S¥ = (S,7°)°, we also have
sup, [|TSk|| = sup,, ||Sadkt|| < ||t|| = 1, because (S,Jk) C Bz. O

Since B+ (X*,Y) € W(X*,Y), Theorem 5.4 essentially concerns those op-
erator ideals B which are contained in W. (However, there are cases when
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B(X*)Y) C W(X*,Y) for any Y without assuming that B C W. For in-
stance, this is the case when A = V(X) and X* contains no copy of ¢4,
because then V(X*Y) = K(X*,Y).) Keeping this in mind, let us observe
that the hypothesis of Theorem 5.4 could be reformulated as follows.

Proposition 5.5. Let X be a Banach space and let A be a linear subspace
of L(X). Let B be an operator ideal. If

{ST:S €A, TeB™ (Y, X)} CcK(Y,X)
for all Banach spaces Y, then
{ST°:S e A, TeB,(X"Y)}CKY"X)

for all Banach spaces Y. The converse holds whenever B C W.

Proof. Let S € Aand T € B,«(X*,Y). Then (T°)* = jyT € B(X*,Y**), so
that T° € Bl (Y* X). Hence ST® € K(Y*, X).

For the converse, assume that B C W. Let S € A and T € B™ (Y, X).
Then T* € B, (X*,Y*) (see Section 2.2). Hence, by assumption, S(7*)° €
K(Y*, X). But then ST = S(T*)°jy € K(Y, X) as needed. O

Proposition 5.5 allows us to obtain the following version of Theorem 5.4.

Theorem 5.6. Let X be a Banach space and let A be a linear subspace of
L(X) containing F(X). Let B be an operator ideal such that KK C B C W

and
{ST:S €A, TeB™ (Y, X)} CK(Y,X)

for all Banach spaces Y. The following assertions are equivalent.

(a) The space X has the A-AP.

(b) For every Banach space Y and for every operator T € B3l (Y, X),
there is a net (S,) C A such that sup, ||SoT|| < [|T|| and T*S! — T*
in the strong operator topology on L(X*,Y™).

Proof. Notice that, by Proposition 5.5, the hypothesis of Theorem 5.4 is
satisfied.

The implication (b) = (a) immediately follows from Theorem 4.6, (b') = (a).

(a) = (b). It suffices to show that (b) is implied by condition (b) of
Theorem 5.4. Let T € B (Y, X). Then T* € B,(X*,Y*) (see Sec-
tion 2.2). Hence, there is a net (S,) C A such that sup, || 7*SE| < ||T*|]



54 5. APPROXIMATING LARGER CLASS OF OPERATORS

and S, (7%)® — (T)° in the strong operator topology on L£(Y**, X). This
implies sup,, [|S.T|| < ||T|| and T*S? — T* in the weak operator topology
on £(X*,Y*). By passing to convex combinations we can acquire the needed
net. O

Remark 5.1. In the special case when A = F(X), the net (5,7 in condition
(b) of Theorem 5.6 can be replaced by a net (T,) C F(Y,X) (see [LOA4,
Theorem 3.1]). However, already in the case when A = K(X), this is no
longer possible. In fact, by |[LO4, Corollary 2.4|, the condition “for every
Banach space Y and for every operator 7' € W(Y, X), there exists a net
(T,) € K(Y,X) such that sup,||T,|| < ||T|| and T — T* in the strong
operator topology” is equivalent to the condition “/K(Y, X) is an ideal in
W(Y, X) for all Banach spaces Y”. But the latter condition may be satisfied
even when X does not have the compact approximation property (see [LNO,
p. 340]).

Remark 5.2. In the special case when A = K(X), equivalence (a) < (b) of
Theorem 5.6 has been established in [LLN, Theorem 2.3|. The proof in [LLN]
uses a roundabout way that relies on criteria of the compact approximation
property in terms of ideals (see |[LLN, Theorem 2.2|).

Remark 5.3. In the case when A and B are operator ideals such that A =
Bdual “and A = A(X), condition (b) of Theorem 5.6 represents a weakening
of the outer A-approximation property. This notion was introduced in [T3]
and studied in [T1], [T2|, and [T3].

To conclude this section, let us discuss some situations when Theorems 5.4
and 5.6 can be applied. A general case is when A and B are operator ideals
satisfying

A o Bdual cK (O)

and A = A(X).
Condition (o) holds always if A C K; in particular, if A = F or A= K.

Let us now also consider the following operator ideals: AC— absolutely
continuous operators, BS— Banach—Saks operators, H— Hilbert operators,
J — integral operators, P,— absolutely p-summing operators (p-summing in
[DJT]) (see [Pil] or [DJT]; for AC and BS, see [Ni| and [DSe]).

If we take B = W (recall that Wl = W), then condition (o) is satisfied
for several important operator ideals A which are not contained in K, for
instance, if A equals AC, J, P, with 1 < p < oo, or V. (Indeed, all of
them are contained in V and V o W C K, which is a well-known and an
easy-to-see fact.) Notice that AC and V are even larger than K. Let us recall
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that before, in the literature (as we discussed earlier in this section), the only
operator ideals A, for which one had been able to characterize the A(X)-
approximation property through a “metric” condition like (b) in Theorems
5.4 and 5.6 (with B larger than K), were F and K.

Moreover, there are some other interesting pairs of operator ideals A and B
that satisfy (o), and Theorems 5.4 and 5.6 apply. For instance, take B = J.
Then J9 = 7 and (o) is satisfied for any A C (RAN@)duwal (in fact, if
T € (RN®@ydual o 7 then T* is a nuclear operator). Here, important cases
are (RN ahydual ')y and, of course, any operator ideal contained in W, like

AC, BS, H, J, Py, ctc.






Chapter 6

The strong AP and the weak
bounded AP

In this chapter we look at the strong approximation property and the
weak bounded approximation property. We develop a unified approach
to the treatment of their convex versions and observe the impact of
the RNP (originally discovered by Oja) on the interplay between these
notions and the convex (bounded) approximation properties. This
chapter is based on [L].

6.1 Unified approach

Let X be a Banach space, let A C L(X) be a convex set containing 0, and
let A € [1,00).

It is apparent that our method of proof does not allow to replace the con-
vergence SET* — T* with T'S, — T in condition (b") of Corollary 4.10. Oja
showed in |03, see Theorem 2.1 and Propositions 4.5 and 4.6 that, in the
case of the classical AP, it cannot be done, and the new condition actually
yields a property, which is different from both the AP of X and the AP of
X

Definition 6.1 (see |[O3]). A Banach space X is said to have the strong
approximation property if for every separable reflexive Banach space Z and
for every operator T € K(X, Z), there exists a bounded net (7,,) C F(X, Z)
such that T,x — Tz for all z € X.

57
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We are interested in the following characterization of the strong approxima-
tion property.

Proposition (see |03, Proposition 4.6]). A Banach space X has the strong
approximation property if and only if for every Banach space Y and for
every operator T € K(X,Y), there exists a net (S,) C F(X) such that
sup, [|T'Sa|| < 00 and T'Spx — Tx for all x € X.

This description allows us to extend the notion to the convex approximation
properties (for which A = F(X) below).

Definition 6.2. We say that X has the strong A-approximation property
(strong A-AP) if for every Banach space Y and for every operator T €
K(X,Y) there is a net (S,) C A such that sup, || 7S.|| < oo and T'Spx — Tx
for all z € X.

In the same paper [03], it was noticed that the strong AP shares similar char-
acterizations with the weak bounded AP, which was introduced and studied
in [LO6]. The following definition is based on [LO6, Theorem 2.4].

Definition 6.3. A Banach space X has the weak A-bounded AP if for every
separable reflexive Banach space Z and for every operator T' € K(X, Z),
there exists a net (S,) C F(X) such that sup, [|T'S.|| < A ||T|| and S, — Ix
in the topology of compact convergence.

The generalization of the latter concept to the case of convex approximation
properties, the convex weak bounded AP, is of critical importance for us in
the sequel.

Definition 6.4. We say that X has the weak \-bounded A-approzimation
property if for every separable reflexive Banach space Z and for every operator
T € K(X,Z) there is a net (S,) C A such that sup, ||T'S.| < A||T|| and
S, — Ix in the topology of compact convergence.

We say that X has the weak metric A-AP if it has the weak 1-bounded A-AP,
and that X has the weak bounded A-AP if it has the weak u-bounded A-AP
for some p > 1.

Observe that the weak A-bounded A-AP of X means that for every separable
reflexive Banach space Z and for every T' € (X, Z) the space X has the
A2-AP, where

A} = {S € A TS| < AT}

We would like to investigate both notions in a unified fashion. For this, it is
convenient to extend Definition 6.4 as follows.
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Definition 6.5. Let A C [1,00). We say that X has the weak A-bounded
A-approximation property if for every separable reflexive Banach space Z and
for every operator T' € (X, Z) there is A € A such that the space X has
the A2-AP.

The following theorem explains why Definition 6.5 extends both Defini-
tion 6.2 and Definition 6.4.

Theorem 6.6. Let X be a Banach space, let A C L(X) be a convex set
containing 0, and let A C [1,00). The following statements are equivalent.

(a) For every Banach space Y and for every T € K(X,Y) there are A € A
and a net (S,) C A} such that S, — Ix in 7.(X,Y).

(a') X has the weak A-bounded A-AP.

(b) For every Banach space Y and for every operator T € IC(X,Y) there
are X € A and a net (S,) C A} such that TS, — T in 7,(X,Y).

(b’) For every separable reflexive Banach space Z and for every operator
T € K(X,Z) there are X € A and a net (S,) C A} such that TS, — T
in 7,(X, Z).

The proof of Theorem 6.6 is almost identical to the proof of Theorem 6.9
below. We will provide a combined proof after the statement of Theorem 6.9.

It is now clear that the strong A-AP coincides with the weak A-bounded
A-AP for any unbounded A C [1,00), while the weak A-bounded A-AP is
exactly the weak A-bounded A-AP, when max A = \. Let us stress that the
reason for Definition 6.5 is purely technical, and the term “weak A-bounded
A-AP” may be regarded simply as a substitute for both the weak A-bounded
A-AP and the strong A-AP.

Corollary 6.7. Let X be a Banach space and let A C L(X) be a convex set
containing 0. Consider the following conditions:

(a) X* has the A-AP with conjugate operators,
(b) X has the bounded A-AP,
(c1) X has the weak metric A-AP,

)

(¢) X has the weak bounded A-AP,
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(d) X has the strong A-AP,
(e) X has the A-AP.

Then (a) = (c1) = (c) = (d) = (e) and (b) = (¢). If A= F(X), then the
implications (a) = (c1) and (d) = (e) are strict.

Proof. The chain (b) = (¢) = (d) = (e) and the implication (c¢;) =
are clear from the definitions and Theorem 6.6. The implication (a) =
follows from (a) = (b) of Corollary 4.10 and Definition 6.4. For (e) # (d),
see [03, Theorem 2.1, (a) # (c*), and Proposition 4.6]. For (c¢;) # (a),
observe that the weak metric AP is implied by the MAP but there is a
Banach space having a monotone basis (hence, the MAP) such that its dual
space fails the AP (hence, also the AP with conjugate operators). Ol

We do not know whether the implications (¢) = (d), (c¢;) = (c), or (b) = (c)
can be reversed. Chapter 7 provides some hints on why it is hard to check
some of these conditions.

For the further investigation of the topic, primarily in the case when A C
K(X), we introduce the following even more general definition.

Definition 6.8. Let A be an operator ideal, and let A be a space ideal (see
Section 2.1). We say that X has the A-bounded A-AP for the pair (A, A) if
for every space Y € A and for every operator T' € A(X,Y) there is A € A
such that X has the A}-AP.

By the term the A-bounded A-AP for A we mean “the A-bounded A-AP for
(A, L)".

Also, we say that X has the A-bounded A-AP if it has the A-bounded A-AP
for some A € A.

If A ={A}, we replace A with X in the above notions.

The definition above is modelled after the definition of “A-bounded AP for 5”
in [LLO1] (see also [O5]), where B is a Banach operator ideal. Our definition
is not consistent with the original Lima-Lima-Oja definition where the ap-
proximating sets are given using the operator ideal norm. For simplicity, we
instead use the usual operator norm. However, for classical Banach operator
ideals these two norms coincide. Therefore, in such a case, the definitions
are still consistent.

Let us point out some observations from Definition 6.8.
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e The weak A-bounded A-AP is the A-bounded A-AP for (K, XNW) (or
just for KC, by Theorem 6.6).

e The A-bounded A-AP for (A,A) implies the A-AP. Indeed, 0 €
A(X,Y) for every space Y € A, so for some A € A the space X has the
A}-AP. But A) = A.

e The A-bounded A-AP coincides with the A-bounded A-AP for £. In-
deed, take T' = Iy € L£(X) in Definition 6.8, then for any A > 1 one
has

A%\w = /\BL(X) N A.

e Let B be an operator ideal such that B C A and let B be a space ideal
such that B C A. Then the A-bounded A-AP for (A, A) implies the
A-bounded A-AP for (B,B).

The weak A-bounded A-AP for W also admits a version of Theorem 6.6.

Theorem 6.9. Let X be a Banach space, let A C L(X) be a convex set
containing 0, and let A C [1,00). The following statements are equivalent.

(a) X has the A-bounded A-AP for W.
(a') X has the A-bounded A-AP for (W,W).

(b) For every Banach space Y and for every operator T € W(X,Y) there
is X € A and a net (S,) C A) such that TS, — T in 7,(X,Y).

(b") For every reflexive space Z and for every operator T € W(X, Z) there
is X\ € A and a net (S,) C A) such that TS, — T in 7,(X, Z).

Proof of Theorems 6.6 and 6.9. Below, we prove Theorem 6.9. Modifica-
tions for the proof of Theorem 6.6 will be enclosed in brackets.

Implications (a) = (a’) and (b) = (b’), as well as (a) = (b) and (a") = ('),
are obvious.

(b') = (a). Let Y be a Banach space and let T' € W(X,Y) (respectively,

T € K(X,Y)). We shall use Lemma 3.16 to show that X has the A2-AP for
some A € A.

Take a tensor > >0z} ® z, € X*®X such that Y 7 [|z,] < 1, 2, — 0,
and [|z}|| <1 for all n € N. Let

K :=absconv ({z7,23,... } UT"(By+)) C Bx-.
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Since K is weakly compact (respectively, compact), by Lemma 2.17, there is
a space Z := (X*)g belonging to the space ideal W (respectively, XNW) and
a weakly compact (respectively, compact) operator J := Jg : Z — X* such
that K C J(Byz) and ||J|| < 1. For every n € N there is z, € By such that
Jizn, = x), Moreover, for the astriction t € L(Y*, Z) of T* to Z, we have
T 2 gt and |17 < |7,

Since J*jx € K(X,Z*) and Z* € W (respectively, Z* € X N1 W), condition
(b’) gives us A € A and a net (S,) C AE\J*jx) such that J*jxS, — J*jx in
Tw(X, Z*). Since AE\J* jx) IS convex, by Proposition 2.12, we can assume that
the latter convergence is pointwise. Fix a. Note that

(J*ixSa)"Jz = Saix iz = Saixix-J = SaJ,
so that the inclusion J*jx S, € A(AJ* ix) implies
15671l = 1(T"jxSa)"jzll = [T jx Sall < A
because the reflexivity of Z means that j; is an isometry. Therefore,
ITSall = 15T = 1SeJt < AT
That is, (S,) C A}. For every n € N, we also have

r (Saln — Tp) = J2n(Satn — T0) = (J jx(Saxn — x,))(2n) — 0

and
|2, (San — @n)| = [(J)x (Satn — 2n))(20)| < [lznll (A + 1),
so that
sup Z T3 (SaZn — 2n)| < (A+1) Z 1E2S] .0
¢ >N n>N
as needed. Ol

Let us end this section with the following observation that “the boundedness”
of convex approximation properties is “defined on compact level”. This is
inspired by the well-known fact that the AP and the bounded CAP imply
the bounded AP (see, e.g., [C, Proposition 8.2]).

Proposition 6.10. Let X be a Banach space, let A be a convexr subset of
L(X) containing 0, let B be a convex subset of K(X) containing 0, let A be
an operator ideal, let A be a space ideal, and let A C [1,00). If X has both the
A-AP and the A-bounded B-AP for (A,A), then X also has the A-bounded
Ao B-AP for (A,A).
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Proof. Let Y € A and let T' € A(X,Y). We need to show that X has the
(Ao B)}-AP for some A € A. By assumption, there is A € A such that X
has the B3-AP. Take R € B3. Since X has the A-AP, Theorem 4.1 gives us
a sequence (S,) C A such that S,R — R. Then T'S,R — TR. Since A is
convex and contains 0, we can assume that ||T'S,R|| < ||TR| for all n € N.
But |TR|| < \||T|| because R € Bj. Therefore, (S,R) C (Ao B)} and
SR — R, so that B} C (Ao B)> C (Ao B)}". Now we have

Ix € BN C (Ao B,
as desired. n

In particular, Proposition 6.10 states that if X has both the AP and the
strong (respectively, weak A\-bounded or A-bounded) K(X)-AP, then X ac-
tually has the strong (respectively, weak A-bounded or A-bounded) AP.

6.2 The weak bounded AP and the RNP

Let us now consider the case, when A = {\}. The prototype of the following
result is |02, Theorem 2|.

Lemma 6.11. Let X and Y be Banach spaces, let A C L(X) be convex
and contain 0, and let X > 1. Let X have the weak A-bounded A-AP. Let
T € L(X,Y) be such that {T'S : S € A} C K(X,Y). If X** or Y* has the
RNP, then X has the A)-AP.

Proof. We may assume that ||T|| = 1. We show that X has the A):F-AP for
every § > 0. Since A is convex and contains 0, the claim would then follow
as in Proposition 3.17.

Fix § > 0, a compact set C C X, and € > 0. Define
C={TS:S€A, ||[Sa—a|]| <eVaeC}CKX,Y).

We need to show that C N By (x,y)(0, A + §) is not empty. Observe that C is
convex and not empty because X has the A-AP, while Bi(x,y)(0, A + 6) is
convex with non-empty interior. Therefore by the Hahn—Banach separation
theorem (see, e.g., [M, p. 179]), it remains to show that

TigefcRe(‘D(TS) <sup{Reyp(R): Re K(X,Y), |RI| <A+ =X+
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for every p € (K(X,Y))* with ||¢| = 1.

Let ¢ € K(X,Y)* with ||¢|| = 1. Since X** or Y* has the RNP, from the
theorem of Feder and Saphar (see Lemma 5.3), there is u € Y*®X** such
that |Jul| =1 and

©(R) = trace(R™u)

for all R € K(X,Y). Pick a representation
u= Zy; Rz €Y RX™
n=1

such that 1 > |[yz]| = 0 and Y07, [lzi|| < 1+ 2.

Let K := {T*y;, T*y;,...} C Bx+. Since K is compact, by Lemma 2.17, we
can construct a separable reflexive Banach space Z, sitting inside X™*, such
that the embedding operator J € K(Z, X*) hasnorm 1, and K C J(By). For
all n € N let z, € Bz be such that Jz, = T*y%. We have J*jx € K(X, Z*).
By assumption we can find S € A such that ||J*jxS|| < A and ||Sa —a| < ¢
for all @ € C. Since Z* is reflexive, we get

757 = 17735 57 < A

and
P(TS)] = | D (S™ 2 ) (T y;)| = | D (IS ) (20)
n=1 n=1
< )\in**H < /\(1+é) =A+0
a n=1 " A ’
as required. O

As an immediate consequence of Lemma 6.11 we obtain the next theorem.
Recall that (A7 o K)(X) consists of all operators S € £(X) such that for
every Banach space Y and for every T' € A(X,Y) one has T'S € K(X,Y).

Theorem 6.12. Let X be a Banach space, let A be an operator ideal, let A
be a convex subset of (A7 o K)(X) containing 0, and let X > 1. Let X have
the weak \-bounded A-AP. Then:

(i) X has the A\-bounded A-AP for (A, RN
(i) iof X** has the RNP, then X has the A-bounded A-AP for A.
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In the case, when A C K(X), Theorem 6.12 allows us to nicely describe the
weak A-bounded A-AP.

Corollary 6.13. Let X be a Banach space, let A be a convex subset of IC(X)
containing 0, and let X > 1. The following properties are equivalent for X :

a) weak A-bounded A-AP,

(a)
(b) A-bounded A-AP for K.
(¢) A-bounded A-AP for W,
(d) A-bounded A-AP for (£, RN).

Proof. The implication (a) = (d) follows from (i) of Theorem 6.12, (d) = (c)
follows from Theorem 6.9 and the inclusion W C RN, and (c¢) = (b) = (a)
are obvious. O

Remark 6.1. In the case, when A = F(X), the equivalences (a) < (b) < (c)
have been established in [LO6, Theorem 2.4]. In the case, when A = KC(X),
the equivalence (a) < (b) has been proven in [LL2, Theorem 4.1].

The following result is one of the main steps needed for our partial solution
of Problem 1.1 (see Theorem 7.10 below). Its prototype in the case when
A = F(X) can be found in |02, Corollary 1].

Corollary 6.14. Let X be a Banach space and let A be a convex subset of
K(X) containing 0. If X* or X** has the RNP, then the weak \-bounded
A-AP and the \-bounded A-AP are equivalent for X.

Proof. The case, when X** has the RNP, follows from (ii) of Theorem 6.12.
The case, when X* has the RNP, follows from Lemma 6.11 applied to T =
Ix. O

Apart from the case, when A consists of compact operators, Theorem 6.12
can be applied, for instance, when A = V. Operators of the ideal V"' o K are
called Rosenthal operators. Observe that W C V™' o K (see [Pil, p. 61]).






Chapter 7

Lifting the AP to the dual space

In this chapter we provide an analogue of the famous Johnson'’s lifting
theorem, which permits to lift the metric approximation property to
the dual space, as well as an analogue of the Lima—Qja theorem on
lifting the weak metric approximation property to the dual space. We
apply these results to obtain a partial solution to a convex version of
Problem 1.1. This chapter is based on [LisO].

7.1 Johnson’s theorem

The results of this chapter are inspired by the famous lifting theorem of
Johnson [J2].

Theorem 7.1 (Johnson). Let X be a Banach space. If X has the metric AP
in every equivalent norm, then the dual space X* has the metric AP.

7.2 Equivalent dual norms

Let U be a vector space and let ||-|| and [||-||| be norms on U. These norms
are said to be equivalent if there is C' > 0 such that 1/C' ||u]] < [|u]|| < C ||u]|
for all w € U. In other words, the norms are equivalent if and only if they
induce the same topology on U.

Let X be a Banach space.

67
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Definition 7.2. A norm ||-|| on X is called an equivalent norm if it is
equivalent to the natural norm [|-|]. An equivalent norm ||-||| on X* is called
a dual norm if it coincides with the norm of the dual space (X, p)* for some
equivalent norm p on X.

Consider an equivalent norm ||| on X*. The norm ||-|||* of the dual space
(X* Il )* is an equivalent norm on X** because the spaces (X*,||-|||) and
X* have the same topologies, and so do their duals. Therefore, also the
restriction p of ||]||* to X is an equivalent norm on X. Note that for all

z € X we have
p(x) = sup [z"(x)].
fl*fl<1

Clearly, the norm p* of the dual space (X, p)* is also an equivalent norm on
X*. Actually, p* coincides with ||-||| if and only if the unit ball B(x- .j) is
weakly* closed (see, e.g., [Wi|). For completeness, we shall provide a proof
of this description (see Proposition 7.4).

In fact, it is a simple application of the bipolar theorem. Recall that given
a dual pair (U, V) and a set C' C U, the polar C° C V of C is defined as
follows:

C°={veV:|{u,v)| <1VueC}.

Proposition 7.3 (Bipolar theorem (see, e.g., [AB, Theorem 5.103|)). Let
(U, V') be a dual pair, and let C' be a nonempty subset of U. The bipolar C°°
is the o(U,V)-closed absolutely convex hull of C.

Also, recall that the natural norm of X* is weakly* lower semi-continuous
(see, e.g., |[AB, Lemma 6.22|), that is,

|lz*]| < liminf ||z ||
for any net (z}) C X* converging to * € X* in the weak™ topology.

Proposition 7.4. Let ||-|| be an equivalent norm on X*. The following
statements are equivalent:

(i) Il is a dual norm,
(ii) the unit ball Bix~ . is weakly® closed,

(iil) ||| 2 weakly* lower semi-continuous.
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Proof. We just discussed the implication (i) = (iii), and (iii) = (ii) is obvious.

(ii) = (i). Let us use the same notation as above. Denote B to be the unit
ball B(x- .- Then for the polar B° with respect to the dual pair (X*, X)
we have

B°={reX:|z"(x)|<1Vz* e B} ={r e X :p(zx) <1}.

Similarly,

B ={2" € X" :p"(a") <1} = Bix+,p+)-
This means that ||-||| coincides with p* whenever B = B°°. Since B is
absolutely convex (because it is a unit ball) and weakly™* closed, the latter
equality follows from the bipolar theorem. O]

7.3 Johnson’s norms

In the proof of the lifting theorem (Theorem 7.1 above), Johnson used the
following norms on X* defined for all finite-dimensional subspaces F' of X*
and for all positive numbers e:

Il = l="|| + e dist (2", F), 2™ € X7, (7.1)

where dist(z*, F') = inf{||z* — f|| : f € F'} denotes the ||-||-distance of 2* to
F.

These Johnson’s norms were then applied by Figiel and Johnson [FJ] to prove
that there exists a Banach space which has the AP but fails the BAP (see
[FJ, p. 199] or, e.g., |C, p. 290]), and also by Reinov [R2| who showed that
a Banach space with the AP may fail the A-BAP not only for A = F but
also for some other classical operator ideals A (for instance, when A = W or
.A =R dual )

It is well known (see [J2, p. 308|) that ||| is the dual norm to an equiv-
alent norm on X, likewise denoted by |||-]||. We call these norms on X also
Johnson’s norms.

For completeness, let us discuss why Johnson’s norms |[||-|[| on X* are dual
norms.
Fix € > 0, a finite-dimensional subspace F' C X, and let ||-|| be a Johnson’s

norm defined by € and F. Note that for z* € X* we actually have

dist(z”, F) = inf{||z* + f|| : f € F} = |2 + F|,
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where z* 4+ F' is an element of the quotient space X*/F'. By Proposition 7.4,
the duality of a norm is equivalent to its weak™ lower semi-continuity. Since
linear combinations of functions clearly respect the latter property, it would
suffice if both the natural norms of X* and X*/F were dual norms. Hence,
it remains to notice that X*/F is isometric to a dual Banach space. For this,
let us recall several facts about quotient spaces and annihilators.

Let Y € X and W C X* be linear subspaces. The annihilators Y+ C X*
and W, C X are defined as

Yi={s"e X" :2*(y)=0VyecY}

and

W, ={zxe X :w()=0YweW}

It is easy to see that Y+ = Y° and W, = W°, where the polars are taken
with respect to the dual pair (X, X*). Hence, the bipolar theorem implies
that (YY), =Y =Y and (W,)*+ = W Moreover, if Y C X is a
closed subspace, then X*/Y is isometrically isomorphic to Y* (through the
identification x* + Y+ — z*|y) (see, e.g., |Day, p. 30]).

Now we have (F )t = F = F because a finite-dimensional subspace is

closed in any linear Hausdorff topology. Therefore X*/F = X*/(F ) is
isometrically isomorphic to the dual space (F)*, as desired.

Let us now point out a property of the norm (7.1) which will be needed in
the sequel to prove our main Theorems 7.7 and 7.9.

Proposition 7.5. Let X = (X, ||-||) be a Banach space and let ||-]|| be a
Johnson’s norm defined by (7.1). Then the relative ||-|| and weak™® topolo-
gies on Bix« ) agree at each point x* € S(p ., meaning that the identity

mapping from (Bx= 1), weak™) to (Bex« ., I-]) is continuous at each point
z* € F with ||z*|| = 1.

Proof. Let x* € F with [|z*||| = 1. Then also ||z*|| = 1. Let (z) be a net
in X* such that [|z}||| < 1 for all @ and z} — 2* pointwise on X. By the
weak™® lower semi-continuity of dual norms,

1 = ||« <liminf 27| <limsup ||| < limsup||z%]]| <1
Q@ a a
and
L= "} < lim inf fzg || < Timsup [Jog | < 1.
(07
Hence, lim [|z%|| = lim ||z%|| and therefore dist(z%, F) — 0, ie., for ev-

ery « there is f, € F so that ||z} — f,|| — 0. It follows that f, — z*
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pointwise on X. Hence |[|f, —2*|| = 0 because dim F' < oo, and there-
fore also ||z} —a2*|] — 0. This is equivalent to the desired convergence
=5 = 2| = 0. O

7.4 Lifting the MAP

For the proof of Theorem 7.7 below, it is convenient to combine the “con-
tinuity” of bounded convex approximation properties (see Proposition 3.17)
and the equivalence of 7. and 75 on bounded sets of operators (see Proposi-
tion 2.13) into the following criterion.

Proposition 7.6. Let X be a Banach space and let A be a convexr subset
of L(X) containing 0. The space X has the metric A-AP if and only if for
every finite subset G C Bx and for every € > 0, there is an operator S € A
with || S]] < 1+ ¢ such that |Sx — x| < e for all z € G.

The following theorem is the main result of this section.

Theorem 7.7. Let X be a Banach space and let A be a convex subset of
L(X) containing 0. If X has the metric A-AP in every equivalent norm (or
Just in every Johnson’s norm), then X* has the metric A-AP with conjugate
operators.

Proof. Let X = (X, ||-]|). We use Proposition 7.6 to show that X* has the
metric {S*: S € A}-AP.

Fix a finite set G C By« and ¢ > 0. Let [|-||| := ||-|||re be the Johnson’s
norm for F' := span G and . Since (X, ||-|||) has the metric A-AP, there is
a net (S,) C A, [|S.]l <1, such that S,z — x for every x € X. Hence,
Sra* — x* weakly* for every z* € X*. By Proposition 7.5, Skaz* — z* in
norm for every x* € Sig.|), and therefore also for every z* € F. Choose
S e A, ||S]] <1, so that

max [ S*x" — 2*|| < e.
z*eG
By definition, ||S]| < (1 +¢)[|S]|| < 1+ ¢, as needed. O

Putting A = F(X) in Theorem 7.7, one obtains Johnson’s lifting theorem
(see Theorem 7.1).

Reinov in [R2, Theorem 2.1] extended Johnson’s theorem from F to an op-
erator ideal .4 under the following restrictions on the pair (X,.A):
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e X* has the bounded A-AP, or

e for any operators T' € A(X*) and U € L(X*, X***) such that |[UT|| <1
there exists a net (S,) C A(X*) such that ||S,|| < 1 and S,z* — UTz*
for all z* € X*.

Our Corollary 7.8 below improves his result, showing that no restriction is
needed.

Corollary 7.8. Let X be a Banach space and let A be an operator ideal. If X
has the metric AM-AP in every equivalent norm (or just in every Johnson’s
norm), then the dual space X* has the metric A-AP.

Proof. By Theorem 7.7, X* has the metric A% (X)-AP with conjugate op-
erators. This implies that X* has the metric A(X*)-AP. O

7.5 Lifting the weak metric AP

The weak metric A-approximation property clearly implies the A-
approximation property (which is just the Ag-approximation property). The
converse is not true in general (see [LO6| or [O2| for examples in the case
when A = F(X)).

The weak metric convex approximation property admits a version of the
lifting theorem (cf. Theorem 7.7), and in this case also the converse holds.

Theorem 7.9. Let X be a Banach space and let A be a convex subset of
L(X) containing 0. The following statements are equivalent.

(a) The space X has the weak metric A-AP in every equivalent norm (or
Just in every Johnson’s norm).

(b) The dual space X* has the A-AP with conjugate operators.

For the weak metric approximation property, i.e. when A = F(X), the result
(without the claim about Johnson’s norms) was proven in |[LO6, Theorem
4.2]. The proof of the implication (a) = (b) below will develop the idea of
the proof of the corresponding implication in [LOG6|, but our proof is more
elementary, since instead of locally uniformly rotund renormings it uses John-
son’s norms (see Section 7.3). The proof of (b) = (a) below is different from
the proof of its prototype in [LO6|, which relied on a trace characterization
of the weak metric approximation property [LO6, Theorem 3.2|.
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Proof of Theorem 7.9. (b) = (a). Obviously, the A-AP with conjugate op-
erators is stable with respect to renormings. Therefore, for every equivalent
norm on (X, [|-]]), the space (X, ||-||)* has the A-AP with conjugate opera-
tors. Hence, the claim follows from (a) = (c¢;) of Corollary 6.7.

(a) = (b). By Lemma 3.15, we have to show that for any > °°
X @X* with Y207 ||laz|| Han < 00 one has

Q) €

nln

SeA

inf ‘ S an(Stan —a)| =0
=1

We may clearly assume that Y [l < 1 and = > [Ja}]| — 0 for some

ol
7> 0.
Fix € > 0. Choose N € N such that

> Nl <7T).

n>N

Let F :=span{zj,..., 2%} and let ||-||| denote Johnson’s norm |||-|||f, on X*

as well as its predual norm on X and dual norm on X**. Let us write X for
(X, I-11D- Then ||z%||| < 1 for all n and

S
Sl < <

n>N

Note that

K = {z},25,... } USwyy C Bx.

is a compact set. Using Lemma 2.17 we can find a separable reflexive Banach
space Z and a compact operator J : Z — X* with |J]| =1 and K C J(Bgz).
Since the space X has the weak metric A-AP, for Jjy € IC(X, Z*), there
exists a net (S,) C A such that sup ||J*j¢Sa| < [[J*jg]| <1 and Spz — x
for all x € X. Hence, Slz* — 2* weakly™* for all z* € X*. Fix an index a.
Observe that, by reflexivity of Z,

(JjgSa)" = Siied™ = Siitix.d = Sid,

so that
1S5 = 11T 3% Sa)* [l = |75 5 Sall < 1.

If z* € S, then 2" = Jz for some 2z € Bz. Hence,

ISaz(l = MSa =l < 1571 < 1.
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Therefore, Proposition 7.5 implies the convergence S*z* — x* in norm for
all z* € F'. Thus we can find S := S, for some « such that

max || S*z; — ||<E
1<n<N 2

Noting that x} = Jz, with some z, € By for all n, we get

00 N
‘sz*(s*xil—ﬁ) <D NS e, = @il + Y Ml 1S T2 = Tzl |
n=1

n=1 n>N

€ *

§+Z\Hm HCALs™ 711+ 1111)
n>N

4

2 2

O]

Remark 7.1. The special cases of Theorem 7.9 (without the claim about
Johnson’s norms) have been proven in [LL2, Theorem 4.9 for A = K(X) and
in [LMO, Theorem 13| for a linear subspace A of £(X). The proof in [LL2]
used a characterization of the weak metric compact approximation property
that involves Hahn-Banach extension operators (see |[LL2, Theorem 4.3|).
The proof in [LMO] was essentially modelled after the proof of (a) = (c) in
[LO6, Theorem 4.2|.

7.6 The RNP impact

Let X be a Banach space.

The case A = F(X) of Theorem 7.10 below is well known and goes back to
Grothendieck’s Memoir |G]. It asserts that the Problem 1.1 has the affirma-
tive answer whenever X* or X** has the Radon—Nikodym property. There
have been many different proofs of this result (see [O5] for more details). As
written in |C, p. 289], the proofs have “always been a little mysterious”. An
alternative proof of this classical result was recently given in [02]. Accord-
ing to the proof in 02|, the reason, why the metric approximation property
appears in the dual space X* with the approximation property, is that the
space X has the metric approximation property in all equivalent norms. Us-
ing Corollary 6.14 and our main Theorems 7.7 and 7.9, we shall now repeat
this proof nearly verbatim for the convex case.
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Theorem 7.10. Let X be a Banach space and let A be a convex subset of
K(X) containing 0. If X* or X** has the Radon—Nikodijm property, then the
A-AP with conjugate operators of X* implies the metric A-AP with conjugate
operators.

Proof. Assume that X* has the A-AP with conjugate operators. By Theo-
rem 7.9, X has the weak metric A-AP in every equivalent norm. Since the
Radon—Nikodym property is preserved under changes to equivalent norms,
by Corollary 6.14, X has the metric A-AP in every equivalent norm. Now
Theorem 7.7 implies the metric A-AP with conjugate operators of X*.  [J

Let us spell out Grothendieck’s version of the theorem (without the conjugate
operators). We can do so because of Proposition 3.22.

Corollary 7.11. Let X be a Banach space. If X* or X** has the Radon—
Nikodygm property, then the AP of X* implies the MAP.

Remark 7.2. The case A = K(X) of Theorem 7.10 was established in |GS,
Corollary 1.6] and extended to the linear subspaces A of K(X) in [LMO,
Corollary 15].

Theorem 7.10 immediately implies the following result, the particular case
of which with X being a Banach lattice having the positive approximation
property is due to Nielsen [N2, Corollary 2.8].

Corollary 7.12. Let X be a reflexive Banach space and let A be a convex
subset of IC(X) containing 0. If X has the A-AP, then X has the metric
A-AP.






Chapter 8

Applications

In this chapter we apply the theory of convex approximation properties

to the positive approximation property of Banach lattices and to the
approximation property defined for pairs of Banach spaces. In order
to do so, we recall some of the classical theorems on Banach lattices.
This chapter is based on [LisO].

8.1 Positive approximation property

In order to apply our framework to the case of the positive approximation
property, let us introduce the necessary background. We recall only the basic
notions of Banach lattice theory, and refer the reader to some of the excellent
classical [LZ], or more modern [M-N], textbooks on the topic.

Recall that a set V is a lattice if it is partially ordered and for every pair
x,y € V of its elements there exists the least upper bound z V y and the
greatest lower bound z A y.

A partially ordered vector space V over R is called an ordered vector space
if its order and linear structure are compatible in the following sense: if
x,y € V are such that x <y, then z + 2z <y + 2z for all z € V and ax < ay
for all real a > 0. If V happens to be a lattice, then V is called a Riesz space.

The positive cone V. of an ordered vector space V consists of all x € V' such
that x > 0. Let us notice that V. is convex and contains 0.

77
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For every x € V, the positive part, the negative part, and the absolute value
of x are defined as 27 = 2 V0, 2~ = (—2) V0, and |z| = xV (—x), respectively.
These values may fail to exist unless V' is a Riesz space.

Let U and V be Riesz spaces. A linear operator T : U — V is called a
positive operator if T(U;) C Vi. The space L(U,V) is an ordered vector
space (but in general not a Riesz space) with respect to relation:

T <SS <= S —T is positive.

A norm ||| on a Riesz space V' is called a lattice norm if ||z|| < ||y|| whenever
xz,y € V satisfy |z| < |y|. In the latter case the space (V,|-]|) is called
a normed Riesz space. A complete normed Riesz space is called a Banach
lattice.

Let X and Y be Banach lattices. Then every positive operator T' € L(X,Y)
is continuous (see, e.g., [M-N, Proposition 1.3.5]). We shall therefore write
AX,Y); = ANL(X,Y); and A(X) = ANL(X, X), for an operator ideal
A.

If X is a Banach lattice, then X™* is also a Banach lattice with the positive
cone Xj = L(X,R); (see, e.g., [M-N, Proposition 1.3.7]).

We introduce the principal definition of this section.

Definition 8.1. A Banach lattice X is said to have the positive approzima-
tion property (pAP) if for every compact set K C X and for every £ > 0
there is a positive finite-rank operator 7' on X such that |7z — z| < ¢ for
all z € K.

By Szankowski [Sz1|, there is a Banach lattice without the pAP.

In the terminology of convex approximation properties, the pAP of X means
the F(X);-AP. The related notions (the bounded pAP, the metric pAP, the
pAP with conjugate operators, etc.) are defined in a standard way.

The following longstanding problem makes the investigation of the pAP an
intriguing occupation (see |C, Problem 2.18]).

Problem 8.1. Let X be a Banach lattice. Does the (bounded) AP of X imply
the (bounded) pAP of X7

The most recent results in the direction of this problem are due to Nielsen
[N2]. He also obtained the pAP versions for a number of important results
on the AP. His methods deeply involve the structure of finite-dimensional
operators on Banach lattices.
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We aim to show that several results for the pAP theory can be (at least
partially) accomplished in the general setting of the convex approximation
properties, as opposed to methods specific to Banach lattices.

Consider an immediate application of Theorem 7.7.

Corollary 8.2. Let X be a Banach lattice and let A be a convex set of
positive operators containing 0. If X has the metric A-AP in every equivalent
norm (or just in every Johnson’s norm), then X* has the metric A-AP with
conjugate operators. In particular, if A is the cone of positive finite-rank
operators, then X* has the metric pAP with conjugate operators.

Apart from the classical case, Corollary 8.2 applies to approximation prop-
erties defined by larger classes of positive operators. Some such classes (e.g.,
compact, weakly compact, or Dunford—Pettis positive operators) are studied
and found to be important in connection to the domination problem in [AA].

Remark 8.1. Although Corollary 8.2 provides some means to study the pos-
itive approximation property, for instance, essentially it will be needed for
proving Corollary 8.8 below, it would be natural to require the metric A-
approximation property only in equivalent lattice norms. We do not know
whether the statement of Corollary 8.2 holds in that case.

Remark 8.2. In general, the bounded pAP cannot be lifted from a Banach
lattice X to its dual lattice X* (see Corollary 8.7 for the converse). Indeed,
let U be the Petczynski’s universal space for unconditional bases (see [P,
LT, p. 92], or [C, pp. 279-280|). By definition, U has a basis (e,) whose
unconditional constant is equal to one. Therefore U is a Banach lattice
(ZZO:1 anen, > 0if and only if a,, > 0 for all n) and the partial sum projections
P o Y ane, — Y aye, provide the metric pAP for U. However, as
observed in [C, p. 285| basing on [J2| and [Sz1], U* fails the AP.

By Corollary 7.12, if X is a reflexive Banach lattice, then a convex AP defined
by a set of compact positive operators is always metric.

In the case of pAP, we can obtain a version of Corollary 7.11 (see Corol-
lary 8.8) simply because the pAP and the pAP with conjugate operators
coincide (see Proposition 8.6 below). To prove the latter, we follow the tem-
plate in Section 3.3.

As a first step, we need the principle of local reflexivity for Banach lattices
due to Conroy and Moore [CM| and Bernau |Ber]|.

We recall the necessary notions. A subspace U of a Riesz space V' is called
a sublattice if it is closed under the lattice operations V and A. Then U
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is a Riesz space on its own. A lattice homomorphism between Riesz spaces
is a linear operator that respects the lattice operations. Clearly, the lattice
homomorphism is a positive operator. A lattice isomorphism is a bijective
lattice homomorphism.

Lemma 8.3 (see |Ber, Theorem 2|). Let X be a Banach lattice. Suppose
that & > 0 and V is a weak™ neighbourhood of 0 in X**. If G is a finite-
dimensional sublattice of X**, then there is a lattice isomorphism J from G
onto J(G) C X such that || J||,||J 7] < 140 and 2 — Jz** € ||[z**||V for
all v € G.

A key for applying Lemma 8.3 is provided by the following general result on
existence of finite-dimensional sublattices in order complete Banach lattices.

A Riesz space V' is order complete if all its order bounded subsets have both
a greatest lower bound and a least upper bound. If it is the case and U is
a Riesz space, then L"(U,V) := span L(U, V), is an order complete Riesz
space (see, e.g., [M-N, Theorem 1.3.2]). Therefore, if X is a Banach lattice,
then its dual Banach lattice X* is necessarily order complete.

Lemma 8.4. Let E be a finite-dimensional subspace of an order complete
Banach lattice X and let € > 0. Then there exist a sublattice Z of X contain-
ing E, a finite-dimensional sublattice G of Z, and a positive linear projection
P e L(Z) onto G such that ||Px — x| < e ||z| for all x € E.

The method behind Lemma 8.4 is well known in the Banach lattice theory.
However, the published results seem to be lacking the positivity of projection
P (see, e.g., [N1, Proposition 2.9] or [JL, p. 23]), which is important for us.
For completeness, we shall provide a proof. However, as this proof is based
on a series of classical results from the Banach lattice theory, we present it
in the next separate section.

Let us continue with our template.

The following analogue of Proposition 3.21 tells us that positive finite-rank
operators between dual Banach lattices are “locally conjugate”. This fact
seems to be new for positive operators.

Theorem 8.5. Let X and Y be a Banach lattices. Let T € F(Y*, X*), and
€ > 0. Then T is in the closure of the set

{5 e FXY) IS < (A +2)ITI3°

in the topology of compact convergence.
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Since the set defined above is bounded, the topology of compact convergence
can be replaced with the strong operator topology, and for a cleaner proof,
we can restate Theorem 8.5 in the following seemingly weaker way.

Let X and Y be Banach lattices, let ¢ > 0, and let F' be a finite subset
of Y¥. If T € F(Y*, X*) is positive, then there exists a positive operator
S € F(X,Y) such that ||S|| < (1 +¢) ||T]| and ||S*y* — Ty*|| < ¢ for all
y* e F.

Proof of Theorem 8.5. We clearly may assume that /' C By~ and ||S|| = 1.

To apply Lemma 8.4, let £ = T*(X**) C Y** (note that Y** is order complete
as a dual Banach lattice) and let 6 > 0 be such that (1+6)* = 1+¢. Lemma
8.4 gives us a sublattice Z of Y** containing F, a finite-dimensional sublattice
G of Z, and a positive linear projection P € L(Z) with P(Z) = G such that
|PT*a* — T*x**|| < §||T*x**|| < ¢|«**| for all 2™ € X**. This clearly
implies that |PT* —T*|| < ¢ and |[|[PT*|| < 1+5.

To apply Lemma 8.3, let V' be defined by F and §. Lemma 8.3 gives us a
lattice homomorphism J from G into Y such that ||J|| < 14-6 and y*™*—Jy*™* €
ly**|| V for all y** € G, meaning that

(W) =y Ty <olly™l Yy e F, Yy e P(2).

Let S = JPT*jx. Then S € F(X,Y), S is positive, and ||S|| < (1 +6)* =
1+ . Moreover, for every y* € I’ and for every x € By, we have

(5™ = Ty")z| < ly"(JPT x) — (PT ) (y")| + [ PT™ = T7||
<O||PT*z||+0 <d6(1+06)+d=¢,

as desired. O

Remark 8.3. Clearly, replacing the condition “||S*y* — T'y*|| < € for all y* €
F” with “||S*y* — Ty*|| < el|y*|| for all y* € F” will provide a version of
Theorem 8.5 for a finite-dimensional subspace F' of Y*.

Proposition 8.6. Let X be a Banach lattice and let X > 1. Then, for the
dual Banach lattice X*, the (A-bounded) pAP and the (A-bounded) pAP with
conjugate operators are equivalent.

Proof. Observe that by Theorem 8.5, F(X*) (respectively, ABg(x+) N
F(X*)4) is in the 7.-closure of F(X)3 (respectively, (14+&)A(Bgx)NF(X)4)?
for every € > 0) and proceed as in the proof of Proposition 3.22. Ol
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By Propositions 3.19 and 8.6 we can state the following observation.

Corollary 8.7. Let X be a Banach lattice and let X > 1. If X* has the
(A-bounded) pAP, then X has the (A-bounded) pAP.

Proposition 8.6 and Theorem 7.10 immediately imply the next result. Note
that for a Banach lattice X, the Radon—Nikodym property of X** implies
the reflexivity of X (see, e.g., [M-N, Theorem 5.4.13]), hence also the Radon—
Nikodym property of X*.

Corollary 8.8. Let X be a Banach lattice such that X* has the Radon—
Nikodym property. Then the pAP and the metric pAP with conjugate opera-
tors are equivalent for X*.

In [N2, Corollary 2.8], Nielsen proved that the positive approximation prop-
erty and the metric positive approximation property are equivalent for an
order continuous Banach lattice X whenever X has the Radon—Nikodym
property, and there is a positive contractive projection from X** onto X.
Since a dual Banach lattice with the Radon—Nikodym property is always or-
der continuous (see, e.g., [M-N, Theorems 2.4.14 and 5.4.14|), the statement
of Corollary 8.8 clearly follows from Nielsen’s result (modulo “with conjugate
operators”).

Unlike our unified approach, Nielsen’s method of proof seems to be specific
to the pAP of Banach lattices. It relies on the following fact.

Theorem 8.9 (N2, Theorem 2.6]). Let X be an order continuous Banach
lattice and let X > 1. Then the A-bounded pAP of X is equivalent to the
{Te F(X) || [T] || < A}-AP of X.

The proof of Theorem 8.9 in [N2] is quite technical and involves non-trivial
representations of finite-rank operators on Banach lattices.

8.2 An excursion into Riesz Spaces and Banach
lattices

The purpose of this section is to prove Lemma 8.4, which expresses the fact
that order complete Banach lattices are “rich” in finite-dimensional sublat-
tices. As we already mentioned, the method behind the proof is well known
in the Banach lattice theory, but the statements of published results we found
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(see, e.g., N1, Proposition 2.9| or [JL, p. 23]) lack the positivity of projec-
tion P. Although, for example, the proof in [N1] almost does not need to be
modified to provide this property.

Nevertheless, we approach Lemma 8.4 in detail because the positivity of
projection P is important for the application of our results to the pAP.
Moreover, since the main subject of the thesis lies outside the realm of Banach
lattices, we feel it is reasonable to present a number of classical results as the
theoretical foundation.

8.2.1 Finite-dimensional sublattices and disjointness

Let x and y be elements of a Riesz space V.

Observe that the identities 2(z Vy) = x + y + |z —y| and 2(z A y) = = +
y — |z — y| imply that a subspace U of V is a sublattice if and only if x € U
implies |z| € U.

Elements x and y are called disjoint if || A |y| = 0.

If z and y are disjoint, then so are ax and by for all reals a and b, because
0 < lax| Alay| < [(Ja] + [b) [«]] A [(la] +[b]) |y[] = 0.

Proposition. Let xy,...,x, be mutually disjoint vectors in a Riesz space.
Then these vectors are linearly independent, and

n n
>_ai| = lail.
i=1 i=1

For the neccesity part of the following proposition, see |LZ, Theorem 26.11],
while the sufficiency part easily follows from the above remarks.

Proposition. A finite-dimensional subspace of a Riesz space is a sublattice
if and only if it has a basis consisting of positive mutually disjoint vectors.

8.2.2 Stonian spaces and C(K)

Let us recall some facts concerning topological spaces.

A topological space is called Hausdorff if any two distinct points have disjoint
neighbourhoods. A topological space is called normal if any two disjoint
closed sets have disjoint neighbourhoods.

Clearly, every compact Hausdorff space is normal.
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Proposition (Urysohn’s lemma). A topological space X is normal if and
only if any two disjoint closed subsets A and B of X can be separated by a
continuous function, i.e., there exists a continuous function f : X — [0,1]
such that fla =0 and f|p = 1.

Let X be a topological space and A C X. Recall that the indicator function
14:X —[0,1] is defined as

0,t¢g A
ﬂA(t):{l tiA, te X,

and observe that 1,4 is continuous if and only if A is clopen, i.e., both closed
and open.

A normal Hausdorff space is called Stonian or extremely disconnected if the
closure of every open set is open. Clearly, in a Stonian space any two distinct
points have disjoint clopen neighbourhoods.

Let K be a compact Hausdorff space. Recall that the collection C'(K) of all
continuous functions f : K — R is a Banach space with respect to pointwise

vector space operations and the maximum-norm. It is also a Banach lattice
with f > 0 if and only if f(t) >0 for all t € K.

Proposition (for the converse, see, e.g., [M-N, Proposition 2.1.4]). If C(K)
1s order complete, then K is Stonian.

Proof. Let V. C K be open. By Urysohn’s lemma, for every z € V there
exists f, € C'(K) such that f,(z) =1, f.(K) = [0,1], and f.(y) = 0 for every
y € K\V. Since f, < 1k for every x € V, and C(K) is order complete, there
exists f = sup,cy f» € C(K). Clearly, fl;7 = 1. For every y € V, Urysohn’s
lemma provides g, € C(K) such that g,|; = 1 and g,(y) = 0. Then g, > f,
for every x € V, and therefore, g, > f, so that f(y) = 0. Hence, f = 1. O

For the proof of the following classical theorem, see, e.g., [M-N, Theorem
2.1.1].

Theorem (Stone-Weierstrass). Fvery sublattice U of C'(K) which separates
the points of K and contains the constant function 1y is dense in C(K).

Let J C C(K) denote the set of all continuous indicator functions.

Proposition. The subspace span J is a sublattice of C'(K).



8.2. RIESZ SPACES AND BANACH LATTICES 85

Proof. We only have to check that y € span J implies |y| € span J. Clearly,
y € span{ly,,..., 14, } for some mutually disjoint clopen sets Aj,..., A,.
Since span{la,,...,14,} is a finite-dimensional sublattice, we have |y| €
span{l4,,..., 14, } C spanJ.

L]
Corollary 8.10. If C(K) is order complete, then spanJ is dense in C(K).

Proof. To apply the Stone-Weierstrass theorem, notice that if C'(K) is order
complete, then K is Stonian. So that any two distinct points in K have
disjoint clopen neighbourhoods. This means that J separates the points of
K. Also, clearly 1x € J. O

Proposition 8.11. Let Ay,..., A, be mutually disjoint non-empty clopen
subsets of K. Let F:=span{la,,...,14,} be a finite-dimensional sublattice
of C(K) generated by the indicator functions of these sets. Then there is a
positive projection P : C(K) — F with | P|| = 1.

Proof. For every i =1,...,n take the Dirac functional ¢,, for some point z; €
A; (i.e., the evaluation at z;). Observe that {J,,;14,}", is a biorthogonal
system, hence the operator

P = Z 5% X ]lAi
i=1
is a projection onto F, which is clearly positive and of norm 1. Ol

Proposition 8.12. Let E be a finite-dimensional subspace of an order
complete C(K). For every € > 0 there are a finite-dimensional sublat-
tice F' of C(K) and a positive linear projection P : C(K) — F such that
I1Pf—fll<ellfll for all f € E and || P|| = 1.

Proof. Let fi,..., fn € C(K) be a basis of E. By Corollary 8.10, span J =
C(K). So there are g1, ..., g, € span J such that || f; — g;|| < £/2. Since finite
intersections of clopen subsets of K are clopen, there are mutually disjoint
clopen subsets Ay, ..., A, of K such that

{g1,.- ., g0} Cspan{la,,..., 14, } =:F.

By Proposition 8.11, there is a positive projection P from C'(K) onto F' with
|P||=1. Fori=1,...,n, one has

HPfi - fz|| < HPfi —gi” + Hgi - fz” = ||sz‘ - sz'” + ||gz - fi“ <E&.
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8.2.3 Abstract M-spaces

A lattice norm ||-|| on a Riesz space X is called an M-norm if ||z Vy| =
max(||z], ||yl for z,y € X with Ay = 0. If, in addition, X is complete,
then X is called an abstract M-space.

A sublattice U of a Riesz space V is called an ideal if x € U whenever
|z| < |y| for some y € U. Clearly, an intersection of two ideals is an ideal
too.

Proposition. An ideal U of an order complete Riesz space V' is an order
complete Riesz space.

Proof. Take a non-empty order bounded set S C U. This means that there
are x,y € U such that y < s < x for all s € §. Taking u = |z| V |y| € Uy
we have that —u < s < u for all s € S. Since V is order complete, there
exists sup .S € V. But then —u < sup S < u meaning that |sup S| < u and
sup S € U. Similarly, inf S € U. O]

A positive element u of a Banach lattice X is called an order unit if the norm
of X is the gauge of the order interval [—u,u] = {z € X : —u <z < u}.

Take a positive element u of a Banach lattice X. It is easy to see that the
order interval [—u,u] is an absolutely convex set. Hence, the gauge |||, of
[—u, u] defines a norm on span[—u, u]. Moreover, it is clear, that the latter
set is exactly the ideal X, generated by u, and ||-||,, is an M-norm on it. Since
[—u, u] CJul] Bx, we also have [juf [|-[| <[l

Lemma. A normed Riesz space is complete if and only if every positive
increasing Cauchy sequence converges.

Proof. Sufficiency. Take a Cauchy sequence (z,). By passing to a subse-
quence, we may assume ||z,11 — x,|| < 27" Now for m > n we have

m

Z(ﬂfzﬂ - SUz‘)+

i=n

< 21—n

Therefore, by assumption, there exists 2t = 27+ 02| (41 —;)*. Similarly,
there exists 27 = z7 + Y o0, (ziy1 — ;). Hence, 27 — 27 = lim z,,. O

Proposition. The space (X, ||-||,) is a Banach lattice; hence, it is an ab-
stract M-space with an order unit u.
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Proof. In order to use the lemma, take an increasing Cauchy sequence
(xn) C (Xu)4+. Since it is also a Cauchy sequence in X, it converges in
X, and therefore there exists © = sup,, z,,. Since the Cauchy sequence (x,,)
is bounded in X, it is absorbed by [—u,u], and so is x. Therefore, x € X,.
Now, for any m € N,

T — Xy = SUP(Ty, — XTpy) = SUP(Ty, — Tp),
n n>m

so that

||5L’ - meu < sup ||xn - xm”u — 0.
n>m

]

For proving Lemma 8.4, it remains to combine our construction with a famous
representation theorem of Kakutani (see, e.g., [M-N, Theorem 2.1.3]).

Theorem (Kakutani). An abstract M-space with an order unit u is lattice
isometric to C(K) (for some compact Hausdorff space K ) via an isomor-
phism which maps u to ||ul| 1x.

Proof of Lemma 8.4. Let E be a finite-dimensional subspace of X. We may

assume that £ C span{zy,...,z,} for some x1,...,2, € X,. Indeed, if any
z; is not positive, replace it with ;" and z; (recall that z; = z] — ;). Let
u = sup, z;, and note that we may assume ||u|| = 1. Then

E C span[0,u] C X,,.

Since X is order complete and X, is an ideal in X, we also have that X,
is order complete. By Kakutani’s theorem, X, is lattice isometric to C'(K)
for some compact K. Hence, this C'(K) is order complete, and we can apply
Proposition 8.12. Therefore, for every € > 0 there are a finite-dimensional
sublattice G of Z := X, and a positive linear projection P : Z — G such
that

|Pr—all, <ellel, Vexek.

In particular, for i = 1,...,n, one has
[1P2; — ail| < ||Pi — |, <e.
O

Remark 8.4. The proof of Lemma 8.4 in [LisO| is somewhat more direct and
involves neither an analogue of Proposition 8.12 nor the Stone-Weierstrass
theorem.
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8.3 The approximation property of pairs

Let X be a Banach space, let Y be a closed subspace of X, and let A > 1.

Very recently, Figiel, Johnson, and Petczyriski [FJP| introduced the following
variant of the bounded approximation property.

Definition 8.13 (see |FJP, Definition 1.1]). The pair (X,Y) has the -
bounded AP if for every finite-dimensional subspace F' of X and every ¢ > 0,
there exists an operator S € F(X) such that Sx = z for all x € F, ||S| <
Ate,and S(Y)CY.

The pair (X,Y) has the metric AP if it has the 1-bounded AP.

Let us denote
FX)y ={SeF(X):S(Y)CY}

Relying on [FJP, Lemma 1.5], it is easy to obtain the following description.
For completeness, we provide its proof.

Proposition 8.14. The pair (X,Y) has the A-bounded AP if and only if X
has the A-bounded F (X )y-AP.

Proof. Necessity. The A-BAP of (X,Y") clearly implies the (A 4 €)-bounded
F(X)y-AP of X for every € > 0. The claim follows from Proposition 3.17.

Sufficiency. Fix ¢ > 0 and a finite-dimensional subspace F' C X. There is a
projection P € L(X) such that P(X) = F and P(Y) C Y. Indeed, let E =
{x1,...,2,} be a basis of F. For all i, if z; € Y, pick 2} € (span(E\ {z;}))*
with 2} (x;) = 1, otherwise pick z} € (Y Uspan(E \ {z;}))* with z}(z;) = 1.

Then we can take .
i=1

By assumption, we can choose T' € F(X)y such that |T| < X and
|Tx —z|| <e/||P| forall z € Bp. Put S=T+P-TP=T+ (I -T)P ¢
F(X). Clearly, S(Y) C Y and Sz = z for all z € F. Furthermore, we have

9
ST <7l + 57 IPIF < A +e.
1P|

]

Note that the set F(X)y is a subspace, so that we may apply our results to
this case.
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Since S(Y) C Y implies S*(Y1) C Y+, Theorem 7.7 immediately yields the
following lifting result for the metric approximation property of pairs.

Corollary 8.15. Let X be a Banach space and let Y be a closed subspace of
X. If the pair (X,Y) has the metric AP in every equivalent norm of X (or
just in every Johnson’s norm), then the pair (X*,Y+) has the metric AP.

Remark 8.5. If (X*, Y1) has the metric AP, then both X* and Y* have the
metric AP. For X*, this is obvious. For Y* = X*/Y1 this is clear from
[FJP, Corollary 1.2].

It is natural to define the approximation property of pairs of Banach spaces
as follows.

Definition 8.16. Let X be a Banach space and let Y be a closed subspace
of X. We say that the pair (X,Y) has the approzimation property if for
every compact subset K of X and for every € > 0, there exists S € F(X)
with S(Y) C Y such that ||Sz — z|| < ¢ for all x € K.

Hence, the (A-bounded) AP of the pair (X,Y") is precisely the (A-bounded)
F(X)y-AP of X. In order to apply Theorem 7.10 to such properties, we
need an analogue of Lemma 3.21.

Lemma 8.17. The subspace
{Se F(X*):S(YH) cYt} c F( XY

is in Te-closure of (F(X)y)?.

Proof. Let S € F(X*) satisfy S(Y1) C Y+. Consider a representation
S = >z ® x} with the linearly independent elements zf € X* such
that {z7}F, c X*\ Y+ and {z}}7,,, C Y* for some k € {0,...,n}. The
assumption S(Y+) C Yt then implies {z;*}¥_, c (Y+)L. Hence, there are
operators S;, So € F(X*) such that S = S; + Sy, S;(X*) C (Y1)*, and
Y C ker Sj. Let I denote the isometric isomorphism between (Y4)+ and Y**
such that for all z** € (Y1)+ and for all y* € Y* one has (I2**)(y*) = 2**(z*)
with * € X* being any extension of y* to X.

It is enough to show that S can be approximated in the strong operator
topology by operators T with T € F(X)y and |7 < 2(||S1|| + [|S2]])-
Fix a finite set F' C X* and denote F} := {f|y : f € F} C Y*. Let
Gy := (IST)(X*) C Y™ and Gy := S5 (X**) C X**. By the principle of local



90 8. APPLICATIONS

reflexivity, there are linear injections J; : G; — Y and Jy : G5 — X, both
norm-bounded by 2, such that

g(y™) =y"(9) YW eGVge R

and

f(Jox™) =a™(f) VYa™ € Gy Vf € F.
Let T := (J11S] + J255) jx € F(X). Then for y € Y, one has

so that T(Y) C Y. For z € X and f € F, one has

F(LISiz) = fly (QWlSiz) = (IS72)(flv) = (Siz)(f) = (S1f)(x)

and
f(J2S32) = (S2f) (@),
so that
T f=(S14+5)f=Sf VfeF
Clearly, ||T|| < 2(|[S1]] + ||S2]]), as required. O

Observe that Lemma 8.17 does not provide any good estimate for the norms
of approximating operators. Therefore, we do not get the A-bounded case in
the naturally consequent proposition below.

Proposition 8.18. Let X be a Banach space and let Y be a closed subspace
of X. The AP of the pair (X*, Y1) is equivalent to the F(X)y-AP of X*
with conjugate operators.

Proposition 8.18 and Theorem 7.10 imply the following result.

Corollary 8.19. Let X be a Banach space and let Y be a closed subspace of
X. Let X* or X** have the Radon—Nikodijm property. If the pair (X*, Y1)
has the approximation property, then (X*, Y1) has the metric approzima-
tion property; in particular, both X* and Y™ have the metric approximation
property.

Corollary 8.19 contains the classical case discussed before Theorem 7.10 since
the pair (X*, {0}1) = (X*, X*) clearly has the (metric) approximation prop-
erty if and only if X* has.
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Banachi ruumide
kumerad aproksimatsiooniomadused

Kokkuvote

Kaesoleva vaitekirja pohieesmérk on vélja arendada iihtne meetod aprok-
simatsiooniomaduse erisuguste versioonide kéasitlemiseks. Peale klassikalise
aproksimatsiooniomaduse, kuuluvad selliste versioonide hulka néiteks kom-
paktne aproksimatsiooniomadus, operaatorideaali poolt tekitatud aproksi-
matsiooniomadus ja Banachi vorede positiivne aproksimatsiooniomadus. Véi-
tekirja pohiline moiste on kumer aproksimatsiooniomadus ehk, tédpsemalt,
Banachi ruumil tegutsevate pidevate lineaarsete operaatorite nulli sisaldava
kumera hulga poolt defineeritud aproksimatsiooniomadus. Viitekirjas loodud
kumerate aproksimatsiooniomaduste teooria on heas vastavuses klassikalise
aproksimatsiooniomaduse teooria oluliste tulemustega. Viitekirjas uuritakse
ka lineaarse alamruumi poolt ja suvalise operaatorite hulga poolt defineeri-
tud aproksimatsiooniomadusi, milledest esimene on kumera aproksimatsioo-
niomaduse erijuhtum, teine aga selle iildistus.

Viitekirja esimene peatiikk sisaldab aproksimatsiooniprobleemi ajaloolise
tausta lithikest tutvustust, véitekirja kokkuvotet ning véitekirjas kasutatud
tahistuste kirjeldust.

Viitekirja teises peatiikis tuuakse vélja jargnevate osade jaoks vajalikud li-
satdhistused, moisted ja tulemused nagu operaator- ja ruumideaalid, tensor-
korrutised, nork*-norgalt pidevad operaatorid, operaatorite ruumi olulisemad
lokaalselt kumerad topoloogiad ning Davis-Figiel-Johnson—Petczyniski fakto-
risatsioonilemma Lima-Nygaard—Oja isomeetriline versioon.

Kolmandas peatiikis vaadeldakse aproksimatsiooniomaduste erinevaid ver-
sioone ning tuuakse sisse kumera aproksimatsiooniomaduse ja kaasoperaa-
toritega kumera aproksimatsiooniomaduse moisted. Tuletatakse kumera ap-
roksimatsiooniomaduse pohilised kirjeldused ja toestatakse nende jareldused.
Kolmas peatiikk pohineb artikli [LMO] ja artikli eelvariandi |L]| sissejuhata-
vatel osadel.

Neljandas peatiikis saadud tulemused laiendavad Banachi ruumi ja tema
kaasruumi klassikalise aproksimatsiooniomaduse kirjeldust kompaktsete ope-
raatorite lahendamise kaudu |G|. Nende tulemuste analoogid kehtivad suva-
lise operaatorite hulga poolt defineeritud aproksimatsiooniomaduse korral

97



ning nende tugevamad versioonid kehtivad kumera hulga poolt defineeritud
aproksimatsiooniomaduse korral. Neljas peatiikk on inspireeritud artiklitest
[LO4, LLN, OPe|. See peatiikk pohineb artiklil [LMO] ja artikli eelvariandil
[L].

Viiendas peatiikis esitatakse iiks viitekirja pohitulemustest. See on lineaar-
se alamruumi poolt defineeritud aproksimatsiooniomaduse kirjeldus norgalt
kompaktsete operaatorite ldhendamise kaudu. Abivahenditena meenutakse
Radon—Nikodymi omaduse moistet ja Feder—Saphari teoreemi kompaktsete
operaatorite ruumil tegutsevate pidevate lineaarsete funktsionaalide {ildku-
just. Viienda peatiiki pohitulemused on ilmunud artiklis [LMO].

Kuuendas peatiikis vaadeldakse tugeva aproksimatsiooniomaduse ja norgalt
tokestatud aproksimatsiooniomaduse moisteid, mis olid sisse toodud vasta-
valt artiklites [O3] ja [LO6]. Nende moistete kumerate versioonide késit-
lemiseks arendatakse vélja iihtne lihenemismeetod. Inspireerituna artiklist
[O2], uuritakse nende mdistete ja (tokestatud) kumerate aproksimatsiooni-
omaduste vahekorda Radon-Nikodymi omaduse mojuvaljas. Kuues peatiikk
pohineb artikli eelvariandil [L].

Seitsmendas peatiikis iildistatakse Johnsoni teoreem [J2| meetrilise aprok-
simatsiooniomaduse iilekandumisest Banachi ruumilt tema kaasruumile. Sa-
muti iildistatakse Lima—Oja [LOG6| teoreem norga meetrilise aproksimatsioo-
niomaduse iilekandumisest kaasruumile. Neid tulemusi rakendatakse néita-
maks, et Radon—Nikodymi omaduse moéjul on kaasruumi kumer aproksi-
matsiooniomadus meetriline. Selle tulemuse prototiilip sisaldub artiklis [O2].
Seitsmes peatiikk pohineb artiklil [LisO].

Kaheksandas peatiikis rakendatakse eelnevates peatiikkides loodud kumera-
te aproksimatsiooniomaduste teooriat Banachi vorede positiivse aproksimat-
siooniomaduse ja Banachi ruumide paari poolt defineeritud aproksimatsioo-
niomaduse uurimisel. Selle jaoks meenutakse klassikalisi tulemusi Banachi
vorede teooriast. Kaheksas peatiikk pohineb artiklil [LisO].

98



Index

A-AP, 29
A-approximation property, 29
bounded, 30
convex, 29
A-bounded, 60
A-bounded, 30
metric, 30
strong, 58
weak bounded, 58
weak A-bounded, 59
weak A-bounded, 58
weak metric, 58
with conjugate operators, 33
A-approximation property for A
A-bounded, 60
A-bounded, 60
A-approximation property for the
pair (A, A)
A-bounded, 60
A-bounded, 60
A-AP, 29
A-approximation property, 29
bounded, 30
A-bounded, 30
metric, 30
with conjugate operators, 34

abstract M-space, 86
AP, 27
approximability
“metric”, 41
approximation property, 27
bounded, 27
compact, 27

bounded, 27
A-bounded, 27
metric, 27
convex, 29
A-bounded, 27
metric, 27
positive, 78
strong, 57
weak A-bounded, 58
with conjugate operators, 34
approximation property of the pair
(X,Y), 89
A-bounded, 88
metric, 88
astriction, 20
dual, 20

BAP, 27

CAP, 27

convergence
compact, 24
pointwise, 23
weak pointwise, 24

disjoint elements, 83

function
p-integrable, 48
p-measurable, 48
p-simple, 47
functional
trace, 23

ideal, 86

99



100 INDEX

lattice, 77 SOT, 23
Banach, 78 space ideal, 18
lattice homomorphism, 79 sublattice, 79
lattice isomorphism, 79
tensor
M-norm, 86 simple, 22
MAP, 27 tensor product
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lattice, 78 Stonian, 84
projective, 22 topology

weakly* lower

) . strong operator, 23
semi-continuous, 68

weak operator, 23

operator topology of compact convergence, 24

Wea-k.*—to—weak continuous, 20 WOT, 23
positive, 78
Radon—Nikodym, 48
Rosenthal, 65
operator ideal, 17
Banach, 19
dual, 19
normed, 19
order unit, 86
ordered vector space, 77

pAP, 78

positive cone, 77

principle of local reflexivity, 34
for Banach lattices, 80

Radon—Nykodym property, 49
Riesz space, 77

normed, 78

order complete, 80
RNP, 49

Schauder basis, 27
monotone, 28
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