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Matrix transformations of summability fields 
of regular perfect matrix methods 

Ants Aasma 

In this paper we shall prove theorems that give necessary and sufficient 

conditions for a matrix M to be a transformation of the summability field 

of regular perfect matrix method into the summability field of a triangu

lar matrix. We shall also define the il/-consistency of matrices and find 

necessary and sufficient conditions for it. This paper extends the author's 

research started in [1, 2, 8, 9]. The matrix transformations of the summa

bility fields of reversible matrices have been studied also in [3 — 6] . 

1. Notions and notations 

Let A = (a„k) be a matrix with 6 C. In the sequel we consider 

the following sequence spaces : 

с = {x = (x„) I lim„x„ exists}, 

c° = {x = (xn) I x 6 с and lim„ x„ = 0}, 

es = {x = (xn) I the series Ylk Xk converges}, 

sa = {x = (z„) I A„x = 531 (n € N) exists}, 

cA = {x = (i„) I x e sA and (A„x) e c} 

and 

c°a = {x = (X„)  I x G SA and lim„ A„x = 0}. 

In addition, we put 

Щса) = {M = (mn t) I m n k  e С and M nx = ̂  m„*x* 

к 
exists for each n € N and x = (x*) € с a} 
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and 

(cA,cB) = {M = (mnk) I M G Ш{с А) and (M nx) £ cB 

for each x £ сд} 

where В — (/Jn/t) is a matrix with /?„* G С . Let M = (mn*) be an 

arbitrary matrix with mn* € С . We say that A and В are M-consistent 

when 

limA„i = lim У" /ЗпкМкХ 
™ " fc 

for each i G CA- If M = (<$„*) where = 1 for n = к and 6„t = 0 

for n ф к , Af-consistency of matrices coincides with their ordinary consis

tency. 

Let further A = (a„fc) be a series-to-sequence method, 21 = (a„k) 

a sequence-to-sequence method and В = (/?„*) a triangular matrix. In 

addition, let ek = (0,... , 0,1,0,...) with number 1 in к,-th position, e = 

(1,1,...) and A = {e°, e1,...} . We assume that A and 21 are per

fect and regular. It means that the sets A and A U {e} are funda

mental sets for CA and ca respectively, lim„ Anx = x" f°r each 

x = (xn) G cs and lim„2l„i = limn xn for each x = (xn) G с . Besides, 

we assume that Cg, and с A are BAT-spaces, i.e. the Banach spaces where 

the coordinate-wise convergence holds. The norm is defined in с A by the 

equality |j x ||CA= supn  | Anx | and in eg, by || x || co = sup„ | 2t„z | . 

We denote the topological conjugate spaces of с Л and cjj, by (CA)' and 

(cg()' respectively. 

2. Auxiliary results 

We shall here find necessary and sufficient conditions for M to belong 

to 9Л(СА) or 9Jt(ca). 

Lemma 1. Let 21 = (o„t) be a regular perfect method such that cjg 

is a BK-space. Then numbers c* are the convergence factors for 21 if and 

only if there exist junctionals ft G (c^)' such that 

-j \ f, ь _ f ft, «/ t 
^ /i(e ) = | 0, ./ it > I, 

and 

2) II /i ll(c»)'= 0(1). 
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Proof. Necessity. Let numbers e* be convergence factors for 21 and 

=  2 3  е * 1 *  w 
k=0 

for each x° = (x°k) € Cg, . Then fi G (eg,)' and therefore condition 1) 

is fulfilled. Condition 2) is valid by the principle of uniform boundedness 

because cjj is a 5A*-space and the finite limit limj /j(x°) exists for each 

I0 £ Cg, . 

Sufficiency. Let all conditions of the lemma be fulfilled. We shall show 

that the numbers ejt Eire the convergence factors for 21 . First we show 

that the equalities (1) hold for each x° = (xj) G Cg,. For doing it, let us 

denote 
I 

Я,(х ° )  = / , (* " )-X>*4 
k=0 

for each x° G cjj,. Then Hi € (c^)' and moreover, Hi(ek) = 0 by con

dition 1). Thus Hi(x°) = 0 on the fundamental set Д of the space Cg,. 

Hence Hi(i°) = 0 for each x° G Cy. Therefore (1) holds for each x° 6 Cg,. 

Further, x — fe £ Cg, for each x = (ц) G c<a if ( = limn  2lnx. Thus each 

x G c<a may be represented in the form 

x = x° + £e (2) 

where x° = (x°k) G Cg,. Hence we have 

I I 

23 = fi(x°) + £ 53 e* (3) 
*=0 k=0 

for each x = (lit) G с<ц. In addition, limj /i(e ) = e* by condition 1), 

i.e. the sequence (/j) converges on the fundamental set A of c^. Con

sequently, we have by condition 2) and the theorem of Banach-Steinhaus 

that there exists the finite limit lim/ fi(x°) for each x° 6cj. As с 0  С Cg,, 

it is easy to see that (e*) E cs. Therefore from (3) follows the convergence 

of the series for each x = (x*) G с<ц. Thus, the numbers et are 

convergence factors for 21. 

Lemma 2. Let A = (a nt) be a regular perfect method such that c A  

is a BK-space. Then numbers e* are the convergence factors for A if and 
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only if there exist Junctionals fi £ (сд)' such that condition 1) of Lemma 1 

is fulfilled and 

II fl ll(CA)'= 0(1,-

Proof is similar to the proof of Lemma 1. 

For M = € Ш(съ) and M € 9ЭТ(сл) it is necessary and 

sufficient that the numbers mnjt for each n £ N are the convergence 

factors for 21 and A respectively. Therefore the next results hold by 

Lemmas 1 and 2. 

Lemma 3. Let 21 = (a„t) be a regular perfect method such that Cy 

гл a BK-space and M = (m„t) 6e an arbitrary matrix. Then M £ ЯЯ(ся) 

i/ and only if there exist junctionals f si £ (c^)' зис/i that 

m t / m»b '/ 
( I )  / l , ( e  ) = (  0,  if к > I 

(И) II/Лее» )<= 0,(1). 

Lemma 4. ie< A = (a nk) be a regular perfect method such that с a 

is a BK-space and M = (M„t)  be an arbitrary matrix.  Then M 6  ЯЛ(СА) 

if and only if there exist functionals f si £ (CA)' such that conditions (I) 

and 

(III) II fsi ||(сд)'= 0.( 1) 

are fulfilled. 

3. Main results 

For an arbitrary triangular matrix В = (/?„*) and an arbitrary matrix 

M = (m„fc) we put 

Япк = '^2,ßnsm s k. (4) 
a=0 

Theorem 1. £ei 21 = (ank) be a regular perfect method such that Cy 

is a BK-space, В = {ßnk) be a triangular matrix and M = (mnk) be an 

arbitrary matrix. Then M £ (ca, Cß) t/ and only if 
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(IV) there exist finite limits lim„ gnk = gk, 

(V) there exists finite limit lim„ ^2k gnk = g and there exist junctio

nals j,i £ (eg,)' such that conditions (I), (II) and 

where junctionals Fn are defined on by the equalities 

Fn(x0) = Y, P » ° f > ( x ° )  (5) 

and 

ja(x°) - lim/ji(x°), (6 )  

are julfilled. 

Prooj. Necessity. Let M £ (са,св). Then we have 

^ ' ßns ^ ' m, kX k  — ^ '  Qnk^k — Gn X 
1=0 t=0 к 

for each I = (x k) £ ca- Thus Ca С со- As 21 is a regular method, 

the method G is conservative. Consequently, conditions (IV) and (V) are 

As M £ ®t(ca) then there exist functionals j,i 6 (cjg)' so that 

conditions (I) and (II) are fulfilled. These functionals may be represented 

in the form 

on cjj . Consequently, f,(x°) = lim; ) = M,x° for each x° € 

and moreover, j, € (c£j,)'. Hence the functionals Fn, defined by (5) on 

Cg, for each n £ N, are continuous and linear on cjj,. We also notice, 

that Fn(x0) = Gnx° for each x° € Cg,. Now it is easy to see that the 

sequence of continuous linear functionals (Fn) converges everywhere on 

В an ach space Cg. Therefore condition (VI) is fulfilled by the principle of 

uniform boundedness. 

Sufficiency. Let the conditions of this theorem be fulfilled. We shall 

show that M £ (ca.cy). First we notice that M £ fflt(ca) and (7) holds 

on the fundamental set A of Cg, by Lemma 3. Therefore (7) holds everyw

here on Cg, whence it follows that = limj J,i(x°) = M,x° for 

fulfilled. 

(7) 
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each i° 6 Cg,. Consequently, /, 6 (eg,)'. Thus we have /,(е*) = m,k, 

F n(e k) = gnk, the functionals F„ £ (eg,)' and the equalities F„(x°) = 

Gnx hold for each x° € Cg,. Hence the sequence (F„) converges on the 

fundamental set A of eg, by condition (IV). Accepting it, we have by 

(VI) and the theorem of Banach-Steinhaus, that there exists the finite limit 

limn Fn(x°) for each x° 6 Cg, . Moreover, it follows from (2) that 

Gnx = Fn(x°) + £ 53 5n* (8) 
к 

for each x = (г*) 6 c<& where ( = lim„ 2t„x and x" 6 c^,. Therefo

re there exists the finite limit limn Gnx for each x € eg by (V). Thus 

M 6 (с<ц,св). 

Theorem 2. Let A = (<* n*) be a regular perfect method, such that 

с a is a BK-space, В — (ßnk) be a triangular matrix and M = (m„it) 

be an arbitrary matrix. Then M € (ca, cy) i/ and only if condition (IV) 

is fulfilled and there exist functionals f,i € (CA)' such that conditions (I), 

(III) and 

(VII) II F„ ||(ca)-= 0(1), 

where the functionals Fn are defined on с A by the equalities 

F n{x) = 'jrß n,f,(x) 
я=0 

f,(x) = lim/„,(x), 

are fulfilled. 

Proof is similar to the proof of Theorem 1. 

As an essential special case of Theorem 1 we shall consider now the case 

when 21 is a regular method such that Cg, is a BK-AK-spa.ee. It means 

that Cg, is simultaneously a BK-space and an AÄ"-space, i.e. А С Cg, and 

lim„ II xl"' - x ||= 0 for each x = (xt) 6 Cg, where x[nl = (x0,... ,x„,0,...). 

It is equivalent to the weak convergence by the section in the Cg, (cf. [7], 

p. 176). Thus 

lim|/(xM)-/(®)| =0 
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for each x = (i*) € Сщ and / 6 (eg,)'. In this case A is a fundamental 

set of Cy. As (2) holds for each x E ca where x° E Сщ and ( — limn 2lnz, 

then A U {e} is a fundamental set for ca • Consequently, 21 is a perfect 

method. But for each regular perfect method 21 the space c§, is not 

necessarily an AÜf-space (cf., for example, [7], p. 214-215). Now we prove 

the result which is given without the proof in [8]. 

Theorem 3. Let 21 = (ank) be a regular method such that cj^ is 

а ВК-АК-зрасе, В = (ß„k) be a normal matrix and M = (mnk) be 

an arbitrary matrix. Then M E (са,cy) if and only if conditions (IV) 

and (V), where G = (</„*) w defined by (4), are fulfilled and there exist 

functionals Fn E (Ca)' such that conditions (VI) and 

(VIII) gnk=Fn{ek) 

hold. 

Proof. Necessity. Let M 6 (са, с g) . Then all conditions of Theorem 1 

are fulfilled because the method 21 is perfect. In addition, it is easy to see 

that functionals Fn, defined on cä by (5) and (6), belong to (cjj,)' and 

satisfy conditions (VI) and (VIII). 

Sufficiency. Let all conditions of the theorem be fulfilled. We shall 

show that M E (ca, сд). As c^ is an A/f-space, for each x° = (x°k) E Cg, 

we have 

' Gnx° = J2Fn(ek)4 = limFn(i°M) = Fn(x°) 

к 

by condition (VIII). Thus С sa- Moreover, (F„) converges on the fun

damental set A of Cg, by (IV) and (VIII). Consequently, (F„) converges 

also on Cy by (VI) and the theorem of Banach-Steinhaus. In addition to 

it, the equalities (8) hold for each x = {xk) E ca where £ = lim,, 2lnx and 

i° € 4. Therefore ca С ca by (V). Then obviously ca С -SQ. whence it 

follows that M £ VJt(c<x) by the normality of В . Hence 

G nx — ^ ^ ßnaMsx 
»=o 

for each x E ca- Thus we have M E (ca, сд). 

Now we can find (by Theorems 1 — 3 ) necessary and sufficient condi

tions for ^-consistency of 21 (or A )• and В . 
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Corollary 1. Let 21 = (ank) be a regular perfect method such that 

Cg, is a BK-space, В = (ß n k) be a triangular matrix and M — (m„*) 

be an arbitrary matrix. Then 21 and В are M-consistent if and only if 

conditions (IV) and (V) with g k  = 0 and 3 = 1 are fulfilled and there 

exist functionals f,i 6 (c^)' such that conditions (I), (II) and (VI) hold. 

Proof. Necessity. Let 21 and В be M-consistent. Then 

M £ (сд,су). Therefore all the conditions of Theorem 1 are fulfilled . 

As the method 21 is regular, lim„ 2t„e<r = 0 and lim„ 2l„e = 1. Hence 

giс = 0 and g = 1 by the M-consistency of 21 and В . 

Sufficiency. Let all conditions of the corollary be fulfilled. Then 

M E (ca,cb) by Theorem 1. Moreover, for each x £ c<% the equali

ties (8), in which £ = limn 2lnx , Fn(x°) = Gnx° and x° £ Cg, is defined 

by (2), are valid. As the sequence of the continuous linear functionals (Fn) 

converges everywhere on the Banach space c^ , its limit F € (c^)' and 

F(x°) = 0 on the fundamental set Л of the space c^ by g k  = 0 . Con

sequently , F(x°) = 0 for each x° 6 Cg,. Therefore the M-consistency of 

21 and В follows from (8) by g = 1 . 

As the proofs of next results are similar to the proof of Corollary 1 then 

we give these results without proofs. 

Corollary 2. Let A = (a nJt) be a regular perfect method such, that c A  

is a BK-space, В = (ß n k )  be a triangular matrix and M = (mn k)  be an 

arbitrary matrix. Then A and В are M-consistent if and only if condition 

(IV) with giс s 1 is fulfilled and there exist functionals f,t £ (сд)' such 

that conditions (I), (III) and (VII) hold. 

Corollary 3. Let 21 = (a n k) be a regular method such, that Cy is 

a BK-AK-space, В = (ßnk) be a normal matrix and M = (mnt) be an 

arbitrary matrix. Then 21 and В are M-consistent if and only if condi

tions (IV) and (V) with gk = 0 and <7 = 1 are fulfilled and there exist 

functionals Fn £ (c^)' such that conditions (VI) and (VIII) hold. 
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Regulaarsete perfektsete maatriksmenetluste 

summeeruvusväljade maatriks teisend used 

Ants Aasma 

Resümee 

Olgu A = (a„k) selline regulaarne perfektne maatriksmenetlus, 

mille summeeruvusväli c,\ (jada-jada teisendusega antud menetluse 

korral nulliks summeeruvate jadade ruum c°A ) on BK-ruum, В = (Д,*) 
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kolmmirkne maatriks üle С ning M = (mn k) suvaline maatriks üle 

С . Artiklis leitakse tarvilikud ja piisavad tingimused selleks, et maat

riks teisendus 

Y N  = Y]MNK*K 

к 

kujutaks ruumi CA ruumi св • Samuti leitakse tarvilikud ja piisavad 

tingimused selleks, et A ja В oleksid M-kooskõlas, s.t. 

lim 23 ßnk 23тыЖ' =  l i m  23 a" k%k 

iga x = (it) E ca korral. Jada-jada teisendusega antud menetluse А 

korral vaadeldakse eraldi juhtu, kus c°A  on Aif-ruum. 
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ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS 
1994, 970, 13-22 

The signed weak gliding hump property 

J o h a n n  B o o s  a n d  T o i v o  L e i g e r  

D. Fleming and the first author [2] proved that the implication 

Y C F  = >  Y C S f  ( * )  

holds for each separable FK-space F whenever У is a sequence space containing 

the space <p of all finite sequences and having the so-called weak gliding hump 

property. As a consequence -they got that 

У П S B  С F => У П S E  С S f  C) 

is true if, in addition, E  is any FK-space containing t p .  Since the sequence space 

bs of all sequences having bounded partial sums does not have the weak gliding 

hump property, it is unknown whether (;) holds for У := bs. The key for a positive 

answer is the so-called signed weak gliding hump property introduced by C. Stuart 

in [6]: He proved that (*) remains true if У has the signed weak gliding hump 

property and that bs has this property. In this paper we re-prove Stuarts result 

and show that (*) holds if У has the signed weak gliding hump property. 

Let ш, с and CQ denote the linear space of all scalar (real or complex) 

sequences, the space of all convergent sequences and the space of all null 

sequences, respectively. By a sequence space E we shall mean any linear 

subspace of w. A sequence space E endowed with a locally convex topology 

is called a K-space if the inclusion map i : E —> u> is continuous where tv 

has the topology of coordinatewise convergence. A K-space E with a Frechet 
topology is called an FK-space. 

If E is any sequence space then the ß -dual of E is given by 

:= a: € w j ^2хкУк 
I к 

For any x = (x*) 6 w and n 6 IN the n' h  section of x is 
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where ek := (5,*),ем is the k t h  coordinate vector. 

If ( E , F )  is a dual pair then A ( E , F ) ,  T ( E , F )  denotes the weak topology 

and the Mackey topology, respectively. For a sequence space E and a linear 

subspace F of E 0  containing IP, the space of finitely non-zeros sequences, 

(E, F) is a dual pair under the natural bilinear form defined by 

( x , y )  : =  53 хкУк (x = (it) G E, у = (t/it) G F). 
к 

If (E,TE) is a K-space containing IP, we set 

LE := {x G E I {x'"'|n G IN} is bounded} , 

W E  : =  { I G E  I  x w  -  x  ( a ( £ , £ ' ) ) }  ,  

SE := {x G E | xW —> x (ТЕ)} 

where £' denotes the topological dual of (E, те) . A K-space E containing 

IP with E = SE is called an AK-space. 

If В  = ( b n k )  is an infinite matrix with scalar entries the convergence 

domain 

cb := jx G iv I Bx := ^ b n kx^j G cj 

admits a natural FK-topology [8]. For x G сд we write lime x := lim Bx. 

If v С cB  let b k  := lim b n k  and define 

Iв |x G c B  I 53 b* 1* e x i s t s| > 

Лв : Ib —+ IK by Лв(х) := lim f l  x - 53 hx k  (where IK := t or IK := IR) 
к 

and 

Лд 1  := {x G IB | Л в(х) = о} . 

Further if у С CB we write LB , Wb , Sв instead of L C g  , , 5'Св  . In this 

case Wb = LbC] AG- (see e. g. [8]). 

Now we define several types of gliding hump properties. 

Definition 1 . A sequence (y'n )) in tv \ {0} is called a block sequence if 

there exists an index sequence (kj) with k\ = 1 such that y[ ' = 0 for any 

n, к € IN with к £ [fc„, fcn+1[ and it is called a \-block sequence if furthermore 

= 1 for each к 6 [fc„, fcn+i [ and n G IN . 

Let £ be a sequence space containing TP. 
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• E has the pointwise gliding hump property (P_GHP) if for each x 6 E, 

and any block sequence (y(">) satisfying sup ||у'"'||ь < oo there exists 
neN 

a subsequence yW of with xy^ £ E (pointwise sum). There-
3=1 

by II ||j,v denotes the natural norm on the space of all sequences having 

bounded variation. 

• E has the pointwise signed weak gliding hump property (SIGNED P.WGHP) 

if for each x E E and any subsequence (y^) of each l-block sequence 

there exists a subsequence (j/'"'') of ( y ^ )  and a sequence ( h j )  with 

hj = 1 or hj = — 1 (j £ IN) such that hjXy^"'^ 6 E (pointwise sum). 
j=i 

• E has the pointwise weak gliding hump property (P_WGHP) if the defini

tion of the SIGNED P_GHP is fulfilled with A* = 1 (fc £ IN). 

Remark 2 . D. Noll [5] introduced the notion of the weak gliding hump 

property whereas the notion of the signed weak gliding hump property is due 

to C. Stuart [6]. On the base of Noll's definition and several kinds of gliding 

hump properties D. Fleming and the first author introduced the pointwise 

gliding hump property. By reason of the 'historical' definition of the gliding 

hump property they prefer to use the additive 'pointwise' in the above diffe

rent definitions of gliding hump properties. 

Obviously, we get 

P-GHP =$• P-WGHP =t- SIGNED P.WGHP. 

C. Stuart [6] proved that the space bs of all sequences with bounded partial 

sums has the SIGNED P-WGHP. Thus, since bs does not have the P.WGHP (see 

[2]) the second inclusion is strict. Further in [2] the first inclusion is proved 
to be strict, too. 

The following theorem generalizes the main result of the paper of D. Fle

ming and the first author in [2, Theorem 3.5]. 

Theorem 3 . Let Y be a sequence space containing tp and having the 

SIGNED P.WGHP. Then the implication 

Y С св => Y С Sb 

holds for any matrix В. 

As we will see in Theorem 5, Theorem 3 holds even for separable FK-

spaces F (instead of domains св )• This is Stuart's result in [6, Theorem 
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3.10]. We re-prove it using alternative methods of proof: 

We vary the method used by the authors in the proof of a theorem of Mazur-

Orlicz type (see [4, Theorem 1] and also [3]). At first view this method looks 

more complicated as that of C. Stuart and C. Swartz, but in a joint paper of 

the authors and Dan Fleming it will be proved that this method is suitable 

to extend essentially the class of sequence spaces having the SIGNED P_WGHP 

into a general class of sequence spaces Y having weakly sequentially complete 

ß -dual. First of all we prove a lemma corresponding to Lemma 3 in [4]. 

Lemma 4 . Let Y be a sequence space containing ip and having the SI

G N E D  P - W G H P  a n d  l e t  В  b e  a  m a t r i x  w i t h  < p  С  с в  •  T h e n  f o r  a n y  x  6  Y П е в  

each of the following properties implies the existence of a z € Y\CB : 

T7„-l 
(i) There exists an index sequence (jy„) such that lim 53 ^kxk Ф Нтдх . 

k=1 

(ii) sup 53 hxk = oo. 
" k=\ 

(iii) x € l B \ S B .  

On the base of that Lemma we can easily prove Theorem 3. 

Proof of Theorem 3. For a proof of Theorem 3 we verify that the following 

implications are true: 

(a) Y С EG => Y С IB • 

i ß )  Y  С  I B  => Y С Se

in case of (a) we assume that there exists an x 6 eg with x £ Iв • Then 

(i) or (ii) in Lemma 4 is fulfilled; therefore we may choose a z € Y\CB , that 

is Y <jL св • The implication (ß) is equivalent to property (iii) in Lemma 4. 

Now, we are going to prove Lemma 4. 

Proof of Lemma I. First of all we make some considerations in advance. 

In each of the cases (i)—(iii) we show the existence of а г € Y \ cB on the 
base of the following idea: For any index sequences (fc;) and (n.) and any 

sequence г £ ш we use the notation 

^b^kZk = + A" + B, + Ci (i €  I N )  
к 
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where the convergence of 536„,г* is assumed, 

к l k к 
A, := 53 ( 6«.t - Mz*. A* := 53 > 

*=i *•=! 

B, '•= 53 6".*z* and Ci := 52 • 
k=ki+1 

In all cases we will construct z and the index sequences (k,) and (n,) such 

that 

(A,) 6 Co and (Ci) £ Co -

By that it is easy to show that each of the following conditions implies 

z i cB : 
(a) (A*) £ с and (B.) £ c. 

(b) (A*) ^ с and (B, y) € cq where ( i j )  is a suitable index sequence. 

Let x £ Y П Св and let (rj„) be any given index sequence. (Later on we 

will fix (j?„) .) We are going to construct index sequences (n,), (к,) and (f.) 

having certain properties: 

For Ui := 1 and k\ := rjV l  we may choose an nj € IN such that 
*i-i 
J2 - M M < 2"1 (n > ni). 
k=l 

Then we may choose v2 > "i such that we get for k2 := т]^ the estimation 

53 ЬпкХк < 2" 2  (n < П!, k 2  < I < m). 
k~i 

If we have chosen n,_i and i/, then for fc, := r)„ t  we determine n, > n,_i 

with 
*,-i 

l^nJk - ь к\ \x k\ < 2~ г  (n > щ); (1) 
k=1 

furthermore we choose i/,+i > у, such that for fc,+i := iy^+ l  we have 

} ̂ Ьпк%к 
k=l 

< 2~( , + 1) (n < n,, < / < m). (2) 

4" {; 

Using the constructed index sequences we consider the block sequence (z' 1 ') 

defined by 

' Xk if di < к < ßi 

. 0 otherwise 
and the subsequence (z'2*'), where in the cases (i) and (ii), or, := fc, and 

/3, := ki+1 (г 6 IN) and, in case (iii), (a;) and (Д) are suitable index 

sequences fulfilling k, < a, < ß, < fc;+i (i £ IN). Since Y has the SIGNED 

P-WGHP there exists both a subsequence (z''»') of (z'2"') and a sequence 

(hp) with hp = 1 or hp = — 1 such that 
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Г := £ V"' 1  € У-
Р= 1 

Using the notation introduced above we obviously get 
*.-i 

IAi| < 53 |bnj*_Ml x*l '-^+0 [on account of (1)] 
k=i 

and 
00 00 

_o
 

1Л
 £ K k Z k  < £ 53 6ni*xt 

i=f«+i k=V, 

< 53 2 ™ 0 [because of (2)]; 

in particular, the last estimation proves the convergence of 53 ЬПхк*к • Now, 
к 

we are going to fix (ri„) dependent on (i)-(iii). In case of (i) we may choose 

(•q„) such that 
T)y~l 

a lim ^ bkxk Ф limsz =: d\ 

furthermore, we may assume 

53 6*z* < 2-" (f,/i 6 IN). (3) 

For any p and v with v < p we obtain on account of (3) the estimation 

Ijp-l r|„-l 

53bkZk ~ 53 b*z* 
*=i *=i 

53 bkZk 

k~T]v 

p-1  

< E 
i=t/ 

ty+i-1 

53 б* 1* 
k=1), 

By that we get the existence of 

lim 53 • 
" t=i 

Consequently, (A") G c. Now, we prove (Bjp) i Qj. By the definition of Д 

we get for г := Z, the identity 

-1 kj+i—1 
bnikzk — hi bnikxk 

k=k, k=ki 

ki-1 
= /1, 53 б«.*2* - 53 b*x* - h> 52 (b"i* - Ы** 

Jk=l 

f c i - 1  

k=l 

/i« ^ . bnikXit. 
t=*i+i 
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(oo ki—1 
£ ЬщкХк - E Xk 
k= 1 k=l 

converges to d — a ф 0 the first term cannot 
ieN 

converge to 0. However, the second and third term converge to zero. The

refore, we have (Bj,) £ Co. If i := 2j — 1 then В, = 0 thus (B 2j-i) G cq . 

Altogether, we proved (A*) 6 с and (Ö,) ^ c, thus z eg by (a). 

In the case (ii) we may choose an index sequence (r/„) such that 

£ bkXk 

k=riv 
> V + 53 \bkxk\ (f 6 IN). 

Considering г '.= i p  := l f  -+• 1 we get the statement В, = 0 by the definition 

of 2 and z'' pl, thus (B, p) 6 Co, and also (A* ) ̂  с since 

ki-1 

E b k Z k  
> E bkXk - E \bkXk\ 

. р-юО 
> lp —> oo 

k=\ i=1 

Altogether we have z £ св by (b). 

In case of (iii) we have x € Ib and x £ Sg. The first statement gives us an 

index sequence (»?„) such that 

i 2  b k X k  <  2 ~ "  (i/, r, 3 € IN ; i?„ < r < s), (3*) 
к—т 

holds whereas on account of the second statement there exist e > 0 and index 

sequences (aj), (ßj) and (ft3) with er, < ßj < aJ+i (j € IN) and 

£ bßikxk > e (je IN). (4) 
k="i 

Without loss of generality we may assume that n, = ц, and к, < a, < Д < 

fci+i (i € IN) (otherwise we switch over to a subsequence of (p,)). Using 

(3*) instead of (3) we can show (A*) 6 с quite similar to case (i). If we know 

(В,) £ с then we get z св from (a). First of all we state В, — 0 for 

г = 2j — 1 (by the definition of z and ). Therefore, (B,) 0 с follows since 

for i := l p  we have 
1 

|b.| = E 
k=ki 

on account of (4). 

3,-1 

E Ьпл 1* 
k—ati 

> £ > 0 

The following theorem shows that Theorem 3 remains true if we replace 

the domain cy by any separable FK-space. In this theorem the equivalence 

of (i) and (ii) is due to G. Bennett and N. J. Kalton (see [1, Theorem 6]) while 
the extension to the equivalence of (i)-(iii) was done by D. Fleming and the 

first author (see [2, Theorem 3.6]). The present extension to (iv) shows the 

close relationship of Theorem 3 (including the proof) and the proof method 
of C. Swartz and C. Stuart (use of Basic Matrix Theorems). 
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Theorem 5 . Let Y be a sequence space containing <p. Then the following 

statements are equivalent: 

(i) (У, T(Y, У)) is an AK-space and У is сг(У, У) -sequentially com

plete. 

(ii) If F is any separable FK-space with Y С F then Y С Sp . 

(iii) If В is any matrix with Y С сд then Y С Sb • 

(iv) У ts <r(Y 0,Y)-sequentially complete and each сг(У ,Y)-Cauchy se

quence (6'"') converges pointwisely, coordinatewisely, uniformly to the 

coordinatewise limit, that means 

(*) ftjf'z* —> (n —> oo, uniformly in fc € IN) 

ui/tere 6* := lim ftjf'. 

Proof. For a proof of the equivalence of (i)-(iii) see [1, Theorem 6] and [2, 

Theorem 3.6]. 
(iii)=> (iv): Let (iii) be valid and (ft'™') be а <т(У^,У)-СаисЬу sequence in 

У. We consider the matrix ß having ft'*1' as n"1 row. Obviously, Y С eg , 

thus 

Y С Sb С WB = Л в
х  П LB С IB 

by (iii). Thereby У С И"в gives us 

z € /в and limsi = £2 (z € У) 
к 

that is 

(ft*) € У and ft'"' (ft*) with respect to O(Y 0,Y) 

(thus У is ег(У,У) -sequentially complete), and Y С SB tells us 

V x  = (xk)  6 У : 5Z converges uniformly in n 6 IN 
к 

which is equivalent to (*). 

(iv)=> (iii): Let (iv) be true and В = (ft'"') be a matrix with У С св • 

The a(Y0,Y) -sequential completeness of У gives us У С Wb (see (1, 

Theorem 5]) while, in addition, (*) applied on the <г(У, У)-Cauchy sequence 

(ft'"') means У С Sb • * 
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Remark and Definition 6 . D. Fleming and the first author (see [2, 

Theorem 3.3]) proved that Se has the SP.WGHP whenever E is an FK-

space containing у. However, they proved a little bit more as one can easily 

check in the proof of that result: Se has the ABSOLUTE SP.GHP. Thereby, a 

sequence space У is said to have the absolute pointwise gliding hump property 

(ABSOLUTE P.GHP) if for each x 6 Y and any block sequence (y'"') satisfy

ing sup ||t/'n'||bv < oo there exists a subsequence (;/n,l) of (y'"') such that 
n£N 

Y l  h j x y €  Y  (pointwise sum) where ( h } )  is any sequence with h j  = 1 
j=i 
or hj = — 1. By definition Y has the absolute strong pointwise gliding hump 

property (ABSOLUTE SP_GHP) if £ hjxy€ Y  (pointwise sum) holds for 
j=1 

any subsequence (y">) of (yn>) in the definition of the ABSOLUTE P.GHP and 

any sequence with hj = 1 or hj = — 1. 

Corollary 7 . Let Y be a sequence space containing у and having the 

SIGNED P.WGHP and let E be any FK-space containing Y>. Then Y П SE 

has the SIGNED P-WGHP, thus the implication 

Y П S E  С F ==> Y П S E  С S F  

(thus each corresponding statement in Theorem 5) holds for every separable 

FK-space F. 

Proof. Since Y has the SIGNED P.WGHP and S E  has the ABSOLUTE 

SP-GHP by Remark 6, the intersection Y Л Se has the SIGNED P.WGHP as 

we can easily verify and we may apply Theorem 3 and 5 in case of Y Л S E  

instead of У . I 

In [5, Theorem 6] D. Noll proved that (Y l 3 , c r (Y 0 ,Y ) )  is sequentially com

plete if У has the P.WGHP. This result has been generalized by C. Swartz 

(see [7]) to the general case of vector sequence spaces У having the P.WGHP. 

Using his method C. Stuart showed in [6] that Noll's result remains true in 

the more general case of sequence spaces У having the SIGNED P.WGHP. 

Moreover, he proved that even the stronger statement (i) in Theorem 5 (see 

[2, Example 5.1(6)]) holds in case of spaces having the SIGNED P.WGHP. 
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Absolute Cesaro summability factors 
of infinite series 

Hüseyin Bor 

1. Introduction 

A sequence (c„) of numbers is said to be 5-quasi-monotone, if c„ —> 0, 

c„ > 0 ultimately and Дс„ > — й„, where (й„) is a sequence of positive 

numbers (see [2]). Let (<p„) be a sequence of complex numbers and let 

53 be a given infinite series. We denote by t" the n-th Cesaro mean of 

order a(a > —1) of the sequence (nan), i.e. 

(1.2) 

The series £3a" 's said to be summable |C, a|t, where к > 1 and 

a > —1, if (see [5]) 

(1.1) 

where 

and A°n = 0 for n > 0. 

and it is said to be summable y>—|C,a|t, к > 1, if (see[l]) 

22n-k|vV°l* < oo. (1.4) 
n=l 

In the special case ipn = n1 l/k, <p— |C, a|t summability is the same as 

|C, q|* summability. We write 

(1.5) 
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then ( X „ )  is a positive increasing sequence tending to infinity with n. 

Mazhar [6] proved the following theorem for |C,l|t summability met

hods. 

Theorem A. Let \n —> 0 as n oo. Suppose that there exists a 

sequence of numbers (B„) such that it is 6-quasi-monotone with 

53 n^n log n < oo, 53 Bn log n is convergent and | ДА„| < \B n\ for all 

n . If 
m ^ 

E — \tn\k = O(logm) as m—> oo, (1.6) 
n n = l 

then the series 53 an^n is summable |C, 1|/ь, к > 1. 

2. The main result 

The aim of this paper is to prove Theorem A for ip—\C, a|t summabi

lity. Now we shall prove the following theorem. 

Theorem. Let 0 < a < 1 and let \„ —> 0 as n —> oo. Sup

pose that there exists a sequence of numbers (Bn) such that it is S-quasi-

monotone with 53 nXn6n < oo, 53 BnXn is convergent and |ДАЛ| < 

|B„| . If there exists an e„ > 0 such that the sequence (nE-t|^n|fc) is 

поп-гпсгеазтд and if the sequence (uj), defined by 

[ ICI, (a = 1) 

=  J max |t™|, (0 < о < 1) ( 2 , 1 )  

satisfies the condition 

] Г п ~*К:Ы)* = 0 { X m )  a s  m —oo, (2.2) 
n= 1 

then the series J3enAn is summable ip~\C,a\k, к > 1. 

Remark. Since Xm ~ log m, by (1.5), if we take 6 = 1, о = 1 and 

ipn  = n 1 - 1/* ill this theorem, then we get Theorem A. Because in this case 

the condition (2.2) is reduced to the condition (1.'6). 
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3. Needed lemmas 

Wc need the following lemmas for the proof of our theorem. 

Lemma 1([4]). If 0 < a < 1 and 1 < v < n, then 

I ^ -4n-p°pI < max I 53 (3-1) 
*—' r l<m<e '—' j>=1 |)=1 

inhere A" is п.; irt (1.2). 

Lemma 2([3] >. (B„) ij 6-quasi-monotone, with VnA'„ia < oc 

aTiij Y^BaXn is convergent, then 

m X m B m  =  0(1) a s  m  - —• oc, (3.2) 

пХ„|ДВп| < oo. (3.3) 
4=1 

4. Proof of the Theorem 

I-et T™ be the u-th (C,a) mean of the sequence (nonA„), where 

0 < о < 1. Then, by (1.1), we have 

= "7^ У2 Л п_1иа 1 /Х 1 1. 

Using Abel's transformation, we have 

- rn = ̂  E £ A»:>ap + 
'  "  r = l  p = l  "  f = l  

so that making use of Lemma 1, we get that 

|T-| < -1 £ |дл„|! a«:>,,| + M Г A;;.:>a,| 
" n  1  p= l  *  > '  , / ^ I  

1 "_ 1  

< -пгЕ А>"1Д ЛЙ -+ |Ä«K = т:л  4- г;;.2. 
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say. To complete the proof of the theorem by Minkowski's inequality for 

к > 1, it is sufficient to show that 

Y,n- k\<p nT°, r\ k  < oo, for Г = 1,2, (4.1) 
П = 1 

by (1.4). Now, when к > 1 , by applying Holder's inequality with indices 

к and k' , where 1/fc 4- 1/fc' = 1 , we have that 

m+1 

m+1 n—1 

E n-'lvnT™/ 
n—2 

< E »-*к:г'ы'Е (E a°I^I 
t»=2 v=l \y=l 

m+1 n —1 /п —1 \ 

= o(i) E n-'-'kni* E E i ß"i 
n=2 i/=l \i/=l / 

m m+1 € _ j |  

= o(i) EE ̂  

m  +  1  e _ t ,  , t  
" *|УяГ 

,l.°+ e  

n=y+l 

dx 

xa+t  

t 

"=i „ 

=  0 ( 1 ) и В п К ' КЫ)' = 0(1) E А(ИВ,1) E 

+0(l)m|Bm|E = 0(1) E ̂ |ДВ„| 

m —> oc. +0(1) Y, \B„+i\X„ + 0(l)rn\Bm\Xm = 0(1) as 
1/=1 

by virtue of the hypotheses and Lemma 2. Again, we have that 

E 2i* = E ̂ „налГ^^МЫ)* 
71=1 П=1 

= 0(1) E илп-'кы)' = o(i) E п-*кы)* E i A A"i 
П — 1 n=l v=n 

= 0(1) E 1ДАИ £ n-*K|V„|)* = 0(1) f; \B„\XV < 
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by virtue of the hypotheses of the theorem. Therefore (4.1) holds. This 

completes the proof of the theorem. 

Remark. It is natural to ask wheter our theorem is true with a > 1. 

All that, we can say with certanity is, that our proof fails if a > 1, for 

estimate of T™ , depens upon Lemma 1, and Lemma 1 is known to be 

false when a > 1 (see [4] for details). 
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E. Jürimäe 

1. Introduction * 

Let p — {p„) be a sequence of positive numbers and E an FK-space. 

We shall consider the sets of sequences x = (z„) 

E,, : = { x € ^ | (  —  )eE}. 
Pn 

The set Ep may be considered as FK-space. Following J. Sikk (see [9)1. 

we shall call them as "rate-spaces". If E = с then we get the rate space 

r p  . Wc shall demonstrate that the rate-spaces of this kind are very "losely 

connected with spaces с л  , i.e. the spaces of sequences convergent with 

speed A . These spaces с were introduced by G. Kangro in 1967 (see '']). 

He used the following definition: 

r A  := {.г € с I 3 lim A„(z n  — lim j)}, 

where A = (A„), 0 < A„ < A„+1 / oc and 

lim ,r := lim x„. 

Some properties of these spaces have been studied ill [6], where G .Kang

ro has considered also the space 

?»A := {x € с I A„(i„ - limr) =0(1)}, 

the space of A bounded sequences. 

We shall show that 

* This research was in part supported by Estonian Scientific Foundation, 

Grant. No 415. 
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c x  = Cx-1 @<e> and m x  = m\-1 ©<e>, 

where Л - 1  := (1/A n) and lim А = oo. These simple relations give us a pos

sibility for a universal treatment for the ordinary and for the A-summability. 

By these relations many things will be clearer and талу proofs simpler to 

us. The consideration a treatment of this kind was suggested to the aut

hor by the paper of W. Beekmann and S.-C. Chang [1]. In this paper it 

was shown that for any matrix A there exists a matrix В such that the 

A-summability field of A is the ordinary summability field of В . This 

means that the properties of both kind of summability have to be similar. 

Let X , Y be sets of sequences. Then (X, Y ) is the set of matrices 

A = (a„t), n, fc E N, such that Ax € Y for all x 6 X. In the present 

paper we shall consider the spaces of the types c0p, cp, rnp, cx and mx as 

X and Y . In sections 2 and 3 we shall study the properties of these spaces. 

The subject of the next sections is to obtain the equivalent conditions 

for A € (X, Y) . We can get these conditions by the next three classical 

theorems. 

Theorem 1.1 (Kojima — Schur). A matrix A = (o„t) £ (с, c) if and 

only if the following statements are true: 

(i) 3 limAet = lima n f c  = a k, к e N, 

(ii) 3 lim^e = lim ̂  anfc = a, 
™ к 

(iii) ^2 I an* |= 0(1). 
к  

If x £ с then 

lim л I := lim E a„jfcifc = (a — at) limz + У ak xk-
n  к к к 

Remark. A € (c0, c) <t=> (i) and (iii) are true. 

Theorem 1.2 (Schur). A matrix A = (a„*) € (m, c) if and only if 

the statements (i), (iii) and 

(iv) lim^ I o„t - at |= 0 
" к 

are true. If x G m then 

lim л I = limE an* z* =  У] a-kXk-
к  к  
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Theorem 1.3. The following are equivalent: (iii); A 6 (m,m); 

A 6 (c, m); A 6 (c0,m). 

From these theorems we shall get 16 "mapping-theorems" - the equi

valent conditions to A = (an*) € (.X,У), where X = c p, с", m p  and m" 

and У = с„,с х,тж  and ш л  . The summary of these mapping-theorems 

is given in the next table. 

X\Y с л  m x  

c p  Th.4.3 Th.5.1 Th.6.1 Th.7.5 

c" Th.4.7 Th.5.4 Th.6.2 Th.7.8' 

m p Th.4.10 Th.5.8 Th.6.1 Th.7.1 

m u  Th.4.12 Th.5.10 Th.6.2 Th.7.3 

2. Spaces m p, c p  and c 0 p  

Let p = (p„), 7Г = (тг п) be sequences of positive numbers i.e. 

p n  > 0, 7г п  > 0 Vn 6 N . The set 

m p  := {x = (r„) € ш I — = 0(1)} 
Pn 

is the bounded domain of diagonal matrix diag(l/p„) . This matrix is a 

normal matrix and so the set mp is a BJT-space with the norm 

II и I I II X ||„:= sup . 
n pn 

By p we shall also denote the diagonal matrix determined by sequence 

p-1 i.e. 
p := diag(l/p„), 

lim,i := lim(zn//>„). 

If p = e =(1,1,...) then limcx = limz. 

The set of all complex sequences is denoted by w and the subset of all 

finitely non-zero sequences by ф . 

We shall consider the next subspaces of m p  : 

c p  := {x £ mp I 3 lim^x }, 

Co, := {x 6 cp I lim,x = 0}. 

They are both BK-spaces with norm || ||p . 
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Every / E Cp , the continuous dual space of cp . can be expressed in 

the form 

f(x) --- У r„i„ 4- /X liinpi, (1) 

where т • p - (r„/jn) E I and /t E С . 

Now we shall give some facts in connection with these spaces. 

Proposition 2.1. et 6 Cfl P  С с,, Vfc € N. 

Proposition 2.2. С c ( ) p  С <> . 

Proposition 2.3. c f  = с « 3 limp ^ 0. 

Proposition 2.4. p £ сц => cp С co-

Proposition 2.5. (Dp has А К (sectional convergence) i.e. r'"l —> .c 

for each X F r:Up. 

Proposition 2.6. Every x E c p  can be ex •pressed as 

x = p lim^x + ̂  (2> - Р*1ип р:с)ел. 
к 

cl C f i{p.e k  H' E N} - r> 

Proposition 2.7. Cp = Ci l p  >lKp>. 

Proposition 2.8. If p — (/>„) and n = (тг„) are <w xrqutncz.% of 

•positive numbers then 

(i) c„ = cn 3 lim — Ф 0. 
n 7Г„ 

(ii) CpC ( i r  lim — = 0. 
^ » л"„ 

/ . . .V  -Ч т  Pn (ш) с» -£сж  «• lim — = oo. 
^  " T n  

3. Spaces с л  and т л  

Let Л = (Л„) be a (real) sequence with 



In 1967 G. Kangro [4] has defined the space 

cA := {x = (xn) € с I 3 lim A n(x n  — lima:)}. 

These spaces are called "space of A-convergent sequences" or "space of 

sequences convergent with spaced A ". In this section we shall consider 

some facts in connection with these spaces. We do not assume the mono

tony of sequence A . 

Proposition 3.1. If p € Co then 

x € c„ x 6 с л  fl c 0, 

where A ;= p~ l  := (l/p n). . 

Theorem 3.2. c x  = c p  ф <e> = cop ® <p> ф <e>, where p = 

A - 1  6 CQ. 

Proof, (i) c x  С с,, ©<e>. 

x € cA 3 lim An(x„ — lim z) <=>• z = (z„) 6 c, z„ = An(z„ — lim x) 

xn  = y- + lim x — yn  -f f, yn  — y- and £ = lim x 

<& x = у + fe, у 6 c p  = сд-i 

The sequence у = (y„) 6 cp since limn(i/n/p„) = lim„ A„t/„ = lim„ z„ 

exists. Thus x € cp ф <e> . 

(ii) с, ©<e> С с л. 

x £ Cp ф<е> x = z + £e, z e Cp 4Ф 

*r> = z n  + £, 3 lim(zn/p„) = lim Anz„ <=> 

(AnZn) = (Ап(д:п £)) £ c. 

The last condition implies that lim x = £ exists and x € c x. Ш 

We shall denote 

A"(x) := A n(x„ - limx), 

A(x) := lim An(x) -- lim An(x„ — lim x). 
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Theorem 3.3. Each continuous linear functional f on cA  has the 

representation 

f(x) = E Tn(xn — limx) + + cr limx, (2) 

where т • A - 1  € I and ц,а € С. 

Proof. In the proof of Theorem 3.2 we have got that for each x 6 c A  

we have x = z + £e , where z € cp, p = A-1 and £ = limx . This implies 

that zn = x„ — limx i.e. x = z + e limx . The representation of / on 

Cp (see (1)) implies 

f(x) = /(z) + £/(e) = 

= E rtzt + ̂ limpz + с limx, 
к 

where (т> AjT 1) 6 I and cr = /(e). We get the representation (2) since 

Zk = Xk — limx and limpz = A(x). 

Theorem 3.4. Every x £ c x  has the expressions 

A(x 
I  X j t  — mux — 

к 

A f c(x) — A(x) 

x = (limx) • e + A(x) • A 1 + ~~ ^mx T—)e* = 

к k  

= (lim x) • e + A(x) • A-1 + • , A* 
-et.  

Proof. Since с л  = сд-i ©<e> then for each x £ с л  we have the 

expression x = z + £e , where z = (x„ — £) € cx-i and £ = lim x (see the 

proof of 3.2). Thus by 2.6 

x = (limA-iz) • A-1 + Y(zk  — —limx-iz)et + (limx) • e. 

Since limx-iz = limnA„(x„ — () = A(x) it follows, that our statement is 

true. • 

We shall consider the matrix mappings A = (a„t) 6 (X, cA) i.e. 

Уп ~ ̂  ̂ O-nk Д-fc) ГХ £ N, 
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where 

x = (xk) £ X and у = (y n) e c x. 

For these mappings there exist the functionals: 

linux := Ит^Ра„*х*, 
к 

Ад(ж) := A n(^ a n kxk - lim Ax), 
к 

Ад(х) := lim Ад(х). 

Theörem 3.5. т х  = т,\-1 ф <е> , where А - 1  € со . 

Proof, (i) тп х  С mx-i Ф <е>. 

х € mX <=> 3 limx - £, Л„(х„ - £) — 0(1) 

г = (г„) 6 т, г п  = А п(х„ - £) 

^ Х„ = у- + £ = Уп + i, Уп = у-

х = у + (е, у = (у п). 

Since (Х„у п) = (г„) € т then у = (у„) е raj-i and thus 

х € iTiA-i ®<e>. 

(ii) гпл-i Ф<е> С т А. 

х 6 т л-1 ф<е> <=> х = z + £е, г 6 т л-1 о 

z„ = г п  + £, Л„г п  = 0(1) <£• А„(х„ - £) = 0(1). 

Since lim А = oo then £ = limx and x 6 m x. • 

A possibility of determining Л if-topology on c x  and m x  is to do it 

by norm 

]|x|| A  := sup{|A"(x)|; |limx|}. 

This norm was used by G. Kangro (see[6j), who introduced these spaces for 

monotonic speed A . 
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4. Mappings A 6 (X,c,) 

In this section we shall obtain the equivalent conditions to A € (X, c„) , 

where X is c,,, e\mp or rnx . We get these conditions from Theorems 

1.1 and 1.2 by next two lemmas. 

Lemma 4.1. Let p = (p„) and тг = (тг„) be t w o  sequences of po

sitive numbers and A = («„*) be an infinite matrix. Then the following 

statements are equivalent: 

( i )  A  =  ( « n t ) e(X„n), 
(ii) Ä€(X„,y), 

ТГп 

(iii) (a n k P k)e(X,Yr), 

(iv) ( c^)e(X,Y). 

Proof. 

1 V - 1  ank 1 / ХЬ \ ankPk , x* % — 
- / 0.„kXk = > Xk = >Оп*Ж—) = > ——( — )•• 
т„ y t 1 r" n  к p k  к " 

We shall use the next symbols: 

с*л := {x € w I Ax G c„}, 

lim,Ai := lim — У a n kXk, x € cw A-
"  V " k  

If тг = e = (1,1,...) then lim, a = lim л-

Lemma 4.2. Let X, Y and Z be FK-spaces, where Z = X ®<u>, 

И 6 LJ. Then the following statements are equivalent: 

(i) A e (Z ,Y), 

(ii) A€(X,Y) and Au e Y. 

Theorem 4.3. A matrix A = (on*) € (cp,c„) if and only if it sattsf ies 

the following conditions: 

(i) 3 lim„A«t := lim —=: oj, ttN, 
n 7T„ 

(ii) 3 lim„AP •= lim — =: a'"r
l  

" 7Г" к 

(iii) Е I а"* I р к  =  

* 
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Proof. This follows from 1.1 by 4.1. 

Proposition 4.4. If A £ (cp,cT) then 

(iv) 53 I I < 00' 
Jb 

(V) £ I — - < I pfc = 0(1). 
* 

Proof. 

(iii) =ф. — I an k  I Pk = 0(1) =>• 5Z I ~ I Pk  - 0(1) 
?Гп jk=l *=1 7 Г" 

=» I < °°-
к 

(iii) and (iv) imply (v). 

Proposition 4.5. If A G (c p, c„) and i£c, t/ien 

lim, л I = (a'"' — E ot/)*)limpz + ^ 
t t 

Proof. We apply 2.6, 4.3, 4.4 and the fact that lim^A С c^. 

Corollary 4.6. A matrix A £ (c p, c) if and only if the following 

statements are true: 

(i) 3 limAet =: ak, к £ N, 

(ii) 3 limAp =: <ipl, 

(iii) E I a"* I pk = °(1)' 
к 

For every x £ c p  

limAx = (apl - y^ajb^)limpx + a k x k .  
к к 

Theorem 4.7. A matrix Д = (o nt) £ (cv, c„) if and only if the 
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following statements are true: 

(i) Э limpet = «?, к € N, 

(ii) 3 lim^Ai/-1 := lim — Y a" ", 
" 7r" t 

(iii) 3 lim„Ae := lim — an k  =: a l ,r, 
" Жп к 

(iv) ]г!^11 = оы. 
t V k  

Proof. This follows from 4.3 by 4.2. • 

Applying the expression for x € c" (see 3.4) we have the next 

Proposition 4.8. If A £ (с",сп) and x € c" then 

lim„4Z = a1 "limx + (a" * — У —)i/(i) 4- У — vk(x). 
к " k к Vk 

Corollary 4.9. Let ТГ 6 CQ. Then 

limA/3 = 0 Vie(c p,c,) 

and 

\imAV~ 1  = limAe = 0 Vie(c",ci). 

Proof. The condition (ii) of 4.6 implies the first assertion. The second 

assertion follows from the conditions (ii) and (iii) of 4.7. 

Theorem 4.10. A matrix A € (an k) 6 (m p,c7 r) if and only if the 

following statements are true: 

(i) 3 limpet = a£, к G N, 

(ii) E I a n k  I p k  = 0(?r„) (or E I ajf I pk  < oo), 
Л fc 

(iii) lim^ | — - | p* = 0. 
" к " 

Proof. This follows from 1.2 by 4.1. 
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Proposition 4.11. If A E (m p,cw) and x E m p  then 

Iim,Ax = E ак хь-
к 

Proof. This follow from 1.2 by 4.1. 

Theorem 4.12. A matrix A = (a„k) E (m", c,) if and only if the 

following statements are true: 

(i) 3 limpet = a£, к € N, 

(ii) ^Kii = 0K) {^KJ<4 

к Uk к Vk 

(iii) lim ̂  | - a£ | — = 0, 
" * I/jfc 

(iv) 3 lim„Ae = <il7r-

Proof. Theorem 4.10 implies this assertion by 3.5 and 4.2. 

Proposition 4.13. If A € (m", c,) and x £ m" then 

lim„A-r = a1,rlimx + V —vk(x). 

к Uk 

Proof, x £ m" х = z + £e, z £ m„ - i ,  £ = limx 

<=> z = x — £e =$• lim,Az = lim,Ai — £ Ит,де <=> 

•<4- lim, ax = lim, а г + f lim, ас = 

= Е afc( xt — £) + a1* lim а: = ̂  —uk(x) + a1,r lim; 

5. Mappings A E (X,cx) 

The examination of the matrices A £ (X, cA) has some additional 

complications. Lemma 4.2 is expediency, but because of the structure of the 

space cx (the space of images) the futher argumentations are necessary. 
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Theorem 5.1. A matrix A = (an k) £ (cp,cA) i/ and only if the 

following statements are true: 

(i) Aek £ cx, к £ N, 

(ii) Ap £ c\ 

(iii) E I an k  I pk  = 0(1) (or ^ | ak  \ pk  < oo), 
/к к 

(iv) AN  I ank - AJB I Pk = ̂  I ЛА( с*) I Pk = 0(1). 
к к 

Proof. By 4.2 and the equality c p  = cg p  ® <p> it is true that 

A £ (cp,cA) { 
A £ (cop, ^ )) 

Ap £ cA. (ii) 

Definition of the space cA implies that 

<£> 

f 3 limAz Vx £ c0p, (1) 
A € (c„p,cA) { 

I ЗА AX VZ E c 0 p. (2) 

Corollary 4.9 implies that 

f 3 lim Aet = a*, fee N, (i) 
(1) •*=> s 

l Et I "nt I Pk = 0(1) (iii) 

and 

(2) «Ф- 31im^ A„(n„t — ak)xk  Vx G c0p «• 
" к 
3 lim n  A„(o„t - Ot) = Ax(et), & € N (i) 

. E*An I a„t -ak\ pk =0(1). (iv) 

Thus the theorem is proved. 

Remark. It is possible to formulate Theorem 5.1 as follows. 

The matrix A = (a„t) £ (c p, cA) if and only if the following statements 

are true: 
(0 EI °k I pk < 00' 

к 

(ii) ® = (ßnk) £ (с,с), 

where 

ß n k  =  A„(o„t - a k ) p k ,  a k  = lima n k . 
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Proposition 5.2. If A £ (cp,cA) and x € c9  then 

Л А(з) = (Л А(/>) - A A(ejfc)/9fc)lim px + ̂  A A(e*):r*. 
* * 

Proof. This expression for A a(X) Vx € c p  follows from 2.6 and 5.1. • 

Since A £ (cp, с") С (c p,c) we get the next corollary. 

Corollary 5.3. If A € (cp,c x) and x £ c p  then 

lim Ax = 
к 

Proof. The condition (iv) of 5.1 implies 

lim AP = 
к 

Our assertion follows now from 4.6. 

Theorem 5.4. A matrix A = (a n k) £ (c",cA) if and only if it  satisfies 

the following conditions: 

(i) Ae* £ c\ fc £ N, 

(ii) At/-1 £ c\ 

(iii) At £ cA, 

(iv) V^il = o(i) (огуЫ<оо), 
k Vk и Uk 

(v) A„ V 1 1 = y l  A ^ ( e * ) l  = 0(1). 

* Uk к Vk 

Proof. This follows from 5.1 by 4.2 since c" — c„-i ©<e>. 

Remark. This theorem for monotonic speeds v and A was proved 

by G.Kangro in 1969 (see [5]). We could formulate Theorem 5.4 in the 

similar way as we did by 5.1. 

A matrix A = (a„*) £ (c",cA) if and only if the following statements 

are true: 
(i) Ae £ c\ 

(ii) У < oo, a k  = lima n l t, 
l/t n 

к * 

(iii) а = («*„*) e (с, с), 



where 
Xn(®nk öfc) On* := • 

Vk 

Proposition 5.5. If A £ (c",cA) and x £ c" then 

limAx = о lim I + ̂ ^ak{xk — limx), 
к 

where a := lim Ae . 

Proof. This result follows from the expression of x £ c" by applying 

condition (iv) of 5.4. 

Proposition 5.6. If A £ (c*,cA) and x € c" then 

AA(x) = AA(e)limx + (AA(I/-1) - V] -^^)i/(x) + У Лл(е*)^(j). 
V  T u t  ' к V k  

Proof is the same as the previous one applying only (v) instead of (iv) 

from 5.4. 

Corollary 5.7. If A £ (c",cA) and x £ c0 П c" </ien 

lim Ax = 
fc 

especially 

lim Ai/ - 1  = У —. 

Proof. This follows from 5.5 and from equality lim i/-1 = 0. 

Theorem 5.8. A matrix A = (anjfc) £ (mp, с л) i/ ond only if it 

satisfies the following conditions: 

(i) Aet  € cA, fc £ N, 

(ii) 52 I a„* I p* = 0(1) ( o r  I I P k  <  oo), 
к к 

(iii) 5Z I Лл( е*) I Pk =0(1) (or E ! A A(e f c) | p k  < oo), 
к к 

(iv) HmI A A(e t) - A A(e*) | pk = 0. 
к 
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Proof. 

f  3 limAx Vi 6 mp, (1) 
A 6 (m„, с ) 44- < _ 

1 3AA(x) VI 6 m p. (2) 

31im Aeifc, к 6 N, (i) 

(1) O- { Et I a-t I Pt = 0(1), (ii) 

lim„ I "nt - at I pk = 0. (a) 

Since (mp,cA) С (m p,c) then by 1.2 and 4.1 

limAi = «tu VI € Шр. 
к 

Thus 

(2) О 3Aa(i) = limA n  52(a n* - a*)ijt = lim^ A^(e*)it Vi G m p  

к к 

(A A(et)) e (m.p,c) 

( 31im„ A^(et) = \(ek), (i) 

j Et I AÄ(et) I Pk = 0(1), (iii) 

I lim„ J2k I AA(et) - Ад(ец) | p k  = 0. (iv) 

Since lim A = oo then (iii) implies ( a ) and we get the assertion. 

Remark. We give an another formulation for this theorem as we did 

by 5.1 and 5.4. 

A matrix A — (an k) € (mp,cA) if and only if the following statements 

are true: 
(i) E I «nt I Pt < oo, at = limant, 

t " 

(ii) <B = {ßnk) G (m,c), 

where ßnk  as by 5.1. 

Proposition 5.9. If A £ (m p,c x) and x G m p  then 

limAx = E«t it 
к 

AA(I) = У,АА(Е0И. 
к 
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Proof. The first assertion WEIS shown in the proof of 5.8. For the second 

assertion we must verify that 

limA^(z) - limАд(е*)х* = \ A(e k)x k. 
" n  к к 

This follows from (iv) of 5.8. 

Theorem 5.10. A matrix A = (a n*) G (m",c ) if and only if it 

satisfies the following conditions: 

(i) Ae k  6 c A, к С N, 

(ii) Ae G c x, 

v-> I an* I 1 I a* I ^ i (Hi) > = 0(1) (or > < oo), 
* V k  T "* 

(iv) ^Ш1 =  0 ( 1) (or^ | Л л ( е* } |  < oo), 
t 1 / 4  

l i m y l ^ ) - A ^ t ) l = 0  

" Z7 V  uk 

Proof. The assertion follows from 5.8 and 4.2. 

Remark. We formulate theorem 5.10 in another way as we did by 5.4. 

A matrix A = (a nk) G (m",c A) if and only if the following statements 

are true: 
(i) At G c\ 

(Ü) y!^l<=o, 

(iii) 21 = («„*) G (m,c), 

where o„k as by 5.4. 

This formulation (and similar formulations for 5.1, 5.4 and 5.8) de

monstrates the importance of matrix 21 for studying of the matrix 

A G (c",cA) and A G (m",cA) . This matrix 21 was used already by 

G. Kangro in [4,6]. The same role has the matrix 93 by matrices 

A G (cp,cA) and A G (mp,cx) . 

Proposition 5.11. If A £ (m",cA) and x G m" then 

lim^i = E at(xfc — limx) + a limx, 
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where 

at = lim a„k = linnet, a = lim 52 ant = limAe. 
" t 

Proof, x 6 m" =Ф- x = z + £e, г € т,-1, £ = lim ж z = x — £e. 

By 5.9 we have 

Итдг = lim Ax — £ Итде - atz* 

lim л i = 52 at(it — limx) + a limx. 
к 

Corollary 5.12. iet Аб(т',с*). Then 

Кшда? = y^dkXk 
к 

if (a) x 6 то" П со or (b) x 6 m" and x(A) = a — at = 0. 

Proof, (a) It is clear. 

(b) x(A) = 0 implies Итде = Et a*- The assertion follows now 

from the relations M" С с and X = u + £e, И 6 CQ . 

Proposition 5.13. If A £ (т",сл), x 6 m" and. Ьтдх = atxt 

then 

Aa(X) = E -*u(et)xt. 
t 

Proo/ is the same as by 5.9 applying (v) of 5.10 instead of (iv) of 5.8. 

6. Mappings A € (X,m„) 

By Lemma 4.1 Theorem 1.3 implies immediately the next theorem. 

Theorem 6.1. The following are equivalent: 

(i) A 6 (mp,mn), 

(ii) A 6 (cp,m„), 

(iii) A € ( с о Р , т ж ) ,  

( i v) 53 I " n t  I =  

к  
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Since mA = тд-i ф<е> and c A  = c A-i ® <e> then by Lemma 4.2 

we get from 6.1 (taking p = ) the next assertion. 

Theorem 6.2. A matrix A = (ank) £ (m",m, r) = (с",тж) if and 

only if it satisfies the following conditions: 

(i) At £ mn, 

( Ü )  £  — =  
к Vk 

7. Mappings A 6 (X,m A) 

In this section we shall consider the mapping-theorems of type 

(X, m A) : (rn p, m A) — Theorem 7.1; (m",mA) — Theorem 7.3; (cp,mA) 

— Theorem 7.5; (c",mA) — Theorem 7.8. The representations for func

tional limA are given by Propositions 7.2, 7.4, 7.7 and 7.10. 

Theorem 7.1. A matrix A = (a„k) £ (m p,m ) if and only if the 

following statements are true: 

(i) 3 limAe/c = at, к £ N, 

(ii) 52 I ant I P k  =  0(1) (<"• 52 I a k  I p k  <  °°)' 
к к 

(iii) A„ 52 I a n k  -  o - k  I P k  = 52 I ^ л ( е к )  I Pt = O(l). 
t t 

Proof. 

A 6 (m p,m x) j 
d lim Ax Vx £ mp, (1) 

AA(X) = 0(1) Vx £ mp. (2) 

13 limAejt, fc £ N, (i) 

Et I a n k  I P k  = 0(1), (ii) 

lim„ 53t I "nt - a/t I P k  = 0. (a) 

(2) AA(X) = An(52 °ntxt - limAx) = 
t 

= 52 Xn(a„k - at)xt = 0(1) Vx £ mp O 
t 

О (A n(a„* - a*)) £ {m p,m) 

A n  52 I a n k  -  a k  I  P k  =  52 I Х л ( е к )  I Pk  = 0(1). (iii) 
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Since lim A = oo then (iii) implies (a) • . 

We can formulate this theorem as following. 

A matrix A G (mp,mA) if and only if the following statements are 

true: 
(i) E I °* I Pk < 00' 

к  

(ii) 93 = (ß n k ) G (m,m), 

where 

ß n k  = An(flnt 0>k)pk ~  Х д ( е к ) р к ч  ®k -  lim d n k  •  

Proposition 7.2. If x e m p  and A G (mp, mA) then 

limAx = y^aicXk-
к 

Proof. Since (m p,m A) С (m p,c) then Proposition 4.12 (тг = e) 

implies the assertion. 

Theorem 7.3. A matrix A = (a„k) G (m",mA) t/ and only if the 

following statements are true: 

(i) 3 limAet = at, к G N, 

( i i )  ^1^1-ом (.,E 1^ J<~). 
к  *  к  *  

(iii) А„У =yl^£*li = Q(1)i 

* ^ t 

(iv) Ae G mA. 

Proof. The assertion follows from 7.1 by Lemma 4.2 and the equality 

mA = mx-1 ®<e>. • 

This theorem for monotonic speed was given by G.Kangro (see [7]). We 

can give to this theorem the similar formulation as we did by 7.1. 

A matrix A G (m",mA) if and only if the following statements are 

true: 
(i) Ae G mA, 

.... T—V I at j 
(и) X < oo, at = lim a„t, 

к Ui 

(iü) 21 = (~~) e (c'c)-
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Proposition 7.4. If A 6 (m",m x) and x E m" then 

lim a i  = a lim a: + 52 —vk(x). 

Proof. This follows from 4.13 (by ir = e ), since (m",m ) С (m",c). 

Theorem 7.5. A matrix A — (ant) 6 (cp,mA) if and only if the 

following statements are true: 

(i) 3 limAet = a*, fc € N, 

(ii) E I I = 0(1) (or у I °* I P k  < oo), 
fc fc 

(iii) An 52 I a>»t - I p k  =  52 I АлЫ I Pk  = 0(1). 

Proof. 

{3 lim a i Vx 6 Cp, (1) 

AJ(®) = 0(1) Vx 6 Cp. (2) 
A 6  (Cp,m )  

!

3 limAet = ak, к € N, (i) 

3 limAp, 

Et I °nk I Pk = 0(1). (Ü) 

Since (ср,тл) С (Cp,c) then by 4.6 

Нтдх = 52 ak xk Vx 6 cop. 

Thus 

and 

AA(x) — ^ ' An(ant at)xt Vx £ cop 

(2) 

«• 

Aa(P) = 0(1), 

52 An(ant - at)xt = 0(1) Vx 6 c0 p ,  

к 

Aa(p) = 0(1), 

(A n(ont at)) € (соp,m ), 
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<=> 
\"A(p) = 0(\), 

I &k I Pk =  0(1). (iil) 

Since lim Л = oo then the last condition implies that exists 

YIIUAP = lim 53 ankpk = 53 a kP k-
к к 

Hence 

^a(p) - 53(a n f c  - a k)pk 
к 

and (iii) implies Л\(p) = 0(1) . The proof is completed. 

Corollary 7.6. (m p,m x) = (c p,m A). 

Proposition 7.7. If x & c p  and A £ (c p,m ) then 

limAz = У at^t-
к 

Proof is the same as for 5.3. • 

As by 7.1 the Theorem 7.5 can be formulated in the another way. 

A matrix A £ (cp, mA) if and only if the following statements are true: 

(i) 53 I a* I < oo, 
к 

(ii) ® = (ßnk) £ (c,m), 

where ßnk — An(ant at )pt and at — limn ant> 

Theorem 7.8. A matrix A = (a„t) £ (c",mA) г/ and only if the 

following statements are true: 

(i) At  6 m A, 

(ii) 3 limAet = at, fc £ N, 

,.... I a"k I . , v v I at I x (">) У = 0(1) (or > < oo), 
t t "* 

(iv) a„ у 1 a"* - a* 1  =  У  Ü & * I 1  =  Q ( 1 ) .  

к " k  к V k  

Proof. This follows from 7.5 by 4.2. • 
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For the last theorem we can use the similar formulation as we did by 

A matrix A = (ank) £ (c", mA) if and only if the following statements 

are true: 
(i) Ae £ т Л, 

(ii) V =  °(1)' = lima„t, 
* " 

(iii) Я= £(c,m). 
\ vk  / 

Corollary 7.9. (с",тл) = (т",т л). 

This assertion is given also in [8], p.138. 

Proposition 7.10. If x € c" and A 6 (с",тл) then 

where 

a = Нтде = lim ̂  a„*. 

" * 

Proof. Since (c",mx) С (c",c) then by 4.8 (TT 

НШАХ = a limx + —vk(x) + (lim ^ 

The condition (iv) of 7.8 implies (lim Л = oo) that 

" * 

Proof is completed. 
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Maatriksteisendused järgu-ruumide 

ja kiirusega ruumide vahel 

E. Jürimäe 

Resümee 

Käesolevas artiklis on vaadeldud maatriksteisendusi у = Ах , kus 

А = (a nк), x = (г*) G X, у = (t/„) 6 Y ja 

Уп = 2_,a n k x k ,  k ,n  € N. 
к 

Ruumideks X ja Y on järgu või kiirusega määratud jadaruumid 

(p.2 — 3). Kiirusega ruumide ( cA ja mA ) mõiste pärineb G.Kangrolt 

(1967). Järgu-ruume vaatles 1989.a. J. Sikk. Siinkasutatud definitsioon 
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erineb mõnevõrra tema omast, kuid sisuliselt 011 mõlemad definitsioonid 

samaväärsed, kuigi tema oma on antud mõnevõrra üldisemana, lähtudes 

rakendustest. Käesolevas on vaadeldud järguruume с р  ja m p  . Kogu 

käsitluse aluseks on p.3 tõestatud lihtsad seosed (Th. 3.2 ja Th. 3.5) 

järgu-ruumide ja kiirusega ruumide vahel. 

Olgu ,Y ja Y  mingid jadaruumid. Sümboliga ( X , Y )  on tähis

tatud  n e n d e  m a a t r i k s i t e  A  k l a s s i ,  m i s  k u j u t a v a d  r u u m i  Ä "  r u u m i  Y  .  

J. Sikk [9] näitas, kuidas klassikalisi maatriksteisenduste kohta tun

tud teoreeme üle kanda järgu-ruumide juhule. Käesolevas artiklis esita

tud seosed järgu- ja kiirusega ruumide vahel võimaldavad neid klassika

lisi teoreeme laiendada juhtudele, kus nii X kui ka 1* 011 kas järgu-

ruumid ( mp või cp ) või kiirusega ruumid ( mA või cx ). 

Kui kujutis j = (j„) e c, kus тг = (тг„) ning тг п  > 0 , siis on 

tema puhul oluliseks suuruseks 

l im^y l im„(y„/7r„) .  

Kui aga on tegu kiirusega ruumiga с л  , kus Л = (A„) ning 

A„ > 0, A„ —> 00 , siis vastavaks oluliseks suuruseks on 

А (у) := lim А п(у п  - limy). 

Juhtudel А £ (Х,с„) on leitud, kuidas avalduvad suurused 

l im^A^ := l im„ y ,  x  6  X ,  

kus у = Ах . Juhtudel А € (Y,cA) on aga leitud sama suuniste 

limAZ := limy ja Ад(х) := А (у), x € Y, 

korral. 
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1994, 970, 53-64 

Properties of domains of matrix mappings 
on rate-spaces and spaces with speed 

E.Jüri mäe 

1. Introduction * 

We shall consider the matrix mappings у = Ax i.e. 

У п = ^ 2 а п к Х к ,  к  € n, 
к 

where A  =  (a n k ) ,  x  =  ( x k )  €  X  and у  = ( y n )  G Y .  The purpose of 

this paper is to study properties of these mappings, where X and Y are 

rate-spaces or spaces with speed (see [5]). 

Let Tr = (тг„) be a sequence of positive numbers and ui be the set of 

all sequences of complex numbers. Then the sets 

m„ : = {x = («„•)€ w I ( —) € m), 

с* {x £ m* I 3 lim,® lim —} 
" 7гп 

are BK-spaces with norm 

II x 11*:= sup I ~ I . 
n TTn 

We call them "rate-spaces" (spaces with rate n ). These sets are closely 

connected with spaces сл  and mx  (see [5,6]): 

m x  :={x = (x„) 6 с I (\ n(x n  - limx)) 6 m}, 

cA :={x = (xn) 6 с I (A„(xn  - lim x)) 6 c}, 

* This article was in part prepared while the author spent a visit to 

FernUniversität at Hagen supported by DAAD. 
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where Л = (A„), A„ > 0 and lim A := limn An = oo. The connection 

between the rate-spaces and the spaces with speed is grounded on the equa

lities cA = ca-i ®<e> and ma = тд-i ©<e>, where e = (1, 1,...) and 

These spaces are called "spaces with speed A ". The properties of the 

rate-spaces and spaces with speed are considered in [5] (see also [6]). 

In this paper we shall study matrix mappings connected with rate-

spaces and spaces with speed. Some facts on topological structure of the 

sets, the domains of A , 

are presented in section 2. A definition of conullity for general summability 

methods was given in [2]. A similar definition is used in section 3. The 

necessary and sufficient conditions for the different kind of conullity, which 

are connected with different classes of matrices A 6 (X. Y) i.e. у = Ax G 

У for any x £ X , are also given there. 

It is a well-known fact (theorem of Steinhaus) that A G (m, c) implies 

x(A) = 0 i.e. A is conull. In the last section 4 the similar facts are 

obtained for A G (X, Y) , where X — mp or m" and Y = cn or сл  . 

2. Domains С жА and c\ 

In this section we consider the topological properties of C wA, r\ and 

their continuous duals. Many of the mentioned facts follow immediately 

from the general theory of K.Zeller (see [9], §§4-5 or [8], section 4). 

For any x 6 c„a there exists the functional 

The sets mx and сл  are Büf-spaces with norm 

II x ||A= sup{| An(z) I, I limi I I n G N}, 

where 

\ n { x )  = A„(z„ — limx) and limx:=limi„. 

СжА :={z G u> I Ax G c„}, 

c\ :={x G w I Ax G cA} 

lira, a I := lim — ankxk » *»r 
1 
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Proposition 2.1. Domain C„A u on FK-apace with seminorms 

p0(x) = sup — | y" anfczjt i, 
n 7T„ t 

p2n(x) = i in i, n e n, 

p2n-l(l) = sup i ^on*xjfc i, 71 € n. 
m t=l 

Proposition 2.2. Every f 6 (сжа)' Лал the representation 

f ( x )  =  +  /LTn53 ""t1* +  (1) 
fc п к 

where 

(т„7t„) 6 /, (t„) 6 (с„а)Д and /i G C. 

Definition 2.3. A matrix A is called c^-reversible if for each 

у £ с ж  there is a unique x such that Ax = у . 

Proposition 2.4. If A is c*-reversible then C„A " a BK-space 

with norm Po(x) and every f E (C,A)' Лал a representation (1), where 

t k  = 0 vä: 6 n. 

The matrix M = where 

Tfc, fc < n. 

/*» Ä: = n. 
0, fc> n, 

and fi ф 0, (тк) G. I, is called Mazur matrix. It is a well-known fact that 

см = с . 

Theorem 2.5. If M = (m„t) u a Mazur matrix and 

Q _ 
Pk  

then CjrQ — cp. 

Proof. 

v v 1 ""nllnt .. v it lim„Qi = hm— > i/t = hm > т„*—. 
" t n  ъ Pk "  ̂  Pk 
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Theorem 2.6. For each f £ {сжа)' and for any rates ж and p 

there exists a matrix В with с рв Э c„A and linipBJ' = f(x) Vx 6 <VA-

If f has a representation (1) with p ф 0 then there exists a matrix В 

with c pB = c„a and lim„gi = f(x) Vx € C,A-

Proof. We consider the matrix M = (mnt), where (r„) and /v are 

from (1). By this matrix M we determine the matrix D = (mnk/iTn) and 

then С = DA = (cnk). We shall get the required matrix В — (bnk) by 

taking 

where (<*) is from (1). 

The second part of the statement follows from the fact that by p ф О 

the matrix M is Mazur matrix and thus см = с. 

Corollary 2.7. For every f £ (C„A)' there exist matrices В and D 

such that f has the representations 

f ( x )  =  lim,Bx Vi £ c,A, 

f ( x )  = limyx Vx £ Cir 4. 

Proof. For the first case we take p = n in Theorem 2.6 and for the 

second case p = e. 

Corollary 2.8. Let p be a rate. Then for any f € (cw)' there, exists 

а. matrix В such that 

If р. Ф 0 in the representation of f then there exists a corresponding В 

/(x) = limpsx Vx £ c„. 

with CPB = CJR • 

Now we consider the domains Сд . For any x £ there exist the 

functionals 

к 

к 

56 



Proposition 2.9. The domain c\ is an FK-space with the seminorms 

q0(x) = sup{|A^(x)|, |limAx| | n 6 N} 

and p2n(x),p2n-i(z),n 6 N. 

Proposition 2.10. Every f 6 (cA)' has a representation 

f(x) = 53 tkxk  + 53 Tn\n
A(x) + Ц\А{Х) + (TlirtiAi, (2) 

к n 

where 

г £ /, t 6 (c^)'9  and /act € C. 

In [3] the next assertion was proved. 

Proposition 2.11. Let \ be a monotonic speed i.e. A„+i > An 

Vn 6 N. ГЛеп /or ewen/ / £ (ca)' there exists a matrix В with 

Cg Э Ab(i) = /(x) Vx £ Сд. If f has a representation with ß ф О 

then there exists a matrix В with Cy = Сд and Ая(х) = /(x) Vx £ Сд. 

Questions: 7. /s the last assertion true without assuming of mono

tony? 

2. Does there exist for every f 6 (cA)' and for a given speed v a 

matrix В with с"в  Э c\ and i/g(x) = /(x) Vx 6 Сд ? 

In [10] K. Zeller has shown that for every unbounded sequence A there 

exists a regular normal matrix D = (dnfc) such that с о = с © < A > and 

limy A = 0. Applying this result W. Beekmann and S.-C. Chang (see [1]) 

have shown that for each matrix A and speed A there exists a matrix 

E = (e„t) such that eg = c\. These matrices A and E are connected 

with the equality 

E = D diag(\k) • A, 

consequently, 

A = diag(l/\k) • D~ l  • E. 

Every f 6 (eg)' = (с\У has the representations 

f ( x )  =  5 3  i f c X *  +  5 3  5 3  е " * з : *  +  Д 1 ' т Б х  =  
к n к 

= 53 tkXk + 53 t"^A( x) + V^A(X) + CTlimAx. 
к n 
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It can be realized so that 

fl — <7 — ^ '  tn  ^ 
n fc 

Tfc — ^ ' Tndnk and tk ~ ik. 

From this facts we get the next propositions. 

Proposition 2.12. For every f 6 (сд)' and for every rate я there 

exists a matrix В with сжд 3> Сд, lim,ryx = /(x) Vx £ Сд. // / Aas a 

representation with p. ф 0 t/ien <Aere exists a matrix В with („в = Гд 

and lim^BX = f(x) Vx 6 c\. 

Proof. 1) Let 7Г = e . Then the assertion follows immediately from the 

facts given above. 

2) Let 7Г be an arbitrary rate. Then we take В = Q • E , where 

Q = (7Tnmnt) (see Theorem 2.5). By 2.5 (if p = e ) we get the statement. 

Proposition 2.13. For every f 6 (C„a)' and for every monoto-

n i c  s p e e d  A  t h e r e  e x i s t s  a  m a t r i x  В  w i t h  c . g  Э г„д  .  Ад ( х )  =  Дх )  

Vx 6 Стгл . // f has a representation with ц ф 0 then there exists a 

matrix В with eg = c„a and Ag(x) = f(x) Vx 6 с„л-

Proof. This statement follows from the above-mentioned facts and Pro

position 2.11. 

3. Conullity of matrix mappings 

The notion and the importance of "conullity" for conservative matrices 

are well-known (see [8]). It must be pointed out, that the notion of conullity 

for conservative matrices is connected with the summability domain as an 

FK-space. Our notion here is connected with the mapping A : X —> Y i.e. 

it is depending on the both rooms X and Y . This means that conullity 

of a given matrix A is not determined only by the properties of the domain 

of this matrix (cf. Theorems 3.5 and 3.6). A given matrix . A can be conull 

for one type of mapping but coregular (i.e. not conull) for the another type. 

We shall consider only the cases, where X mid Y are spaces c„ or c\ 

So we shall study only four types of conullity, though the definition gives us 

much more possibilities. 
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Let A G ( X ,  Y ) , where X  is a space of type c p  or rA . We denote 

Ya \= {r € u> \ Ax e У}. 

By we denote the section of sequence x i.e. 

:= (xi,... ,x„,0,0,...). 

Definition 3.1. Let A 6 (X, Y) and, X = cp or X = cp ®<u>. 

Then a matrix A is called (X, Y)-conull, respectively, (X, Y)-coregular if 

pI") —» p weakly in YA  , respectively p weakly in У4 . 

Corollary 3.2. If X = с (i.e. p = e ) and Y = с then we get the 

definition of the ordinary conull matrix. It is wellknown that A is conull 

(in our terms (c.c)-conull) if and only if 

X(A) := а = limAe - ̂ limAe* = 0. 
к к 

Corollary 3.3. If X = c x  (i.e. p = a - 1  g co j and Y — cx  then 

we get the. definition of the \-conull matrix (see [4,6]). It is known that A 

is X-conull (in our terms (cx  ,cx)-conull) if and only if 

* ( A ) : =  Ал (А- ' ) - £ М^ = 0 .  
v л* 

These constants x(A) and Ф(A) are called as the characteristics of 

the given matrix A . We shall consider that kind of characteristics also 

in other cases. These two special cases indicate that the characteristic is 

expressed by functional lim^A when У = c„ , and by \A when У = сл  . 

The following discussion shows that it really is so. 

Lemma 3.4. I f  A  €  ( c p , c r )  ,  r e s p e c t i v e l y ,  A  G (сл, cT) then for any 

f G (спа)' a nd for any x G т рГ\сЖА, respectively, for any x G тд-i Лс,гд 

f ( x )  =  +  ц й т * А Х ,  
к 

where f.i £ С and s = (,s t) G (с„лПт р)^ ,respectively, s G (г,дПга д-1 )>*. 
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Proof. We use Theorems 4.3 and 4.7 from [5]. The condition 

x £ СжА Л mp  implies that the second member in the representation (1) 

of / (see 2.2) is absolute convergent and we can change the order of sum

mation. So the statement for the case A G (cp,cT) follows immediately. 

For the case A € (cA, c„) we get the same taking p = A-1 . 

Theorem 3.5. A matrix A G (cp,c„) is (ср,сж)-conull if and only if 

XcJ (A) := lim * Ар - 53 РкйтжАек = 0. 
к 

Proof. By Definition 3.1 and Lemma 3.4 matrix A is (cp, c„)-conull if 

and only if 

lim(53 S kPk  + -  53 = 0  

k>m fc—1 

since p G c^a П mp. The case /.t / 0 implies the statement. 

Theorem 3.6. A matrix A G (сл,с„) is (c x,c„)-conull if and only if 

X H ( A )  :=lim„aa-'-£*^=0. 
it k 

Proof is the same as for 3.5. 

By 5.3 from [5] the next lemma is true. 

Lemma 3.7. If A £ (ср,гл) then the series Ylk akPk м convergent 

limap = У ^ а к р к -
к 

Theorem 3.8. A matrix A G (с (,,сл) is (c p,c x)-conull if and only if 

xc,(a) := aa(p) - 53 pk^a(ck) - 0. 
к 

Proof. According to Definition 3.1 the assertion of this theorem is 

equivalent to the statement 

kmfip - 53 p t e*) =  0  V/ G  ( CA)'-
m  t=i 
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Applying condition (iv) from 5.1 of [5] we get by 2.10 and 3.7 that 

/(/>-53^* е*) = 53 t k p k +  53 53 T" A^( e*H + 
jb=l k>m k>m n 

+А 1( ЛА(Р) - 53 "M6* J1"*) + cr 53 
fc=l fc>m 

Our statement follows from this equality by p ф 0. 

Theorem 3.9. A matrix A £ (c",cA) i# (c",cA)-conull if and only if 

,;: (л):=лл(..-)-£уй! = о. 

* 

Proof. This statement follows from Theorem 3.8 and Definition 3.1 

since 

c" = c„-i ©<e>. • 

Next we shall consider some properties of the conullity in connection 

with different rates and speeds. Let X, Y and Z be rooms of type cp or 

Cp® <e> . If a matrix A £ (X, У) then we call X as " domain-room" and 

Y as "range-room". 

Theorem 3.10. // A  £ ( X ,  Y )  a n d  Z  ̂  X  t h e n  A  i s  ( Z , Y ) - c o n u l l .  

Proof. Let Z = cK (or Z = cK  ®<e> ) and X = cp (or X — cp  ф 

<e> ). Then Z С I implies that lim„(к„/р„) = 0 (see [5], Proposition 

2.8) i.e. к £ Co,, . So к has AÄ' in c0p . The fZ, conullity follows now 

immediately from Definition 3.1 and the relation cop С X С Ya-

Theorem 3.11. If A is (X,Y)-conull and Z э Y then A is (X,Z)-

conull. 

Proof. The assertion follows from the fact C P  С YА С ZA • • 

Let p  —  ( p n )  and к = (к„) be two different rates. We say that p  

is greater than к if 1т1п(к„/р„) = 0 i.e. ск С Cp. In this case we write 

к -< p. 

In view of properties of the rate-spaces (see [5]) we can formulate theo

rems 3.10 and 3.11 as follows. 

61 



/ /  A  E  ( X , Y )  t h e n  t h e  d e c r e a s e  o f  t h e  r a t e  ( o r  t h e  i n c r e a s e  o f  t h e  

speed) of the "domain-room" turns the matrix A into conull of the corres

ponding type. 

If A is (X, Y)-conull then the increase of the rate (or the decrease of 

the speed) of the "range-room" does not change the comdlity. 

Examples. 1. Let A E (c, c). Then A is (cx,c)-conull for any speed 

A and (cl>,c)-conull for any rate p with lim p = 0. 

2. Let A be. \-conull i.e. (сл,сл)-conull. Then A is (с х,с и)-conull 

for any speed ц -< A . 

4. Theorem of Steinhaus type 

In 1911 Steinhaus proved that any regular matrix cannot sum all boun

ded sequences. This fact was generalized by A. Wilansky. He has shown 

that the relation c\ 3 rn can be true only for conull matrix A (see [7j). A 

very simple and impressive proof for this theorem was given by G. Kangro 

in his lectures. We use the similar proofs to show that the theorem of 

Steinhaus is true also for another type of mappings. 

Theorem 4.1. The following statements are true: 

Proof, (i) A 6 (m„,c^) => A E (cp,cw). Then by Theorem 4.10 from 

[5] the matrix A satisfies the condition 

(iii) A E (mp,cX) =>• 

(iv) A 6 (m", сЛ) =S> 

(i) A E (m p,c n) ==* 

(ii) А € [ т " , с ж )  = >  

xt(a) = 0, 

Xp{A) = 0, 

X c
cJA)=0, 

X£(A) = o. 

к 

This implies that 

limwAP := limV^ — pk = Y* p/tiim* д 
" ̂  *n . 

Theorem 3.5 implies the assertion (i). 
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For remaining cases (ii), (iii) and (iv) the proof is the same applying 

Theorems 4.12, 5.8, 5.10 from [5] and the definitions of the corresponding 

characteristics from section 3. 
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Järgu- ja kiirusega ruumide vaheliste 

maatriksteisenduste väljade omadusi 

E. Jürimäe 

Resümee 

Käesolevas artiklis on vaadeldud maatriksteisendusi у = Ах , kus 

x = (xk) £ X , у = (yn) G У ning 

Уп = ̂ 2 ankXk, n,k G N. 
к 

Kui iga x  G X  puhul у  =  А х  G Y  , siis kirjutame A  G ( X ,  Y )  .  

Ruumidena X ja У on vaadeldud j ärgu-ruume c„ (lk. 53) või siis 

kiirusega ruume сл  (lk. 53). Kui maatriksi A korral У = c„ , siis 

kõneldakse väljast c„-A (lk. 54), kui aga У = cA , siis väljast (lk. 

54). Neid välju on vaadeldud kui FK-ruume, milles omakorda on vaa

deldud pidevate lineaarsete funktsionaalide erinevaid esitusi (p. 2 ). P. 3 

on pühendatud konullilisuse mõiste käsitlemisele erinevate maatrikstei

senduste korral. 

Definitsioon. Olgu A G (X, У) , kus X = c p  või X = cp  ф 

< и >. Maatriksit A nimetatakse (X,Y)-konulliliseks, kui jada p pu

hul kehtib nõrk lõikekoonduvus vaadeldavas väljas. 

Osutub, et väljade c„a puhul on konullilisus iseloomustatav funkt-

sionaali lim^A (lk. 54) väärtuste abil (teoreemid 3.5 ja 3.6), väljade 

c\ konullilisus aga funktsionaali A a (lk. 56) väärtuste abil (teoreemid 

3.8 ja 3.9). 

Aastast 1911 on teada fakt, mida tuntakse Steinhausi teoreemina. 

Kaasaegset terminoloogiat kasutades on see formuleeritav järgmiselt. 

Kui maatriks A teisendab kõik tõkestatud jadad koonduvaiks, siis 

on ta konulliline. 

Käesolevas töös (p. 4 ) on analoogilised väited tõestatud kõikvõima

like kombinatsioonide korral, kus nii originaalide ruum kui ka kujutiste 

ruum on järgu- või siis kiirusega ruumid. 
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ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS 
1994, 970, 65-72 

Inclusion theorems for some sequence spaces 
defined by a sequence of moduli 

Enno Kolk 

1. Introduction 

Ruckle [5] and Maddox [3] used the idea of modulus function to const

ruct new sequence spaces. 

Definition 1. A function f : [0, oo) —> [0, oo) is called, a modulus if 

(a) /(<) = 0 if and only if t = 0 , 

(b) f ( t  + u) < f ( t )  +  /(u) for all t > 0,u > 0 , 

( c )  /  i s  i n c r e a s i n g ,  

(d) f is continuous from the right of 0. 

It immediately follows from (b) and (d) that / is continuous every

where on [0, oo) . A modulus may be unbounded or bounded. For example, 

f(t) = tp (0 < p < 1) is unbounded but f(t) = t / (1 + <) is bounded. 

For a certain sequence space X of real or complex numbers and for a 

modulus / , Ruckle and Maddox considered a new sequence space 

X ( f )  =  { x  =  ( x k )  :  ( f ( \ x k \ ) )  e  X } .  

The extension of this definition was given in [2] (see also [1]) by replacing 

one modulus with a sequence of moduli. Thus for a sequence space X and 

a sequence of moduli F = (Д) , we define 

X ( F ) =  {* = (x t):(/*(M)) £*}• (1) 

It is not difficult to see that if X is a normal sequence space (i.e. (у*) б X 

whenever |y*| < |z*| (k G N) for some (it) € X ) then X(F) is also a 

normal sequence space. For example, the spaces m and cq of all bounded 

and of all null sequences, respectively, are normal. So 

m ( F )  =  { x  =  ( x k )  : supt/t(|it|) < oo}, 
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c0(F) = {x = (xk) : linu/idul) = 0} 

are normal sequence spaces. 

In the particular case /*(<) = f* (0 < p* < 1) the spaces m ( F )  

and c 0 ( F )  a r e  r e d u c e d  t o  m ( p )  a n d  c 0 ( p )  ,  r e s p e c t i v e l y ,  w h e r e  p  =  ( p t )  

(see [8,4]). 

Let A = (A*) be a real sequence with А* ф 0 (к € N) . For the 

sequence space X Sikk [6] introduced rate-space 

X \  = {x = (xjt) : (At!*) € X ) .  

If X  is here normal, then (A/tx k )  € X  is equivalent to (| \ /txt|) 6 X  

and so the rate-space X\ can be considered as the space X (F) , where 

f k ( t )  = |Ai|t . 

In [2,1] the necessary and sufficient conditions for the inclusions m С 

m(F) and CQ С CQ(F) were given. In this paper we shall examine ati :.c.it: 

inclusion relations between X and Y(F) , where X and Y aire one of 

the spaces m and со . At that we use the following characteristics of a 

s e q u e n c e  o f  m o d u l i  F  =  ( / * )  :  

(Ml) sup t  f k { t )  <  o o  (< > 0), 

(M2) lim (_o+ sup* f k ( t )  =  0 ,  

(M3) inf f k ( t )  >  0 ,  

(M4) lim,^oolim t/t(t) = oo , 

(M5) lim* f k ( t )  = 0 (f > 0) , 

(M6) limt f k { t )  =  oo ( t  >  0) . 

At this we shall regard that (M4) is satisfied also for 

1иш/*(*) = oo (t > 0) . 

2. Preliminary results 

First we formulate the two lemmas proved in [1]. 

Lemma A. The condition (Ml) is fulfilled if and only if there is a 

point i0  > 0 such that sup* /*(<о) < oo . 

Lemma B. The condition (M3) is fulfilled if and only if there exists a 

point t0  > 0 such that inf* ft(to) > 0 . 
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Along with a modulus we introduce the notion of a premodulus. 

Definition 2. A continuous function f : [0, oo) —> [0, oo) is called a 

premodulus if the conditions (a) and (c) of Definition 1 are satisfied. 

It is clear that every modulus is premodulus and there exist premoduli 

which are not moduli. For example /(t) = tp is a premodulus for all p > 0 

but it is not a modulus for p > 1 . 

If a premodulus / is strictly increasing and unbounded, then it is 

obviously invertible and so admits inverse function f~} which is also a 

premodulus. 

Let F = (-/*) be a sequence of strictly increasing unbounded premo

duli and G = (дь) a sequence of arbitrary premoduli. For two sequence 

spaces X, Y we consider the inclusion 

X ( F )  С Y(G), (2) 

where the spaces X ( F )  and Y ( G )  are defined by (1). If у  =  ( y k )  with 

Ук = fki\xk\) then \xk\ = fk\yk) = /Г'ОЫ) and so (2) is true when 

y € X ^ ( g k f ; l ( \ y k \ ) ) e Y .  

Thus (2) holds if X С K(GF -1) where F_1  = (/"') . 

Conversely, since for every г = (zk) G X we have |z*| = /*/*'(|г*|) 

with (/^'(1 г*1)) e X(F) then (2) implies (gkfk 1  (|г*|)> 6 Y , i.e. г G 

Y (GF~ l) . So X С Y(GF~ l) is also necessary for the inclusion (2). In 

fact, we have proved 

Proposition 1. Let X, Y be normal sequence spaces and G = (gk) 

a sequence of premoduli. For a sequence F — (Д) of strictly increasing 

unbounded premoduli the inclusion X(F) С F(G) holds if and only if 

X  с  Y ( G F _ 1 )  .  

Analogously we can prove 

Proposition 2. Let X,Y be normal sequence spaces and F = (Д) 

a sequence of premoduli. If G = (gk) is a sequence of strictly increasing 

u n b o u n d e d  p r e m o d u l i ,  t h e n  X ( F )  С  Y ( G )  i f  a n d  o n l y  i f  X ( F G ~ x )  С  Y  .  

Propositions 1 and 2 show that in the investigation of inclusion (2), 

the inclusions X С Y{H) and X{H) С Y where H = (hk) is the well-

defined sequence of premoduli play an essential role. In sections 3 and 4 
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we consider the previous inclusions where H is a sequence of moduli and 

1,У £ {m,c0} . It should be noted that these inclusions are trivial for one 

modulus since Co(h) = Co for every modulus h , m(h) = m for unbounded 

modulus h , and m(h) is the space ш of all sequences if h is a bounded 

modulus. 

3. The space m ( F )  

In [2,1] was proved 

Theorem A. The condition (Ml) is necessary and sufficient for the 

i n c l u s i o n  m  С  m ( F )  .  

Here we complement Theorem A. 

Theorem 1. The following statements are equivalent for a .«i~qv,enct 

o f  m o d u l i  F  =  ( f k )  :  

(a) m С m ( F )  ;  

(b) c0  С m ( F )  ;  

(c) (Ml) is satisfied. 

Proof, (a) => (b) is obvious. 

(b) => (c). Let со С rn(F) . If we suppose that (Ml) is not satisfied, 

then by Lemma A sup* /*(<) = oo for all t > 0 . Thus, there is an index 

sequence (ki) such that 

f k i { l / i ) > i  ( i  € N). (31 

Define xk  = 1/i for к — ki (i € N) and xk  = 0 otherwise. Then 

x = (z*) belongs to со . But by (3) we get x 0 m(F) , contrary to 

со С m(F) . Therefore, (Ml) must be satisfied. 

(c) =» (a) follows from Theorem A. • 

The necessary and sufficient conditions for the inverse inclusions are 

contained in the following two theorems. 

Theorem 2. The inclusion m(F) С c 0  holds if and only if (M6) is 

satisfied. 

Proof. Let rn(F) С c0  . If (M6) is not fulfilled, then there is a number 
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to > 0 and an index sequence ( k i )  such that 

/*ДМ < M < oo. 

In addition we can assume that N \ {fc,} is infinite. Now the sequence 

x = (xt) , where x* = t0  for к = ki (i £ N) and x* = 0 otherwise, 

belongs to m(F) . But x ^ Co . So (M6) is necessary for the inclusion 

m ( F )  С  c q  

For the converse, let (M6) be satisfied and let x  € m ( F )  , i.e. 

/t(|xjt|) < M < ос (fc 6 N). If I Co , then for some number £q > 0 

and index fco , |я*| > £o (fc 5 &o) • Thus 

f k { s n )  <  /t(|z*|) < M  <  oo (fc > fc0), 

contrary to (M6). Hence x £ со . This completes the proof. 

Theorem 3. The inclusion m(F) С m м voftd if and only i/(M4) г.ч 

ДТ/i/ led. 

Proof. Let m(F) С m . If (M4) fail« to hold, then the function h ( t )  —  

iim*/*(') must be finite and bounded. Similarly to Lemma В we can show 

that either h(t) — 0 (t > 0) or h(t.) >0 (t > 0) . In both cases 

there exists an index sequence (iii) and a number H > 0 such that 

h(t) = lim, f,it(t) < H (t > 0) . Thus for fixed e > 0 we can choose 

by induction an index subsequence (fc,) of (n<) with /*,(г) < H + £ 

(i £ N) . Define x* = i for fc — fc, (i £ N) and ,r* = 0 otherwise. 

T h e n  x  —  ( r t )  b e l o n g s  t o  m ( F )  .  B u t  x  £  m  ,  c o n t r a r y  t o  r n ( F )  С  m  .  

Consequently, (M4) must be satisfied. 

Conversely, let (M4) hold If x  £ m ( F )  and h ( t )  = limk f k ( t )  is 

finite, then there is a number P > 0 and an index fc о such that 

k(|xjt|) < /*(]я*|) < P (fc > fco). 

By the increase of h we have |xjt| < M (fc > fc0) where M = supjt : 

h(t) = P} . Hence x £ m . 

In case lirru A-(t) = oo (< > 0) , the condition (M6) is satisfied and 

the inclusion m(F) С m follows from Theorem 2. The proof is completed. 

Let p = (p t) with 0 < pt < 1 and f k ( t )  =  t ' k  . Since 

(1Ш кРк = Um< max{l,t} 
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for all t > 0 , then (Ml) is always satisfied and (M4) holds if and only if 

limtPt > 0 or, equivalently, iiift p* > 0 . So, from Theorems 1 and 2 it 

follows (see [8], Theorem 9) 

Corollary 1. Let p = (pt) with 0 < pt < 1 . Then m{p) = m if 

and only if inft pt > 0 . 

Let A = (At) be a sequence of real numbers with non zero elements. 

For fk(t) = |Ai|t (Jfc £ N) the conditions (Ml), (M4) and (M6) are equi

valent to supt |Ai| < oo, limf IAi.[ > 0 and lim* |А*| = oo , respectively. 

So, using Propositions 1 and 2 from Theorems 1-3 for rate-spaces we conclu

de (cf. [7], Theorem 8) 

Corollary 2. Let A = (At), /i = (fit) be two sequences with non-zero 

elements. Then 

(a) m x  С rrif , m ^ «- s u p t l ^ t A t ' l  <  o o  

(b) m\ С m„ mA(1_i С m hmtlAt^t'l > °' 

(c) (CO)A rTl f i  «• со С suptl^tAt 4 < oo. 

(d) С (со)й 

<=*• mA„-i ^ со •» lim*|At^t'1 = 

where A  1  =  ( A t ' )  o.nd p.X = ( f i t ^ t )  • 

4. The space Co(F) 

The following was proved in [2,1]. 

Theorem B. The condition (M2) is necessary and sufficient for the 

i n c l u s i o n  с о  С  c o ( f )  .  

Here we consider the inclusions M С c0(F), Co(F) С c0  and 

Co(F) С m . 

Theorem 4. The inclusion M С CQ(F) is true if and only if (M5) is 

satisfied. 

Proof. Let M С CQ(F) . If (M5) is not satisfied, then limt /t(<o) = 0 

fails to hold for some t0  > 0 . Thus the constant (and hence bounded) 

sequence x = (it) with xt = to (fc € N) does not belong to cA(F) . So 

(M5) must hold. 
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Conversely, if (M5) is fulfilled and x £ m then |x*f < M < oo (fc 6 

N) . So /t(|xt|) < /*(М) (fc e N) and i £ CQ(F) immediately follows 

from (M5). 

Theorem 5. The following statements art equivalent for a sequence 

o f  m o d n h  F  =  ( / t )  :  

(a) c0(F) С c a  ; 

fb) Cg(F) с тп ; 

(с) (M3) is fulfilled. 

Proof, (a) => (b) is obvious. 

(b) =>• (c). Let C<I(F) С m . If (M3) fails to hold, then by Lemma В 

inft/jt(t) = 0 (t > 0). 

Thus by induction we can choose an index sequence ( к г )  such that f k ( i ) <  

l/i (i £ N) . Now the sequence x = (xk) , where Xt = t for fc = fc, (i £ 

N) and xt = 0 otherwise, belongs to c0(F) . But x £ m , contrary to 
co(F) С m . Hence (M3) must be satisfied. 

(c) ==> (a). Let (M3) hold and let X £ CQ(F) , i.e. lim* /t(|xt|) — 0 . 

if we suppose that x ^ c0 , then for some number £0 > 0 and index fc0 

we have |xt| > £о (fc > ко) . Thus 

/t(eo) < f k ( \ i k \ )  (fc > fco) 

which implies lim* f k ( s o )  = 0 , contrary to (M3). Consequently, x £ c0 . 

The theorem is proved. 

In case /fc(t) = ft with 0 < pt < 1 (fc € N) , the condition (M2) 

reduces to inftpt > 0 . Hence from Theorem В we get (cf. [4], Lemma 1) 

Corollary 3. Let p = (pt) with 0 < p* < 1 . Then c0  С c0(p) i/ 

and. only if inft pt > 0 . 

For f k ( t )  = |At|t, At / 0 (fc € N) , the conditions (M2), (M3) and 

(M5) are equivalent to supt |At| < oo , inft |A*| > 0 and limt |At| = 0 , 

respectively. Thus, from Propositions 1, 2 and Theorems B, 4 and 5 it 

follows 

Corollary 4. Let A = (At), ß = (ßk) be the sequences with non-zero 
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elements. Then 

(a) (C 0 )A С ( c 0 ) p  C 0  С (СО) м Д_1 sup^tA^ 1] < oo, 

(b) (C 0)A С (C 0)P О ЫЛГ-I Я CO О INFT|AI/IJ L |  > О, 

(c) mx С (со),, О тС(с0)мЛ-1 -Н- limt^A^1  j = 0. 
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ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS 
1994, 970, 73-86 

Inclusion between the cores concerning 
summability methods (R,pk), (J,pk) and (/Q,Pt) 

Leiki Loone 

Let U.(то) be an arbitrary fixed left-hand neighbourhood of a number 

T0  6 R • Suppose that for every r € U-(r0) there is a matrix А(т) = 

("п*(т)) such that 

s u p I  a n k{r) |< oo VT 6 U-(T 0). (1) 
" к 

Definition 1. It is said that a sequence x = (£*) is summable by 

a semicontinuous sequential summability method (А(т)) fin short а(т) -

summable) to a number a if 

lim а„к(т)( к  = a 

uniformly in n . 

A semicontinuous sequential summability method (А(т)) is called re

gular if every convergent sequence is а(т)-8иттаЫе to the previous limit. 

In the special case of 

а-пк(т) ••= а к(т) Vn 6 N (2) 

the Q(T)-summability method (A(r)) turns into ordinal semicontinuous 

summability method (at(r)) . 

Let W  be the set of all sequences (тт) С U - ( r 0 )  which are convergent 

to T0  . It means that 

W  : =  {uj = (тт) : тт—• r0, rm € U .(T0) Vm € N}. 

Let w = (тт) be an arbitrarily fixed element from W and let us 

define the «-method (Am) where атпк  = a„i(rm). If a sequence x is a-

summable by this «-method (Am) we say in short that it is ty-summable. 

The set which defines the core for the ubsummability is denoted by Kw . 
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It is known that a sequence x = (£*) is a(r)-sunimable to a iff it is 

iu-summable to a for every w € W (see [5]). 

Definition 2. The core for the a(r)-metkod (А(т)) is the core defined 

by the set 

К  := clco U { K w  I w  6 W}. (3) 

The set of all tt(r)-summable sequences coincides with the set of ail 

sequences x for which the core 

K ( x )  : =  { / ( * )  I  f  6  K )  

is a singleton (see [5]). The necessary and sufficient conditions for the 

regularity of an a(r)-method (A(r)) are as follows 

1° lim sup I onjt(r) |= 0 Vfc = 0,1,..,, (4) 
T-*T0- „ 

2° lim у апк(т) = 1 uniformly in n, (5) 
T —• t*o — 

3° sup53 I а пк{т) |< M for every r 6 I7_(re). (6) 
™ * 

Let m be the set of all bounded sequences 

ш := {i = (ft) I sup j |< oo} 
к 

and let K ° ( x )  be the Knopp's core of x  . 

The inclusion 

K(x)  С K°{x )  Vx € m (7) 

holds iff the a(r)-method is regular and 

lim sup 53 I "nt(r) |= 1. (8) 

(see [5]). The method with the property (7) is called core-regular. 

Let L ( x )  be the set of В an ach limits of a sequence x . This set is the 

core of almost convergence of x (see [4]). The inclusion 

K ( x )  С L ( x )  Vx € m 
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holds iff the inclusion (7) holds and 

lim sup Г I O„*(T) - A„T+I(r) |= 0. (10) 
~r0- „ y 

Suppose throughout that (pt) is a sequence of real numbers with 

pt > 0 for all к = 0,1,2,..., where po = 1 and 

Рт:=]Гр*—• oo as m—* oo. (11) 
fc=о 

Let T 0  be the radius of convergence of the power series 

к 

and let 

—>oo as т —* r0 - . (12) 
* 

It follows from (11) that то < 1. If r0  < 1, then the power series 

and YlPkrk  

к к 

have the same radius of convergence, i.e. 

lim sup {j/pt = lim sup \[Pk (13) 
к к 

(see [3]). 

The weighted means summability method (Ä,pt) is defined by Riesz 

matrix P = (amfc), where 

f ?f", if к < m, 
&mk л * 

lO, if к > m. 

As Pm —> oo, this method is regular (see[lj). 

Let с and cp be the set of all convergent sequences and the set of 

all (Д, pt)-summable sequences respectively, i.e. 

с := {х = (£*) I 31im£t}, 
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Lemma 1. For the matrix P = (R,pk) the following statements hold: 

1. liminf t — = 1. 
k  у p k  

2. If Tg = 1, then P is not Mercerian, i.e. Cp ̂  c. 

3. If To < 1, then the sequence (jf£) has a bounded subsequence. 

Proof. 1. If (14) fails then there must exists С > 1 and fcp 6 N sudi 

that 

k l P k  

If so, then 

> С Vfc > fc 0-
Рк 

Р к  > с кр к  Vfc > fco 

and 

lim sup \/Pk > С lim sup typi-
к к 

Using (13) we find that С < 1, i.e. it is impossible for (14) to fail. 

2. We shall use the inequality 

liminf *+1 < lim sup \fP~k-
к Рк к 

In the case of To = 1 this yields 

Hence 

liminf(l + ) < 1. 
* Рк 

lim inf = 0 
к Рк 

( рк+1 -
р 

and consequently the sequence („ * ) is not bounded, i.e. P is not 

Mercerian (see [1]). 

3. In the case of т 0  < 1 we use the inequality 

lim sup \fPk < lim sup *+1 

к к Pk-

This yields 

1 < — = lim sup \fPk < limsup(l + 
to * к Pk 
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It means that 

lim sup ̂ -77— > 0 
к Pk 

and therefore the sequence (j^-) has a bounded subsequence. 

Let 

Рт  :=(Я, (-)* ) Vre (0,1]. (15) 

Since 
1 
______ : : r_ 

limsupfc ^./(^)*р* 

the radius of convergence of the power series 

t 

is equal to г . It is obvious that 

P T° = P. 

Let P be the set of Riesz matrices P r  , generated by P  —  (R , p n )  

using the formula (15), i.e. 

P : =  { P r  I Г G (0,1)}. 

One can easily check that every member of the set P generates the same P. 

Theorem 2. If 0 < a < r 0  < 6 < 1, then 

K ° { P l x )  С К\Р ьх) С K\Px) С К ° { Р " х )  Vi е т. (16) 

Proof. Corollary 1.1 in [7] asserts that if for two arbitrary positive Riesz 

m a t r i c e s  T  =  ( R , t k )  a n d  Q  —  ( R , q k )  

~ < — Vfc > fco, (17) 
tk Як 

then 

K°(Tx) С AT°(Qz) Vi Gm. (18) 

This fact yields the inclusion (16) because of 

p*±1To < EtHlS. < Ei±I < E!±i2L Vfc>o. • 
Pt Pk b pk  Pk a 
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Let P. Ъе the method of arithmetical means, i#- P, = (Я, 1) . 

Corollary 2-1. If Q<a<b<l then Aere emtts euch ж® С m thai 

/^(ptxol^a^zo). 

Proof. Let Г := Pj and У := PJ. By Theorem 2 

K*(Tx) С K°(Qx) Vz em-

Lemma 1 in [7] asserts that for the inverse inclusion it is necessary that 

lim sup —- • < 1. 
то vm 

In our case 

Jm 9m l-6m+1  J_ 1 — a a„ 6^ = 

Qm tm 1 - 6 ' 6m ' 1 - Om+1 ' " am 

1 -a (l-6m+1) 1 - a 

1 —  Ь  "  ( 1  —  a m + 1 )  '  1 - 6  >  '  

and therefore the statement of Corollary 2.1. is true. • 

Theorem 3. If the method P = (R,pn) is such, that there exists 

l i m ^ t i l ,  ( 1 9 )  
*  P k  

then for every r  £ (0,1)  the following equality holds 

K ° ( P r x )  =  K ° ( P r , x )  Vz 6 m. (20) 

Proof. If (19), then 

l_, 
t P* To 

lim^±! = -. (21) 

Let Q  =  { R ,  q k )  = •  P r , i.e. 

9k = ( — )v-
r 

Consequently, 
V Q k + i  v Tj+'pt+ir* 1 _ 1 lim = hm " — г = - > 1. 

к  q k  * r i + ,r; p f c  r 
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By Corollary 4.1 ж [7] foe the arbitrary Q = (R ,  q k ) ,  the condition 

r  <н1 . T Kin :=•«>! 
» Як 

yv&de 

KaiQx) = K°(PZ x) Vxem, 

and therefore (20) is valid. • 

Theorem 4. If the method P = (Д. pj) is suck that 

P* < EttL 
Рк-1 pi 

then for every g i v e n  r  € (0,1) ike inclusion. 

K^iP1!) С L(x) С K°(Prx) Vx € m. 

holds. 

Proof. Following the Corollary 3.2 from [7] the inclusion 

K°(Qx) С L(x) Vz€ m 

holds if 

1°. lim^-=0, 
m c/jk 

2». iimi*±l = 1. 
к qk 

In this case qk = p*r* and on account of the inequality 

lim inf Pk+1 < — < lim sup —— 
" p* to n pt 

it follows from (22) that (26) and the existence of fc0 € N , such that 

Pk+1 , 1 w, . , < — Vk > «о-
Pt t 0 

Consequently 

P*T£ < Tg°pk0 Vfc > fc0. 

The assertion (12) gives us that 

к 
P\ - ̂ p.Tg —> oo as к —• oo 

i=0 
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and this yields (25) and therefore (24) is true. 

The right part of the inclusion (23) follows from Theorem 3 and from 

the fact that for every r € (0,1) the following inclusion holds 

L ( x )  С K\P r
mx) Vz € m 

(see Remark in [7]). 

Corollary 4.1. Let  P  = P 1  be  such  tha t  (22) holds  and  le t  Q  be  

such  tha t  

q(r)  =  ~P( T) ,  

i . e . ,  Q  = {R,  (fc + l)pt+i). Then  

K ° ( P x )  С K°{Qx) С L{x) Vz € m. 

Proof .  In this case Tg = 1. The proof of Theorem 4 gives us that (26) 

holds and there exists fco 6 N such that 

Pfc+i < Pk Vfc > fc0. 

Therefore, 

q m  _ (m + l)pm+i < (m + l)Pm+i _ 2m > 

Qm ЕГ=/ kPk ~ Pm+lEb/t (m + 2)(m + 1) * 

sis m —» oo, i.e. (25) is true. Corollary 3.2 from [7] which was cited in our 

proof of Theorem 4 asserts that 

K°(Qx) С L(x) Vz £ m. 

Because of (22) we have that 

Pk+1 < Pk+2 < (fc + 2)pk+2 _ g*+i 
Pt - P/fe+i - (fc + l)pt+l Як 

and due to Corollary 1.1 in [7] cited in the proof of Theorem 2, holds the 

inclusion 

K ° ( P x )  С  K ° ( Q x )  Vz 6 m. • 

Let now Q = (R,qk ) be such a Riesz matrix that q(r)  =  ^гтр(т), 

i.e. 

g* = (fc + n)(fc + n — 1)... (fc + l)pt+n Vfc = 0,1, — 
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Let us denote this method by P'"' . 

Corollary 4.2. Let  P  = P 1  be  such  tha t  (22) hold».  Then for  every  

n 6  N the  inc lus ion  

Proof  is analogous to the proof of Corollary 4.1 and is based on the sa

me two corollaries from [7], namely on Corollary 3.2 and on 

Corollary 1.1. • 

The semicontinuous summability method (J ,pk)  is defined by the se

micontinuous matrix (a* (r)) , where 

It means that for every weighted means method (R,p*) there is a corres

ponding semicontinuous method (J, p*) . One can easily check that one and 

the same method (J,p*) corresponds to every member Pr € P . Therefo

re, we will always define (J,pk) with respect to the method P1 , i.e. while 

defining (J,pk) we will consider only such (pt) for which r0 = 1 . Let 

cj denote the set of all (J,p*)-summable sequences. For every P = P1 it 

ho lds  tha t  c p  С cj and i t  i s  poss ib le that c p  = cj (see [2]) .  Let Kj(x) 

denote the core of x 6 m determined by the method (J,pt) (see [6]). It 

is known that the method (J,pt) is core-regular and that 

K\P ( n\x)) С tf°(P(n+1)(i)) с L(x) Vz 6 m 

i s  true.  

at(r) = vr € (0,т„). 
p( r) 

Kj(x) С K\P x x) Vz€ m (27) 

(see [6]). From (27) and Theorem 2 the inclusion 

Kj(x)  С K° (P r x)  Vre (0,1] Vi e m 

follows. This result can be strengthened as follows: 

Theorem 5. Let  Q  =  (R,q k )  be  such tha t  

lim sup (28) 
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The  inc lus ion  

ho lds  i f f  

Proo f .  Let Q 1 be the inverse matrix to the Riesz matrix Q nnd let 

G ( T )  =  ( G T ( R ) )  : =  ( A H T ) ) Q  ' .  

Using the form of Q-1 one can easily check that 

,  л  Qk (Pk  74 . 1  X t  gt(r) = -r-rl r It 
p(r) 4* 4t4-i ' 

(for Q~ l  see [1]). Due to (28) we have that for the method G{ т) the 

condition (1) is valid. Indeed, for every т 6 (0,1) 

Е 1 Л О О 1 < ^ Ч Е — < R ' + ^ E — < * >  
t P(r) * Як p(T) j <?*+» 

because of the convergence of power series 

у Vre(0,1). 
* 

Consequently (29) holds iff the method G(r) is core-regular, i « . J the 

conditions (4), (5) and (8) are satisfied. In this case (4 • "in" L о the 

condition 

lim д*(т) = 0 Vfc — 1.... 
г-.1-

which is valid due to (12). Futhermore, for '-very г € j 0,1) 

oo - 00 /~| ot5  ̂ ;x) 
,  1  Г  V t  t  v  V * ,  *  ,  v *  „  „ t l  

9 к Т = ы 7 )  2-— p f c r  -l :* "!-^ r  j -
t=o " ' k=о fc=t -

_ 1  [qo n , v* „ „*] _, = -j-x —Рот + > PtT 1 — 5, 
Р(т) l 9o 

and therefore (5) is satisfied. In case of G { r )  , condition (8) turns «it-

condition (30). This completes the proof 3 

Theorem 6. The inclusion 

K j ( x )  с  L ( x )  ! r  m  ( 3 ' i ' i  
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Kj(x) С K° (Qx)  Vx€m (29) 

Um -LyQt|«-**±ir|r* = l. 
r-l- р(т) q k  q k + l  

(30) 



holds iff 

T~ У2 I Pk - P*+1T I r* = 0. (32) vir I 

Proof follow;; from the facts that (J,Pk) is core-regular and that the 

ndilion (1 ; turns in this case into (32). 

The semicontinuous sequentiell summability method (Ja, pt) is defined 

у the family sif matrices A(r) = (a„k(r)) , where т E (0, r 0) and 

" a n k ( r )  =  
if k> n, 

P\ T) 

0, if 0 < fc < n. 

It means that x = (£*) is (Ja,Pk)-summable to a number a if 

Pk-n k-nc bm ~J~Trk "6 = a 

—>1у?—1 р(т) k=n p( 

uniformly in n . Analogously to the case of (J, pit) we may consider only 

such (pk) for whi -.h 7q = 1. It is easy to check that (1), (4), (5) and (8) 

aie satisfied and therefore 

К(г) с K°(х) Vi € m. 

Ч.де I\ (х) й-я'/.'ля, the core of x determined by the a(r)-method 

{Ja,Pk)- It follows from Definition 2 that 

кj(t) с A"(x) Vi 6 m, 

(see also [5j). 

Theorem 7, Lf.i, P = P1 and Jet Q be such that (28) holds. The 

inclusion 

K(i) С AT°(Qi) Vi 6 m (33) 

hold.i iff 

1° Q 's Mercerian, i.e. cq = c, (34) 

2° lim supf fahlr I г*"" = 1. (35) 
r^>- " rriP( T) Як Як+ 
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Proof. Let 

(9пк(т)) := (a n k(r))Q \ 

One would obtain that 

Qk fPtzn _Pk-n+i \ f c - »  i f  k >  

P(T)\ 9K Як+1 J - ' 

9пк{т)= • -^'^7 ^ fc = n-l, 

Q k ( P k ^ n  
р(т) V 9* 

0 if 0 < к < n — 1. 

Due to (28) we have that for the method (дг.*(т)) the condition (1) 

is valid and therefore (33) holds iff (g„fc(T)) is core-regular. The necessary 

and sufficient conditions for the core-regularity are (4), (5) and (8). It is 

easy to check that for (gn*(T)) the conditions (4) and (5) are satisfied and 

(8) turns into (34) and (35). • 

Theorem 8. The inclusion 

holds iff the inclusion (31) holds. 

Proof. Method (Ja,Pk) is core-regular and, for it the condition (10) 

turns into the condition (32). Indeed, 

K(x) С L(x) Vz 6 m (36) 
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Tuumade sisalduvusest 

summeerimismeetodite (R,pk) , (J,pjt) 

ja (Ja,pit) korral 

Leiki Loone 

Resümee 

Käesolevas töös võrreldakse ühe ja sellesama positiivsete reaalarvu

de jada (p*) abil defineeritud kolme erineva menetlusega määratud tuu

made vahekordi. Nendeks menetlusteks on klassikaline Rieszi kaalutud 

k e s k m i s t e  m e n e t l u s  ( Д , р * )  ,  p o o l p i d e v  s u m m e e r i m i s m e n e t l u s  ( J , P k )  =  
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(а*(т)) , kus 

at(r) = VT € (0, то) 
PV") 

ja kus р(т) on määratud seosega (12), ning jadaline poolpidev menetlus 

(Ja,Pk) = («n*(t)) , mille korral 

Init(T) = 

Pk n/T\—, kui к > n, 
P(t) 

0, kui 0 < к < n. 

Rieszi kaalutud keskmiste menetlusega (Л,р*) seostatakse menet

luste klass P, kus 

p := {p r  i г 6(0,1]} 

ja kus P r  on antud seosega (15) ning uuritakse selle klassi poolt määra

tud elementide tuumade vahelisi seoseid (vt.(16)). Vaadeldakse ka tuu-

masisalduvust 
K°(Px)  С K ° (Qx)  VI € m, 

kus P = (R,p k )  ja Q = (R,qk)  ning 

qk = (к + n)(k + n — 1)... (fc + l)pt+„ Vfc = 0,1, 

S.t. n 

q { r )  =  ikp ( r )-
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ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS 
1994, 970, 87- 96 

The rate-spaces m(A), c(A), C0(A) and 
i'(A) of sequences 

Jaak Sikk 

1. Introduction 

In [1] we introduced the notions of abstract rate-spaces X(A) and 

XC(A), studied their matrix mappings and /f-multipliers. Using these re

sults we shall consider the rate-spaces type m(A), c(A), co(A), /'(A) and 

their inclusion relations. 

The standard notions of sequence spaces m = J°°, с, со, and ui are 

used in this paper (see [2]). 

Rates X, fi,... are real sequences with nonzero elements only. Thus, 

A = (A*) is a rate iff A 6 w and A* / 0 for all к . For a real vector space 

of sequences X we introduced the rate-spaces 

X ( X )  =  { x  :  ( X k x k )  6  X }  

ш 

.YC(A) = {z : z 6 с and ( X k ( x k  — z')) € X, where limz* = z'}. 
к 

We call X a basic space if the rate-spaces are introduced for it. 

Given a matrix A = (ank) and a sequence z = (z/t), we write 

|; -- Ax , to mean that for each n 

Уп — (Az)n 
= ^ ^2) 

Let X  and Y  be basic spaces. If for every z € X ( X )  the sequence 

У 6 Y{p) then A is a matrix mapping X(X) into Y(ju) and we write 

A € (X(X) : Y(ji)). Analogously, if for every x 6 X the sequence 

у € Y(p.) then A is a matrix mapping X into Yiji) and we write 

€ (X : Y(ß)). The matrix mappings (X(A) : У,(д)), (XC(A) : Y(n)), 
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(X(X) : У) etc. are defined analogously. In [1] we investigated these map

pings and worked out the method to obtain mapping conditions. We proved 

Lemma 1. Let A = (o„t), A(A \/i) = (апкХк
1цп), А(Л Sl) = 

(a„t-** 1) and A(\,fi) = (a„kfin) then 

1 .  A  e  ( X ( X )  :  Y ( n ) )  x f f  А ( \ - \ ц ) € ( Х  : Y ) ,  

2. A 6 (X : Y { n ) )  x f f  А(1,^)6(Х:У), 

3. A € (X(A) : У) iff A(A_1,1) 6 (X : У). 

(see [1], Theorem 1). 

This Lemma 1 shows how matrix mappings for rate-spaces are lin

ked with corresponding mappings of basic spaces. Using Lemma 1 and 

well-known results about matrix mappings we deduced the necessary and 

sufficient conditions for rate-space mappings. For example, we proved the 

following result (see [1], Example 1.1). 

Lemma 2. Matrix A 6 (ZP(A) : тп(ц)) iff 

531 I' 531 1  I P  < °°• (2) 
n  к  

The sequence x is called AXc(A)-summable if the sequence у = 

Ax € XC(A). The sequence x is called AX(A)-summable if у 6 X(A). The 

series is called AX(A)-summable if the sequence of partial sums of 

£ut is A X (A)-summable. The series u* is called A X C (A)-summable if 

the sequence of partial sums of £3 u* 's AXr(X)~ summable. The sequence 

£  =  ( e t )  i s  a  J i T - m u l t i p l i e r  o f  c l a s s  ( A X C ( A ) ;  B Y ( / x ) )  i f  f o r  e v e r y  A X C ( X ) -

summable series u* the series ^2 e/tti* is BY(/i)-summable. The clas

s e s  o f  ^ -mu l t i p l i e r s  (AX C (A) ;  B Y c ( p ) , ( A X ( A) ;  B Y ( n ) ,  (A X (A ) ;  B Y c ( f i ) )  

are defined analogously. We proved the following result which gives the 

necessary and sufficient conditions for a large class of X-multipliers (see [1], 

Theorem 5). 

Lemma 3. Let X  stand for a space X  or X(A) or X C ( X )  a n d  

Y for a space Y or Y(n) or Yc(fi) and let A =; (a„*) be a triangle 

with A-1 = {а'пк), В = (6„t) a triangular and С = (c„t) a matrix with 
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e lement s  

then  

e  € (AX;  BY)  i f f  С e (X : Y) .  

It is easy to see that all summability factors can be deemed special cases 

of the X-multipliers and it is possible to use Lemma 3 for those cases. For 

example (A,B0) = (Ac(l); Bm( 1)), (A,B) = (Ac(l); Bc(l)), (A0,B) = 

(Am(l); Bc(l)), (A0, Bo) = (Am(l); Bm(l)). In special cases, if we 

consider only positive, monotone and increasing rates we will get summabi

l i ty  fac tors  (А^, BÕ) =  (Am(A);  Вт(ц)),  (A\ B£)  = (Ac(A) ;  Вт{ц)),  

(Aa, Вм) = (Ac(A); Bc(p.)) etc., investigated by Kangro (about the concept 

of summability factors see [3]). 

2. The rate-spaces /'(A), CQ(A), C(A), m(A) and their inclusions 

The intent of this paper is to generate new sequence spaces in iv which 

have (in some sense) the same structure as the given basic-space. The results 

of this section will demonstrate that the rate-spaces are just such a type of 

sequence spaces. We will see that the rate-spaces are isometric with their 

basic spaces and that for every sequence x 6 ш there exists rate A so, 

that x 6 X(\). We will also investigate the inclusion relations between the 

rate-spaces. 

Let X be Banach space and X(A) its rate-space. Since for every 

x = (X*) € X(A) corresponds (A*ZJT) € X, the rate A determines a 

mapping L : X(X) —> X . The mapping L : X(X) —> X is one to one, 

linear and onto. Therefore the space X(A) becomes a Banach space which 

is equivalent with X with the identification norm 

where Ax = (Ajtxt). Hence we have 

Theorem 1. Banach  space  X  wi th  norm || • ||x and  the  ra te  X 

de termine  a  Banach  space  X(X)  wi th  norm (3) .  The  spaces  X  and  X(X)  

are  i sometr ic .  

II 1 llx( A)=ll llx (3) 
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The spaces Co, с and l°° = m are Banach spaces with norm || z ||oo= 

sup I Xk I and thus, the rate spaces c0(A),c(A) and m(A) are also Banach 

spaces with the induced norm 

II X | | ooA= sup I AJFCZFC I . 

The space l p  is a Banach space with norm || • ||p and so l p ( X )  is also a 

Banach space with norm 

Next we shall consider the dual space X(A)' , i.e. the space of all linear, 

continuous functional on X(A) . 

Theorem 2. Let co(A)' be a dual of c0(A), then f S co(-M' iff 

f(x) = ̂ akxk with a G /(A-1), where A-1 is a rate (AjT1). 

Proof. For I 6 Co (A) we seek a dual having a form 

where (Atz*) 6 c0. Therefore f is continuous linear functional on cq(A) 

if and only if 

where ( y k )  6 со, determines a continuous linear functional on C Q  .  Thus 

(XT at) G / and consequently a G /(A-1), which completes the proof. 

Similarly to this proof one can prove the following 

Let 1 < pi < p < oo, then the spaces l p ,  l T l ,  c0, с and m are 

related by the well-known chain of inclusions 

IMU= ( £ | a*z* n1/p. 

/0) = ̂ akxk = e yk^kxks> 

Theorem 3. Let p > 1, p 1 + q 1 = 1, then f G f(A)' iff 

f { x )  = 53°FCZ* 

with a G /'(A 1) and 

p(a)' = a"1). 

Ir> С P С со С с С т. (4) 
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It follows from (4) and from the definition of the rate-space that for fixed rate 

Л the corresponding rate-spaces are related by the same type of inclusion' 

relation. Therefore we have 

Theorem 4. Let 1 < pi < p < oo, then 

l P l  (А) С l"(А) С c„(A) С c(A) С m(A) (5) 

and for every x 6 ZPl(A) 

II X HooA < II X Hp A < II X ||p, A • (6) 

Example. Let z = (zt) E ш, we shall show that there exists a 

rate A = (At) such that z € /*"( A). For that purp ase we shall consider a 

sequence ž = (ž*) with 

{zjt for all zk ф 0 

1 for all Zk = 0. 

Let now A* = z^'at, where a = (at) € lp and at ^ 0. By the 

definition of rate-space it follows that z € lp(A). One can use the same 

construction to generate the desired rate-space in the case of со, с or m 

instead of lp. 

Let us consider the ÜT-multipliers classes 

( I X ;  I Y )  and ( I X ( A); IY(A)) 

where 7 = (<?„t) is identity matrix. The sequence £ = (et) is a K-

multiplier of class (IX; IY) if for every x = (xt) 6 X is true (et^t) 6 К 

We write (X; У) instead of (/X; /У), also (X(A); Y(n)) instead of 

(7X(A); IY(ri). 

Theorem 5. The classes of multipliers (X; Y) and (X(A); K(A)) 

are identical. 

Proof. By Theorem 1 the spaces X and X(A) are isometric, the 

s p a c e s  Y  a n d  У ( А )  a r e  a l s o  i s o m e t r i c .  T h e r e f o r e  e g  ( X ;  Y )  i f f  

£ € (X(A); У(А)) which gives the desired identity of classes. 

Lemma 1A. Let A and ц be rates and X and Y be sequence 

spaces, then 

12* 
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1 .  Х(А) С Y ( ß )  i f f  (ÄntAjVn) 6 (X :  Y ) ,  

2 .  X  С  Y ( ß )  i f f  ( W » )  6  ( X  :  Y ) ,  

3. X(A) с Y  i f f  ( S n k X ^ ) e ( X  : Y ) .  

Proof. Our statement is an immediate consequence of Lemma 1 if 

A = I. 

Theorem 6. Let A and ц be rates and X and Y sequence spaces, 

then 

1 .  X ( X )  с Y ( ß )  i f f  (/ц/А4)е(Х;У), 

2. X  С Y ( n )  i f f  ( i i k )  6 (Х;У), 

3. X(A) С У i f f  (A? ) e ( X ; Y ) .  

Proof. The matrix (S n kX k  V„) is a diagonal triangle. Its diagonal is 

a sequence (fik Aj"1). By definitions of ^-multipliers (X; Y) and matrix 

mappings (X : Y) 

(?)е(х;у) 
At 

iff 
is. . ч  

Now proof follows from Lemma 1A. 

( S n k X ; V») E { X  :  Y ) .  

Definition. Let X and ц be rates and X and Y sequence spaces. 

We say that ц is (X,Y)-stronger than X if 

(^)e(X;Y). (7) 
At 

We denote the set of all such X by ß(X,Y). 

Corollary 6.1. a) Let ц be (X,Y)-stronger than A, i.e. X 6 Д(Х, У) 

then 

X(X) с УМ; (8) 

b) let Ц be (X,X)-stronger than A, i.e. A 6 ß(X^X) then 

X ( X )  С ад. (9) 

Partial order in the space of rates is determined by the notion "(X,X)~ 

stronger". It is easy to see that the general relation "(X,Y)-stronger" de

termines a partial order if for every e, e' G (X; У) is valid e • e' 6 (X; У) . 
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Now we shall demonstrate possibilities which are opened up by the 

Lemma 1A and Theorem 6. By linking the results about matrix mappings, 

^-multipliers and rate-space inclusions we shall get the conditions for rate-

space inclusions. What follows, explicates the meaning of the concepts of 

rate, rate-space and "order". 

We shall need the following well-known results about matrix mappings. 

Lemma 4. A matrix A G (с : c) iff 

a) lim„ on* = at exists, 

b) lim„ 531 a„k = a exists, 

c) Et I «n* I = 0(1) 

(see [2], p.5). 

Lemma 5. A G (m : m) also A G (c : m) and A 6 (со : m) iff 

II А И < oo, where 

II A ||= sup £ I "n* I 
" к 

(see [2], p.5). 

Lemma 6. Let p > 1, A 6 (Z, l p) iff 

sup £ I a nk \p < oo (10) 
*  n  

(see [2], p.126). 

Lemma 7. A 6 ( l p  :  m ) ,  p  >  1, iff 

sup 53 I a nk I® < oo 
" к 

(see [2], p.129). 

Theorem 7. Let p > 1, then 

1. Z( A )  с  1 р { ц )  i f f  Ы к  /  A * )  G  l p ,  

2- Z С l p ( ß )  i f f  0*t) G Z", 

3. Z(A) С Z" iff (A^G/". 

The proof is an immediate consequence of Theorem 6 and Lemma 6. 

By Theorem 7 one can say that ц is (I, lr)-stronger than A iff 

ф)е1 р. 
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The relation "(/, f)-stronger" does not determine a partial order 

because of its non-reflexivity. It follows from the fact that 

n-

Let us consider rates \i — (fc™) and Л = (fc^) where fc e N and a 

sequence #jA~' = (ka~P) . The sequence /jA_1 € lp iff 

£ fc(a~")p < oo, 

it means that a  —  ß < —  j. Consequently by theorem 7 l(\) С l p(p). One 

can easily check that the same inclusion is true if ^ and A will satisfy the 

following condition 

(g) = 0(fc") ,  (11) 

where и <—К Therefore we have 

Corollary 7.1. Let p > 1 and, v < —^ one! let (11) be satisfied. 

Then fi is (I, lp)-stronger than A and 

/(а) с /"(/i). (12) 

For arbitrary fixed ц Corollary 7.1. determines a class of rates for 

which (12) is satisfied. It is obvious that there exists a vast class of pairs fi 

and A satisfying (11) and tending together to infinity or tending together 

to zero. 

Corollary 7.2. Let p > 1 then c0(A) С l p{ß), c(A) С l p(f.i) and 

m ( A )  С  1 " ( м )  i f f  (flkXt 1 ) e l p .  

Proof .  It is known that A € (eg : l p )  = (c : l p )  =  ( m  :  l p )  iff 

sup {53 I 53 a"h f ]K 
а fi11*'6 set °f positive integers } < oo (13) 

k £ K  

(see [2], p.131). Let A = (a„*) be such that 

„ _ с Pk 
onfc — "nib x  a k 

Therefore the condition (13) is equal to (10). Cbnsequently, our statement 

follows from the Theorem 7 by replaceing I with со or с or m . 

94 



Examples. 1) Let ft = (fc 0,51), then 

m  С  l 2 { f i ) ,  

2) let ft — (fc~Toõ), then < С 1 1 а о(ц)] 

3) let A = (fc0'51), then ./(А) С I2, co(A) С /2, c(A) С P and 

m(A) С i2; 

4) let A = (fc) and fi — (Vfc) then 

J(A) С Z4^). 

Let us now consider the inclusion relations m(А) С m(^), c(A) С 

m(#I) and CQ(A) С m(A). By Theorem 6 and Lemma 5 we have 

Theorem 8. Let X be one of the spaces m or с or Co , then 

1. X(A) С m{f i)  i f f  

(g) 6 m, (14) 

2 .  X  С  m( f i )  i f f  (/it) €  m ,  

3. X(A) С m iff (A*1) G m. 

Now one can say that /4 is fm, ro^stronger than A iff (14) is satisfied. 

What follows is a detailed examination of the condition (14). 

a) Let ( f i k ^ 1 )  £ co, then by Theorem 8 m(A) С rn(fi), c(А) С m(/j) 

and c0(А) С rn(fi). The position that basic space will take in the chain of 

inclusions depends on rates. 

If fit -too and A* —> oo then 

co(A) С m(A) С m(fi) С c0. 

If ft, A 6 c0 then 

m С m(A) С r n ( f i ) .  

If M € со and At —» oo then 

co(A) С c(A) С m(A) С с С m С m(^). 

b) Let (/itAfc1) € m and (At/^t') € m then by Theorem 8 m(/z) С 

m(A), с(д) С m(A) and co(/i) С m(A). Therefore m(A) = m(/z) and 

co(A) = c0(^). Consequently, there exists a class of rates every element of 
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which determines one and the same rate-space for basic space rn (or со ). 

Let us consider the stronger condition 

(д^) 6  c X x  c°' 

By Lemma 4 then c(A) = с(ц) as lim ачА^"1 exists. 

Definition. Let X be basic space. All rates A which determine one 

and the same rate-space for X we call X-equipotent. 

Now we have 

Theorem 9. a) Rates A and p are m-equipotent and c^-equipotent 

«/ 
( т ^ )  €  m  a n d  (  — )  6  m .  
а к Цк 

b) Rates A and ц are m-equipotent, c-equipotent and c^-equipotent if 

( g ) € c \ o .  
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Strong almost convergence 
in Banach spaces 

Virge Soomer 

1. Introduction 

In this paper the notion of strong almost convergence of sequence in 

Banach spaces is introduced. 

Let m denote the space of all bounded complex-valued sequences x -

(£t) . A Banach limit L is a continuous linear functional on m satisfying 

the conditions 

Definition 1. The bounded sequence x = (£*) of complex numbers is 

called almost convergent to I if L(x) = I for each Banach limit L . 

The notion of almost convergence was introduced by Lorentz [3]. He 

characterized a sequence x = (£t) as almost convergent to / if 

uniformly in г . 

We denote by c, f and /0 the spaces of convergent, almost conver

gent and almost convergent to zero sequences respectively. 

Definition 2. The sequence x = (£*) of complex numbers is called 

strongly almost convergent to I if (| £* — / |) € /о-

1° L> 0, 

2° L(e)  = 1, where e = (1,1,...), 

3° L(Sx) = L(x), where S(x) = (£k+i). 

(1) 
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The notion of strong almost convergence was introduced by Maddcot 

[4]. We denote the set of all strongly almost convergent sequences by [/]. 

Then /, /о and [/] are closed subspaces of m (with the usual supremum 

norm) and with strict inclusions we have 

с С [/] С / С т. 

Kurtz [2] extended the results of Lorentz to bounded sequencer -t ele

ments in a Banach space. He treated almost convergence as the generaliza

t i o n  o f  w e a k  c o n v e r g e n c e .  S u p p o s e  t h a t  X  i s  a  B a n a c h  s p a c e ,  L e t  u ( X )  

be the set of all sequences и = (хк) , x G X . We denote by mlX) , c(X) 

and Co(X) the spaces of Jf-vahied bounded, convergent and null sequences 

respectively, i.e. 

m(X) = {u = (x k ) G ш(Х), sup||z*|| < oo), 
к 

c(X) = {u = (it) G ш(Х), ЗНтх* = l \ ,  

CQ(X) = {u G C(X),  1 = 0}.  

Let X' be the conjugate space of X . 

Definition 3. The sequence и = (»*), xk  G X is сх-г'Ч almost 

convergent to I £ X if (х*(х* — /)) G /о for each x* G X' 

It is easy to see that if (x*(xfc — /)) G /о , then it = ( х $ )  G m ( X ) .  

Indeed, it is known that /Cm and hence the sequence u — (x* j is weakly 

bounded in the Banach space X and consequently also norm bounded  . . 

и G m(X). 

Let now u = (xfc) 6 TTi(X) and Л(и)(х*) - L(X*(XK)) for x* G 

and for Banach limit L , Then A(u) G X". If we suppose that X is a 

reflexive, we may assume that Л(и) G X. Then the correspondence и «-—•> 

A(u) defines operators Л : m(X) —» X which have analogical properties 

to Banach limits (see [2]). 

Let U(X)  be the class of sequences и = (x/t) 6 m(X) which have 

conditionally compact range. 
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Theorem 1. [2] I f  и  =  (zt) 6 U ( X )  ,  t h e n  и  i s  a l m o s t  c o n v e r g e n t  

to I G X iff 

lim И—£ it — / ||= 0 uniformly in i. (2) 

2. Strong almost convergence in Banach spaces 

We shall now introduce the notion of strong almost convergence of the 

sequences u = (zt), Ц £ X . 

Definition 4. The sequence и = (zt) >•» called strongly almost con

vergent to I £ X if (I z*(zt — I) I) € /о for each x* G X' . 

The sets of all almost convergent and strongly almost con

vergent X—valued sequences are denoted by f{X) and [/(X)] respec

tively. 

Now we may establish 

Theorem 2. I f  и  —  (zt) G U ( X )  ,  t h e n  и  i s  s t r o n g l y  a l m o s t  c o n v e r 

gent to I G X iff 

j  i+n 

l im— -j—j- £  I I  —  ^  l l =  0  uniformly in i. (3 )  

Proof. If и = (zt) is strongly almost convergent to I then for each 

e > 0 there exists JV > 0 so that for each n > N, x" G X' and 

i = 0,1,... we have 

-b!>•(„_ok §. (4) 

If и  = ( i t )  G U ( X )  , then it is clear that (zt — /) G U ( X ) .  Hence for each 

e > 0 there exist functionals z* G X', 1 < j < r so that 

fsup I Ij*(zt - /) >11 Zt - / II -e- (5) 
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for all к = 0,1,... (see [2], lemma 2.1.1). 

Now it follows from (4) and (5) that for each n > N and г = 0,1,... 

i.e. (3) is valid. 

For the converse, the sufficiency of (3) implies from the inequality 

This completes the proof. 

Remark. Condition (3) is always sufficient for u € [/(X)]. 

If X is a finite dimensional Banach space, then every sequence и 6 

m(X) has conditionally compact range and hence, in this case almost con

vergence and strong almost convergence in X are respectively characterized 

by (2) and (3). This does not hold in general. Deeds [1] and Kurtz [2] gave 

examples of sequences not in U(X) which are weakly convergent to zero, 

hence are almost convergent to zero, but for which (2) is not fulfilled. 

3. Matrix methods from c(X) to [/(У)] 

Let a matrix method A be determined by an operator matrix A = 

(a„k)  where  o n *,  n ,  к — 0,  1 , . . .  a re  bounded  l inear  operators  f rom X 

into Y . Then for и = (ц) we have v = Au = (53* °ntzt) • Suppose 

that E and F are nonempty subsets of w(X) and w(Y) respectively. 

We define the matrix class (E,F) by saying that A € (E, F) if and only 

if for every u = (z/t) 6 E the series 531 апкхк converge in the norm 

of Y for each n and the sequence v = (53* а пкХ к ) belongs to Y . 

If A is a bounded linear operator in m(X) , then v 6 U(Y) for each 

и G U(X) . Then almost convergence and strong almost convergence of the 

sequence v are characterized by conditions (2) and (3) respectively. Hence, 

using standard methods, we may find conditions for A € (L(X), f{Y)) and 

for A € {L(X), [/(Y)]), where L(X) is a subspace of rn(X) such that 

L(X)  С U(X) ( for example in theorem 3 L(X) = c(X) ). 
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In the proof of the next theorem the following lemma will be used. 

Lemma 2. Let {T„;} be a set of bounded sublinear functionals on a 

Banach space E . If the conditions 

1° there exists К > 0 so that supn t  || T ni || < K, 

2° lim„ Tn,(u) = 0 uniformly in i for each и in a fundamental set 

of E, 

are fulfilled, then 

limT„j(«) = 0 uniformly  in  г 

for each и £ E. 

Lemma 2 is an analogue of the well-known Banach-Steinhaus theorem 

and we omit the proof. 

Theorem 3. A E (с(Х),[/(У)]) and the sequence v = (53* °n*x*) 

is s t r o n g l y  a l m o s t  c o n v e r g e n t  t o  I  =  l i m *  x *  f o r  e a c h  и  =  ( х * )  6  c ( X )  i f  

and only if 

1 0  ii zr=o°"* z* ii < msup* ii xk ii 

for ea c h  m ,  n  =  0 ,  1 , . . .  a n d  t t  =  ( x * )  E  m ( X ) ,  

2° (II a„kX II) E fa for each k = 0,1,... and x £ X, 

3° (II 53* °n*i - 2 II) € fo for each x E X. 

Proof. 1) Assume that A € (c(X),/[(Y)]). Since [/(Л")] С m(X), 

then A(c(Jf)) С rn(X) and condition 1° must be valid (see [6]). The 

necessity of conditions 2° and 3° follows by considering the sequences 

(0,.. .0, I, 0,...) and (x, x,...), x € X respectively. 

2) Let u = (x*) and v = (53* an*x*)- If condition 1° holds, then 

A : и -* v is a bounded linear operator on c(X) and v E U(Y) for 

each u E c(X) С U(X). Hence we may describe almost convergence of the 

sequence v by condition (3), i.e. v £ [/(У)] iff 

1 i+n 

u™ ^71H ii H a*kXk -z IN о 
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uniformly in i . 

We may write 

li ^2avkxk-J II < II И + || ̂ a„*? - I || 
к  к  к  

where t± = Xt — I and w = (ti) € c0(Jf). Since (|| YLka»kl — I II) € /о 

by condition 3° , it is sufficient to show that (|| ||) E /о for each 

w = (*jt) € Co(X). Let 

1 ü? 
• Tni(w) = I' Yla"ktk  'I . 

f~t к • 

for tu = (tt) € Cfl(X). Then T„i are sublinear functionals on .Co(X) and 

it follows from 1° that condition 1° of Lemma 2 is fulfilled. As the set 

of sequences ut(x) = (0,... 0, x, 0,...) is the fundamental set in co(X), 

the condition 2° of Lemma 2 follows from 2° . By Lemma 2 we have that 

lim„ T„i(w) = 0 uniformly in i for each w £ c0(X). This completes the 

proof. 

Let now I ( X )  =  { u  =  (it), n- £ I I II x* ll< °°}-

Then Z(X) С U(X) and the next theorem is valid 

Theorem 4. A E Z(X), [/(У)] г/ and only if 

1 °  Э М  >  0 ,  I I  a n k  | | <  M ,  n ,  к  —  0 , 1 , ,  

2° /or еосЛ x € X and к = 0,1,... there exist = Z/t(i) 6 У 

s t tc fc t/rnt  (II  o n j fcZ —  l k  I I )  €  /о-

Proof is analogous to the proof of Theorem 3 and we omit it. Let 

now A = (ank) be a matrix of complex numbers and X = Y — C. Then 

Theorem 4 has the form (I = 1(C)) 

Corollary 4.1. A  € ( I ,  [/]) if and only if 

1° 3M > 0, I a„k |< M, n,k ='0,1,..., 

2° ( a n k )  € [/] for each k = 0, 1 , . . . .  
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4. Almost convergence in some Banach space 

Suppose that X be a BK-spa.ce .  We shall now need the following 

venditions 
(Cl) 3M>Q, j] xk II< M, k = 0,1,..., 

( c 2 )  ( e j 4 ) ) € / ,  j  =  0 , 1 , . . . ,  

(c3) («f !)e[/k i = 0, 1 , . . . .  

Theorem 5. Let и — (ц) , хц = Hj^) € X. Then 

1° u 6 f(X) => (C1),(C2) 

anj 

2° и € [/(X)} => (C1),(C3). 

Proof .  1°. Condition (CI) means that f (X)  С m ( X )  and this inclu

sion is proved in section 1 for an arbitrary Banach space X . Let now 

тт.(i) = (j for each x = (£j) € X . Since X is а В K-space then тг; e X' 

and (^*') = (7r_,(zt)) € / must hold. The proof of 2° is analogous. • 

Let now X be a BK-AK-sp<ux. Then every x* G X' may be presen

ted in the form 

x*(x) = ^^aj(j for each x = (£,) 6 X, 
i 

i.e. we may consider that x" = (or*) G X'. For x* = (d**) G X, ifc = 

0,1,... we have 

(x ' (x k ))  =  (^2aj^k>) = CŽ2ahQj), 
i j 

where a^j = £j*'. Consequently, the following theorem is valid. 

Theorem 6. Zet X be a BK-AK-space. Then 

1 °  a  =  ( x i )  € / ( X )  #  A e ( X ' , f )  

and 

2° U = (x*) e [/(X)] A G (X', [/]). 

If X = c0, Zp (p > 0) , then (c0)' = I and (lp)' = Iя where i + ~ = 1 . 

Conditions for A G (Iя, f), q > 1 are founded in [5] and in the case 
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A = (£у*') we obtain conditions (Cl) and (C2). Consequently, if X = 

c0, lp , then the conditions (Cl), (C2) are sufficient for и € f(X). Applying 

corollary 4.1, we get sufficiency of (Cl), (C3) for и € [/(X)]. Therefore we 

have proved 

Theorem 7. Let X = со or X = I p, p > 1, then 

1° и = (ik) € /(X) i/f conditions (Cl) and (C2) are fulfilled 

and 

2° u = (xt) € [/(X)] ij(f conditions (Cl) and (C3) are fulfilled. 

5. The multipliers of the set /(X) 

Let X be a Banach algebra and E С w(X). The multipliers of the 

set E are defined by the set 

M ( E )  = {v € u>(X) I u v  6 E  Vu € E } ,  

where u v  =  ( х к У к )  for each u = (ц) and v = (t/*) . 

It is known that M(/) = [/]. For the space /(X) such equality must 

not be valid. For example, let X be a SAT-space and v = (e, e,...) where 

e = (1,1,...) . Then it is obvious that v 6 M(/(X)) but in the case 

e £ X we have v ^ [/(X)] . For M(f(X)) we may state the following 

results 

Theorem 8. Let X be a  BK-space. If almost convergence of the 

sequence и = (it), (£**') is described by conditions (Cl) and (C2) then 

every sequence v = (ук), Ук = satisfying conditions (Cl), (C3) is 

a multiplier of the set f(X) . 

Proof. Suppose that the sequence v = ( ук ) ,  У к  = (f?j*') С X satisfies 

conditions (Cl), (C3). Then it is obvious that the sequence 

s a t i s f i e s  c o n d i t i o n  ( C l )  a n d  i t  f o l l o w s  f r o m  M ( f )  =  [ / ]  t h a t  ( f j * ' )  6  f  

This completes the proof. 

Theorem 9. If the sequence v = (yjt) satisfies condition (3), then 

v € M(/(X)) . 
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Proof. For each s € X and x* € X' we define functionals x* as 

follows 

z*(x) = z*(zs). 

It is easy to see that x* 6 X' . Suppose now that u = (x*) is al

most convergent to s G X and v = (у*) satisfies the condition (3), i.e. 

(II У к - III) € fo- Therefore, 

l^y - jf)l < \x'[xk{yk - 0)1+ 

+i;c*[—XT -s) • 'ii <ii ** ii sup и г* и и Ук -1 и + 
n + i Г— к n + 1 f—• k=I k=t 

2 i+n 
+  i  ~ s ) i  > 0 >  п  , 0 °  

uniformly in i. This completes the proof. 
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Virge Soomer 

Resümee 

Olgu X Banachi ruum. Artiklis on defineeritud jada и = (it), 

if € X tugev peaaegu koonduvus analoogselt J. Kurtzi (vt. [2]) poolt de

fineeritud jada peaaegu koonduvusega Banachi ruumis. Töös on näidatud, 

et teatud eeldustel on jada tugev peaaegu koonduvus Banachi ruumis kir

jeldatav nagu arvjada tugev peaaegu koonduvus (vt. [3], [4]). On uuritud 

ka peaaegu koonduvate jadade hulga multiplikaatoreid. 
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Some equivalent forms 
for convexity conditions for a family 

of normal matrix methods 
Anne Tali 

In a recent paper [6] the author found the necessary and sufficient con

ditions for convexity of a family of normal matrix methods Aa for sum

mation complex (or real) valued sequences (see [6], Theorems 1.3, 1.5-1.7). 

The above mentioned convexity conditions have a constructive character 

and are quite difficult to control. Therefore, it will be useful to know the 

different equivalent forms for them. The main idea of the present paper is 

to get some new equivalent forms for these convexity conditions as well as 

to transfer them to the summation of sequences in locally convex spaces 

(Theorems 3, 4 and 5) 

1. Preliminaries 

Let £ be 1 a locally convex space over the field К where topology 

is given by the set of seminorms V = {p}. In this paper we deal with 

summation of sequences x = (£„) with £„ g £ for n = 0,1,2, Let 

A be, in general, a summability method given by sequence-to-sequence 

transformation of 2 x € W(£)A into Ax — (т]п) where r/„ £ £ . In the 

sequel we will use the notations w(£) , m(£) , c(£) and co(£) for the 

sets of all sequences, all bounded sequences, all convergent sequences and 

1 A locally convex space £ is supposed to be separated and К = С or 
К = R everywhere. 

2 We denote the transformation of x € ш(£)л into Ax = (r/„) also by 
A . The notation u>(£)A is used here for the set of all sequences x where 
the transformation A is applied. 
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all zero-sequences in £ , respectively. We also denote: 

т ( £ ) л  =  { x  в  U ( £ ) A  i A x  6 m(£)}, 

c(£)A = {x € u)(£)a I Az 6 c(£)}, 

CO(£)A = {x G ш(£)а I Az e c0(£)}. 

In the major part of the paper we deal with matrix methods A = (a„t) 

where a„* € К for n,k — 0,1,2, A matrix method A (and a matrix 

A älso) is called normal if a„t =0 for all к > n and a n n  ф 0 (n = 

0,1,2,...). A matrix method A is said to be regular in £ if c(£) С c(£)a 

and limnr/n = lim„ (n for every x e c(£). It is well-known that matrix 

method A is regular in £ = К if and only if the following conditions are 

fulfilled: 

lim on* = 0 (k = 0,1,2,...), (1) 

lim^pont = 1, (2) 
" к 

EI 1= 0(1). (3) 
к 

We call a matrix A satisfying the conditions (l)-(3) a Г-matrix. If 

matrix A satisfies the conditions (1) and (3) then we call it a To-matrix. 

In the sequel we need the next two propositions that immediately follow 

from Propositions 1 and 2 of paper [4]. 

Proposition 1. Let £ be a sequentially complete locally convex space 

and 3 A be a matrix. Then the following statements are valid. 

1) Matrix method A is regular m £ if and only if A is a T-matrix. 

2) Matrix transformation A is a c0(£) —> c0(£) transformation if 

and only if matrix A is a To-matrix. 

3) Transformation A is a m(£) —• m(£) transformation if and only 

if the condition (3) is fulfilled. 

Proposition 2. Let £ be a locally convex space and 1 be a row-finite 

matrix. Then the statements l)-3) from Proposition 1 are valid. 

3 The elements of matrices belong to К everywhere. 
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2. Convex families of summability methods 

Let Aa be a family of summability methods given by transformations 

of x € ш(£)Аа into A„x = (r?°), where 77™ € £ (n = 0,1,2,...) and a 

is a continuous parameter with values a > 0:9. Next we will formulate the 

central notion of our paper (see [5]). 

Definition. The family of summability methods Aa is said to be 

convex if for every a < ß and for every a < 7 < ß the conditions 

т(£)ла С rn(£)A0, c( £ ) a„  С c { £ ) A ß  (4) 

and 

c(£)A y  D гп(£)л а  П с(£)лд (5) 

hold. The family A„ is said to be zero-convex (0-convex) if the conditions 

(4) and (5) hold with eg instead of с in them. 

The proofs of the convexity theorems can be simplified by the following 

trivial lemmas. 

Lemma 1. If for every a > a 0  °>nd 0 < 8 < 1 the conditions 

m(£)Aa С m(£) A a + s, c(£)aq с c(£)a q + 6  (6) 

and 

c(£)aq+6 3 т(£) Л а  п c(£) A a + 1  (7) 

hold, then the family Aa is convex. 

Lemma 2. If for every a > qq and 0 < <5 < 1 the conditions 

™{£)aa с m(£)a a + j, co(£)a„ с c 0(£)a q + 6  (8) 

and 

со( £)л а + 6  э m(£) a a  п c 0(£)a q + 1  (9) 

hold, then the family A„ is 0-convex. 

Completing this section, we will formulate two propositions. 

Proposition 3. Let Aa be linear transformations for every a > a0 

transforming each stationary sequence x' — (£JJ with £'n = £ £ £ (n = 

0,1,2,...) into sequences Aax'= where 

lim 77^ = aat (0фаа 6 К). (10) 
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If the family A<, is 0-convex, then it is convex. 

The proof of this proposition is trivial and will be therefore omitted. 

In particular, for matrix transformations Aa = (o"t) the condition (10) 

is: 

lim aZk = a<* Ф 0. 
к 

Proposition 4. Suppose that for every a > а о and 0 < 6 < 1 the 

conditions (8) hold and 

1) For each e > 0 there exsisis a cg(£) —• co(£) matrix 

Qa6e = (Чпк*) a n <L a  row-finite matrix R at, c  = (r™| c) satisfying 

ümsup^lr-^l с £ (11) 
к 

and 

p(tf + 6) < äP'P(eÄ+1) + (12) 

for every x E т(£) Л а  П со(£)л а + 1, n = 1,2,... and pEV, where K p  

and L p  are real constants depending on p. 

Then the family A a  is 0-convex. 

Proof. Let us fix an x G т(£)д а  f~| со(£)ла+1 • Taking for the starting 

point the inequality (12) we conclude from condition 1) that 

lim sup p(ri°+t) < Kp • lirnsup p ^nNiT"'j 

+ Lr • lim sup p rnkrlk^j 

<  L p  •  sup p(r?°) • lim sup E lr"fl < £ •  L p -  sup p(??°), 

and thus limn p(r/"+<) = 0 for every p E V. Therefore, X G CQ{£)A0+( 

and inclusion (9) holds for all a > ao and 0 < 6 < 1. The 0-convexity of 

the family Aa follows now from Lemma 2. 

We note that in particular if £ is sequentially complete then the con

dition of row-finity of matrix Rasc can be omitted in Proposition 4. Theo

rem 1 of paper [5] follows from Proposition 4 as an immediate corollary (for 

the case £ = K). 
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3. On the Quotient Theorem of Baumann 

The proofs of the convexity theorems in paper [6] ware based on the 

following quotient theorem of H. Baumann (see [1), Theorem 1), here for

mulated in the notations of this paper. 

Theorem 1. Let A and В be T-matriees and £ = K. Then the 

following statementл arc equivalent. 

a) c(£)B d m(f)hc(f)a-

b) Рог every e > 0 there exists a. row-finite and column-finite 

T matnx Qt = (<£t) and a matrix R<. = (rc
nk) satisfying 

В = QeA + Re (13) 

and 

lim sup Elrn* I < e- (14) 
t 

The Baumann Theorem 1 was refined by J. Boos in papers [2] and [3] 

(see [2], Theorem 4 and [3], Theorem) where some new statements equivalent 

to the statement a) were proved. It is easy to see, that Theorem 1 remains 

true for any sequentially complete locally convex space £ . In the sequel 

we make use of the following variant of the Baumann Theorem. 

Theorem 2. Let A = (a„t) and В = (!>„*) be row-finite T-matri-

ces and £ be a locally convex space. Then the following statements are 

equivalent. 

a) C(£)B D ГП.(£)С)С(£)А and A and В are consistent on 

m(£) П c(£)A-

a*) c(£)B D m{£)f]c(£)A. 

b) For every e > 0 there exists a row-finite and column-finite 

T-matrix Qc and a matrix Л, satisfying (13) and (14). 

c) For every s > 0 there exists a row-finite To-matrix Q e  and a 

matrix R: satisfying (13) and (14). 

d) For every e > 0 there exists a row-finite To-matrix Q c  = (q e
n k) 

and a row-finite matrix R €  = (r'nk) satisfying the conditions (14) and 

p(Y!bnk^ -k" P{Y.^Y,+Lp-p{j2 
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for each n = 0,1,2,..., p e V and x 6 m(£) |")c0(£)a-

e) Statement d) is fulfilled with a co(£) —> c0(£) matrix Qe instead 

of a row-finite To-matrix Qc. 

If in addition the matrix A is normal then we have further statements 

being equivalent to a). 

g) For every e > 0 there exist matrices Qt and R£ satisfying the 

conditions (13), sup„ l^nifcl < 00 an^ 

b*) Statement b) is fulfilled with (15) instead of (14). 

c*) Statement c) is fulfilled with (15) instead of (14). 

d*) Statement d) is fulfilled with (15) instead of (14). 

e*) Statements) is fulfilled with (15) instead of (14). 

Additional Remark. In particular, if £ is sequentially complete, 

then the statements a) - f) without the condition of row-finity of matrix Rg 

in d) and e) are equivalent for all T-matrices A and В . 

Proof. Obviously, a) =—• a*) is valid. Implication a*) ==> b) is also 

valid, because it is true for £ = К as one direction of the equivalence 

in Theorem 1 and because the Banach space К is equivalent to any one-

dimensional subspace £{ = {A{ 6 £ | A 6 K} of space £. Implications 

b) ==> c) =4- d) are trivially fulfilled. Implication d) =ф> e) is fulfilled by 

Proposition 2. Furthermore, both e) and e*) imply f) and f) implies a) since 

A and В are Г-matrices. These considerations will also prove the validity 

of Additional Remark, if we use Proposition 1 instead of Proposition 2 in 

them. 

In particular, let A be a normal matrix. Then implications a) => 

g) ==> b*) are valid because for £ = К they are contained in Theorem 4 

of [2]. The implications b*) => c") => d*) =S- e*) are obviously valid. 

Consequently, we have proved our theorem. 

We note that in case of a sequentially complete space £ a c0(£) —> 

c0(£) matrix Qc is just a T0-matrix in statements e) and e*). 

As we can see from Theorem 2, the validity of inclusion с(£)в Э 

m(£) П C(£)A does not depend on space £ depending only on row-finite 

T-matrices A and В . 

f) со(£)в Э m(£)f|co(£)A-

к 
(15) 
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Proposition 5. Let A and В be T-matrices. If the inclusion 

с(£)в Э m(£) fl C(£)A holds in a given locally convex space £, then it 

holds in ежу sequentially complete locally convex space £, and also in any 

locally convex space £ if in particular matrices A and В are row-finite. 

4. The necessary and sufficient conditions for the convexity 

of a family of normal matrix methods 

Suppose now that Aa — (o°t) with a > a0 are normal matrix 

methods. Then there exists the inverse matrix A"1 for every matrix A^ . 

Let us denote by Dai the product of matrices Aa+ß and A"1 where 

6 > 0 so that Dai — А0+бА~'. 

Theorem 3. The family of normal matrix methods A„ (where 

a > do ) is 0-convex in locally convex space £ if and only if matrix 

Daß = Аа+бА~' satisfies the following conditions for every a > ato and 

0 < S < 1 .  

1) Dai is a To-matrix. 

2) co(£)d„6 Э m(f) П с„(£)о а г  • 

Proof. Since Aa+t = Das(Aax) for each i € w(£) and methods 

A„ are normal, then the condition 1) is equivalent to the condition (8) by 

Proposition 2. The relations i 6 т(£)Ла ПС0(£)А„+1 and A„x e rn(£) П 

co(£)oa\ are equivalent in the same way as the relations x € co(£)a„+< 

and Aax 6 co(£)do6 are equivalent. Therefore, the condition 2) is equi

valent to the condition (9). Our statement follows now from Lemma 2. 

The following theorem together with the additional remark to it forms 

the main result of our paper. 

Theorem 4. The family of normal matrix methods A„ (where 

a > a0 ) is convex and methods A„ are pairwise consistent in locally con

vex space £ if and only if matrix Da$ = Aa+tA~l satisfies the following 

conditions for every a > ao and 0 < 4 < 1 . 

1) Da{ is a T-matrix. 

2) c(£)Daf э rn(£) п c(£)o a l  (with consistency). 

15 
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Additional Remark. Applying Theorem 2 to T-matrices A = Dai 

and В = D ae we get as immediate corollaries the following statements 

each of which is equivalent to 2) (if the statement 1) is fulfilled for every 

a > »о and 0 < 6 < I ). 

2a*) c(£) D a 6  Э m(£) П c(£) D o l  . 

2b) For every e > 0 there exists a row-finite and column-finite 

T-matrix Qa6e = (q"k') and a matrix Rase = (r°s
k

e) satisfying (11) and 

Da6 = QaSeDal 4' Ra6e- (16) 

2c) For every s > 0 there exists a row-finite To-matrix Q0fc and a 

matrix Ra$e satisfying (11) and (16). 

2d) For every e > 0 there exists a row-finite To-matrix Qa6e and a 

row-finite matrix Rafc satisfying (11) and 

p(£ä) < ^ + £p-p(£rä) 

for each n = 0,1,2,..., p € V and x € m(£) П с 0(£)о а 1  • 

2e) Statement 2d) holds with a co(£) —» co(£) matrix Qa6e instead 

of a row-finite To-matrix Qast-

We here omit the formulations of statements 2f), 2g), 2b*), 2c*) and 

2d*) that are analogous to the same statements from Theorem 2, and for

mulate the statement 

2e*) Statement 2e) is fulfilled with 

supEKŽ' |<e 
" к 

instead of (11). 

If in addition £ is sequentially complete, then the condition of row-

finity of matrix Rase can be omitted in statements 2d), 2e), 2d*) and 

2e*). 

Proof of Theorem 4• The condition 1) is equivalent to the condition 

(6) by Proposition 2 since A0+< = Dai(Aax) for each x € u>(£) and 

methods A„ are normal. Furthermore, the condition 2) is equivalent to 
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the condition (7) because the relations x € т(£)ла Лс(£)ла+', and 6 

m(£)Hc(£)O q J  are equivalent and the relations x € C(£)Aq+< and AqI € 

c(£)x>oä are equivalent. Obviously, our considerations keep consistency of 

the methods. Theorem 4 follows now from Lemma 1. 

In particular, if £ = K, then Theorem 4 and also the equivalence of 

statements 2), 2b), 2c), 2d) are proved in [6] (see [6], Theorem 1.3 and 1.5-

1.7. The next result follows immediately from Theorem 4 with the help of 

Additional Remark to it. 

Proposition 6. If the family of normal matrix methods Aa (where 

a > а о J is convex and the methods A a  are pairwise consistent in a given 

locally convex space £, then the family Aa is convex (with consistency) 

in any locally convex space £ . 

5. The sufficient conditions for the convexity of a family of 

summability methods 

The restrictions on the methods Aa can be weakened so that the 

conditions 1) and 2) ( for every a > aB and 0 < 8 < 1 ) of Theorems 

3 and 4 remain sufficient for the O-convexity and convexity of the family 

Aa , respectively. The methods Aa need not be normal, not even matrix 

methods. Let the methods Aa be given by the transformations of x € 

w(£)a0 into Aax = (r?°) where ryj e £ (n = 0,1,2,...) . 

Theorem 5. Let £ be a locally convex space and let the summability 

methods Aa and Aa+< for every a > ao and 0 < 8 < 1 be connec

ted by the row-finite matrix BQ< so that Aa+s = Das(Aax) for each 

x 6 o>(£)aq . 

If the matrix Dat for every a > ao and 0 < 8 < 1 satisfies the 

conditions 1) and 2) of Theorem S, then the family Aa is 0-convex in £ . 

If in addition Da( is a T-matrix, then the family Aa is convex and the 

methods Aa are pairwise consistent in £ . 

Additional Remark. If the matrix Das defined in Theorem 5 satis

fies the condition 2e) from the Additional Remark to Theorem 4, then the 

condition 2) of Theorem S is satisfied. 

The proof of Theorem 5 coincides with one direction (sufficiency) of 

15*  
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proof of Theorem 3 and of proof of Theorem 4 in additional case. We note 

only that the condition 2) of Theorem 3 implies the condition 2) of Theorem 

4 for T-matrices Dai and DO1. 
We notice that the implications 26*) ==> 26) =4> 2c) => 2d) => 2e) 

and 26*) =>• 2c*) =4- 2d*) => 2e*) => 2e) from the Additional Remark 

to Theorem 4 are valid for connection matrices Das and Da: . if we 

replace the condition 2) by condition 2e) in Theorem 5, then we get -ike 

result that is an immediate corollary from Proposition 4. 

A method for constructing the quotient representations (i j; satisfying 

2c) for certain class of connection matrices D„t was built up ii and 

special convex families (in case of £ = К ) were also found (see [«§,, sections 

2 and 3). 
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On the integrability and 
/Л- convergence of cosine series 

Margus Tynnov 

1. Introduction 

We svjdy toe cosine series the coefficients of which form summability 

factors. We are concerned with the following problems: the sum of the series 

;ategrable; the series is the Fourier series of its sum; the series converges 

tr V -nunn. The following theorem of Kolmogorov [5} is well-known for 

jvsine series. 

I f  ( a k )  и  a  q u a s t c o n v e x  n u l l  s e q u e n c e ,  t h e n  t h e  c o s i n e  s e r i e s  

converges, incept possibly at x = 0 , to an mtegrable function f(x) , is the 

Fourier series of f , and the partial sums converge in £'(0,ir)-norm to f 

if and only if at In к —+ 0 as к —* oo . 

In this paper we will extend this result. We will show that the сЭй-

ditions of Kolmogorov can be replaced by the conditions of summability 

factors. 

2. Summability factors 

Let T = (r„T j be a triangular matrix of real numbers and let w be 

the space of all real valued sequences x = (x*) . We denote the summability 

(1) 

field of T by 

*=o 

the boundedness domain of T by 
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and the set of summability factors by 

(тг,ст) = {(ofc) € ш : (a*n) € er for every (it) € mj). 

Let T be the matrix of the series-sequence Cesaro method C a  of 

order a > 0 by 

- A"~* ja _ (n + tt)(n+a-l)..-(a+l) 
Tnk~ A" ' " n! 

or Riesz method P by 

1 ^ 1 d i i T.t = 1 —, Pn = PO + • • • + Pn, 

where 

Um I P„ |= oo, 

5-7 E I I- M (n =0,1,2,...), 
I , t=0 

1  / 1  - "  л  

õ~T J I 2 + ~ P'-i)cos I dx = 
0 *=1 

1 } n 

: n b / l  ( n  =  1 , 2 , . . . ) ,  
' " ' 5 t=o 

1 , v- s in( fc  + 
Dk{x) = 2 Ecos ~ 2sin f • 

(2) 

The methods C" (a > 0) and P are regular methods (see for example 

[1] or [4]). Bohr [2] and Kangro [4] showed that 

(тс, со) = {(о*) € Co : + 1)" | A°+1at |< oo}; (3) 
*=0 

(mp,cp) = {(a*) € c0 : V I Р/ьД—^ |< oo, lim —Aafc = 0}, (4) 
p* p* 

where 

Co — space of null sequences, 

A"+1at = Aaat - A°at+i-
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3. Convergence of cosine series 

Theorem. If (ak) £ (mx,cr) , f&en tfce cosine series (1) сопиегдсл, 

except possibly at x = 0 , to an integrable function f(x) , is the Fourier 

series of /(x) , and the partial sums converge in L1 -norm to f if and only 

if a k  In к —* 0 as к —> oo . 

Proof. By 

Sn = у + ё a* c o e  k x  =  YXY. t„t at ( z)' 

where 

for C° (a > 0) 

5 -  = E a zE = 
fc=0 

n-(a-H) 

= Y .  A a
k ( ^ a + 1 a k ) K t ( x )  + a;_a(a«an_„)a:»_q(x)+ 

+ а™: (
1

<,_ 1 )(а»- 1а п_ ( о_ 1 )ж-: (
1

а_ 1 )(х)+ 

+ (Aa„_i)Ä'jl_1(x)+ 

~ь <i nj) n(x), (5) 

where 

a a + 1ot = д"а* - д°а* + 1; 

t+a+2 

д- + 1а, = Y, а:1Г 2 )«-

Since 
к а  

~ — as к —* oo, (а*) € (тс«,сс<>), 

then by (3) 

(6) 
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and 
OO OO / < I \qi 

n«| A«a.j=«a| 53 Да+1а, ,|<nQ E (TT^ 1 Да+,а'f-

<(1 + n_Q)a E a + ")e|^hO as n^oo. (7) 

By [7, p.158] 

j_ 1  1 1 x  , 
n" z™+1 n z 

and by (5), (6), (7) series 

| ^ < r ) | < M Q ( - . - ? i + - . - i )  ( 0  <  Z  <  7 г )  

ea^(a" + 1a t)al(z) 
k=О 

converges to an integrable function /(z) for 0 < z < * . Clearly, 

S„-/(z) = - E A;(A«+1at)K?(z)+ 

+ <_a(Aaan_a)^_„(z)+ 

+ Aan4^|1_1(i)+ 

+ anDn(x) (8) 

and 5„ —» /(z) as n —• oo for 0 < z < тг . Using the integrability [7, 

p.157] 

j \ K ° ( x ) \ d x < M a  (n =0,1,...) 

0 

and (6), (7), (8) we have 

j I S„ - f { x )  I d x <  E A* I Л™+1°* I / I  ) I <**+ 
о k=n—a о 

+ А-_ а | Д -а*_ а |  j \K°n_a(x)\dx+ 

+ I Afln-i I J I ^i,_i(z) I dl+ 

0 

+ I а„ I J I D„(z) I dx 0 

0 
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as n —» ос, and 

I o„ I J \ Dn(x) I dx < J I S„ - f{x) I dx+ 

0 0 

+  E  A a
k \  A " + , a k  I  /  I  I  d x +  

k~n—a q 

+ A"_a I A"a„_„ I J I K°_a(x) I dx+ 

a s  n — v  o o  . Hence, 

if and only if 

+ I Aa„_i I J I K \ _ x ( x )  \ d x - + 0  

0 

/ |5.-/(®) | d® -> 0 

0 

an J I D„(x) | d® —» 0 

as n —» oo and this is equivalent [7, p. 115] to an lrm —» 0 as n —> oo 

For Riesz matrix (see for example [4] or [1], p.116) we have 

—1 _ Pn ^ —1 -pn —1 Pп — 1 
'  nn 5  u,n—1 

Pn Pn Pn—1 

-1 _ 
'  n,n—2 

Pn-2 

Pn-1 

,  T n  k  =  0 ,  к  < n ~  2. 

Hence, 

Sn = ~ a* cos fcx = 
*=1 

E 
Jt=0 

p k  (— _ — p (at+1 _ a*+2\ 
V* Pt J \Pk+1 Pifc+l/ 

K t(x)+ 

+ ~ "(Aan-i)A'n-i(i) + — a„Kn(x) —a„Kn-,(x) = 
Pn—1 Pn Pn 

= E(P*A—^W*) + —'a»-iK„-i(x)+ 
L. n X Pk  J  Pn-1 Ar—0 

a. 
+ -^(PnA'„(z)-Pn_1A'„_i(®)), 

Pn 
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where 
1 1 1 п  ^ 

A„ ( x ) =  -  +  — Y p n - kCoskx = — Y,PkDk{x). 
" *=1 " *=0 

Since 

P* n / x d v̂ ! Pk 
рй 

=  P n D n ( x ) ,  

P n K n ( x )  -  Pn-,A„-,(x) = P n T ^ - D k ( x )  - Pn_, E - ~ — D k ( x )  
k=0 " k=0 ™~1 

then 

n-2 

S„ = У( Р к А ^ ^ - ) К к ( х )  + ^--Да„_! A'n_ j(x) + a v D n \ i ) .  
Pk ) Pn-1 k=0 

By (2) and (4) series 

f P k A ^ K k { I )  
S5 « 

converges to an integrable function /(x) for 0 < -с < тг We have 

7 7  oo 7 7  

/ I ak cos fcx j dx = / I 57i — /(x) \ dx < 
о *="+! 0 

< У I РкД— ! / I At(x) I d*+ I ——Aa„_i i / i A"n_ i(i'} t dx+ 
^-i ?' { p-] / 

+ I o„ I J I ,D„(x) I da: 

0 

and 

I on I J I D„(s) I dx < j I S„ - /(x) I dx+ 

о о 
7г t 

+ У I Pk&--~^- I f I A'/t(x) I dx+ I —An„-1 I. / I A'n-i(x) I dx. 
,^1  pk J Pn-1 J к=п-1 о 0 

By (2) and (4) hence S„ —» /(x) in L'-norm as тг ос , if and only if 

On JI ад I + o, 
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it is if and only if an bin—• 0, as n —* oo . 

If (a*) € (тт,ст) , then cosine series is a Fourier series investigated 

by G. Goes [3] and the author [6]. 
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Koosinusridade integreeruvusest ja Z1 -koonduvusest 

Margus Tõnnov 

Resümee 

A. Kolmogorov [5] tõestas 1923.a., et kui koosinusrea kordajad moo

dustavad kvaasikumera nulljada, siis see koosinusrida on Fourier rida 

ja tema osasummade jada koondub L1-normi järgi parajasti siis, kui 
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o. i  In к —> 0. Kolmogprovi teoreemi eeldus tähendab aga seda, et kor

dajate jada on klassist (3), kui о = 1, see on summeeru vustegurite klass 

Cesäro menetluse C'1 korral. 

Käesolevas artiklis tõestatakse, et Kolmogorovi teoreemis võib eel

duse asendada kordajate jada kuulumisega klassi (3) või (4), seie tähen

dab kordajate jada, kuulumistga summeeruvustegurite klassi о—järku 

(o > "6) Cesäro menetluse suhtes või summeeru vustegurite klassi Rieszi 

menetbase suhtes. Väite esimese poole, et nimetatud eeldusel on tege

mist Fourier reaga, on tõestanud Cesäro menetluse С" (а > 0) korral 

G. Goes [3] ja üldjuhul-autor [6J. 
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Open problems and some results on 
s t r o n g l y  c l o s e d  s u b a l g e b r a s  o f  B ( X )  

W. Želazko ') 2) 

We give here a motivation for the study of strongly closed subalgebras 

of B(X) , announce some results, and pose several open questions. 

Let X  be a real or complex В ал ach space and let B ( X )  denote the 

algebra of all its bounded endomorphisms. The strong operator topology 

on B(X) is the topology of pointwise convergence of nets of operators. 

A basis of (open) neighbourhoods of the origin for this topology is given 

by the sets U(e; ii,...,x„) = {T 6 B(X) : ||Тх<|| < e,i = 1,... ,n} , 

where e is a positive number and X],... ,x„ are linearly independent 

elements of X . It is well-known that the closure in the strong operator 

topology of a subalgebra of B(X) is again such a subalgebra, and that 

every strongly closed subalgebra of B(X) is also uniformly closed (closed in 

the norm topology). A subalgebra A of B(X) is said to be a maximal 

strongly closed algebra (m.s.c.a.) if it is a strongly closed proper subalgebra 

o f  B ( X ) ,  a n d  f o r  a n y  s u b a l g e b r a  A ,  o f  B ( X )  s a t i s f y i n g  А  С  A i  С  B ( X )  

w e  h a v e  e i t h e r  A  =  A \  ,  o r  A \  i s  s t r o n g l y  d e n s e  i n  B ( X )  .  

Let X 0  be a closed linear subspace of X satisfying (0) ф X 0  ф X 

') The author's presentation given at the conference devoted to the 80th 
anniversary of Professor Gunnar Kangro (Tartu, 20-22 November, 1993) 

2) supported by the KBN grant No 2.2007 92 03 
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and put 

A ( X 0 )  =  { T e  B ( X )  :  T X 0  С  X o } .  ( 1 )  

It is easy to see, that A{X 0) is a strongly closed proper subalgebra of 

B ( X ) .  

Proposition 1. Every algebra of the form (1 )  is an m.s.c.a. 

Proposition 2. If the dimension dimA'„ of Xa %s finite, then the 

algebra A(X0) is maximal in B(X) in the sense that if A\ is u subalgebra 

o f  B ( X )  s a t i s f y i n g  A ( X 0 )  с  i i  с  B ( X )  ,  t h e n  e i t h e r  A y  =  A ( X 0 ) •  o r  

A ,  =  B { X )  .  

Proposition 3. If the coiimension codimX„ is finite, then the conclu

sion of Proposition 2 also holds true. 

A partial converse of the Propositions 2 and 3 is the following 

Proposition 4. Let H be an infinite dimensional separable Hilbert 

space and let H„ be a closed subspace of H with dim/f„ = codimJi,, = 

o o  .  T h e n  t h e r e  e x i s t s  a  p r o p e r  u n i f o r m l y  c l o s e d  s u b a l g e b r a  A  o f  B ( H )  

satisfying 

A{H„) с Ac B{H) with A(H 0) фАф B(H). 

The proofs of the above results and of the following Proposition 5 will 

appear elsewhere. 

As a motivation for the study of strongly closed algebras we mention 

the following well-known problems. 

I. The Problem of Fell and Doran ([1], p. 321, Problem II, see also [5]). 

Let X be a topological vector space, L ( X )  — the algebra of all 

its continuous endomorphisms, and A — em algebra over the same field 

of scalars as X . A representation T of A on X is a homomorphism 

a —> Ta of A into L(X) . We assume that if A has the unity e , then 

Tt = I — the identity operator on X . A representation T is said to 
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be irreducible, if there is no proper closed subspace X0 of X which is 

invariant with respect to all operators Ta of the representation T or, 

equivalently, if each orbit 

Ö(T\ x0) — {Tax0 : a € A}, 0 ф x 0  € X 

is dense in X (one can easily see that the closure of the above orbit is an 

invariant subspace for all operators of the representation T ). Similarly, we 

call T to be n-fold irreducible ( n 6 N ) if for any n -tuple xi, •.., xn of li

n e a r l y  i n d e p e n d e n t  e l e m e n t s  o f  X  t h e  o r b i t  0 ( T \  x i , . . .  , i „ )  =  

{(Taxi,... ,Taxn) 6 Xn : a € A} is dense in Xn provided with the 

Cartesian product topology, A representation T is said to be totally irre

ducible, if it is n -fold irreducible for all n . The Problem of Fell and Doran 

reads as follows. Let X be a complex locally convex space and suppose 

that T is an irreducible representation on X of a complex algebra A, such 

that the commutant T1 = {S € L(X) : STa = TaS, Va € A} consists 

only of scalar multiples of the identity operator. Does it follow that T is 

totally irreducible? The Problem makes sense for' arbitrary topological vec

tor spaces and also for the real spaces and algebras. The Problem is open 

even for Hilbert spaces. If T is a totally irreducible representation on a 

Banach space X, then obviously the algebra {Ta 6 B(X) : a 6 A} is 

strongly dense in B(X) . Thus, if we are looking for a counterexample on 

a Banach space, we must find there a strongly closed proper subalgebra of 

B(X) with a trivial commutant and with no proper closed subspace which 

is invariant with respect to all operators in the algebra in question. It is 

believed, that such a counterexample should exist. 

II. The Transitive Algebra Problem (see [3], Chapter 8). 

An algebra A of operators on a vector space X is said to be al

gebraically transitive if for each non-zero element x in A and each у in 

A there is an operator T in A with Tx = у . If X is a topological 

vector space, then A is said to be transitive, if for each non zero element 

x in X , each у in X and each neighbourhood U of у there is a T 

in A with Tx € U . Thus A is transitive on a t.v.s. X if all orbits 

õ(A;x0) = {Tx0 : T 6 A} , xa / 0 are dense in X or, equivalently, if 

there is no proper closed subspace X„ of x which is invariant for all ope

rators T in A . The Transitive Algebra Problem is the question whether 
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for a complex Hilbert space H a strongly closed transitive subalgebra of 

B{H) must coincide with B(H) .If dimff < oo , then the positive solution 

of this problem follows from the classical Burnside theorem (see [2j,p.276). 

Again, in order to solve this problem, we have to study strongly closed 

s u b a l g e b r a s  o f  B ( H )  .  

Let X be a Banach space, and call a subspace M. of the Cartesian 

product Xn to be in a general position if it contains a point with linearly 

independent coordinates. Let M bea closed subspace of X" and put 

A ( M )  =  { T  e  B ( X )  :  O n , . . . , x n )  €  M  = >  ( T x b . . . ,  T x n )  6  M ) .  

It is easy to see, that A ( M )  is a strongly closed subalgebra of B ( X )  , in 

order to have it differ from B(X), we must assume that X is in a general 

position.We have the following 

Proposition 5. Let X be a Banach space and let A be a proper 

strongly closed subalgebra of B(X) . Then there is a natural number n 

and a closed subspace M) of Xn which is in a general position, such that 

А С A(M). 

Corollary. Every m.s.c.a. is of the form A { M )  .  

Let A be a proper strongly closed subalgebra of B { X )  .  We say that 

A is of order n if А С A(M) for some subspace M of Xn , which 

is in a general position, and A <f_ N for any such a subspace Я of X k  

with к < n . Thus A is of order 1 if and only if there is a proper closed 

subspace X0 С X which is invariant with respect to all operators T in 

A . Proposition 5 implies that every proper strongly closed subalgebra of 

B{X) has some positive order.Proposition 1 implies that every algebra of 

order 1 is contained in some m.s.c.a. of order 1. 

Problem 1. Let A be a proper strongly closed subalgebra of B(X) , 

is it contained in some m.s.c.a. (or in some m.s.c.a. of the same order) ? 

If we had a positive answer for this problem, we could have an m.s.c.a. 

of order 2 on an infinite dimensional Banach space (the author knows only 
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one example of an m.s.c.a. of order 2 in B(R*) ). To this end we should 

take the commutant of an operator T without a closed invariant subspace 

(see [4]), it is a strongly closed algebra of order 2 (it equals to _4(M) , 

where M. is the graph of T ). 

Problem 2. Does there exist a Banach space X such that B(X) has 

subalgebras of arbitrarily high orders ? 

A weaker question is 

Problem 3. Does there exist a Banach space X for each natural 

number n such that B(X) has a subalgebra of order n ? 

A still weaker question is 

Problem 4. Does there exist a Banach space X such that B(X) has 

a subalgebra of order S ? 

A positive answer to this question solves in negative the Problem of Fell 

and Doran. In fact, if A is not of order 1, then there is no proper closed 

subspace of X which is invariant with repect to all operators in A , so that 

the identity map of A onto itself is an irreducible representation. Since A 

is not of order 2, algebra A has a trivial commutant (if T is an operator 

in the commutant of A and T is not a scalar multiple of the identity, then 

the graph of T is a subspace of X2 which is in a general position and A 

is contained in A(M) , where M is the graph of T ). On the other hand, 

A is not strongly dense in B(X) , so that the representation in question is 

not totally irreducible. 
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