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INTRODUCTION

The considerable dissertation belongs to the theory of
summability of series and sequences . The aim of this work is to
study matrix transformations from the summability Cor absolute
summability) field of a matrix method of summability into the
summability Cor absolute summabilityd field of another matrix
method of summability. In the case when the transformation matrix
has a diagonal form the considerable problem is reduced to the
problem of summability Cor absolute summability) factors, which
have been widely investigated Ccf., for example, the S. Baron’'s
monography* [38] and the articles [7,8,8,10-14,17-28,34,3%9,371).

Up to now for solving the above-mentioned problem both
functional analitic methods and the methods which use mainly the
results from the classical theory of summability have been
considered by different authors. In [18,16] the necessary and
sufficient conditions for the matrix that it would transform a
sequence space into another sequence space have been obtained.
These conditions have been given by the properties of certain
kind dual (so called the y-dual and the second y-dual) spaces of
these sequence spaces. In the case when these sequence spaces are
summability fields of summability methods the results of [18,16]
are available but to describe the dual space and the second dual
space for given summability field of summability method |is
complicated enough . not to speak about its properties.
Therefore, for solving the above-mentioned problem methods which
use only the properties of considerable methods of summability
and the properties of continuous linear functionals on
summability fields of these methods of summability are
considered.

The first result in the case of non-diagonal matrix Cmainly
by the classical methods of theory of summability) obtained L.
Alpar in 1978 Cef. [41). He found the necessary and sufficient

conditions for matrix M = (mn!) that the transformation



- E Mok >
transforms each convergent series to C —summable series };‘yn
for o > O. After that, in 1980, he found the necessary and
sufficient conditions in order that the matrix M transforms each

c¥-summable series to Caﬁﬁ

-summable series for «,8 2 O Cef. (812
and, in 1982, he generalized the above-mentioned result looking
now at the method Cﬁ instead of the method c% f Cef.[B13. In
addition, in 19868, B. Thorpe generalized the result of L. Alpar
Calso mainly by the «classical methods of the theory of
summability) considering now instead of the method an
arbitrary normal method of summability B Cef.[291). In this paper
he found also the necessary and sufficient conditions in order
that the matrix M would transform each C%-summable series to
B-summable series in the case when -1< « < 0 and B is a normal
method.

In the present dissertation this problem is considered more
generally studing matrix transformations from a summability Cor
an absolute summability) field of a method A into the summability
Cor an absolute summability) field of another method B in the
case when A is a regular perfect or a reversible method and B is
an arbitrary triangular or an arbitrary method. The cases when A
or A and B both are CesAro or Riesz methods as applications are
considered.

All results of dissertation have been obtained in the period
of 1984-1980 and introduced in the seminars of the department of
mathematical analysis of Tartu University Cin 1984-1988, 1989 and
1991), at the conferences ‘“Problems of pure and applied
mathematics" (1983, 19902 and *“Methods of algebra and analysis"
€1988> and in the seminar of theory of function in Ural State
University (1986).

The main results of the present dissertation have been
published in [1-3,31-33].



MAIN RESULTS

The present dissertation includes an introduction, two
chapters, which both consist of three paragraphs, references and
the table of basic symbols. All this material has been presented
on 78 pages.

In the introduction a short review of the subject, purposes
and the structure of dissertation are given .

In the first chapter basic notations and notions are given
which often are used later on. As follows we shall give a short
account of 1it.

let M = (mnk) be a matrix over C. We shall often write (1)
in the form y = Mx or y = (an) where an =y as usual.
Moreover, let w be the set of all number sequences, in which the
algebraic operations have been defined coordinate-wise, x» and u
be the subsets of w and 4 (unk) be a matrix over C. We use the

following notations:
{ x = (xn)l x € w and there exists finite limit li‘m xh}.

(x-(xn)lxecandl.lmxn-O).

{ x = (x“)l X € w and the series znx“ is convergent},
bu { x = (xn)l xew ¥ Ixn—xn_‘l < oo and x_= 0o},
5° {x = (xn)l x €« bu and lim x = o},
*, {x=(xn)|xewand (Anx)eu).
c { x = (xn)l (Anx) € w and 1im Ahx = O},
bH { x = (x.)I (an) e w and zk=l)nk " o(1)
and
Cox, u) i{M b e € and Mx e u for each x € = }.

X
The spaces €4 and bv‘ are usually called a summability field
and an absolute summability field of method 4 respectively.

Definition. Let M (mnk) be a matrix. We say that two
methods A (x )Yand B = (ﬁnk) are M-consistent if
l.i.‘m Anx - lim ) 24 ﬂnkﬂk

for each x e c



It is easy to see what M-consistency of methods of
summability coincides with the ordinary consistency of them if M
is an identity matrix.

The main results of the dissertation are proved in §2 and §3
of Chapter I The necessary and sufficient conditions for the
matrix transformations from €, into are obtained by the method
of Peyerimhoff C(ef., for example, [241), but for the matrix
transformations from €, into ¢, ,from ¢

B A

p and from va into - by the inverse transformation method

Cef., for example, [34]1).

into bvB ,from bUA into

c

Now we shall give the results of Chapter I in greater
detail. For that let e = (1,1,...) and e" = (0,...,0,1,0,...)
where 1 is in k-th position. In §2 it is assumed that 4 =
is a series-to-sequence and = (a ) 1is a sequence-to-sequence
transformation. If A = {eo.e'....} and alJ{e} are fundamental
sets for <4 and respectively then the methods A4 and U are
called perfect. Here it is assumed that Cor equivalently with
it ¢ ) and ¢ are BK-spaces (i.e. the Banach spaces where

u A

cocordinate-wise convergence holds). The topologies in <, and in

Cqp are defined respectively by the norm lec = suplAnxl Cfor
each x € c‘J and by the norm leco = sv'._'lpl‘u“xl C(for each x € c_i_).
It is assumed that B = ( is a triangular matrix over € , M =
= is an arbitrary matrix over € and G = (g is the

product of above-mentioned matrices, i.e.
snk = z ﬂmmlk .
=0

Using the method of Peyerimhoff Cwhich is based on the
properties of continuous linear functionals on and ¢ the
matrix transformations from into g and from €4 into are
studied in §2 in the case when and A are the regular perfect

methods.

Theorem 1. let U = be such a regular perfect msthod
that ‘q is a BK-space, B = ( ) be a triangular method and M =
= be an arditrary matrix. Then M € (cu.cB) if and only tf

& cs for each s € N,

1) there exist finite limits lim g, =8



2) there exists finite limit lim =g

and there exist such functionals fl € (c;‘)' that

fm if k<1,
fule) =
Lo . ifkR>1,
= 0(1)
= &(1)
where the functionals F have been defined on by
F(x®) = A0
105 = 1,0 .

Moreover, if in addition g = O and g = 1, then the methods

Y and B are M-consistent.

An analog of Theorem 1 for a regular perfect method 4 too is

presented in §2 .

Let now be such a regular method for which c:, is a

BK-AK-space. It means that C:X is simultaneocusly a BK-space and an

AK-space (Cl.e. A ¢ c; and li'.‘m Ix™ - xIl = 0 for each x = (xk) <
€ where XM = (xn.... .xn.o.... ) or C cf. [301, p., 176
in ¢ the weak convergence by the sections is valid , i.e.
1im|/(x‘m) - f(x)| = 0 for each x = (xk) L and f € (c;‘)'

where (c:‘)' is a topological dual space of ey, It is easy to see
that a regular method is perfect when is a BK-AK-space,
but for each regular perfect method U the space c; is not

necessarlily an AX-space (cf., for example, [30]1, p. 214 - 215).

Theorem 2. Let U = (ank) be such a regular method that c:‘ is
a BK-AK-space, B = (f3 k) be a normal method and M = (m l=) be an
arbitrary matrix. Then M € (c‘u"CB) if and only if conditions 1)
and 2) of Theorem 1 hold and there exist functionals Fn € (c:‘)'
such that

F (¥

2*



IFnI(C:‘)

Moreover, i(f, in addition, =0 and g = 1, then the methods

= o(1).

U and B are M-consistent.

Using the general form of continuous linear functional on
e® and on <4 for reversible methods U and A4 (i.e. for such
methods U and 4 for which the systems of equations =z = Ux and
2 = Ax have a unique solution for each =z € ¢ it is easy to
find conditions that M e (C‘U'CB) and M e (CA'CB) in the case

when U and A4 are regular perfect reversible methods.

Corollary 1. Let U = (a ) dbe such a regular reversibdble
method that is an AK-space, B = (f3 k) be a normal method and
M= (m.nk) be an ardbitrary matrix. Then M € (C‘U'CB) if and only if
the conditions 1) and 2) of Theorem 1 have been fulfilled and
there exist series with the property Er" | = such

that

gnk = E anark

Corollary 2. Let Y = (ank) be a regular reversible perfect
me thod, B = (ﬁ“k) be a triangular method and M = (m.) be an
arbitrary matrix. Then M e (C‘U'CB) tf and only i(f conditions 1)
and 2) of Theorem 1 and conditions

3) there exist series T 71 with the property T l7° | = 0 (1)
r lr r vr s
such that
m , {f R <1,
L] L]
Lt a =
r lr rk o ., ':/ k> 1
and
4) T,r }DM| = 0(1) where numbers Dm_ have been defined by
= 2
D'\l‘ E ph..r
L]
mlk - :r‘rrark
Chere the existence and absolute convergence of series r°

have been quaranteed by condition 3)D
have been fulfilled.



The matrix transformations from €A into CB . from €4 into

buB , from buA into g and from va into bvB are studied by
inverse transformation method in §3 of chapter I in the case when
A is a reversible method and B is a triangular method or an
arbitrary method. To describe these matrix transformations for
the case of triangular method B the necessary and sufficient
Cbut for the case of an arbitrary method B only the sufficient)

conditions are found. It is well-known that ¢, is a BK-space if 4

A
is a reversible method. Therefore in this case the members of
each sequence x = (xk) € CA are continuous linear functionals on
€4 - Thus tine members of each sequence x = (xk) €c, may be

represented in the form

@)
where = Alx s M = 1lim and the sequences (nkn) Cfor fixed nd
and ( ) are the solutions of the system =z = Ax for z, = 6Ln and

= 6u respectively Chere éln =1 for { - n and éln= O for 1t =
® nd.
Let

We shall consider the case when B is a triangular method. Then

(3)

for each x € €4 where y = (yk) = (Hkx). By (2). (3) and some
well-known results from the theory of summability (for example,
the theorems of Kol jima-Schur, Hahn and Knopp-Lorentz) the
necessary and sufficient conditions for the above-mentioned four
types of matrix transformations are proved. Here we present some

of them.

Theorem 3. let A = ( be a reversible method, B = (f# )
be a triangulaer method and M = ( ) be an arbitrary matrix. Then
Me (EA.CB) tf and only if

1) there exi(st finite limits 1lim =M k!
2) series are convergent,

LI =),

4) there exists finite limit 1im zkg =8 .,

PR



8) there exist fintte limits lim

8 L7, | = o1)

where
P
=Lfrm.m .
Pk O T
Moreover, f = 0 and g = 1 then the methods A and B are

M-consistent.

Theorem 4. Let A = (u“) be a reversidle method , B = (ﬁ*)
be a triangular method and M = (m_ ) be an arbditrary matrix. Then

M e (bUA.bvB) if and only if

1) there exist finite limits 1lim If;k =

2) sertes are convergent,
3) L =0(1) .,
x=o pk n

&) (n) = by,
B> vt lll:orml = o(1) .

Some analogs of Theorems 3 and 4 for transformations from CA

into b‘UB and from buA into cg are also proved.

At the end of this chapter we consider the case when the
method B is arbitrary. Let G = (‘nk) where

LI zﬂﬁmmsk'

Then (3) 1is not necessarily valid for each x € ¢, or x € bv
where y = (Hkx) . In the present dissertation the necessary and
sufficient conditions for it are found. Using these conditions we

have

Theorem 5. Let A = (ank) be a reversidble method , B = (ﬁnk)

be an arbitrary method and M = (mnk) be an arbditrary matrix.

Moreover, let zklﬁnkl oo , me " okcx). extst finite limits
iim = an ,

Im,m =

k=0

10



and one of the conditions

= o(1)

or

holds . Then there exist finite limits .H..m 7‘:k = 7hk . Here M e
€ (c4.c8) Lf conditions 4) - 8) of Theorem 3 and M e (buA.bvB) if

conditions 4) ard S) of Theorem 4 have been fulfilled.

The same kind of analogs of Theorem 5 hold for the classes
(CA'MB) and (bUA'bUB) too.

APPLICATIONS

Now we shall consider the cases when A or A and B both are
Cesaro (61 of Chapter IID or Riesz (§2 and §3 of Chapter IID
methods. Let A: - l";uJ for each « € € and n e N. We keep in mind
that the series-to-sequence method of Cesaro of order o (o &
e C\{-1,-2,...}> , shortly c™ method, is defined by the matrix

(drl:) where
o =

A 7A if R <n

(o] if R>n
and the sequence-to-sequence method of Cesaro of order «,
shortly ™ method, is defined by the matrix (ahk) where

i ® {fRrR<n,
nk

[ if R>n.

For the description of the main results of §1 of Chapter II we
put

-ot-2
= :.Al 4 k+l

for each bounded riumber sequence (ck) and for each o« e C. If

Rext > -1 or o = -1 then I | < oo . By Corollary 2 w»
have

11



Theorem 6. Let B = (ﬁnk) be a triangular method ., M - (mnk)
be an arbitrary matrix and o be such a complex number for which

Reoct > O or « = O. Then M e (c a'CB) if and only tf
[ 4

- on(k-Rea)-
L (kR + I < 00, 4)
X i 1
ECr o+ 17%a}s | = 0crd

and conditions 1) and 8) of Theorem 1 have been fulfilled .
In addition, by Theorem 2 we have

Theorem 7. Let B = (ﬁnk) be a triangular method, M = (mk)
be an arbitrary matrix and o be such a complex number for which
Reot > O or oo = 0. Then M e« (c a'cB) if and only (f

[of

—~Reot

m = On(h N

nk

Z(k + < ©0. 5)

Reot

E(k +1)

B | = o(1)

and condition 1) of Theorem 1 has been fulfilled.

Moreover , Uf & = 1 then the methods Cc and B are

M-consistent.

For a normal method B the condition (4) in Thecrem 6 and the
condition (8) in Theorem 7 are redundant. Some generalizations of
the results of [4-6,28] follow from Theocrem 7 in particular

Furthermore , let (pn) be a sequence of non-zero complex
numbers, Pn =p,t ...t p = O for each n e N, P_‘ =0, (R,pn) =
= (unk) and (R, = (ank) be respectively the series-to-sequence

and sequence-to-sequence Riesz methods generated by (pn). i.e.
- <
I‘l Pk_‘/P_ if k n .,

* 1o if R>n

i2



and

3 <
. Py if k n o,
[o] if k> n.
Moreover, let
R ™

and B = (ﬁnk) be an arbitrary triangular method. By Corollary 1
and Theorems 3 and 4 hold

Theorem 8. Let (R.p_ ) be a regular method , B = (ﬁ“k) be a
normal method and M = (m be an ardbitrary matrix. Then M e

e (C(!R.p_)'CB) tf and only tif

e = @ (R

and conditions 1) and 2) of Theorem 1 have been fulfilled.

Theorem 9. Let (R.,p ) be a conservative method, B =

nk
be a triangular method and M = (mhk) be an arbitrary matrix.
Then M e ).CB) tf and only Lf
1§ Am 1
"< co C))
=0 (p).
= o(1)
and condition 1) of Theorem 1 has been fulfilled.
Moreover, tif = 1 then the methods (R.p“) and B are
M-consistent.
Theorem 10. LlLet be an absolutely conservative method,

B = (ﬁnk) be a triangular method and M = (m k) be an ardbitrary

-.bvs) tf and only if

matrix. Then M € (dv
®rp s

Pl:mn): = on(pk)'

pam = 7)

13



;\Ienk -

-8 )Mo= e

n-4,k

where g k=°'

It is shown that for a normal method B the condition (6) in
Theorem 8 and the condition (7) in Theorem 10 are redundant.
Moreover, for the case of the triangular method B the necessary

and sufficient conditions for transformations from c(RP ) into
“Cn

bv, and from by, _ into ¢, are found too .
B Cp) °

By Theorem S5 we have

Theorem 11. Let (R,p ) be a conservative method , B = (

be a method which satisfies the condition 3—1"’.«' < 00, and M =

= (m ) be an ardbitrary matrix. If

= o(p, )

P A——
LAl

Aerl _
o I

|P. A

and condition 1) of Theorem 1 has been fulfilled then M

Theorem 12. Llet (R,p ) be an absolutely conservative method,

B = (8 ) be a method which satisfies the condition IR kl < 0O
and M = (m be an arbitrary matrix. If
= 0(p. ).
P‘(Am“k =
T8l =X

P.L X8, -6 _, O =p)

wvhere &, = O then M e (bv(Rp ).bvs).

14



‘(R

The sufficient conditions for the transformations from

inte dbv, and from dwv into ¢, are also given . The
B (Rp ) B

case when B is a Riesz method is considered separately.
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MAATRIKSMENETLUSTE SUMMEERUVUSVALJADE JA ABSOLUUTSE
SUMMEERUVUSE VALJADE MAATRIKSTEISENDUSED

Ants Aasma

RESOMEE

Antud viitekirjas vaadeldav probleem kuulub summeeruvus-
tecoria valdkonda. Olgu A4 = (unk) Ja B = <ﬂnk) maatriksmenetlused
Ule € ning M = (mnk) maatriks Ule €. Peale selle, clgu €4 Ja buA
vastavalt menetluse A summeeruvusvili ning absocluutse summeeru-
vuse vili. Lisaks eeldatakse, et on BK-ruum. Viditekirjas
uuritakse maatriksteisendusi ruumidest v8i bdv ruumidesse €p
vBi buB . Peyerimhoffi meetodiga leitakse tarvilikud ja piisavad
tingimused selleks, et maatriks M teisendaks ruumi ruumi g
Juhul, kui A on regulaarne perfektne menetlus ja B on kolmnurkne
menetlus. Seejuures jada-jada teisendusega antud menetluse A
Jaocks vaadeldakse eraldi juhtu, kus c° Cmenetlusega A4 nulliks
summeeruvate jadade ruun0 on AK-ruum ja B on normaalne menetlus.

P&$rdteisenduse meetodiga leitakse aga tarvilikud ja piisa-
vad tingimused selleks, et maatriks M teisendaks ruumid vBi

va ruumidesse ¢ vBi WB Juhul, kui A4 on reversiivne menetlus ja

B on kolmnurkne Bmenetl us. Suvalise menetluse B korral leitakse
nimetatud nel ja tutpi teisenduste Jaoks ainult plisavad
tingimused.

Rakendustena vaadeldakse juhtumeid, kus menetlus A v&i
menetlused A ja B mBlemad on kas Rieszi kaalutud keskmiste

menetlused vB8i Cesairo menetlused.

T 93.52.120.0,89.1,0.
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