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Abstract

Atomistic simulations are a useful way to study nanoscale metal structures. At the
nanoscale, the surface to volume ratio of the objects becomes large and surface effects
start to play a critically important role. The internal stress near a surface can reach the
GPa range and thus its effects should not be neglected when dealing with nanowires
and other nanostructures. Similarly, surface diffusion of atoms is important in the
manufacturing process and subsequent stability of nanostructures.

In the study of vacuum breakdown on Cu surfaces, dislocation activity and surface atom
diffusion are thought to play a role in the formation of field enhancing emitters.

This work investigates a possible mechanism of nucleation of a nanofeature on metal
surfaces under high electric fields in the presence of a near-surface defect, and the
stability of Au nanowires with respect to surface diffusion. The simulation methods of
molecular dynamics, kinetic Monte Carlo and finite elements are employed.

A subsurface Fe precipitate is used as an example of subsurface extended defects, and
the nucleation of dislocations in regions of high stress concentration is simulated. A
process of forming a protrusion on the surface near the precipitate due to dislocation
propagation is shown, as well as the possibility of forming new voids on the precipitate
interface.

Since atomistic simulations are heavily limited in size and time scales, larger scale
simulations are conducted by using finite element modelling of nanoscale material
behavior under external loading. However, such modeling requires the development of
an accurate model of surface stress. In this work, a surface stress model is implemented
into a continuum finite element model to enable faster calculations of more extensive
nanoscale systems, as well as to combine the mechanical model with electrical effects
in vacuum breakdown research. The internal stresses given by the model are validated
in comparison with molecular dynamics simulations and against an analytical model of
dislocation emission from a near-surface void.

Kinetic Monte Carlo simulation is a suitable tool to simulate diffusion processes.
However, setting up KMC simulations requires a parametrization of atomic migration
barriers. A consistent parametrization scheme, called the tethering method, is
developed in the current work. The tethering method provides a robust automatic
process to calculate migration barriers for on-lattice diffusion simulations. It allows the
calculation of barriers for unstable processes, while having a minimal effect on stable
barriers.

The tethering method is used to create a parametrization for Au, which is used to
simulate nanowire junction fragmentation. Nanowire junctions break up in a process
similar to Rayleigh instability. In conjunction with experiments, it is shown that
junctions fragment at a low temperature when nanowires themselves remain whole.
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Simulations demonstrate that the breakup can be explained by surface energy
minimization due to atom diffusion and that the formation of a fragment at the
nanowire crossing point is very reliable.
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1 Introduction

Metal surfaces in the nanoscale are of considerable interest in nanotechnology
research. Nanostructures, such as nanopillars, nanoparticles and nanowires have
unique mechanical, electrical and optical properties that allow them to be useful in
many technologies [1]. For example, historically, the most well-known use of metal
nanoparticles was in colored glass [2]. Luster technology has existed since the 9"
century in Mesopotamia, even if the practitioners did not realize the role or even the
existence of nanoparticles [3].

In modern areas of research, a wide range of applications of nanostructures are being
explored, like gold nanopillar electrodes for bioelectrical signals [4,5] and plasmonic
trapping [6], gold nanowires in solar cells [7] and flexible displays [8], and nanoparticles
in biochemical sensors [9].

Surface elastic and diffusion properties become extremely important for these
structures due to their high surface to volume ratio. The elasticity and plasticity of
nanowires play an important role in nanoelectromechanical systems [10,11] or
nanophotonics [12], where periodic bending or large deformations are required.
Loading results in dislocation nucleation and motion, both of which are thermally
assisted processes [13,14]. This, together with the diffusion of atoms on the surface
becomes important in thermal treatment of nanostructures. For example, thermal
diffusion breakup was observed for Au [15,16], Ag [17], and Cu [18] nanowires.

Another area of interest is the field of vacuum breakdowns, where nanoscale surface
modifications can lead to enhanced field emission followed by plasma formation in
high-field conditions [19]. These effects are of critical importance in fusion reactors [20],
vacuum circuit breakers [21], or particle accelerators [22]. In particular, the planned
Compact Linear Accelerator (CLIC) [23—-25] with its 100 MV/m accelerating gradient is
faced with serious vacuum breakdown problems.

Direct current (DC) field emission experiments with the CLIC accelerating structures
have shown field enhancement factors of the order of 100 in Cu [26], when the results
were fitted to the Fowler-Nordheim emission model [27]. This points towards
significant surface roughness or high aspect ratio nanopillars which would be
responsible for the geometrical field enhancement. However, no such structures have
ever been observed and the possible mechanisms of their formation are currently
unknown. An indication that elasticity or dislocation properties of materials play a role
in breakdown initiation comes from the fact that the breakdown resistance of metals
is correlated with their crystal structure [26].

Atomistic simulations have proven to be an effective tool when the description of the
microscopic behavior under extreme conditions is required. For example, the surface
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stress effects in gold nanowires [28] and nanopillars [29] have been studied using
molecular dynamics (MD) simulations. The diffusion of surface atoms during cold
welding of silver and gold nanowires was identified using MD [30]. Kinetic Monte Carlo
(KMC) simulations were used to study gold nanoparticle structural transitions [31] and
Ge nanowire breakup [32].

In the study of breakdown initiation processes, MD simulations have also proven useful.
Atomistic studies of dislocation nucleation around a sub-surface void [33] and
temperature changes in a long thin protrusion [34,35] in high field conditions have
provided insights into the possibilities of field emitter formation. Combined MD and
finite element method (FEM) simulations [36] have indicated that a positive feedback
mechanism exists between the heating and growth of an emitter [37].

The stability of nanotips is influenced strongly by their nanocrystalline structure [38]
and surface diffusion properties [39,40]. Surface diffusion likely also plays a role in
nanotip formation as atoms diffuse in the direction of field gradient, i.e. toward a higher
surface curvature [41].

The available spatial and temporal extent of MD simulations is limited due to their
computational complexity. It is desirable to use more scalable simulation techniques,
like FEM, to model more extensive (but still nanoscale) features. FEM simulations have
been used to study the field enhancement due to surface irregularities [42] and to
model the plastic deformation under high field conditions [43]. However, standard
continuum models do not include nanoscale surface effects. Therefore, to more
precisely model nanoscale surfaces using the fast FEM technique, the macroscopic
stress model needs to be extended by including the effects of surface stress. Previous
efforts to achieve this include a combined level set and extended FEM approach [44]
or an interatomic potential based approach [45].

1.1 Purpose and structure of this work

This work aims to understand the formation and disappearance of surface structures
hypothesized to be the cause of vacuum breakdowns. To that end, atomistic computer
simulations are used to study the nanoscale surface stress and diffusion of Cu and Au
nanostructures. The objectives are as follows:

1. To investigate the dislocation behavior due to a near-surface precipitate with
the aim of identifying a possibility of significant surface modification that would
be relevant for the CLIC breakdown studies.

2. To develop, implement and validate a fast surface stress model for FEM that
would take into account the crystallographic orientation of free surfaces, thus
allowing us to extend the time and length scales of simulations compared to
MD; to use the model to investigate the size effect of subsurface voids
pertaining to dislocation nucleation.
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3. To investigate the stability of surface nanostructures using KMC diffusion
simulations and to develop a consistent automated method for the
parametrization of materials for on-lattice KMC.

As a result, a multiscale suite of simulation techniques is developed and used to
characterize the formation and stability of surface nanostructures. The surface stress
model for FEM is validated qualitatively and quantitatively against MD simulations. The
KMC model is confirmed by experiments.

The physical processes investigated in this work are introduced in chapter 0. Chapter 0
describes the three simulation methods used: MD (publications I-1ll), FEM (publications
[I-1l1), and KMC (publications IV-V). In particular, some specific techniques for
calculating stress in MD are described in section 3.1.1. The new surface stress model
for FEM (publications II-1Il) is described in section 3.2.1 and the tethering method for
KMC parametrization (publication 1V) is presented in sections 3.3.2-3.3.4.

Chapter 4 is based on publication | and fulfills objective 1. The MD method is used to
study the effects of near-surface precipitates when the material is subjected to an
external tensile stress originating from the electric field. Dislocation nucleation around
a near-surface Fe precipitate in Cu is simulated and results are presented.

In chapter 0, based on publications II-Ill, the accuracy of the coupled surface and bulk
stress model for FEM is validated in comparison to MD simulations by calculating
stresses surrounding a void. It is used to calculate dislocation nucleation conditions
around a void, which are then compared to a previously published analytical model.

Chapter 6 is based on publications IV-V and studies the surface diffusion of metal atoms
using KMC simulations. The newly developed parametrization technique is used to
generate a model for Au, which is used to study the diffusion-driven breakup of Au
nanowires.

Finally, chapter 7 concludes the work and gives an outlook for future developments in
the field.
1.2 Author’s contribution

Publication I. The author planned and performed all simulations in the paper, analyzed
all results and prepared the manuscript.

Publication Il. The author conducted the MD simulations used in the paper together
with M. Veske. The author performed the comparisons between the FEM and MD
results and wrote the corresponding analysis sections of the manuscript.

Publication Ill. The author conducted the MD simulations used in the paper together
with M. Veske. The author analyzed the results of the paper and prepared the
manuscript.
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Publication IV. The author developed the automatic barrier parametrization scheme
and the tethering force approach for KMC calculations described in the paper and
wrote the parts of the manuscript relating to those methods. Publications IV.a and IV.b
are data articles accompanying publication IV that use the author’s code to calculate
barriers for Cu and Fe, respectively.

Publication V. The author used the methods of publication IV to generate a KMC
parametrization for Au and conducted all simulations in the paper. The author analyzed
the results and prepared the manuscript.
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2 Physical phenomena near surfaces

2.1 Mechanical stress in bulk and near surfaces

The Cauchy stress [46—48] describes the forces acting in a material and is defined with
the help of the Cauchy stress principle. The principle states that internal forces can be
handled in the same way as external surface forces by defining an infinitesimal volume
element with virtual surfaces. The internal tractions t acting across these virtual
surfaces from one part of the material on another define the stress tensor:

t=on, (1)

where @ is the Cauchy stress tensor and n is the normal vector of the virtual surface.
The diagonal components of the tensor represent tensile or compressive forces while
the off-diagonal components represent the shear forces. When angular momentum is
balanced, the stress tensor is symmetric.

The Cauchy stress principle is specifically meant to handle the bulk stress field, but
taking the virtual surfaces coincident with physical material surfaces and the tractions
equal to the forces acting on them, surface stress is obtained.

In principle, there is no difference between physical material surfaces and virtual
surfaces in the treatment of stress. This work, however, is specifically focused on the
processes and forces occurring on physical surfaces.

The surface of a metal experiences stress due to the missing bonds on the side exposed
to the vacuum [49]. The surface energy, and therefore the magnitude of surface stress
depends on the crystallographic orientation of the surface [50].

In macroscopic applications, the surface stress of solid materials is usually disregarded,
but on the nanoscale the stress field due to surfaces becomes important in describing
sub-surface processes. For example, the motion of dislocations is influenced by surface
stress. In extending surface effects into macroscale continuum modeling, the Cauchy-
Born principle can be applied [45], which equates the continuum strain field with the
atomistic displacements due to surface relaxation.

2.2 Dislocations

Under external stress, material initially deforms elastically. As the stress is increased,
the deformation transitions into the plastic regime. The onset of plasticity occurs when
the external stress becomes greater than the yield strength for the given material, and
continues until the ultimate tensile stress is reached. Plastic deformations in metals are
driven by extended linear defects, known as dislocations. Dislocations [51-53] occur in
crystalline materials when a part of the material slips with respect to the adjacent part
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causing a mismatch of atomic planes. The dislocation line marks the border between
the slipped and unslipped region.

The dislocation is characterized by the Burgers vector b which shows the direction and
magnitude of the slip. The Burgers vector is typically defined by comparing a Burgers
circuit drawn in pristine material to that drawn around a dislocation. The direction and
magnitude of the resulting mismatch constitute the Burgers vector. The angle between
the Burgers vector and the dislocation line determines the character of the dislocation:
when they are perpendicular, the dislocation has edge character, when they are
parallel, the dislocation has screw character, and in other cases the dislocation has
mixed character. The Burgers circuits for the edge and screw dislocations are illustrated

in Figure 1.
P M P } O! !M f
! rgers vector

Figure 1. Burgers circuit constructions for the edge (top) and screw (bottom) dislocations. When a
dislocation is present (right side), an extra step along the lattice is necessary to close the circuit compared
to the undeformed material (left side). This extra step determines the Burgers vector of the dislocation.
Image adapted from [54].

The dislocation line and the Burgers vector together determine the glide plane of the
dislocation. Dislocation motion is driven by stress inside the material. Motion along the
glide plane involves gradual slip of the material and is the main mechanism of plasticity
in crystals. Motion perpendicular to the glide plane, called climb, requires the diffusion
of vacancies toward or away from the dislocation line and is only significant at high
temperatures.
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<112> Perfect  Partial <112>

Figure 2. The FCC crystal structure. The layer structure in the <111> direction is shown on the left. Atoms
are colored according to their layer (A, B, C). The slip system on the {111} surface is shown on the right.
Two perfect dislocation Burgers vectors and four partial dislocation Burgers vectors are shown.

The energetically preferential slip planes and slip directions together constitute slip
systems. In face centered cubic (FCC) crystals, slip occurs on the {111} planes in the
<110> directions. Furthermore, perfect dislocations dissociate into partials surrounding
a stacking fault. A partial dislocation involves a slip that does not restore the perfect
lattice, but rather moves a layer of atoms into a non-lattice energy minimum. The

o . . 1 .
partial dislocations in FCC crystals have a Burgers vector ofg<112>, which move the
atoms as illustrated in Figure 2.

In the <111> direction, the FCC crystal has an ABC layer structure, as seen on Figure 2,
left. Atoms are colored according to their layer. In the right figure, the {111} surface is
shown. All red atoms are in the A layer, all green atoms in the B layer below the A layer,
and all blue atoms are in the C layer at the bottom. Two example perfect dislocations
are shown, as well as their dissociation into partial dislocations. In case of perfect
dislocations, atoms move from an A layer position to another A layer position,
preserving the perfect lattice away from the dislocation core. In case of a partial
dislocation in this example, atoms move from an A layer position to a C layer position,
resulting in a local layer structure CBC, which corresponds to a hexagonal close-packed
(HCP) structure. Examining the layer structure is thus a good way to detect dissociated
dislocations in FCC crystals.

2.3 Surface atom diffusion

Once a surface nanofeature has appeared, surface diffusion begins to play a role in its
stability. Surface diffusion is driven by thermal motion of atoms between energy basins.
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At temperatures below the melting point, adatoms on metal surfaces spend most of
their time near a potential energy minimum. There are finite energy barriers around
such an adatom’s position, which impede it from freely roaming around the surface.
The barriers are easier to overcome at elevated temperatures giving rise to surface
modifications due to diffusional processes. The transition of an adatom or a surface
atom to a different potential energy minimum is a thermally activated stochastic
process with a rate that depends on the system temperature:

Em

[~ exp (— kB_T) , (2)

where T is the temperature, kg is the Boltzmann constant, and E,,, is the migration
energy. The migration energy measures the height of the energy barrier that the atom
needs to overcome in order to transition to a new potential well. The probability of
guantum mechanical tunneling through the potential barrier is insignificant and is
disregarded in this theory.

Figure 3 shows an example of an energy landscape along a transition path. The
transition begins and ends at energy minima which correspond to equilibrium atomic
positions. The energy barriers to transition from one minimum to another are shown
on the figure and are different for the forward and reverse transitions along the same
path. According to eq. (2), the rate for the forward process is smaller than that for the
reverse process in this example. Therefore, this energy landscape results in directed
diffusion towards the left hand side of the graph.

10

0.8
ETE‘UETSQ

0.6

0.4
E forward

Energy (arbitrary units)

0.2}

0.0 Y

0.0 0.2 0.4 0.6 0.8 1.0
Distance (arbitrary units)

Figure 3. Example migration energy barrier for surface atom diffusion. In the beginning and end of the
transition path are energy minima, and the atom must overcome an energy maximum in-between. The
size of the migration barrier depends on the direction of the transition.
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The energy landscape of a surface is affected by the topology (surface steps, adatom
islands, roughness, etc.) and external factors, such as electric field. The dependence of
the potential energy on the surface geometry lies at the core of KMC simulations, which
will allow for analysis of stability of nanofeatures under normal condition, but at
elevated temperatures.
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3 Simulation methods

3.1 Molecular dynamics

The method of classical molecular dynamics [55-57] models atoms as point particles
that move according to Newton’s laws of motion based on interatomic interactions.
Quantum effects are accounted for indirectly through interatomic interaction
potentials. For metals, the embedded atom method (EAM) potential [58,59] is often
used to describe the interactions. The EAM potential describes the energy of an atom
as follows:

N N
1
E=F, (Z pﬂ(rn)> + Ez $ap(r) - (3)

n=1

Both sums are over all atoms within the cutoff distance of the current atom. F is an
embedding function which calculates the current atom’s energy based on the local
electron density. The local electron density is the sum of electron densities p
contributed by each of the neighboring atoms. An atom’s contribution to the electron
density is symmetric and depends only on the distance 7;,. The second contribution to
the energy is the pairwise interaction ¢ between the current atom and neighboring
atoms, which likewise depends only on the interatomic separation. The subscripts a
and B refer to the atom species of the current atom and atom n, respectively. Thus,
the electron density functions are associated with the neighboring atoms (because the
current atom is being embedded into their electron density background), while the
embedding function is associated with the current atom. The pairwise interaction
function is associated with a specific pair of atom species.

The functional forms of F, p and ¢ are complicated and involve many parameters
which are fitted empirically from experimental results or more precise quantum
mechanical calculations, typically density functional theory (DFT). For ease of use in MD
simulations these functions are given in a tabulated format. For Cu, the Sabochick-Lam
[60] and the corrected effective medium (CEM) potential by Stave et al. [61] were used.
For Au, the potential by Grochola et al. [62] was used. The Fe potential was by
Mendelev et al. [63], while the Fe-Cu many-element functions were developed by
Pasianot and Malerba [64] and compiled into a Fe-Cu-Ni ternary potential by Bonny et
al. [65]. These potentials have been developed in order to accurately model the
mechanical properties of the respective materials.

The force on the atom is calculated as the negative gradient of the energy and used in
Newton’s equation of motion:
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where a is the atom’s acceleration and m is its mass. This is then numerically
integrated using discrete timesteps to obtain the atomic positions and velocities as
functions of time, generating the phase space trajectories. This work uses the MD code
LAMMPS [66], which applies the velocity form [67] of the Verlet algorithm [68]:

2 £(n)
£ = 2 4 A + % ,

At[f("+1) + f(n)]
2 )

(5)

v(n+1) — v(n) +

where At is the timestep, parenthesized superscripts refer to the iteration number, and
unit mass is assumed.

An appropriate value for the timestep is an order of magnitude shorter than the period
of atomic oscillations around their equilibrium positions, which is the fastest process
considered in the current work.

The initial conditions for the positions and velocities, (%) and v(®), are given as inputs
to the system. Starting velocities can be generated according to a Maxwell-Boltzmann
distribution to conform to a desired temperature. The initial distribution of velocities is
also used as a source of randomness when independent repeat simulations are
required.

Simulations at constant temperature are accomplished with the help of a thermostat.
The Berendsen thermostat [69] adjusts the temperature by rescaling velocities at each
timestep by the factor A:

2= 1+f(%_1), (6)

where Ty is the desired temperature, T is the instantaneous system temperature and
T is a parameter that determines the speed of achieving the set temperature. This
expression results in a rate of change of temperature proportional to the difference
from the desired temperature:

At
AT =—(Ty—T). (7)
T
In order to preserve the fluctuations expected from a canonical ensemble, the more
complicated Nosé-Hoover thermostat [70,71] can be used. A fictitious particle that acts
as an external heat bath is coupled to the system which effectively exerts a friction

force on all atoms. The equations of motion are modified as follows [72]:
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ma=f—ymv, (8)

where f is the force due to interatomic interactions, as defined by eq. (4). The
parameter y changes as the simulation proceeds, with a rate that is proportional to the
difference between the kinetic energy of the system and that of the fictitious particle
representing the heat bath:

1 (& P

. n

= — — — 3NkgT, |. 9

Y M( m, BO) (9)
n

=1
Here p is the particle momentum, T, is the desired temperature around which the
system temperature will fluctuate and M is a mass parameter that determines the
inertia of the fluctuations. Nosé and Hoover showed that equations of motion of this
form result in correct canonical ensemble statistics.

3.1.1 Stressin molecular dynamics

To obtain a measure for spatial stress distribution, the virial [73] for each atom is
computed and divided by a normalization volume. In case of pair potentials, the
expression of the atomistic stress is:

N
1 1
O-l'j = —5 <m17i17j + EZ rl'nf)') , (10)
n=1

where () is the normalization volume, m is the atom’s mass, v; the velocity
components, f; the force components, r* the components of the displacement of
atom n relative to the current atom, and the sum is over all other atoms within the
cutoff distance. For many-body potentials like EAM that were used in the current work,
LAMMPS uses a modification by Thompson et al. [74].

The normalization volume ( is taken to be equal to the average Voronoi cell volume
around the atom [28]. The Voronoi cells are constructed around all atoms using the
code Voro++ [75]. For bulk atoms, the volume of the Voronoi cell contributes to the
average volume directly, but for surface atoms additional processing is required
because their Voronoi cells would extend into infinity. Surface atoms are identified
using coordination analysis with suitably selected parameters (depending on the
material; see publication | for details). For surface atoms, the volume is set to the
average Voronoi cell volume in the system.

This approach also allows measuring the volume of voids appearing in the material
during the simulation. The total volume of the simulation box is compared with the
total Voronoi volume of all atoms, with the difference taken as the volume of the voids.
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The Voronoi cells constructed around bulk atoms include any vacancies that might be
present, therefore vacancies are not counted as voids and do not contribute to the void
volume.

When stress is calculated in a simulation at finite temperature, temporal averaging is
required to reduce the noise that arises due to thermal fluctuations of atoms [76].

The virial stress for the full simulation box is also used when controlling the external
stress or pressure conditions of the system. The Parrinello-Rahman method [77] adjusts
the shape and volume of the simulation cell to bring it into equilibrium with the desired
external stress. A straightforward implementation [51] uses the system matrix h which
defines the size and shape of the simulation cell at the current time step, and scaled
coordinates s = h™1r for the atoms. The equations of motion become

1 .
s=-h 1;f—6 1Gs,
Wh= (- —pDH(h™)TQ - hX, (11)
G=h"h,
L= ho_l(_o'ext - pl)(ho_l)TQO .

o is the system virial stress and o, is the desired external stress with a hydrostatic
component p = —%Tr(aext). The initial system shape is described by the system

matrix hy with the volume Q, = det hy. Similarly, the current volume is Q = deth.
The parameter W controls the speed at which the stress approaches the desired stress,
similarly to the mass parameter in eq. (9). Finally, I is the identity matrix.

The implementation in LAMMPS uses equations of motion by Shinoda et al. [78] that
combine constant temperature and constant stress equation into an NpT ensemble.

3.2 Finite element method

The finite element method [79,80] is used to solve boundary and initial value problems
in continuous media. At its core, FEM is a method for solving partial differential
equations on a mesh. The mesh constitutes the division of a simulation domain into a
set of discrete non-overlapping elements. The differential equation over the whole
domain is transformed into a set of algebraic equations by approximating the solution
using basis functions defined by the space discretization. Because the solutions are only
available at the element node points, the mesh is created denser in regions where the
gradient of the solution is larger. In regions where the function of interest changes
slowly in space, the mesh can be sparser to speed up calculations.

The set of equations obtained as a result of the FEM discretization is then solved either
directly or iteratively. Direct solvers require significant amount of memory, but are
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robust and typically arrive at a solution. Some examples of direct solvers are PARDISO
[81] and MUMPS [82,83], which are used in the current work. Iterative solvers approach
a solution starting from an initial guess and monitor the error at each iteration. They
are not as memory demanding as direct solvers, but do not always converge on a
solution.

In this work, a nonlinear system is solved, and a combined approach is required. A
modified Newton method [84] is used to iterate the solution, and in every iteration the
system is solved with the direct solver PARDISO.

Comsol Multiphysics [85] was used for FEM simulations in the current work.
3.2.1 Surface stress model in FEM

The surface is modeled as a thin elastic layer with a surface stress given by [86]:
Tij = T?j + Sijki€xt (12)

where T?j are the components of the initial surface stress, s;j; are the components of
the surface elasticity tensor, &;; are the components of the surface elastic strain. The
initial stress T?j represents the inherent surface stress in case of zero strain. The values

of T?j and s;ji; are inputs into the model and are taken from published MD results [87].

The surface elastic strain uses the large deformation model and is expressed as:
1
£= E(FZFS -D, (13)

where F is the surface deformation gradient tensor and I is the identity tensor. In
terms of the surface displacement components uy,, the surface strain is:

(14)

. _1(du 0us;  dus, dus,
b 2 ax] axi ax] axl- .

The ratio of surface areas between the deformed and undeformed configuration is:

Js = |det(FTF) = \/det(I + 2¢). (15)

The surface stress model is coupled to the bulk stress model through the boundary
conditions. Bulk-to surface coupling is achieved by controlling the surface deformation:

Ug=uy. (16)
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Deformation of the bulk material u,, is propagated to the surface, which modifies the
surface stress according to eq. (12). The surface stress in turn is implemented as a
boundary load on the bulk material:

1
f =pnjs = § (Txx + Tyy + Tzz)n]s ’ (17)

where n is the surface normal.

The relationships between the quantities and couplings of the whole model are
schematically represented in Figure 4.

MD simulations
(87]

Surface elasticity tensor s;jy;

Bulk elasticity tensor C

\I/ Deformation u \I/

Surface stress

Bulk stress model
model

J Load f \

nd
2 P-K stress tensor S Surface stress T

~.

Combined model

Figure 4. Coupling of the bulk and surface stress models in FEM. Surface parameters are taken from MD
simulations [87].

The surface stress and elasticity parameters differ between crystal orientations. To
approximate the properties of the geometrical surfaces present in FEM simulations, a
weighted average is calculated as follows:

1
_ § q
Sijkz—ﬁ Sk P (18)
q
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where @4 is the weight of the crystal surface g for the given geometrical surface and
Siqjkl are the surface elasticity tensor components for that crystal surface. This
procedure is illustrated in Figure 5. The weight is based on the angle between the
surface normal of the model geometry surface, nyg, and the normal of the crystal
surface, n.. It equals 1 when the surface normals are parallel, and 0 when they are
perpendicular.

— Model geometry
- — Actual crystal face

Figure 5. Weighing of surface parameters based on the local crystallographic orientation. At every point,
weights for all implemented crystallographic surfaces are computed by finding the angles between them
and the model surface.

Other surface properties are calculated similarly. Surface properties for the {100}, {110},
{111} and {112} surfaces are included. All other surfaces use the properties for the {112}
surface. Furthermore, an isotropic approximation is used, where the direction-
dependent elastic properties for the {110} and {112} surfaces are averaged. See
publications Il and Il for the full details.

3.3 Atomistic Kinetic Monte Carlo

The KMC algorithm simulates the thermal motion of surface atoms by having them
transition from one equilibrium position to another with a rate given by eq. (2), adding
the attempt frequency v:

E
=v-exp (—ﬁ) . (19)
B

The rates I' are used by the algorithm as weights to determine the atomic transitions
that are likely to happen. For that, at each time step, all possible transitions are
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compiled and the rate [ for each is calculated from eq. (19). In order to select a process
to perform, cumulative functions are calculated:

i

Ri=)T. (20)

j=1

Thus, Ry =11, R, =11 + 15, ...,R, = Z}l [, where n is the total number of processes
possible at the current timestep. A random number u € (0,1] is generated and used to
select the process i where R;_; < uZ?Fj < R;.

The selection process can be likened to a roulette wheel where the rates can be thought
to designate sectors of the wheel with the size of each sector determined by the value
of I;. The cumulative function R; is then the total amount that the wheel has to spin to
land on sector i. The random number determines a random amount of spin, up to one
full revolution. As a result of the algorithm, processes with higher rates have a
proportionally higher chance to be chosen.

One of the advantages of KMC methods compared to other Monte Carlo methods is
the possibility to take into account the advance of time and the analysis of time span
for different processes to take place. This is possible by using the residence-time
algorithm [88] that determines the time increment at each simulation step as follows:

At = _ 08U (21)
il

where u is a uniform random number and the sum is over all possible transition rates
at the given timestep. It follows from eq. (21) that the time for a single KMC step to
occur is random, but the total time over many steps is based on the transition rates in
the system. When only slow processes take place (sum of rates is low), the timesteps
are longer, and when fast processes occur (sum of rates is high), the timesteps become
shorter.

3.3.1 Kimocs

Kimocs (Kinetic Monte Carlo for surfaces) [39] is an on-lattice atomistic KMC code that
has been developed to simulate surface atom diffusion. Atoms in Kimocs can occupy
certain well-defined lattice positions corresponding to an FCC or BCC lattice. For the
FCC lattice, four orientations are possible, defined by the crystal direction along the z-
axis: <100>, <111>, and two varieties of <110>, which differ by their rotation around
the z-axis. Atomic transitions are carried out by moving an atom selected by the KMC
algorithm from its lattice position to a nearby vacant lattice site.
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Kimocs characterizes the local geometry around atom jumps by counting the number
of first (LNN) and second nearest neighbors (2NN) in the jumping atom’s initial and final
positions. Thus, each possible transition is described by 4 numbers, a, b, ¢, d, where a
is INN in the initial position, b is 2NN in the initial position, and c and d are 1NN and
2NN in the final position, respectively.

This model does not take into account the specific positioning of the neighboring atoms,
only their total number. However, in the discussion below, the specific placement of
neighbors will be referenced. To facilitate discussion, a set of 4 numbers characterizing
a jump will be referred to as a combination, while all the possible atom placements that
could result in that combination are called permutations.

The attempt frequency in eq. (19) is taken to be the same for all processes and acts as
a coefficient to normalize the time estimate. However, to characterize a material for
Kimocs simulations, the migration barriers have to be calculated for every possible
combination of a, b, ¢, d. This is done using the Nudged Elastic Band (NEB) method [89]
and interatomic potentials in MD. First, a permutation is chosen and the initial and final
configurations are independently relaxed using the conjugate gradient (CG) algorithm.
The NEB method then finds the saddle point on the minimum energy path (MEP)
connecting the initial and final configurations. In the original publication for Kimocs [39],
the choice of a permutation was arbitrary. In the current work, a more consistent way
of choosing the permutation is described.

3.3.2 Permutation selection

The same combination of a, b, ¢, d can arise as a result of many different permutations,
some of which can be highly unstable. The difference in the migration barrier between
permutations can also be quite large, as seen in Figure 6. In a real system, all
permutations are not equally likely to occur. Thus, an arbitrary choice of a permutation
can lead to unreliable results if a highly non-representative permutation was chosen.

In the method of calculating migration barriers developed in this work, a permutation
is chosen by calculating the potential energy of the system in the (unrelaxed) initial and
final states. All possible permutations for each combination of a, b, ¢, d are scanned,
and the one with the lowest sum of initial and final PE is chosen to represent that
combination.
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Figure 6. Minimum energy paths for three different permutations of the (5, 3, 7, 3) jump. Although the
number of neighbors in the initial and final positions for all cases are the same, the different configurations
of surrounding atoms have a significant effect on the MEP.

3.3.3 Tethering force approach

Because of the on-lattice nature of Kimocs, some of the possible transitions can result
in unstable atomic configurations. This presents a problem when calculating migration
barriers using NEB, as the surroundings of the jumping atom can change during the
initial relaxation period, as well as during the subsequent NEB calculation. Previously,
many barriers could not be calculated because of this instability. For processes with
few neighbors (a < 3) where the jumping atom spontaneously moves into the final
position, a workaround had been developed [39]. These processes were previously
assigned a migration energy value of

En(a,b,c,d) =€ea+6b+ec™t+68d71, (22)

where € = 1073eV and § = 10~ *eV. This allowed the inclusion of these processes in
the simulation using a small non-zero barrier (avoiding a division by zero), but it did
nothing to solve the problem with all other types of unstable processes.

To obtain a consistent set of migration barriers, an automatic method, using the
tethering force approach, was developed in the current work. This approach applies an
additional spring force to atoms, directed towards their initial lattice site in the NEB
calculation, stabilizing the system and allowing almost all possible barriers to be
calculated.
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The tethering force binds atoms to their assigned lattice positions, preventing them
from changing their placement during relaxation or the NEB process, while still allowing
enough freedom to move around the jumping atom. The spring constant is an input
parameter and affects the resulting MEP and the energy barrier. The higher the spring
constant, the higher the calculated barrier because of the extra stiffness of the
surrounding atoms. The spring constant was chosen to be 2 eV/A2, which is enough to
stabilize almost all processes, while still having a minimal effect on the resulting MEPs.

Figure 7 shows a histogram where the energy barriers of all stable processes for Cu
(those that could be calculated without tethering) are compared with the same
processes calculated using tethering. The vast majority of differences are smaller than
0.5 eV, with most processes having an energy barrier difference close to 0.

350

300

= o ]
w o w
o o =]

f
o
=}

Number of processes

50

—01.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Energy difference [eV]

Figure 7. Histogram of energy differences of stable processes between tethered and non-tethered
calculations for Cu.

The additional barriers that can be calculated for Cu using the tethering method are
shown in Figure 8. Around 1600 new processes are available with energy barriers
ranging from 0 to 2.5 eV. Many of these processes would either have been assigned an
extremely low energy barrier using eq. (22), or forbidden entirely (effectively an infinite
energy barrier). As seen from Figure 8, most of these barriers have an intermediate
energy. Thus, the tethering force approach allows to calculate a significant number of
barriers which would otherwise be unstable, while having a minimal effect on the stable
barriers. The resulting dynamics of the whole system are validated in comparison with
molecular dynamics (see section 3.3.4) and experiments (see section 6).
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Figure 8. Histogram of unstable processes calculated using tethering for Cu. These processes could not be
calculated previously.

3.3.4 Attempt frequency

If ' is defined as in eq. (19), with a constant attempt frequency approximation, v can
be brought out of the summation and treated as a coefficient that scales the time
estimate.

As a first approximation, the attempt frequency can be taken to be equal to the Debye
frequency for the material. However, to obtain greater accuracy, the attempt
frequency should be fitted using experimental or lower-level simulation data. In this
work, the method of fitting the attempt frequency used in [39] is adopted.

The relaxation times of a small nanopillar are compared between MD and KMC
simulations and the attempt frequency value is extracted. Figure 9 shows the relaxation
times at different temperatures for Au. The times follow an Arrhenius-type dependence
on the temperature. The attempt frequency acts as a scaling coefficient, moving the
linearized graph up and down along the In(t) axis. The attempt frequency was fitted
by minimizing the sum of the differences between the MD and KMC data points. The
final obtained Au attempt frequency value is v = 1.22 x 1017s™ 1,

The value is significantly higher than the typical atomic oscillation frequency in MD. This
can be explained by the limited number of jumps included in the KMC model. Not all
transitions that are possible in MD are taken into account, thus requiring the included
jumps to happen more often to “keep up” with MD. In particular, 2NN or longer jumps
in tungsten can have attempt frequencies several orders of magnitude higher than 1NN
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jumps [90]. The difference in the slopes of the lines in Figure 9 also indicates a
difference in the effective average migration energy barrier.
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Figure 9. Fitting of the attempt frequency for Au to MD data by measuring nanopillar relaxation times at
800, 850, 900, 950 and 1000 K. The inset shows a non-linearized graph of the same data.
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4 Dislocation behavior and stress around a precipitate

Previous works [33,34,91-93] conducted MD simulations of subsurface voids to
investigate the origin of the hypothesized field enhancing nanotips that are thought to
be responsible for vacuum breakdowns in CLIC [26]. Parviainen et al. studied the
growth of a tip above a near-surface void and atom evaporation from tips due to an
external electric field. Pohjonen et al. identified a surface tip formation mechanism due
to a near-surface void through the emission of a prismatic dislocation loop. A prismatic
loop in this context is a dislocation loop that moves on the slip planes perpendicular to
the material surface, thus transporting atoms directly to the surface. The nucleation of
a tip-forming prismatic dislocation loop becomes possible when the slip direction
<110> is chosen perpendicular to the surface.

The objective of this study was to investigate the dislocation formation around the
precipitate under high field conditions and compare it to the behavior around a void.
Fe was chosen as the precipitate material because of its high mechanical strength,
contrasting it to the void, and the fact that Fe is likely to become embedded in the Cu
structures during machining.

Vacuum

Force A A A A A A

Periodic Periodic

L

X

Fixed boundary

Figure 10. System setup for MD precipitate simulations. Force was applied to the top layers of atoms using
the Maxwell stress equation. The distance of the precipitate from the surface of the material was varied.
Crystal directions are x-<100>, y-<110>, z-<110>.

The effect of a high electric field was simulated by applying a z-directional force to the
surface Cu atoms, as shown schematically in Figure 10. The approximation of constant
electric field over the surface is valid as long as the surface deformation is negligible.
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To avoid shockwave effects, force is not applied immediately, but rather ramped as the
simulation proceeds. The magnitude of the force, and thus the electric field, is
increased linearly as the simulation progresses. The simulation is stopped when the
surface deformation increases and atoms start evaporating, as at that point the
constant field approximation is no longer appropriate.

Similarly to previous simulations, the <110> direction was set perpendicular to the
surface to enable favorable slip systems facing the open surface. Furthermore, using
this system orientation, two different {111} planes lie at an angle to the surface close
to 45°. The resolved shear stress along those planes due to the tensile stress on the
surface is thus maximized, activating additional slip systems for dislocations to
propagate to the surface.

In the following, the visualization of atomistic data was conducted with OVITO [94]. The
spherical Fe precipitate acts as a stress concentrator, as seen in Figure 11. The
precipitate provides favorable sites for dislocation nucleation under the effects of the
tensile stress. Figures 11(a) and 11(c) show evidence of the presence of dislocations
through the stacking faults, visualized using centrosymmetry analysis [95]. The
centrosymmetry parameter quantifies the local symmetry of a crystal lattice. Atoms
with a perfectly symmetrical neighbor arrangement obtain the value 0, while higher
values indicate deviations from the perfect lattice. Thermal motion of atoms results in
noise in the centrosymmetry figures, but at temperatures used in the current
simulations, stacking faults are clearly distinguishable. Centrosymmetry for the Fe
precipitate is not calculated and Fe atoms are shown in black.

Figures 11(b) and 11(d) present the atomistic stress distribution in the material
immediately before dislocations nucleate (the stacking fault tetrahedra outlined in
Figure 11(c) are already present in Figure 11(d)). The stress component shown is the
resolved shear stress along the plane of the stacking fault in the direction of dislocation
propagation, o,,,,, with the axes rotated as shown in the figure. Stress is concentrated
above and below the precipitate at the angle close to 45° as predicted by Lubarda et al.
[96], and dislocations form in those regions.

When the dislocations propagate to the material surface, steps or plateaus are created,
as seen in Figure 12. Figures 12(a) and 12(c) show the top views of figures 12(b) and
12(d), respectively, with atoms colored according to their z-coordinate to show the
formation of elevated regions. The passage of a dislocation can also be seen as slip of
the material above the stacking fault, which explains the surface step forming at the
point where the stacking fault intersects the surface. In case of figures 12(c) and 12(d),
periodic boundary conditions allow one of the stacking faults to wrap around and reach
the surface close to another stacking fault, resulting in a plateau. Such a situation could
arise in case of an array of closely spaced subsurface defects that each act as dislocation
nucleation sites.
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Figure 11. Stress concentration and dislocations around a Fe precipitate in Cu. Stacking fault configurations
in two different simulations are shown in (a) and (c), with the corresponding stress distributions before
their formation in (b) and (d). The stress component shown is the resolved shear stress a,,,, along a glide
plane of dislocations, with the axes as seen in the bottom left. The white outline shows stacking fault
tetrahedra which influence the stress distribution.

Once a surface step has formed, continued application of stress results in further slip
of the material above and below the stacking fault. Figure 13 shows the region below
a surface step and its evolution as stress is increased. The stacking fault is revealed
using adaptive common neighbor analysis [97], which classifies atoms according to
their local crystalline environment. Stacking faults are identified as either single
(extrinsic stacking fault) or double (intrinsic stacking fault) HCP layers in an otherwise

33



perfect FCC lattice [52]. The gradual slip of the layers surrounding the initial stacking
fault results in splitting of the stacking fault and the growth of the surface step.

(a)

9
>

z-coordinate (A)

(=)

Centrosymmetry

=

6.41 GPa (27.0 GV/m) 7.15 GPa (28.4 GV/m)

Figure 12. Formation of a step (a), (b) and plateau (c), (d) as a result of dislocations propagating to the
surface. (a) and (c) are top views of (b) and (d), respectively.

As the applied stress is increased further, void formation is observed around the
precipitate. Figure 14 shows the increase of the void volume as the stress is ramped.
Void formation is a stochastic process: 14% of simulations (N=80) with the precipitate
at a depth of 5.6 nm and 6.3% of simulations in case of the precipitate at the depth of
9.8 nm resulted in a void forming before significant surface evaporation. Void
formation was observed both above and below the precipitate in areas of significant
stress concentration. Voids act as additional stress concentrators and dislocation
nucleation sites, as evidenced by the snapshots in Figure 14. The nucleated dislocations
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also move on the vertical slip planes (Figure 14(d)). These dislocations can form

prismatic loops, which are very effective at transporting atoms away from the void and
onto the material surface [92,98].
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Figure 13. Splitting of the stacking fault and growth of the surface step. The initial situation is shown in (a)
and the first surface step in (b). As stress is increased, the material slips above (c) and below (d) the stacking

fault, resulting in plastic deformation of the material and growth of the surface step. The layer structure
in each case is marked.
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Figure 14. Evolution of a void close to the Fe precipitate due to increasing applied stress. Stress was ramped
linearly in time and the corresponding electric field strength is shown on the alternative horizontal axis.
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5 Stress near a sub-surface void

To obtain a better stress estimate around the void and extend the analysis to larger
scales, a continuum approach was used. The coupled bulk and surface stress model for
FEM was implemented and validated against MD simulations. Figure 15 shows a
comparison between FEM and MD of shear stress distributions in three perpendicular
slices around a void. The stress calculation in MD was performed at a temperature of
300 K as described in section 3.1.1, including time averaging to reduce the noise. The
system is fully periodic in this case, showing that the FEM model accurately models the
effect of the surface in the absence of any external effects. Removing the surface stress
model from the calculation would result in no stress around the void.
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Figure 15. Shear stress distributions for an unstressed system calculated in MD (top row) and FEM (bottom
row) using the coupled bulk and surface stress model.

The spherical void in this case provides a test of the surface approximation algorithm
in FEM. The similarity between the FEM and MD results shows that using the limited
number of surfaces is appropriate in this case. When an open surface is introduced and
external stress applied, the situation changes somewhat, as seen in Figure 16. The
distributions in the xz and yz planes are still very similar, but significant differences

appear in the xy plane.

Possible reasons for the discrepancy include the isotropic approximation of the surface
elastic properties, the lack of higher-index surfaces, and the differences in boundary
conditions between the MD and FEM simulations. In particular, MD simulations were
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run using the NVT ensemble, thus introducing additional stress in the x and y directions
due to the Poisson effect. In FEM, symmetrical boundaries were applied, which force
zero displacements normal to the boundary.
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Figure 16. Comparison of shear stress distribution between MD (top row) and FEM (bottom row)
simulations under 1.35 GPa external stress in the z-direction. Circles in (a) and (d) and dashed lines show
the source of data for Figure 17.
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Figure 17 shows a quantitative comparison of stresses as a function of the distance
from the void surface. Stress values are taken along the dashed lines in Figure 16 and
starting from the circles in Figure 16(a) and (d) (the line in those figures would be
directed out of the page). The data for zero external stress is taken from simulations
with a free surface. Despite the differences in the xy slice in Figure 16, the lines in Figure
17 show good agreement both for the stressed and unstressed cases, indicating that
the inaccuracies in the model are likely not significant in practice.
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Figure 17. Quantitative comparison of stress as a function of distance from the void surface for stressed
and unstressed systems. Data is taken starting from the circles and along the dashed lines in Figure 16.

As a further test of the surface approximation algorithm, simulations were conducted
with different void shapes, including cubic, cut-cube and dodecahedral (publication Il1).
In particular, the cut-cube void shape is similar to octahedral shapes that have been
observed in Al [99]. Figure 18 presents the especially challenging case of a
dodecahedral void where none of the surfaces correspond to those for which surface
parameters were available. Nevertheless, both qualitative comparisons of the
distributions and quantitative data (Figure 19) show excellent agreement.

Figure 19 also includes stress values for the case where the surface stress model in FEM
was disabled. It can be seen that the surface stress model provides more accurate stress
values and accounts for the oscillations very close to the surface (<2 nm).
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Figure 18. Comparison between the stress distribution in MD (top row) and FEM (bottom row) for a
dodecahedral void. The lines show the data source for Figure 19.

The FEM surface stress model was used to test the analytical prediction given in [93].
The analytical model had been developed based on MD simulations and determines
the maximum depth for a void to still be able to emit prismatic dislocation loops. This
depends on the externally applied stress as well as the void dimensions. The results are
given in terms of the void aspect ratio, defined as h,,; /7, as shown in Figure 20(a)t.

L d is the surface layer thickness used in the mathematical formulation of the FEM model; see
publication Il for details.
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The analytical prediction, as well as the FEM simulation results are shown in Figure
20(b).
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Figure 19. Quantitative comparison of stress as a function of the distance from the void surface. Data is
taken along the lines in Figure 18. The green line presents the case of externally stressed system with the
FEM surface model disabled.
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Figure 20. Aspect ratio of a void necessary for prismatic loop nucleation. The geometry of the system is
defined in (a) and the dependence of the necessary aspect ratio on the void radius is shown in (b) for two
external stress states. Nanoscale finite size effects decrease as the void radius increases and the aspect
ratio approaches a constant value.

Dislocation nucleation occurs when sufficient local stress builds up at the void surface
due to the interaction between the surface stress fields. Because of finite size effects,
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small voids need to be proportionally closer to the surface (lower aspect ratio) to be
able to nucleate prismatic loops. With increasing void size, finite size effects lose their
importance and the aspect ratio becomes independent of the void radius. Thus, it can
be seen that the current implementation is well suited for nanoscale surface
simulations extending the available length and time scales compared to the MD
method.
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6 Thermal stability of nanowires

Surface features resulting from sub-surface dislocation activity are subject to thermal
diffusion leading to their breakup and relaxation. The time that a nanostructure
remains stable depends on factors like its size, shape, and temperature. The stability of
FCC metal nanostructures was investigated in an experimental study, combined with
KMC simulations.

Au nanowires were thermally treated for 10 minutes at 200 °C, 400 °C, 600 °C and
700 °C. Nanowires at elevated temperatures break up into fragments due to Rayleigh
instability [15], as seen in Figure 21. As a thermally activated surface diffusion process,
Rayleigh instability induced breakup is faster at higher temperatures.

500 nm

Figure 21. SEM images of nanowires and nanowire junctions after thermal treatment at 200 °C (a), 400 °C
(b), 600 °C (c) and 700 °C (d).
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At 200 °C, most nanowires remained whole. Figure 21(b) shows examples of both
fragmented and unfragmented nanowires at 400 °C. At higher temperatures, most
nanowires were fragmented. However, as seen from Figure 21(a) and Figure 21(b),
nanowire junctions tend to fragment even when the nanowires themselves remain
whole.

The developed automatic tethered barrier calculation and the resulting
parametrization or Au for KMC simulations was applied to the study of nanowire
junctions. Simulations show that breakup happens through a surface energy
minimization process, where fragments bounded by the low-energy {111} and {100}
surfaces form. Figure 22 shows the time evolution of a junction breakup in the case of
two 1 nm <100> nanowires at 1000 K. The elevated temperature compared to
experiments was chosen to speed up the simulations and achieve results in a
reasonable timeframe. In Figure 22(b) it can be seen that breakup starts at the junction.
This is borne out in the 20 repeated simulations where the first detachment always
occurred at the junction. Furthermore, the central fragment was almost always the first
to form completely.

(a) | (b) |
(c) (d) '

ey oy OPvememsar > op @ @ O B <

@ {111} @ {100} @ Other

Figure 22. KMC simulation of the fragmentation of a junction of 1 nm radius Au nanowires at 1000 K. The
nanowire orientations are <100>. Initial configuration with wires lying on top of each other (a), moment
when the first detachment occurs (b), moment before the formation of a central fragment (c), and
complete fragmentation of the nanowires (d).
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The nanowires used in the experiment have a pentagonally twinned structure with the
<110> crystallographic direction along the wire axis. The <100> orientation for the
simulations, as well as the elevated temperature were chosen to facilitate the breakup
process, as <110> nanowires are quite stable and require significantly more
computational resources to simulate breakup. Nevertheless, reducing the wire length
and radius resulted in a successful breakup simulation where all the features observed
experimentally were observed also in the simulations within a reasonable
computational time (Figure 23).

(a) (b) (c)

@ (111} @ {100} @ Other

Figure 23. Nanowire junction breakup for 0.6 nm <110> Au nanowires. Initial configuration (a), first
detachment (b), and complete formation of the central fragment (c).

KMC simulations show that the mechanism of nanowire junction breakup is
independent of the wire size and orientation, which means that the results are
transferable to experiments. In fact, the preference of {111} and {100} surfaces for the
fragments is universal to FCC metals. Indeed, a similar situation has been observed for
Ag nanowire junctions (Figure 24).

300 nm 300 nm

Figure 24. Ag nanowire junction breakup after thermal treatment at 125 °C for 10 minutes.
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The remarkable reliability with which nanowire junctions start to fragment at the
crossing point of the nanowires leads to the hypothesis that arranging nanowires in a
regular overlapping pattern could be used as a means to manufacture ordered arrays
of nanodots. Figure 25 shows a KMC simulation of such a pattern breaking at both
junctions simultaneously. Because of the large number of atoms in this simulation,
complete fragmentation could not be observed due to limited computational resources,
but the formation of central nanodots is clearly seen.

(a) (b) '

PRRESY /———
!

@ (111} @ {100} @ Other

Figure 25. Fragmentation of an array of Au nanowire junctions. Initial configuration (a) and start of the
formation of nanodots at the nanowire junctions (b).

From the performed experiments and KMC simulations, conclusions can be drawn
about the stability of FCC metal nanostructures. Energetically, the {111} and {100}
surfaces are clearly preferred, and surface atoms diffuse to form them. The diffusion
speed is significantly higher at higher temperatures. The presence of additional
surfaces can also accelerate atom diffusion, as seen from the junctions where surface
atoms migrate to positions with more neighbors. The preferred shape of a
nanostructure is thus a compact particle bounded by {111} and {100} surfaces. Any
other structures, particularly elongated ones collapse or break up into smaller
fragments. This remains true for structures on extended surfaces, such as those
induced by externally applied stress or electric fields.
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7 Conclusions

This work was concerned with atomistic simulations of metal surfaces to obtain a better
understanding of surface modification under external stress and nanostructure stability.
The methods used include molecular dynamics, kinetic Monte Carlo and a multiscale
technique that extends the nanoscale effects into a continuum finite elements model.
The unified picture of surface feature formation and stability is illustrated in Figure 26.

Nanoscale surface properties

FEM KMC
Stress field near Migration
MD .
surfaces barriers
Dislocations Surface
diffusion

\ 4 4

Surface feature

. Surface feature stability
formation

Figure 26. Schematic summary of the developed models. The FEM, MD and KMC methods are used to
simulate nanoscale surface properties in the study of dislocations and surface diffusion. The result is a
unified description of surface feature formation and stability.

The surface geometry modification was studied in the context of dislocation nucleation
around extended defects in Cu. The procedure for obtaining estimates of the atomistic
stress distributions in the material was described. The nucleation of dislocations around
a Fe precipitate was shown in MD simulations under conditions of a high external
electric field. The possibility of generating a surface protrusion due to the propagation
of these dislocations and plastic deformation of the material was demonstrated. The
simulations also showed plateau formation in case of closely spaced near-surface
precipitates. This constitutes another dislocation-mediated surface roughness
formation process in addition to the prismatic loop effect described in previous works.
Under conditions of extreme stress, the formation of voids around the precipitate was
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observed. Voids are known to be effective dislocation nucleation sites that facilitate
surface modification.

MD simulations are very limited in terms of the material volume and physical time that
can realistically be simulated. The much faster continuum FEM method was modified
to include nanoscale surface stress effects with parameters for a number of Cu crystal
surfaces taken from published MD estimates. As a result, a model was developed that
produced stress distributions near surfaces that compared well with the more accurate
MD simulations. This model was applied to simulate the finite size effects that govern
dislocation nucleation around a sub-surface void. As expected, the finite size effects
diminish as the size of the void is increased, but the extent was previously difficult to
simulate in MD due to the large system size required.

Nanostructure stability was investigated using kinetic Monte Carlo to simulate surface
atom diffusion. A reliable parametrization scheme for on-lattice KMC, the tethering
method, was developed. This method enables the calculation of unstable migration
barriers which are nevertheless necessary for a consistent treatment of on-lattice
atomic jumps. The parametrization procedure was also automatized, creating a robust
method of parametrizing an interatomic potential for KMC that does not require
tedious manual tweaking.

The tethering method was applied to generate a parametrization for Au, which was
used to simulate diffusion-driven fragmentation of nanowires. The simulations were
done in conjunction with experiments and showed that nanowire junctions break up
easily. Junction break-up occurs at even lower temperatures than the usual Rayleigh
instability break-up known from literature. The KMC simulations show that this
phenomenon is independent of the crystallographic orientation of the wires and can
be explained by surface energy minimization due to surface atom diffusion. Crossing
nanowires reliably form fragments at the junction points because of the presence of
additional surfaces that attract atoms. This effect could be used to manufacture
ordered arrays of nanodots. Therefore, any surface feature tends to relax to a shape
that is bounded by energetically favorable surfaces {111} and {100}. Higher
temperatures significantly accelerate the relaxation.

The good agreement with experimental observations confirms that the algorithm for
parameterization of KMC models, that applies a tethering force on surface atoms to
stabilize the system during barrier calculations, is appropriate for studying the surface
diffusion on metal nanostructures.

The simulation techniques developed in this work are geared toward computational
simplicity to enable fast scanning of large numbers of potentially interesting situations.
Once they are identified, more precise simulations, like tracking dislocations in MD, can
take over.
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Further work with the field emitters should use the FEM surface stress model to
enhance existing field emission calculations, using the dislocation nucleation and
material failure conditions known from MD. The nanowire junctions present intriguing
possibilities and further diffusion simulations should be conducted to identify more
specific breakup conditions, including temperature dependence and timescale. This will
provide insight both when breakup is desirable and when it should be prevented.

Follow-up studies should further explore the effect of the electric field on the material
surface. In MD simulations, the geometrical field enhancement near surface features
should be taken into account, and the force on surface atoms should vary based on
local field conditions. In KMC simulations, the migration barriers can be modified based
on the electric field. A multiscale approach is called for, using FEM to calculate field and
charge distributions.

As nanotechnology and nanofabrication continue to advance, the mechanical
properties of materials at the atomistic scale will no doubt continue to be an important
area of research. Atomistic simulations, although more than half a century old,
continue to see improvements. These are often tied to increasing computational
resources and massive parallelism, but novel data processing algorithms are also
significant. The tradeoff between accuracy, simplicity, and speed will likely remain an
important decision when simulating nanoscale material properties.

Finally, multiscale approaches will become more and more important because
macroscale material properties like elasticity or fatigue are determined by nanoscale
defects like dislocations, frequently on time scales that are currently inaccessible to
atomistic methods.
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9 Summary in Finnish

Metallien pintailmiéiden atomistiset tutkimukset

Atomistiset simulaatiot ovat erinomainen tapa tutkia nanokokoisia metallirakenteita.
Nanomittakaavassa pinta-alan suhde tilavuuteen on suuri, ja pinnalla tapahtuvat ilmi6t
ovat hyvin merkittavdssa roolissa. Sisdinen jannitys lahellda pintaa voi olla useita
gigapascaleita, joten sen merkitys on huomioitava nanojohtimia ja muita
nanorakenteita tutkittaessa. Myds atomien pintadiffuusio on tarkea ilmid
nanorakenteiden valmistuksen ja vakauden kannalta.

Kuparipinnalla tapahtuvien tyhjidvalokaarien tutkimuksessa dislokaatioiden liikkeen ja
pinta-atomien diffusion arvellaan vaikuttavan sdahkokenttdd vahvistavien emitterien
muodostumiseen.

Tassa tyossa tutkitaan nanomuodostelmien nukleaation mekanismia pintadefektien
laheisyydessa voimakkaassa sahkokentdssa, ja kultananojohtimien vakautta
pintadiffuusion suhteen. Tutkimuksessa kdytetddan molekyylidynaamisia simulaatioita,
kineettistd Monte Carloa ja elementtimenetelmaa.

Pinnanalaista rautasaostumaa kaytetaan esimerkkitapauksena pinnan alle ulottuvista
defekteistd, ja korkean jannityksen alueilla tapahtuvaa dislokaatioiden nukleaatiota
simuloidaan. Dislokaatioiden etenemisen ndytetdaan aiheuttavan ulkonemien
muodostumista pinnalla I3helld saostumaa. Myds uusien tyhjididen muodostumisen
saostuman rajapinnalle ndytetadn olevan mahdollista.

Koska atomististen simulaatioiden koko ja aikaskaala ovat hyvin rajallisia, suuremmat
simulaatiot tehdaan ulkoisen jannityksen alaisten nanomateriaalien
elementtimallinnuksen avulla. Tallainen mallinnus kuitenkin vaatii tarkkaa mallia

pintajannityksesta. Tassa tyossa pintajannitysmalli toteutetaan
jatkumoelementtimallissa, jotta suurempia nanosysteemeja voidaan simuloida
nopeammin, ja jotta mekaaniset mallit saadaan yhdistettya

tyhjiovalokaaritutkimukseen. Mallin antamia sisdisen jannityksen arvoja verrataan
molekyylidynaamisiin simulaatioihin ja pinnan lahelld sijaitsevan tyhion emittoimien
dislokaatioiden analyyttiseen malliin.

Kineettinen Monte Carlo on hyvad tyokalu diffuusioprosessien simuloimiseen.
KMCsimulaatio kuitenkin vaatii parametreina atomististen siirtymien energiavalleja.
Taman tyon osana kehitetaan johdonmukainen parametrisointijarjestelma, nimeltaan
liekamenetelma. Taman menetelmdn avulla voidaan laskea hilassa tapahtuvien
siirtymien energiavallit luotettavasti ja automaattisesti. Myos epavakaiden siirtymien
energiavallien laskeminen mahdollistuu, ilman suurta vaikutusta vakaiden siirtymien
energiavalleihin.
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Liekamenetelmalld luodaan parametrisaatio kultasysteemeille, jonka avulla
simuloidaan ristedvien nanojohtimien pirstoutumista. Nanojohtimien risteyskohdassa
tapahtuva pirstoutuminen on Rayleigh’n epavakauden kaltainen prosessi. Yhdessa
kokeellisten tutkimusten kanssa naytetaan etta risteyskohdat pirstoutuvat matalassa
lampdotilassa, jossa yksittdiset nanojohtimet vield pysyvat kokonaisina. Simulaatioiden
perusteella pirstoutuminen voidaan selittdda atomien diffuusion aiheuttamalla
pintaenergian minimoitumisella. Risteyskohtaan muodostuu sirpale hyvin luotettavasti.
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10 Summary in Estonian

Metallide pinnaefektide atomistlik uuring

Antud t606s kasutati arvutisimulatsioone, et uurida metallide pinnaefekte nanoskaalas.
Kuna nanoosakeste puhul on suur osa kdigist aatomitest pinna ldhedal, muutuvad
nanotehnoloogias pinnaefektid kriitiliselt oluliseks. Materjali sisemised mehaanilised
pinged pinna laheduses on GPa suurusjargus ning nanoosakestega opereerides ei saa
seda arvestamata jatta. Nanostruktuuride tootmises ja kasutamises on samuti olulisel
kohal pinna-aatomite difusioon.

Nimetatud omadused mangivad olulist rolli kdrge pinge siisteemides, kus elektrilised
vaakumlabil66gid on suureks probleemiks. Levinud hiipoteesi jargi on vaakumlabil6ogi
tekkeks vajalik korge lokaalne elektrivali p6hjustatud nanoskaalas pinnakareduste
poolt, mis kdituvad elektronide kiirgajatena. Selliste kiirgajate tekkemehhanismid ei ole
I6puni selged, kuid tdenaoline on seos kristallistruktuuri ja dislokatsioonide liikkumisega.

Selles t00s kasutati molekulaardiinaamika, kineetilise Monte Carlo ja I6plike
elementide meetodeid, et simuleerida metalli pinnal nanostruktuuride
tekkemehhanisme ja stabiilsust. Tapsemalt vaadeldi dislokatsioonide aktiivsust vase
pinna lahedal ja kulla nanotraatide lagunemist difusiooni toimel.

Eelnevates toodes kasutatud pinnaalune tiihimik asendati raua lisandiga ja simuleeriti
dislokatsioonide emissiooni selle (imbrusest kdrge vidlise mehaanilise pinge toimel.
Naidati, et dislokatsioonide liikumise tulemusena on véimalik pinnakareduste teke, aga
ka tiihimike moodustumine lisandi Gmber.

Et teostada ulatuslikumaid simulatsioone kui seda véimaldab molekulaardiinaamika,
kasutati I6plike elementide meetodit. Tavaparasele pideva keskkonna mudelile lisati
mehaanilised pinnapinged, et korrektselt arvesse votta nanoskaala efekte. Vilja
arendatud kombineeritud mudelit valideeriti molekulaardiinaamika simulatsioonide ja
analldtiliste arvutustega.

Kineetilise Monte Carlo difusiooni simulatsioonide jaoks arendati vélja jarjepidev ja
automaatne parametriseerimise strateegia, mille abil saab arvutada Monte Carlo jaoks
vajalikud energiabarjaarid ka ebastabiilsete protsesside jaoks. Antud meetodit kasutati,
et koostada parameetrite komplekt kulla jaoks ning simuleerida nanotraatide
lagunemist. Simulatsioonide ja eksperimentide abil ndidati, et lagunemine toimub
aatomite difusiooni toimel ning on seletatav pinnaenergia minimeerimise printsiibiga.
Nanotraatide Uhenduskohad lagunevad kiiremini ja madalamal temperatuuril kui
Glejaanud traadi osad. Kuigi nanotraatide lagunemisest jaanud nanoosakesed
paiknevad juhuslikult, siis traatide GUhenduskohta tekkib nanoosake alati. Seega, on
voimalik valja pakkuda uudne meetod regulaarsete ja kontrollitud nanostruktuuride
tootmiseks.
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Abstract
High electric fields in particle accelerators cause vacuum breakdowns in the
accelerating structures. The breakdowns are thought to be initiated by the
modification of material surface geometry under high electric fields. These
modifications in the shape of surface protrusions enhance the electric field
locally due to the increased surface curvature. Using molecular dynamics, we
simulate the behaviour of Cu containing a near-surface Fe precipitate under
a high electric field. We find that the presence of a precipitate under the
surface can cause the nucleation of dislocations in the material, leading to
the appearance of atomic steps on the surface. Steps resulting from several
precipitates in close proximity can also form protruding plateaus. Under very
high external fields, in some cases, we observed the formation of voids above
or below the precipitate, providing additional dislocation nucleation sites.

Keywords: molecular dynamics, precipitates, near-surface voids

(Some figures may appear in colour only in the online journal)

1. Introduction

Vacuum breakdowns have been the focus of considerable interest due to the damage they can
cause to structures exposed to high electric fields [1]. The conditions for vacuum breakdowns
occur in several applications such as particle accelerators [2,3] and fusion reactors [4].
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The Compact Linear Collider (CLIC) is a new accelerator design, proposed at CERN to perform
electron—positron beam collisions at energies from 0.5 to 5 TeV with optimal performance at
3TeV [5]. To achieve these energies, very high accelerating gradients over 100 MV m™! are
needed [6]. Repeated breakdowns near the surface of the accelerating structures become a key
problem under these conditions [7]. It was found that the optimal operational conditions, such
as the optimal energy consumption and the frequency of replacements of expensive parts, can
be achieved if the breakdown rate is kept at a low value, less than 3 x 10~71/pulse/m [8].

The applied electric field causes surface atoms to become charged and affects them with
the Lorentz force, resulting in tensile stress in the material [9]. The generated stresses usually
fall below the yield strength of the structural materials, unless the electric field is very high.
Experiments show that electric fields of the order of hundreds of MV m~! cause vacuum
breakdowns near a copper surface held in an ultrahigh vacuum [10], although these fields
are well below the critical fields for field-assisted atom evaporation [11]. The measurements
of electron emission currents in the experiments at electric fields designed for accelerator
operation can be fairly well fit to the Fowler—Nordheim equation [12] or its modifications
[13—15], assuming a strong local field enhancement 8. In copper, 8 is usually in the range
of 30 to 140 [10], but never below 20 [16]. The enhanced fields lead to significant stress on
the surface, which may result in plastic deformations underneath the surface, especially in the
presence of extended defects. These, in turn, may yield surface protrusions, the candidates for
breakdown sites.

Currently, the field enhancement factor is explained by the existence of a needle-like
field emitting tips on the electrode surface, which may locally enhance the applied electric
field. However, the existence of these tips is hypothetical, as they have never been observed
experimentally and the exact mechanism producing these field emitting tips is not known [10].

The behaviour of long, thin field emitters was investigated by means of molecular dynamics
(MD) simulations [17]. It was seen that Joule heating due to the electron current in the tip
can change the shape, dramatically reducing its stability. A kinetic Monte Carlo study of Cu
surface evolution [ 18] showed that nanoclusters (>10 nm in diameter) placed on a flat surface
eventually flatten due to surface relaxation effects. These facts may explain the absence of
direct experimental observations of sharp tips.

Previously, different attempts were made to develop a theoretical model which can explain
the onset of the vacuum breakdown phenomenon [19]. Insepov et al investigated possible
mechanisms leading to a breakdown event using MD [20, 21]. In [20], the evaporation of large
atomic clusters from a pre-existing protrusion was shown. In[22], heating of a microprotrusion,
caused by Joule heating and the Nottingham effect, was studied. In other works, the influence
of microscale molten particles in a high gradient system was investigated [23]. The finite
element method was applied in [24,25] to investigate the field enhancement arising at the
edges of the microcracks that can appear due to fatigue in the material under repeated loading.
In all of these works, however, surface defects were already assumed to exist.

The average minimum electric field which causes vacuum breakdown was found to have
a clear dependence on the material used as a cathode [10]. The correlation of this dependence
with the crystal structure of the investigated materials is striking. Ranking the materials by
their ability to withstand electric fields from lowest to highest values corresponds to the change
of crystal structures from face-centred cubic (fcc) to hexagonal closed packed (hcp). This
observation motivates the investigation of the elastoplastic response of materials on applied
electric fields [26].

It was shown that in the presence of a sub-surface void, the tensile stress, which is exerted
at the surface by the applied electric field, may cause mass transport of the material above the
void, forming a protrusion on the surface [27]. It was also shown that the evolution of the
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Figure 1. Cross section of the Cu cell with an Fe precipitate, which is described in the
text by the depth (&) to radius (r) ratio. The three lowest layers are fixed and force is
applied to the atoms initially in the top two layers. The top surface is exposed to vacuum
and the surfaces in the x and y directions are periodic.

surface geometry under a strong external electric field leads to a positive feedback mechanism
and catastrophic tip growth [28].

In this work, using MD simulations, we aim to investigate the effect of the presence of
a different type of extended lattice defect—a precipitate—on surface roughening under an
external electric field, since precipitates can also lead to dislocation nucleation, resulting in
stable plastic deformation under external stress [29]. While voids can be interpreted as regions
with different mechanical properties, precipitates are also regions with different properties,
but contrary to the voids they have their own mechanical response which may interact with
the mechanical properties of the matrix when an external stress is applied. We investigate the
plastic deformations in a single crystal Cu under tensile stress in the presence of a near-surface
defect by replacing a void with a precipitate that is mechanically stronger than Cu.

2. Methods

2.1. Simulation setup

Classical MD simulations were performed with the open source LAMMPS code [30]. For the
interactions between the atoms, the Bonny et al many-body embedded atom method (EAM)
potential [31] was used. Results were visualized with the OVITO software [32].

Figure 1 illustrates the geometry of the simulated system. The simulation cell dimensions
were 16.7 x 16.7 x 19.9nm. The [110] crystal direction was chosen to coincide with the z
direction, as that is the direction of slip in fcc crystals [33]. The x and y directions were set to
the [00 1] and [1 10] crystal directions, respectively. The x and y boundaries were periodic.
The spherical Fe precipitate was located in the centre of the simulation cell in the lateral
directions. We selected Fe as an example of a strong precipitate. The relevant experimental
elastic constants for Fe are ¢;; = 226 GPa and c44 = 116 GPa, in comparison to the elastic
constants of Cucy; = 168.3 GPa and c44 = 75.7 GPa [34]. The position along the z-axis varied
for different simulations to analyse the effect of the depth-to-radius ratios of precipitates (i /r,
where & and r, as in figure 1, are the depth of the precipitate measured from the surface of the
material to the top of the precipitate and the radius, respectively). A precipitate with a radius
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of 2.2nm was simulated at two different depths: 7~ = 5.6nm (h/r = 2.5), in the following
referred to as a ‘shallow’ precipitate, and 7 = 9.8nm (h/r = 4.5), referred to as a ‘deep’
precipitate.

The Fe precipitate was inserted into the Cu matrix as a body-centred cubic (bcc)
nanocrystal. The initial relaxation period of 20 ps relaxed the precipitate, creating a transition
region between the bee Fe core and the fcc Cu environment. The transition region of one to two
atom layers extended into the precipitate, while the core remained bcc. Limited faceting of the
precipitate was observed after relaxation. Longer relaxation times (up to 100 ps) did not cause
significant changes in the structure of the precipitate compared to the configuration obtained
after 20 ps. It was shown previously [35] that small Cu inclusions in Fe experience the phase
transition into bce, but no experimental evidence of phase transitions of Fe precipitates in Cu
is available. Our test simulations showed that an Fe precipitate inserted as fcc was not stable
and after relaxation turned into a multi-grained polycrystalline bce inclusion. The spherical
shape of the precipitate in the current work was chosen for simplicity.

The positions of the atoms in the three lowest layers were fixed throughout the whole
simulation. The upper boundary was exposed to vacuum and force was applied to the atoms
that were located in the upper two layers at the start of the simulation. The simulation was
stopped when atoms started leaving the surface due to evaporation. The approximation of
constant force on the surface atoms is valid as long as the surface deformation is insignificant.

The MD time step was 1fs. The system was first relaxed for 20ps to achieve
thermodynamic equilibrium in the NpT isothermal—isobaric ensemble. Afterwards, a force
was applied to the surface atoms, imitating an electrostatic force exerted at the conducting
surface by an electric field. The expression for the force on the surface in the case of a uniaxial
field normal to the surface is [27]

F =g |E|* An, ()

where F is the electric field, A is the surface area, n is the surface normal and & is the vacuum
permittivity. The total force acting on the surface was divided evenly among the atoms in the
surface layers. The force was applied in the direction perpendicular to the surface to provide
the desired uniaxial tensile stress. This approximation is appropriate since the surface remains
relatively flat throughout the simulations. For the main simulations, the stress was linearly
ramped with the constant ramping rate 45.8 MPaps~! over 200 ps until the structure yielded
at the maximal value 9.16 GPa (corresponding to the electric field strength 32.2 GV m~!). For
the duration of the ramping, the ensemble was switched to the NVT canonical ensemble.

The temperature throughout all simulations was 600 K. The initial velocities of the atoms
were generated pseudo-randomly to comply with the temperature, changing the seed number
for every new simulation to mimic the stochastic nature of the process. For both cases of
‘shallow’ and ‘deep’ precipitates, 80 simulations were conducted.

The homogeneous dislocation nucleation stress for Cu when loaded in the [1 1 0] direction
is 4.23 GPa [36]. At stresses lower than this, dislocation nucleation becomes a stochastic
process. Unfortunately, the probability of such a process is rather difficult to estimate in
MD simulations, which are severely limited by the timescales they can cover. Nucleation of
dislocations is a complicated process that depends on many factors like temperature [37, 38],
crystal orientation [36] and strain rate [39]. Schuh et al [37] investigated these dependences
experimentally and provided quantitative data for probabilistic nucleation of dislocations.
They showed that the probability of nucleation increases with temperature, and thus thermal
fluctuations within the Cu sample play a significant role in the nucleation process. Their
experimental investigation of the dependence on strain rate along with the simulations by Zhu
et al [39] showed that the increase of strain rates increases the stress necessary for dislocation

4



Modelling Simul. Mater. Sci. Eng. 23 (2015) 025009 S Vigonski et al

nucleation. This means that the nucleation stress at strain rates typical in simulations is up to
two times greater than at experimental strain rates depending on temperature [39].

We conducted additional simulations at lower stresses of 3.88 and 3.64 GPa to confirm
the possibility of dislocation nucleation around the precipitate. The stress was ramped with
the same rate as the main simulations to the target value, after which it was held constant for
1 ns. We simulated the system with each noted target stress 20 times and counted the observed
nucleation dislocation instances. With 3.88 GPa maximum stress, dislocations appeared in 16
of 20 simulations. The dislocations nucleated at various times, from the ramping period to
0.9 ns after the maximum stress was reached. With 3.64 GPa maximum stress, 7 of the 20
simulations had dislocations.

From this data, we can conclude that dislocations nucleate at lower stresses, albeit with a
probability that decreases as the stress is decreased. In this work, we investigated the processes
that can happen in copper in the presence of precipitates and the mechanisms that may lead
to modification of the material surface which contains the precipitates and is held under high
electric field. Real materials have dislocations already present, and their interaction with
precipitates could proceed similarly to our simulation. Moreover, the dislocations may appear
at the interface of precipitates due to the interaction of precipitates with strain fields of other
extended defects forming and existing in the extreme operational conditions of accelerating
structures.

Many of the simulation parameters were chosen to coincide with the work of Pohjonen
et al [27] to compare our results to the case with a near-surface void. Specifically, the
dimensions of the system, the crystallographic orientation of the free surface, the relaxation
time and the ramping rate of stress were the same as in [27].

2.2. Identification of newly formed voids

To identify newly formed voids during the simulation, we have developed a method which
calculates the volume of the voids with the help of Voronoi cells. The algorithm proposed by
Dupuy and Rudd [40] can be used to identify surfaces in MD simulations, however, it fails to
detect new surfaces that appear during the simulation.

The algorithm used in the present work for calculating the void volume is as follows (the
C++ code is available as supplementary material). The interface between the Fe precipitate
and Cu constitutes the main region of interest. A cubic observation box with a side length of
12.8 nm was defined around this region, as depicted by the dashed line in figure 1. This length
is approximately three times the radius of the precipitate. The resulting volume of the box
is sufficiently large to contain all phenomena of interest and sufficiently small to exclude the
material surface from the analysis.

To calculate the volume of the appearing voids, the total volume of the atoms in the
observation box is compared to the volume of the box itself. The atomic volumes are defined
with the help of Voronoi cells, generated using the Voro++ code [41]. During the Voronoi
tessellation, we limit the maximum possible Voronoi volume of each cell to a value Vy max
to ensure that the void region would not be covered by any cells. To define the numerical
value of V, nax, we consider two extreme cases. The first case is a ‘bulk’ atom with all
neighbours present. Its average Voronoi volume is calculated by dividing the total volume of
all Voronoi cells in a void free lattice by the number of atoms, yielding V, 4. = 0.0118 nm>.
The second case is a hypothetical ‘free’ atom (with no neighbours) with the Voronoi cell
volume V, m.x = 0.075 nm>. The value of Vyv.max 18 defined to be large enough to cover
vacancies appearing in the material and the amorphous regions around the Cu-Fe interface.
The Voronoi volume of actual surface atoms falls between these two limiting values.

5



Modelling Simul. Mater. Sci. Eng. 23 (2015) 025009 S Vigonski et al

Voronoi cells adjacent to the observation box boundaries are cut by the planes of the box
so as not to extend outside the region. If the observation box contains voids, the total volume
of the Voronoi cells surrounding the atoms will be smaller than the volume of the box. Some
atoms will have left the box due to mass transport towards the free surface as the material
undergoes elastic and plastic deformation. The average atomic volume for bulk atoms around
the void can also decrease as the formation of a void relaxes the stress in the system.

As the lattice constant of Fe is smaller than that of Cu, and V, . for Voronoi cell
construction is taken to be independent of the atom type in the strained system, the presence of
Fe atoms in the observation box does not significantly affect the calculation. The Fe precipitate
deformation during the simulations is minimal with its atoms remaining close together. Thus
the Voronoi cells surrounding the Fe atoms will act similarly to bulk atoms. V; jay is selected
from the relaxed configuration of the species with the larger lattice constant, ensuring that
increasing average interatomic distance due to elastic deformation does not contribute to the
volume calculation. The atoms surrounding the Cu—Fe interface do not affect the calculation,
as Vi max 15 large enough to cover the amorphous area between them.

The volume of voids present in the observation box is calculated in the following way:

Vyids = Voox — Y Vi )

where Vi is the total volume of the observation box (12.8° nm?) and V; is the volume of
the ith Voronoi cell. Since the size of a Voronoi cell is limited to the maximum Voronoi
volume Vy max, the sum of the Voronoi cell volumes will be smaller than the volume of the
box if any voids are present. The volume of the voids was calculated every picosecond in all
simulations.

The present algorithm tends to underestimate the volume of the voids as the atoms adjacent
to the void surface have larger Voronoi volumes than those in the bulk of the material. We
estimate this error for each surface atom as the difference between its Voronoi volume and
the average Voronoi volume for bulk atoms in a relaxed system, V, ... This difference is
taken into account by detecting the atoms that constitute the surface of the void with the help
of coordination analysis. The coordination number for all atoms is calculated with a cutoff
distance of 0.42 nm. All atoms with a coordination number of 15 or less are taken to be surface
atoms. The atomic volume of those atoms is reduced to the average atomic volume of the
system at that time. This results in the approximate doubling of the void volume compared
to uncorrected results. To validate this correction, a different correction method was also
investigated. The relative error in volume calculation was studied by creating a spherical
void of known volume into a relaxed system and calculating the volume with the described
uncorrected algorithm. The relative error depends on the surface to volume ratio of the void
and decreases as the volume of the void is increased. The voids formed in the simulations were
rather small, and hence the relative error was estimated to be ~100% (the correction factor
depends on the volume). The final corrected volume is similar using both correction methods.
Results are presented using the first coordination analysis correction.

2.3. Stress calculation

To calculate the local stress distribution in the system at specific points during the simulations,
we utilized the following method. A snapshot of the system was taken during external force
ramping before the event of interest occurred. The ramping of the external force was stopped
and it was held constant to calculate stress at the conditions leading up to the event. The
system was held at constant external force for 20 ps, followed by time averaging the per atom
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virial [42] for another 20 ps. The time averaging is necessary to remove the noise due to thermal
fluctuations of the atoms. The resulting time averaged virial for each atom was then divided by
the Voronoi volume of that atom to obtain the per atom stress. The Voronoi volume calculation
in this case is simpler than that described earlier for void detection, as no voids were present in
any of the stress calculations. An ordinary Voronoi tessellation was used without any special
constraints.

In the chosen orientation of the simulated system, the two slip planes of interest contain
the y-axis, with the plane normal at an angle to the x and z directions. In this special case, to
get the final resolved shear stress acting on the slip planes, the components of the stress tensor
were transformed by a rotation around the y-axis to make the transformed z’-axis correspond to
the slip plane normal. The transformed coordinates are shown in figure 2. The transformation
results in the o,,,, component of the stress tensor to correspond to the stress acting on the slip
plane in the slip direction.

3. Results and discussion

3.1. Dislocation-mediated formation of surface steps

The influence of a high external electric field on the simulated material is demonstrated in
figure 2, where the formation of stacking faults around the precipitate is shown. Stacking
faults form when a layer of atoms moves away from its perfect lattice position [33]. The
figure displays the cross-sections of central parts of two different simulation cells with deep
precipitates (h/r = 4.5). In the upper figures 2(a) and (c), the Fe precipitate is shown in
black and the Cu atoms are coloured according to the centrosymmetry parameter [43]. The
colouring in the lower figures 2(b) and (d) represents the resolved shear stress acting on one of
the slip planes of the system. The transformed o,,, component of the stress tensor is plotted,
with the axes rotated as shown in the axis diagram.

The centrosymmetry parameter characterizes the adherence of an atom’s neighbourhood
to a perfect lattice. When normalized by the square of the lattice constant, centrosymmetry
is 0 for a perfect lattice, around 0.3 for point defects or stacking faults and over 1 for surface
atoms [44]. Centrosymmetry analysis is not conducted for the Fe atoms as the stresses present
in the simulation are not sufficiently large to cause any significant change in the Fe lattice.

The external tensile stresses exerted on the surface due to the electric field are 6.18 GPa
(E =264GVm™") and 6.92GPa (E = 28.0GVm™!) in figures 2(a) and (c), respectively.
The majority of Cu atoms form a perfect lattice with a near-zero centrosymmetry parameter,
displaying only occasional thermal fluctuations. The atoms at the Cu-Fe interface display
centrosymmetry values characteristic of stacking faults as the lattice mismatch between the
fcc Cu and bece Fe causes them to adapt to the surface stresses and form a transitional region
between the two lattice types.

Under the effects of the external stress, dislocations form around the precipitate. The
dislocations are leading Shockley partials with a Burger’s vector é (112), corresponding to
a half-slip. Expansion of dislocations of this type can be seen in figures 2(a) and (c) by the
stacking faults which they encircle. A stacking fault is seen in the figures as a line resulting
from the intersection of the stacking fault with the plane of the figure. In figure 2(a) the leading
partial dislocation forming at the top of the precipitate expands towards the material surface due
to the resolved shear stress acting on it. The other leading partial dislocation that forms below
the precipitate also expands under the effects of the resolved shear stress. As the stress direction
is the same for both mentioned dislocations and their directions of motion are opposite, we
can conclude that the dislocation that forms below the precipitate has an opposite line sense
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Figure 2. Snapshots of two simulations of a Cu cell with a deep Fe precipitate under
strong tensile stress: (a) formation of a planar stacking fault at the top of the precipitate;
(D) stress distribution before formation of the stacking faults; (c¢) two complete stacking
fault tetrahedra under the precipitate and an extensive planar stacking fault at the top
of the precipitate in a different simulation; (d) stress distribution before stacking fault
formation in the second simulation. The stress plots show the o,/,/, with the directions
as in the axes diagram. In (@) and (c), Fe atoms are drawn black.

compared to that of the upper dislocation. In the same figure we show the nucleation of a
partial dislocation under the precipitate (marked by the arrow in figure 2(a)), which expands
on a different (vertical) slip plane due to the elastic attraction between dislocations. When
this dislocation intersects the dislocation earlier nucleated also under the precipitate, but on a
different {11 1} plane, they become locked and form a stacking fault tetrahedron.

Due to the randomness inherent in the system, a simulation with identical initial conditions
but a different random seed results in a different configuration of dislocations around the
precipitate, as shown in figure 2(c). Two stacking fault tetrahedra have formed below the
precipitate by a mechanism similar to that in figure 2(a) when dislocations intersected and
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Figure 3. Formation of a step on the surface—(a) top view and (b) cross section of
a deep precipitate; (¢) top view and (d) cross section of a shallow precipitate. In (a)
and (¢), atoms are coloured according to their z coordinate while in (b) and (d) they are
coloured by the centrosymmetry parameter. Fe atoms are coloured black in (b) and (d).
Steps form on the surface where the stacking faults intersect it.

became locked. Above the precipitate, a dislocation nucleates in the region of high stress,
depicted in figure 2(d). The expansion of the dislocation proceeds similarly to the ones
described earlier. Eventually the dislocations become pinned at the bottom of the box, as the
atoms are fixed in place due to the boundary conditions.

As can be seen in figures 2(b) and (d), the precipitate concentrates stress around it. The
stress in figure 2(b) is calculated before either of the stacking faults in figure 2(a) appears
in the simulation. In figure 2(d), the two stacking fault tetrahedra seen in figure 2(c) have
already formed, but the stacking fault above the precipitate is still missing. The resolved
shear stress shown in figures 2(b) and (d) acts on one of the slip planes of Cu, causing the
motion of dislocations. The stacking fault below the precipitate in figure 2(a) and that above
the precipitate in figure 2(¢) move on this slip plane. The stress distribution is noisy at the
precipitate perimeter, but extended regions of higher stress can clearly be seen in both figures
where the corresponding stacking faults eventually form.
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When the dislocation reaches the material surface, a partial step is created, as seen in
figure 3. Figures 3(a) and (b) show the top view and the middle cross section, respectively,
of a simulation cell with the deep precipitate under the tensile stress 6.41 GPa. Figures 3(c)
and (d) are corresponding views of a simulation cell with the shallow precipitate under the
tensile stress 7.15 GPa. The top views (figures 3(a) and (c)) map the z coordinate of the atoms
to grayscale values. The Cu atoms in the cross-sections (figures 3(b) and (d)) are coloured
according to the centrosymmetry parameter, while the Fe atoms are left black. As can be seen
in figures 3(a) and (b), there is a visible step on the surface where the surface intersects with
the stacking fault.

Figures 3(c) and (d) show a case where two dislocations have formed on different slip
planes. In figure 3(d), the dislocation, which formed above the precipitate, has propagated to
the surface, and created a step. Another dislocation formed below the precipitate on a different
slip plane, and also propagated toward the surface. Due to the periodic boundary conditions
in the lateral directions the dislocation wraps around the simulation box and intersects with
the stacking fault formed by the first dislocation. A shift in the stacking fault can be seen
where the dislocation has passed through it. As the second dislocation reaches the surface,
it also forms a step, which in combination with the first step results in a plateau of atoms
positioned higher than the original surface level. We observed the described intersection of
dislocations because of the use of periodic boundaries. However, it can be interpreted in
terms of two close precipitates (the one in the simulation cell and the image precipitate due
to the periodic boundaries) and in reality, a similar situation can be realized when there are
several precipitates or other imperfections in close proximity, providing sites for dislocation
nucleation. Dislocations originating from two close precipitates in different slip planes could
form a plateau similarly to the one we observed in our simulations.

The plateau represents a modification of surface geometry, which leads to enhancement of
the electric field. Due to the low aspect ratio of the plateau, this enhancement is not significant
in the context of our simulations. The further growth of this nucleus can be followed by using,
for example, the technique suggested in [9], which has been successfully applied for the case of
a near-surface void [45]. It can be seen that arrays of precipitates close to the material surface
can facilitate protrusion formation similarly to the case of voids, as in [27]. Field enhancement
due to the surface morphology changes has been shown to provide a positive feedback on
the growth of surface protrusions [19]. An enhanced electric field results in the increase of
the force experienced by surface atoms, leading to more dislocations being nucleated and a
greater curvature of surface features. The greater curvature in turn increases the local field
enhancement.

3.2. Stacking fault-surface interaction

When a leading partial dislocation reaches the surface, we observe the splitting of the stacking
fault, as illustrated in figure 4. Here, common neighbour analysis helps to distinguish the atoms
by colouring them according to their local lattice type. The fcc and hep lattices differ by the
positions of the atoms in adjacent layers, leading to different stacking sequences: ... ABCABC
...forfccand... ABABAB...forhcp (equivalentto... BCBCBC...or... ACACAC...)[33].
Thus, the atoms for which the adjacent layers have different atom positions are marked as fcc,
and ones where the adjacent layers have the same atom positions are marked as hcp. In
figure 4, the A, B and C layers are shown for all cases (layers are labelled according to the
positions that the atoms in those layers occupy). Figure 4(a) shows the initial configuration
with the layers arranged in the fcc stacking sequence. In figure 4(b), the leading partial
dislocation passes, displacing the atoms originally located in the A layer into the B layer
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Figure 4. Splitting of a stacking fault at the surface. Atoms are coloured according to
their local lattice type. Atom layers are marked with letters denoting the positions of
their atoms. (a) Initial configuration; (b) slip has occurred resulting in a stacking fault;
(c) the atoms in the layer immediately above the stacking fault have slipped once more;
(d) as the whole system slips on the layer below the original stacking fault, the final
pattern is created.

positions, creating a local stacking sequence of ABCBCA. The central layers CB constitute
the stacking fault in the surrounding fcc lattice. Their local lattice type is hcp because for
both the central C and central B layer the adjacent layers are of the same type. When the
stacking fault has reached the surface, a new partial dislocation is generated in the layer
immediately adjacent to one of the stacking fault layers. The new dislocation has the
same Burger’s vector as the original, but of the opposite line sense. Figure 4(c) shows the
following step: as the new dislocation expands away from the surface, due to the resolved
shear stress acting on it, the next layer of atoms slips, creating the local stacking sequence
ABCBAB. In figure 4(d) the same process happens in the layer below the original stacking
fault as all the layers above it slip further. All atoms starting from those in the bottom
layer of the original stacking fault change their positions, with the final sequence of layers
ABACBC.



Modelling Simul. Mater. Sci. Eng. 23 (2015) 025009 S Vigonski et al

From the original stacking sequence ABCABC, the central C layer undergoes a é[l 12]
transition to become an A layer in the final configuration. The original central layer A has
transitioned A — B — C by the vector %[1 12]. The transitions for the final two layers BC
are identical. In the case of C, itisC — A — B — C. Interms of Burger’s vectors this can be
written as 2[1 12], which is equivalent to 1[0 1 1]+ $[10 1]. The latter expression represents
two perfect dislocations, which leave behind a plastically deformed perfect crystal. The two
layers of hcp atoms, which are separated by several layers of fcc atoms can be viewed as
twinning faults, where the crystal orientation changes and the layer sequence is mirrored [33].
The material above the twinning faults experiences slip equivalent to the passage of two perfect
dislocations. The stacking fault which has split into the two twinning faults represents the
transition between the slipped and unslipped regions, with a twinned region in-between. The
amount of slip in the twinned region varies linearly from O at the lower twinning fault to that
equivalent to the passage of three partial dislocations at the upper twinning fault. Each layer
in the twinned region is formed as a result of one partial dislocation. More dislocations can be
nucleated in layers adjacent to the twin boundaries, leading to further slip of the upper part of
material and the widening of the twinned region between the twinning faults.

A single dislocation originating from the precipitate can nucleate additional dislocations
upon reaching the surface. These new dislocations also generate steps on the surface, as seen in
figures 4(b) and (c). Through this process one surface step becomes a series of steps, increasing
the change in local surface geometry. When combined with the action of several sub-surface
precipitates and the formation of a plateau, the stacking fault splitting could lead to an increase
in the protrusion height. This will tend to sharpen the protrusion, which will result in further
enhancement of the electric field.

3.3. Void formation

Figure 5 shows the formation of voids as the stress on the system due to the electric field is
increased. The plot in the figure is an example of a simulation where a void formation event
was observed. The volume of voids is plotted against the stress applied to the system. The
x-axis can also be taken to represent the progression of the simulation in time, as the stress is
increased linearly with the time step. Void volume is calculated with the Voronoi cell method
described above. At the external stresses shown in the figure, the stacking faults and the
associated surface steps have already formed. Those processes are described in the previous
section and shown in figures 2 and 3.

The void formation happens at stresses much larger than those required for dislocation
nucleation. The voids start to form when the applied stress reaches 7.10GPa (E =
28.3GV m™!), as seen in the graph in figure 5. Void formation begins at the interface region
between Cu and Fe. The bond strength between two different types of atoms is weaker than the
mono-elemental bond, either Fe—Fe or Cu—Cu, resulting in the separation of Cu atoms from
the precipitate. As the stress increases, the void grows in volume. The formation of the void
tends to reduce the local stress in the region. The stacking fault under the precipitate, which
is only visible in the snapshot in figure 5(a), disappears in subsequent snapshots as a trailing
partial dislocation completes the slip. The void formation is unaffected by the resulting plastic
deformation because the regions are far apart. A similar plastic deformation happens in the
upper left corner while moving from the image in figure 5(b) to the image in figure 5(c). In
figure 5(d), a new leading partial dislocation is nucleated on the vertical slip plane, due to
the presence of the void. The new leading partial dislocation expands towards the surface
and creates a step. The leading partial is soon followed by a trailing partial, eliminating
the stacking fault and completing the plastic deformation above the void. The volume of
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Figure 5. Example of the evolution of voids over time for a shallow precipitate. The
snapshots show a cross section of the system as the electric field increases and the void
forms. Fe atoms are black and Cu atoms are coloured according to centrosymmetry.
The beginning of the simulation before the stress reaches 6 GPa is not shown.

the void gradually increased until the simulation was stopped when surface atoms started
evaporating.

Figure 6 shows that voids can form both above and below the precipitate. The images given
in figure 6 correspond to two different simulations of the shallow precipitates (h/r = 2.5).
Figure 6(a) shows a void developing above the precipitate where a stacking fault interacts with
it. Figure 6(c) shows a different simulation displaying void formation below the precipitate
with the same geometry. The snapshots in figures 6(a) and (c) represent the final frames of the
simulations, as extensive surface atom evaporation begins after this point and the approximation
of constant force across the surface no longer applies. Random variations due to different
initial random seeds result in a different configuration of stacking faults and a different stress
distribution around the precipitate at the moment of void formation. The snapshots in figures
6(b) and (d) show the stress distribution in the system before the formation of voids in figures
6(a) and (c), respectively. The o, component of the untransformed stress tensor is plotted in
these figures. This component is concentrated in the regions where stacking faults intersect
with the precipitate, and also above and below the precipitate. These regions exhibit void
formation. The distributions of other components of the stress tensor (not pictured) do not
correlate with the location of voids.

Eighty simulations with a shallow precipitate were performed. Eleven of them exhibited
void formation before material failure, with behaviour similar to what can be seen in
figure 5. Eight out of 80 simulations formed voids in case of the deep precipitate. As voids
have been shown to cause protrusions on the surface of the material [28], the presence of
precipitates can be an indirect cause of surface geometry change. Under high external stresses,
mechanically strong precipitates enable the formation of voids around them which can in
turn lead to a protrusion being generated. The voids also provide additional sites where
dislocations can be nucleated. These dislocations expand towards the surface and create steps.
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Figure 6. Voids forming around a shallow precipitate under tensile stress exerted by
an external electric field in two simulations (a), (b) and (¢), (d). The centrosymmetry
parameter for Cu atoms is represented in (a) and (c), while Fe is black. Corresponding
o, before void formation is presented in (b) and (d).

This effect of voids is independent of the void location and can work also for voids below the
precipitate.

4. Conclusions

In this work we performed MD simulations of single crystal Cu which contained a Fe precipitate
under high external tensile stresses caused by an electric field. The simulations show that
precipitates, which are stronger than Cu, could provide an indirect mechanism for surface
geometry change and electric field enhancement. Under external stress caused by the electric
field, dislocations nucleate at the Cu—Fe interface. When the dislocations reach the material
surface, they create steps increasing the surface curvature and hence enhance locally the electric
field. With multiple precipitates in close proximity, dislocations nucleated on different slip
planes can reach the surface near each other. The resulting configuration of steps creates a
plateau on the surface.
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The region around the surface step provides an additional site for dislocation nucleation.
Further slip can occur in the adjacent layers and create a series of steps. This mechanism
increases the extent of surface geometry change. When combined with the formation of a
plateau it could lead to the creation of a protrusion.

When the stress is increased, voids can form in the regions of high stress immediately
above or below the precipitate as Cu separates from the stronger precipitate. Void formation is
arandom but not uncommon event. The voids offer additional sites for dislocation nucleation.
Voids have also been previously shown to lead to a catastrophic protrusion growth on the
surface [28]. They can appear in a material containing precipitates as a result of the application
of a strong external electric field and introduce their own mechanism of surface protrusion
formation.

Acknowledgments

This work was supported by Estonian Research Council Personal Research Grant #57 and
the ‘Research internationalisation’ programme of the European Regional Development Fund.
The authors thank CSC, the IT Center for Science Ltd (Finland) and the Finnish Grid and
Cloud Infrastructure for grants of computation time. FD acknowledges gratefully the financial
support from the Academy of Finland AMELIS project.

References

[1] Calatroni S, Descoeudres A, Kovermann J W, Taborelli M, Timko H, Wuensch W, Djurabekova F,
Nordlund K, Pohjonen A and Kuronen A 2010 Breakdown studies for the CLIC accelerating
structures Proc. LINAC2010 (Tsukuba, Japan) pp 217-9

[2] WangJ W and Loew G A 1997 Field emission and rf breakdown in high-gradient room-temperature
linac structures Proc. Joint School RF Engineering for Accelerators (Stanford, CA)

[3] Descoeudres A, Ramsvik T, Calatroni S, Taborelli M and Wuensch W 2009 Dc breakdown
conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum Phys.
Rev. ST Accel. Beams 12 032001

[4] Holtkamp N 2009 The status of the ITER design Fusion Eng. Des. 84 98—105

[5] Assmann R W et al 2000 A 3 TeV e*e™ Linear Collider Based on CLIC Technology ed G Guignard
(Geneva: CERN)

[6] Braun H et al 2008 CLIC 2008 Parameters, CLIC-Note-764 ed F Tecker (Geneva: CERN)

[7] Braun H H, Dobert S, Wilson I and Wuensch W 2003 Frequency and temperature dependence of
electrical breakdown at 21, 30, and 39 GHz Phys. Rev. Lett. 90 224801

[8]1 WangJ W, LewandowskiJ R, Van PeltJ W, Yoneda C, Riddone G, Gudkov D, Higo T and Takatomi T
2010 Fabrication technologies of the high gradient accelerator structures at 100 MV/m range
Proc. IPAC’10 (Kyoto, Japan) pp 3819-21

[9] Djurabekova F, Parviainen S, Pohjonen A and Nordlund K 2011 Atomistic modeling of metal
surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm
Phys. Rev. E 83 026704

[10] Descoeudres A, Levinsen Y, Calatroni S, Taborelli M and Wuensch W 2009 Investigation of the dc
vacuum breakdown mechanism Phys. Rev. ST Accel. Beams 12 092001

[11] Tsong T T 1991 Effects of an electric field in atomic manipulations Phys. Rev. B 44 13703-10

[12] Fowler R H and Nordheim L 1928 Electron emission in intense electric fields Proc. R. Soc. Lond.
A 119 173-81

[13] Murphy E L and Good R H 1956 Thermionic emission, field emission, and the transition region
Phys. Rev. 102 1464-73

[14] Forbes R G 1999 Refining the application of Fowler—Nordheim theory Ultramicroscopy 79 11-23

15



Modelling Simul. Mater. Sci. Eng. 23 (2015) 025009 S Vigonski et al

[15]

[16]
[17]
(18]
[19]
[20]
(21]
(22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]
[34]

[35]
[36]
(37]
[38]
[39]

[40]

Jensen KL, Lau Y Y, Feldman D W and O’Shea P G 2008 Electron emission contributions to dark
current and its relation to microscopic field enhancement and heating in accelerator structures
Phys. Rev. ST Accel. Beams 11 081001

Timko H 2011 Modelling Vacuum Arcs: From Plasma Initiation to Surface Interactions (Helsinki:
University of Helsinki)

Parviainen S, Djurabekova F, Timko H and Nordlund K 2011 Electronic processes in molecular
dynamics simulations of nanoscale metal tips under electric fields Comput. Mater. Sci. 50 2075-9

Frantz J, Rusanen M, Nordlund K and Koponen I T 2004 Evolution of Cu nanoclusters on Cu(1 0 0)
J. Phys.: Condens. Matter 16 2995

Chatterton P A 1966 A theoretical study of field emission initiated vacuum breakdown Proc. Phys.
Soc. 88 231

Insepov Z, Norem J H and Hassanein A 2004 New mechanism of cluster field evaporation in rf
breakdown Phys. Rev. ST Accel. Beams 7 122001

Insepov Z, Norem J and Veitzer S 2010 Atomistic self-sputtering mechanisms of rf breakdown in
high-gradient linacs Nucl. Instrum. Methods Phys. Res. B 268 642-50

Keser A C, Antonsen T M, Nusinovich G S, Kashyn D G and Jensen K L 2013 Heating of
microprotrusions in accelerating structures Phys. Rev. ST Accel. Beams 16 092001

Nusinovich G S, Kashyn D and Antonsen T M 2009 Possible role of rf melted microparticles on
the operation of high-gradient accelerating structures Phys. Rev. ST Accel. Beams 12 101001

Insepov Z, Norem J, Proslier T, Huang D, Mahalingam S and Veitzer S 2010 Modeling rf breakdown
arcs, arXiv:1003.1736

Norem J and Insepov Z 2012 Can surface cracks and unipolar arcs explain breakdown and gradient
limits? arXiv:1208.0847

Nordlund K and Djurabekova F 2012 Defect model for the dependence of breakdown rate on
external electric fields Phys. Rev. ST Accel. Beams 15 071002

Pohjonen A S, Djurabekova F, Nordlund K, Kuronen A and Fitzgerald S P 2011 Dislocation
nucleation from near surface void under static tensile stress in Cu J. Appl. Phys. 110 023509

Pohjonen A S, Parviainen S, Muranaka T and Djurabekova F 2013 Dislocation nucleation on a near
surface void leading to surface protrusion growth under an external electric field J. Appl. Phys.
114 033519

Gilman J J 1959 Dislocation sources in crystals J. Appl. Phys. 30 1584-94

Plimpton S 1995 Fast parallel algorithms for short-range molecular dynamics J. Comput. Phys.
117 1-19

Bonny G, Pasianot R C, Castin N and Malerba L 2009 Ternary Fe—Cu—Ni many-body potential to
model reactor pressure vessel steels: first validation by simulated thermal annealing Phil. Mag.
89 353146

Stukowski A 2010 Visualization and analysis of atomistic simulation data with OVITO—the open
visualization tool Modelling Simul. Mater. Sci. Eng. 18 015012

Hull D and Bacon D J 2011 Introduction to Dislocations (Oxford: Butterworth-Heinemann)

Lide D R 2005 CRC Handbook of Chemistry and Physics Internet Version 2005 (Boca Raton, FL:
CRC Press)

Blackstock J J and Ackland G J 2001 Phase transitions of copper precipitates in Fe—Cu alloys Phil.
Mag. A 81212748

Tschopp M A, Spearot D E and McDowell D L 2007 Atomistic simulations of homogeneous
dislocation nucleation in single crystal copper Modelling Simul. Mater. Sci. Eng. 15 693

Schuh C A, Mason J K and Lund A C 2005 Quantitative insight into dislocation nucleation from
high-temperature nanoindentation experiments Nature Mater. 4 617-21

Ryu S, Kang K and Cai W 2011 Predicting the dislocation nucleation rate as a function of
temperature and stress J. Mater. Res. 26 2335-54

Zhu T, Li J, Samanta A, Leach A and Gall K 2008 Temperature and strain-rate dependence of
surface dislocation nucleation Phys. Rev. Lett. 100 025502

Dupuy L M and Rudd R E 2006 Surface identification, meshing and analysis during large molecular
dynamics simulations Modelling Simul. Mater. Sci. Eng. 14 229

16



Modelling Simul. Mater. Sci. Eng. 23 (2015) 025009 S Vigonski et al

[41] Rycroft C 2009 Voro++: A Three-Dimensional Voronoi Cell Library in C++ Lawrence Berkeley
National Laboratory

[42] Sun Z H, Wang X X, Soh A K and Wu H A 2006 On stress calculations in atomistic simulations
Modelling Simul. Mater. Sci. Eng. 14 423

[43] Kelchner C L, Plimpton S J and Hamilton J C 1998 Dislocation nucleation and defect structure
during surface indentation Phys. Rev. B 58 11085-8

[44] Stukowski A 2012 Structure identification methods for atomistic simulations of crystalline materials
Modelling Simul. Mater. Sci. Eng. 20 045021

[45] Parviainen S, Djurabekova F, Pohjonen A and Nordlund K 2011 Molecular dynamics simulations
of nanoscale metal tips under electric fields Nucl. Instrum. Methods Phys. Res. B 269 1748-51












10P Publishing

Modelling and Simulation in Materials Science and Engineering

Modelling Simul. Mater. Sci. Eng. 26 (2018) 035006 (18pp) https://doi.org/10.1088/1361-651X/aaa928

Simulations of surface stress effects in
nanoscale single crystals

V Zadin'©, M Veske'~©, S Vigonski'~*©, V Jansson”®,
J Muszinsky”©, S Parviainen’©, A Aabloo' ® and
F Djurabekova’

!Intelligent Materials and Systems Lab, Institute of Technology, University of Tartu,
Nooruse 1, 50411 Tartu, Estonia

2 Helsinki Institute of Physics and Department of Physics, PO Box 43 (Pietari Kalmin
katu 2), FI-00014 University of Helsinki, Finland

*GPM UMR 6634 CNRS, Normandie University, F-76800 St. Etienne du Rouvray,
France

E-mail: vahur.zadin@ut.ee

Received 28 August 2017, revised 10 January 2018
Accepted for publication 19 January 2018 @
Published 15 February 2018

CrossMark
Abstract
Onset of vacuum arcing near a metal surface is often associated with nanoscale
asperities, which may dynamically appear due to different processes ongoing
in the surface and subsurface layers in the presence of high electric fields.
Thermally activated processes, as well as plastic deformation caused by tensile
stress due to an applied electric field, are usually not accessible by atomistic
simulations because of the long time needed for these processes to occur. On
the other hand, finite element methods, able to describe the process of plastic
deformations in materials at realistic stresses, do not include surface proper-
ties. The latter are particularly important for the problems where the surface
plays crucial role in the studied process, as for instance, in the case of plastic
deformations at a nanovoid. In the current study by means of molecular
dynamics (MD) and finite element simulations we analyse the stress dis-
tribution in single crystal copper containing a nanovoid buried deep under the
surface. We have developed a methodology to incorporate the surface effects
into the solid mechanics framework by utilizing elastic properties of crystals,
pre-calculated using MD simulations. The method leads to computationally
efficient stress calculations and can be easily implemented in commercially
available finite element software, making it an attractive analysis tool.

Keywords: molecular dynamics, finite element analysis, multiscale simula-
tions, high electric fields, surface stress
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(Some figures may appear in colour only in the online journal)

1. Introduction

Interaction of an electric field with materials becomes increasingly important in a number of
modern technologies under development. Some examples are the Compact Linear Collider
[1, 2], free electron lasers [3], fusion reactors [4, 5] and atom probe tomography [6]. One
frequently observed problem in these high electric field systems are vacuum arcs—the electric
discharges in vacuum between two electrodes. These are also known as electrical breakdowns
since they are commonly detected as a sudden voltage drop and a high electron current
accompanied by significant power consumption. The electrical breakdowns lead to significant
surface damage in high electric field devices and pose major limitations for the strength of the
fields [7, 8]. Measurements of electron field emission currents from macroscopically flat
surfaces suggest that some surface irregularities with diameters in the range of 17-25 nm [9]
and heights up to 100 nm [10, 11] must be present to serve as field emitting tips. While such
nanoscale emitters have never been observed experimentally [10], they are typically assumed
to be possible sources of strong field emitting currents, precursors to a breakdown event. For
example, Norem ef al used molecular dynamics (MD) to simulate possible breakdown
mechanisms [12, 13] and demonstrated in [12] evaporation of large clusters of atoms under
high electric field while the finite element method (FEM) was utilized in [14, 15] to inves-
tigate field enhancement effects due to micro cracks caused by fatigue in the material surface.
These works provide important insight in possible breakdown initiation mechanisms but do
not explain what triggers initial surface roughening. Several experimental and theoretical
works link material structure and properties to the breakdown initiation mechanism. Des-
coeudres et al [8] showed a correlation between the lattice type and its tolerance to the
breakdowns; Nordlund and Djurabekova [16] linked breakdown probability to the dislocation
motion in the material. Further MD studies by Pohjonen et al demonstrated surface mod-
ification of Cu containing a subsurface nanovoid due to the effect of an electric field [17, 18].
The short simulation times in MD simulations required exaggeration of applied electric fields
in order to observe any dislocation activity [17, 18]. It was possible to decrease these fields
considerably [19] by using FEM to simulate dynamic plastic deformations of a Cu surface
with an applied external electric field.

To overcome the vast differences in time and length scales between experiments and
simulations, a multi-scale approach is needed. While experimental time expands to seconds or
even minutes [10], the breakdown process itself is relatively fast: when initiated, the process
culminates in a sub-microsecond time interval [20, 21]. Methods with sufficient spatial
resolution alone, such as MD, are still not sufficient to study the process due to the limitation
of very short timescales—from pico- to nanoseconds. The time limitation can be overcome by
using continuum methods, tailored to include nanoscale phenomena. For instance, it was
shown [22] that these methods can be used for nanostructures of the size 2-10 nm, if the
effects of surface stress are resolved [18, 22-24]. Nanoscale size effects have already been
taken into account previously in different studies, in [25], the surface model was implemented
using interatomic potential. In [23], an extended finite element method-based approach was
used to simulate nanoscale size effects. In [26], an embedded atom hyper-elastic constitutive
model was developed by He and Li. A different approach was used in [27] where the elastic
properties of surfaces were calculated by MD methods. The onset of vacuum breakdown is
however a complex phenomenon, which involves multiphysics processes, such as emission
currents, Joule heating of material, and interaction of material surface with applied electric
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Table 1. The details of the MD simulations.

Box size 34.7 x 34.7 x 32.7 nm> 47 x 47 x 47 nm
Number of atoms 3.3 million atoms 8.8 million atoms
Void radius Tyoid = 5 Nm Tyoid = 5 nm
Boundary Periodic boundaries in x and y directions. Fixed All boundaries are
conditions bottom, free/applied force in z direction periodic
Temperature 293.15K 293.15K

fields [28, 29]. Bearing in mind the complexity of the problem, the existing approaches,
although accurate and reliable, make the simulations computationally heavy.

While in [30] we implemented the surface stress model similarly to [31, 32] and analysed
the sensitivity of different voids with uniform crystal faces, we will in this work propose an
enhanced FEM bulk material model with an incorporated model of the surface stress in a fully
coupled manner for the modelling of the mechanical behaviour of nanoscale FCC crystals.
The model is capable of automatically approximating any crystal surface present in this
model, as well as taking into account the size effects arising from nanoscale defects. As a
suitable compromise we rely on MD simulations in order to obtain the elastic parameters for
the surface region. This approach allows for simple implementations and low computational
costs while still providing detailed information of the influence of the surface stress. We use a
deep subsurface spherical void as a test stress concentrator and we compare the FEM model
with MD simulations to analyse the stress distributions in nanoscale Cu.

2. Materials and methods

2.1. MD simulations

To study the material behaviour and possible protrusion formation mechanisms in a single Cu
crystal, MD simulations were performed using the LAMMPS [33, 34] classical MD code. The
atomic interactions were modelled using the embedded atom method potential by Sabochick
et al [35]. Simulation results were visualized with the open-source OVITO software [36].

We conducted MD simulations to investigate the effect of surface stress on the inner
surface of a spherical void buried deep under the surface. The void was considered to be
buried under the surface, if no interactions of the strain fields between the surfaces of the
material and the void were observed. The crystallographic orientation of the Cu cell was
chosen so that one of the {111} slip planes along the {110} direction would intersect the
surface perpendicularly. The MD simulations were performed by using two simulation cells
of dimensions 34.7 x 34.7 x 32.7nm’ (3.3 million atoms) and 47 x 47 x 47 nm’ (8.8
million atoms) to investigate possible adverse effects arising from the use of periodic
boundaries. For the smaller cell the periodic boundaries were used only in lateral directions,
while the bottom of the cell was fixed and the top was treated as open surface, where the force
imitating the Lorenz force of the applied electric field (see below) was exerted. For the bigger
cell, periodic boundary was applied in all directions while the simulations were conducted
without any additional external loading. A 5 nm void was placed in the middle of each cell.
The conducted MD simulations and their respective box sizes, void radii and boundary
conditions are summarized in table 1. The geometry of the simulation setup is presented in
figure 1.
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Figure 1. The simulation box setup in MD and FEM simulations (a), (b) and a
schematic representation of the crystal face detection algorithm (c). The simulation cell
is composed of a FCC Cu single crystal. External tensile stress is applied to the top two
layers of atoms, the three bottom layers of atoms are fixed. The simulation cell is
periodic in x and y directions.

The electric field and the electrons of the surface atoms interact due to the Lorentz force.
The interaction strength is characterized by the Maxwell stress tensor, which, in case of DC
electric fields, leads to the following expression for the force acting on the surface of the
material [17, 37]

F— %EO |Eo*An, (1)

where ¢ is the vacuum permittivity, E is the electric field, A surface area and n the surface
normal vector.

The simulations were conducted using 2 fs time step. In all cases the systems were
equilibrated during 20 ps while the temperature was controlled by the Berendsen thermostat
with a damping parameter of 0.1 ps. External stress was ramped during the 150 ps period by a
gradual increase of the force acting on surface atoms until the final stress reached the value of
1.35 GPa. After that, the simulations were continued at the constant force for another 300 ps
in order to obtain sufficient amount of data for the stress time average. Since the stress
distribution was of particular interest, a lower temperature (293 K) and an external force was
used to hinder the nucleation of dislocations that could cause the distortion of stress
distribution.

2.2. Stress calculations in MD simulations

Different approaches to calculate the stress in the atomistic simulations exist. One of the most
known methods is the virial theorem, reaching back to the work of Clausius and Maxwell, or
more modern approaches, such as the ones developed by Hardy, Lutsko or Tsai [38—40].
While the latter ones can be considered more advanced and accurate than the virial theorem,
excellent agreement between Hardy and virial stress approaches has been demonstrated if
sufficient spatial or temporal averaging is applied [41, 42]. Thus, in the current work we rely
on the virial stress, due to the readily available implementations in many MD codes. More
specifically, in MD calculations conducted using LAMMPS, the basic form for the symmetric
six-component virial for an atom is given by the following equation [43, 44]:
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1%
S = —|mviv; + =3 "l |, @
3]
where the first term represents the kinetic energy contribution and the second term
the pairwise interaction contribution. m is the atom’s mass, v; the velocity components. The
summation is over the atom’s neighbours within the cutoff distance, where F; are the force
components of the pairwise interaction and "r; are the components of the displacement of the
neighbour n relative to the current atom. The details of the specific implementation are given
in [43].

The estimate for continuum mechanical (Cauchy) stress was calculated from the virials
for each atom, obtained from the MD simulations and correspondingly normalized with
homogenization volume, that in this study is considered to be equal to the average atomic
volume [41, 42]. The atomic volumes were obtained by finding non-overlapping Voronoi
cells of atoms using the open-source Voro++ software [45]. The time averaging was con-
ducted over 12 000 and 15 000 sequential time steps or 60 ps and 75 ps, respectively.

In addition to stress calculations, strain estimations are conducted according to [46, 47]
using OVITO software.

2.8. Stress calculations using FEM

2.3.1. Bulk stress calculations. Successful simulation of surface stress requires combination
of material bulk and surface models. In current approach, we assume a finite strain elasticity
and consider the bulk and surface models to be separate but coupled by boundary conditions.
In bulk models, large deformations are assumed. The material deformation is represented by
the deformation gradient tensor (F;), connecting the deformed (x;) and non-deformed
configurations (X;) [48, 49]

x; = FyX;. )

The corresponding Green—Lagrange strain (¢) is calculated as

B
efz(FF D). 4)

Since large deformations are assumed, second Piola—Kirchoff stresses (S) are used
[48, 49]

S=C:e,. (5)

The second Piola—Kirchoff stress, Cauchy stress (o) and first Piola—Kirchoff stress (P)
are related as § = F~'P and o = J~'PFT = J-'FSFT, where J = det (F) = V/V, is the ratio
between the deformed and non-deformed volumes.

Since the simulated material is single crystal copper, we use anisotropic elasticity. The
elastic parameters of material parameters are specified in table 2 [48].

2.3.2. Surface stress. In a simplified 1D example, the surface stress and the surface energy
are related as [27, 50]
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Table 2. The elastic properties of the bulk material [48] and the geometric parameters of
the simulated surface layer in the calculations.

Ci, (GPa) Cu (GPa) Cpo (GPa) da (rad) h (rad)  deer (A)

168.4 75.4 121.4 0.24 0.3 3
0

) =+ 2L, 6)
Oe

where e is the elastic strain of the surface due to the surface tensile stress, 7y the surface energy
and 7 the surface stress. To simulate the influence of the surface stress on the material
behaviour, the bulk model must be extended to describe the surface properties as well. When
FEM is considered, this can be done by geometrically resolving the surface layer and
specifying explicitly the initial surface stress at zero strain, as well as the surface elastic
properties. However, when the surface layer is modelled geometrically, a large number of
elements are required to handle the mesh generation and stress calculation in this area.
Another possible approach is to model the material surface mathematically using the thin
layer approximation (the thickness of the layer is much smaller than the rest of the surface)
with shell or membrane elements [S1]. This approach unavoidably builds in additional
mathematical complexity, which may even introduce some numerical errors in the bulk
model, however, it significantly reduces the requirements for the mesh density.

In the current study, we handle the material surface by using mathematical modelling and
the membrane elements. Thus, to simulate the surface layer behaviour, we add extra model
available only at the geometrical surface of the material. The surface model setup is similar to
the bulk model but has several important differences. Instead of simulating the area close to
the surface in a full 3D approach, we use the thin film formulation where only the tangential
components of the stress and strain over the surface will change [51]. This formulation is
realized using 3D plane stress elements, able to deform both in-plane and out-plane direction
while the bending stiffness is neglected. It can be ignored in the surface model, as the surface
processes cannot be treated independently but are tightly coupled to the bulk material
behaviour (discussed below) [27]. As a result, in the current model, the surface layer bending
behaviour is controlled by the bulk material.

The surface layer thickness (d) in the normal direction is considered to be small, giving
constant stress and strain distributions in that direction. As in the bulk case, if the surface
undergoes deformation, the relation between deformed (x;) and non-deformed (X;)
configurations can be expressed using the deformation gradient (F*), so that x; = F;X; and
the corresponding Green—Lagrange strain tensor can be calculated as:

e:%W”F—D. (7)

Since the material surface undergoes deformation, the ratio of areas between deformed
and non-deformed configurations is:

J = Jdet(FTF*) = Jdet( + 2e¢). (8)
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Finally, the surface stress tensor is calculated as [27]
T =T, 2 + Sijieus 9)

where 7-2- is the initial surface stress and S the fourth order surface elasticity tensor.

The incorporation of the finite size effects was later tested by comparing the simulation
results with the analytical model, presented in [52]. The comparison was obtained by
conducting series of simulations using different external stresses (3.05 and 4.58 GPa), while
the depth of the void was increased (starting from the surface with 0.2 nm steps) and the
radius of the void was scaled from 4 to 20 nm with 1 nm steps.

2.3.3. Coupling the surface and bulk stress models. To obtain the final stress—strain
distribution in the nanoscale material due to the surface stress influence, both surface and bulk
models must be coupled. The coupling is achieved by binding the two stress models using the
boundary conditions and solving a nonlinear system of equations. As the deformation of the
bulk material also causes the deformation of the surface, the bulk deformation is carried over
to the surface model—every point in the surface model undergoes the deformation
experienced by the boundary of the bulk model, leading to the predefined displacement in the
surface stress model:

usurf(x’ s Z) = ubulk(x’ ) Z)- (10)

The deformation of the surface leads to accumulation of the surface stress according to
equation (9). The achieved surface stress is coupled to the bulk model by incorporating it into
the pressure load boundary condition for the bulk material behaviour. The resulting
distributed load at the surface elments of the bulk model is described as:

F = pnJ, Y

where p is the pressure calculated in the surface stress model, n the unit normal vector in the
deformed configuration and J defined in equation (8). The surface stress boundary condition
is implemented as a follower load, meaning that the changes of the surface areas during the
calculations are monitored and the loads are applied in the deformed frame (not in the initial,
non-deformed one).

Finally, the stress distribution in the material is calculated using the principle of a virtual
work—the work from all external loads is equal to the virtual work from internal strains:

6W:f(—6fselza+6u-Fv)dv

1%
+ [ (=6e: 7+ 6u-F)ds + [ (6u - F)d, 12
fs(”“”fl(“ ) (12)

where du represents the virtual displacements and F; corresponds to the volumetric, surface or
line forces. Since in our current work we use the thin film formulation for modelling the
surface behaviour, we effectively use 3D plane stress elements, able to deform both in-plane
and out-plane directions while neglecting bending stiffness (as discussed above). Intuitively,
this leads to the analytical integration of the surface part in equation (12), resulting in the
multiplication of the corresponding quantities with the thickness (d) of the modelled surface
layer. An exhaustive mathematical description, however, remains out of the scope of the
current paper and can be found in sufficient detail from several textbooks [48, 51].

The membrane thickness d is also used to introduce the size dependence, characteristic to
the nanoscale systems, into the model (and avoid scale invariance during upscaling of the
geometry). We consider d = df - if, where « is the curvature of the void and the subscript

K
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Table 3. Elastic parameters of the crystal surfaces in the FEM simulations [27].

Nonzero components of initial

Crystal surface stress tensor 7y Bulk modulus Shear modulus
planes (k) VA, 19, VA Sij eV A2 Sio12 (€V A7)
{001} 0.0649, 0.0649 0.017 —0.063
{111} 0.0343, 0.0343 —0.527 0.009
{110} 0.0621, 0.0373 —2.428 —0.352
Rest of the 0.0474, 0.0382 —1.641 —0.252
surface

{112}

ref characterizes the reference configuration—a void with 5nm radius. The interface
thickness d was initially obtained through the comparison with MD simulations.

2.34. Crystal face detection. Important part of the model implementation is the
identification of crystal faces constituting the surface, since both the initial surface stress
and the elastic properties of the surface are crystal orientation dependent. Two possible
strategies can be used for that. The first one relies on the geometry setup—the initial geometry
is well defined, where all the boundaries correspond directly to the crystal faces. In this case,
all the surface properties are predefined by the user. The shortcoming of this method is the
need to manually specify the crystal faces by constructing sufficiently accurate geometry.

In the second case, the geometry does not have boundaries corresponding directly to the
crystal faces, but the boundaries follow the actual crystal faces only approximately. For
example, if a perfectly spherical void is considered in the finite element model, this is an
approximation of the actual material defect. In an actual crystal structure, a perfectly spherical
hole cannot exist due to the atomistic nature of the matter. Instead, the surface of the defect
(void) consists of patches of differently oriented crystal faces. In this case, a special algorithm
must be used first to determine the crystal faces constituting the surface and secondly translate
this information to construct the surface model which includes the corresponding effective
surface elastic properties.

In current work we use the second approach—we reconstruct the crystal surface
approximately using the identification algorithm presented below. By choosing this approach,
we gain computational robustness and flexibility on expense of some accuracy.

The crystal face identification algorithm utilizes the Miller indices, characterizing every
crystal plane. The indices provide the normal vectors to the crystal planes on surface of the
studied void. In a FCC single crystal, we identify the crystal planes shown in table 3, which
are presently included in the proposed algorithm.

In the following, we refer to the geometrical surface as the surface modelled by using
conventional modelling tools available in the used FEM software. The crystal surface,
however, is the surface which is constructed according to the proposed algorithm with the
surface properties simulated by MD in the presence of a volumetric defect. In case of the
geometrical surface, we do not model the crystal faces directly, while in case of the crystal
surface, the faces appear naturally. This is illustrated in figure 1(c), where solid line represents
the geometry surface and dashed line the actual crystal surface.

To identify approximately the crystal faces on the geometrical surface, we consider the
surface normal vectors of the geometrical model ngys and the normal vector n, of the crystal
plane k; the latter arising from the orientation of material. In the case of parallel normal

8
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vectors, the geometrical model represents the crystal surface accurately; otherwise
approximately. To reconstruct a valid model of the crystal surface and identify the actual
crystal faces k on the geometrical surface, we first find the angles between ng, and n¥; (see

figure 1(b))
ok = COSI(M]. (13)
|n]c<s| : |ngs|

Both ng and n’c‘S must be specified in the material coordinate system (laboratory
coordinate system), so that they follow the correct crystal orientation in the geometry. Finally
we limit the maximum angle between ng, and nlf‘S for that part of the geometrical surface to
find the crystal face k. To do it, we use the smoothed Heaviside function (due to the practical
considerations of avoiding sharp transitions, possibly leading to numerical problems). The
smoothed Heaviside function, flc2hs, in Comsol Multiphysics is defined as:

H(¢, h) = flc2hs(¢, h) = (% > 1)(% < 1)

x(1+£(£_2(£)2+1(£)4)]+(£>1), 14
2 h\16 8\ h 16\ A h

where £ is the width of the transition region from zero to one. Now, the crystal faces are
identified according to:

Ok = H(|o*| — da, h), (15)

where do is the maximum allowed angle between the normal vectors of the geometrical and
the crystal surfaces. Finally, all crystal faces in a given crystal plane family are collected by
summing the ®;. For example, for {100} plane family:

q) {100} @(100) + @(OIO) + (I)(OOI) (16)

Since the Heaviside function is used to detect the crystal faces, value of ®* stays always
between O and 1, with 1 corresponding to the crystal plane k. Thus, the effective elastic
properties of the surfaces, reflecting the collective behaviour of all present crystal faces, are
now easily expressed as nonlinear functions of identified crystal faces:

*

= kZTn‘I) X = kZ iim 7 a7)
2., ® Z ¢ Zk &y

where g is the crystal plane family. The normalization with the sum of the Heaviside

functions is conducted in order to ensure that possible overlaps of the smoothing zones in

equation (15) would not lead to summations larger than unity and artificial amplification of

the surface properties.

ZT‘I ®7 and S

2.3.5. Finite element simulations. The finite element simulations were conducted using
Comsol Multiphysics 4.4 and its Structural Mechanics and Membranes toolboxes [53].
Different meshes were tested during the calculations, and the final one consisted of ~132 000
mixed tetrahedral and hexahedral elements, with a minimum size of 0.5 nm and a maximum
size of 1.93 nm. The hexahedral elements were generated concentrically around the void until
the sides of the simulation box were reached using swept meshing. The tetrahedral elements
were used only far away from the void, in low stress and strain regions. The equations for the

9
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Figure 2. Shear stress distribution around the void without external tensile stress. (a)—
(c) MD results; (b)—(d) FEM results. The relaxed material configurations demonstrate
good agreement between the methods.

bulk material were solved using linear elements and for the surface behaviour, using quadratic
elements. Since the obtained system of equations, describing the stress—strain relations in
coupled bulk and surface models is highly nonlinear, the damped Newton type nonlinear
solver [54] was used in conjunction with the Pardiso solver.

3. Results and discussion

3.1. Defect caused stress distribution and influence of the surface stress

To verify the calculations of FEM simulations, the shear stress obtained using FEM was
compared to the results found from corresponding MD simulations. Both qualitative and
quantitative comparisons of the results were conducted to evaluate the accuracy of the FEM
model. The stress distributions are presented as cut planes from the simulated geometry; all
slices are selected from the centre of the box and correspond to different crystallographic
directions, specified in the figures. Both the MD and FEM simulations are coloured according
to the shear stress component and are presented in figures 3—-6.

The stress distributions without external force in case of a spherical void are presented in
figure 2. The presented shear stress distributions overlap well for both MD and FEM simu-
lations for all presented stress tensor components, demonstrating qualitatively similar beha-
viour due to the influence of surface stress. The most significant difference between the MD
and FEM simulations can be observed for the o,, components near the leftmost and rightmost
edges of void cross section—the crystal face interpolation algorithm causes slight distortion
of material properties near the void surface leading to the deviation of stress distributions.
However, the difference between the MD and FEM cases is small and the effect to the overall
stress distribution caused by the void can be neglected.

10
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Figure 3. Shear stress distribution in Cartesian slices around the void without external
tensile stress in case of fully periodic boundary conditions. This configuration
corresponds to void in bulk material and extends the results for arbitrary crystal
orientation. Left column—o,,, middle column—o,,, right column—oy.. Upper

row—MD results, lower row—FEM results.

Although, in the previous studies we have considered a near surface void, the presence of
the surface may influence the surface stress distribution near the void itself. Moreover, the
crystal orientation with respect to the surface starts playing a critical role due to a high
anisotropy of elastic properties of copper. To separate the internal surface stress distribution
from the surface, as well as to avoid the necessity of rotation of the simulation cell in order to
obtain the orientation independent result, we performed the current calculations of a void
placed deep in the bulk. The results are presented in figure 3. Again, the comparison of MD
and FEM simulations demonstrates good qualitative agreement—all presented stress com-
ponents behave similarly. Compared to figure 2, only the o, behaviour is the same, as in both
cases the material is already periodic in that direction. Other presented stress tensor com-
ponents, o, and o,,, show considerable difference—indicating that limited material thickness
around the void has significant influence on the stress distribution. However, changes in both
MD and FEM agree, indicating that FEM can accurately capture the material behaviour in
every crystal orientation.

To test the agreement between the methods for random direction, we conducted similar
comparisons as in figure 3 for stress tensor components in the yz cut plane, rotated 45° around
z axis. Although not shown here, the stress distributions obtained by both methods are very
similar consistently with the previous figures.

The stress distribution due to the combined effect of surface stress and external force are
presented in figure 4. Compared to the case without external force, the stress is distributed
along the diagonal of the simulation cell and slightly stretched in the z direction. The main
difference between the stress distributions can be explained by the approximations of the
surface layers in FEM simulations. Compared to the case without an external stress (figure 2),
several short-range distortions are visible in all presented stress components. These artefacts
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Figure 4. Shear stress distribution around the void with external 1.35 GPa tensile stress.
Left column—o,,, middle column—oy, right column—oy,. Upper row—MD results,
lower row—FEM results. The circular marker and dashed lines in the figures represent
the data plotted in figure 5.

are influenced by the mesh used in the FEM calculations in combination with the crystal face
identification algorithm as both of them introduce smoothing and approximations of surface
properties into the model. While the surface mesh over the void has relatively small elements
(0.5 nm), element size starts to grow in the bulk material and amplifies the effect surface
artefacts deeper in the bulk. On the other hand, the MD stresses near the surface are influ-
enced by the numerical artefacts as well. The MD stresses depend on the volumes associated
with atoms, that can be estimated using the Voronoi cells. The latter are poorly defined for the
surface atoms as the cells expand deep into the void. However, the influence of these artefacts
to the overall stress distribution is small, even if they introduce additional numerical noise in
the system. They can be viewed as acceptable trade-offs for keeping the size of the elements
in the bulk material relatively large while guaranteeing fast and computationally efficient
calculations.

3.2. Quantitative comparison of MD and FEM stress estimations

Finally, quantitative comparisons of the stress tensor components in MD and FEM simula-
tions are presented in figure 5. The data for the comparison was obtained by plotting the
distribution of the shear stress component along the line in the z direction between the void
surface (at the point where the shear stress has its maximum value) and the surface of the
simulation cell. The MD results in figure 5 are presented by blue lines and the FEM results by
red lines (dashed without external force, solid with external force). The horizontal axis
represents the distance from the void surface in Angstrom and the vertical axis gives the
respective shear stress component o, 0, or oy, in GPa. For comparison, numerical values of
the stress in the bulk around a stress-concentrating void can be found from the literature [18].
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Figure 5. Shear stress along the line from FEM and MD simulations. On the x axis, the
distance from void surface is in A, on the y axis: (a) shear stress oy, (b) shear stress o,

(c) shear stress oy, in GPa. The data is plotted along the dashed line in the z direction
presented in figure 4 for the corresponding stress components. oy, is presented, starting

from the circular marker in figures 4(a) and (d), in the z direction (perpendicular to the
schematics).

FEM and MD show again the same general trend in the stress distribution as in previous
snapshots, demonstrating generally good agreement between the methods. All the presented
lines can be divided into three main regions—the surface layer (<0.5 nm), close to the void
region (distances under 2nm) and the distant regions, further away. The maximum stress
values stay always in the surface layer in both methods. However, since the both approaches
need significant approximations in the surface layer area—MD due to the ill-defined atomic
volumes for surface atoms and FEM due to uncertainties in choosing the surface layer
thickness—the results differ by the factor of two.

When we consider the close to the void region, both models follow the same trends,
while FEM generally underestimates the stresses. This can be caused by three mayor factors
—the geometrical differences between the actual surfaces in MD and FEM, the accuracy of
crystal surface reconstruction in FEM (we use only four crystal surface families) and the
smoothing effects of the mesh. Since the mesh elements grow larger further away from the
void, the smoothing occurs naturally as the stress calculated by FEM is the average over
several atoms, while MD always provides the atomic stresses. Finally, the stress distribution
is also affected by the elastic properties of the crystal surface.

Finally, the third distant region demonstrates excellent agreement between the MD and
FEM simulations as all the stress values coincide.

The largest difference between the MD and FEM based methods appears in figures 4(a)
and (d) where the xy component of the stress tensor is presented. However, more detailed data
of o,y is plotted in figure 5(a) along the z direction from void towards surface. Numerical data
in figure 5(a) also demonstrates very good agreement between the MD results and FEM
calculations, cutting out only peak stress values near the surface. A similar behaviour is
visible in figures 4(a) and (d) as well. The qualitative behaviour is captured, but maximum
stress values remain lower than in the MD calculations.

There are several possible reasons for such discrepancy. The most significant one is the
fact that the surface model, while capturing different crystal faces over the surface of the void,
is isotropic in its nature. For example, if we consider (111) or (100) planes, their elastic
properties are affected by the atom packing. Such effect, for example, is clearly visible in
anisotropic behaviour or single crystals as well.

Another possible reason for the difference in oy, distribution may stand in fundamental
differences between MD and FEM boundary condition implementations. While in MD,
periodic boundary conditions with fixed box sides were used, it still allows atoms to move
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Figure 6. Distribution of €,, component of the strain tensor in MD (a) and FEM
(b) simulations in case of fully periodic boundary conditions. The dashed line in (a)
shows the location of plotted data in (c).

across the boundaries. In the case of FEM calculations, symmetry boundary conditions were
used, forcing zero normal directional displacements. Thus, boundary conditions in continuum
calculations are fundamentally more restrictive. Moreover, in the case of removing restric-
tions from box sides in the FEM simulation, significantly more pronounced oy, distribution—
close to MD and unloaded FEM result—was observed. Thus, it is possible that applied
symmetry boundary conditions are too restrictive and will artificially reduce oy, values. For
example, in the case of external loading it completely suppresses the Poisson effect. As such,
we consider this effect to be a limitation of the model, similar to the difference in the case of
isotropic or anisotropic elastic materials.

Combination of data presented in figures 2-5 demonstrates that the proposed modelling
approach can effectively capture the influence of the void and its surface on the stress
distribution in the bulk material. The computational time required for the FEM simulations
can be very short—minutes (on dual core desktop PC, in case of coarser meshes), compared
to hours of extensive parallel MD calculations. The FEM model augmented by the proposed
surface model can be used to assess the ability of nanodefects present in real materials to
concentrate the stress. It will also allow to estimate the possible weak points in the structure
where the crystal lattice may yield a dislocation at the stresses well below the tensile strength
of the material. However, the more rigorous simulations such as MD with appropriate
interatomic potentials will be needed to simulate the mechanism of nucleation of dislocations
or their reactions in detail.

Using FEM as a tool for the stress calculations also provides significant advantage
compare to MD methods by the way the methodology is implemented. For instance, the stress
calculated in MD per atom does not result in a single interpretation of the obtained data due to
the ambiguity of definition of the cross-sectional surface area of an atom. The finite element-
based approach, however, relies on a continuum approximation, eliminating completely the
need to consider volumes or cross-sectional areas of the atoms.

3.3. Estimation of strain in MD and FEM calculations

Finally, in addition to the stress estimates, strain obtained from both MD and FEM calcu-
lations are compared as well in figure 6. There, figure 6(a) represents the €,, component of the
strain tensor in MD simulations while figure 6(b) shows the same quantity in FEM calcu-
lations. Figure 6(c) provides detailed quantitative comparison between FEM (blue line) and
MD (red line) results for both €, (solid lines) and ¢,, (dashed lines) at the dashed line
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presented in figure 6(a). Strain, as defined by equations (3) and (4), relies only on the
displacement and deformation gradient of the atoms, thus eliminating the need to use
homogenization volumes as during the estimation of the stress. However, due to the thermal
movement of atoms at nonzero temperatures, time averaging is still needed. Similarly, to the
stress calculations, very good qualitative and quantitative agreement of the results is obtained
with the results coinciding almost completely, in range of the nearest neighbour interpolation
fluctuations of the MD strain components and providing a final validation to the model.

3.4. Finite size effect in FEM models

Many nanoscale effects are size dependent and arise in the case of small enough surface to
volume ratios. Thus, a continuum model describing surface stress behaviour must include the
characterization of the size effects well and demonstrate the diminishing of the surface stress
during the upscaling of the void. To test the proposed model for ability to capture the finite
size effect, we performed additional simulations of a near surface void with different radii in a
single crystal Cu held under tensile stress. Stress was exerted on the Cu surface. The geometry
and simulation condition were chosen to replicate those in MD simulations [52], where the
analytical model to describe the dependence of void aspect ratio on the radius of the void was
proposed. By the ratio of the void radius r to the void depth /.y, at which the maximal shear
stress o, was sufficient to nucleate a dislocation at the void surface (for details see [52] and
figure 1). hy stands for the height of the cylinder above the void up to the surface of the
material with the base circumscribed by the region of the maximal shear stress on the surface
of the void. By plotting this parameter (h.,/r) against the radius of the void, r, it was
demonstrated that at some size of the void, the void ratio Ay, /r became independent of the
size of the void and the geometry became size invariant. Due to the size and time limitations,
the MD results could not reproduce the entire curve /cy;/r(r). By developing the present
model, we have an opportunity to verify the finite size effect predicted by analytical model in
[52]. If the curve can be reproduced by the present simulations, then the saturation of the
dependence h.y;/r(r) can be explained only by the surface stress on the surface of the void,
since this effect becomes negligible with the growth of a nanovoid.

The results of size dependence of the surface stress model and the comparison with the
analytical predictions is presented in figure 7 where the red markers represent the simulated
data and blue lines represent the analytical model from [52], heyi /7 = a/ J2 + ¢/r, where
coefficients a and ¢ are obtained from the simulation data. The error bars correspond to the
void depth increments (0.2 nm) in the present calculations. The analysis was performed for
two different external stress cases—3.05 and 4.58 GPa—with corresponding threshold
stresses for 2 and 3 GPa (corresponding to the increase of applied stress). In both cases, we
see how the surface stress model follows the same behaviour as predicted by the analytical
model very closely. While the FEM model succeeds in capturing accurately the behaviour of
the size effects, the homogenization of the continuum approach leads to underestimation of
stresses on the void surface and, consequently, to underestimation of the void aspect ratio as
well. However, the close comparison between the analytical prediction [52] and the present
FEM results support the analytical model and explain the size effects mostly due to the effects
of surface stress on the surface of the void.

4. Conclusions

In this work, we have successfully developed a methodology to incorporate the surface stress
effects into the solid mechanics framework. The developed methodology was tested by
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applying a tensile stress on a single Cu crystal containing a test stress concentrator, in the
shape of a spherical void. The proposed approach utilizes pre-calculated elastic properties of
crystal surfaces from the MD simulations as input parameters and allows for calculating
resulting stress distributions in a computationally efficient way. The comparison of stress
estimates obtained using MD and FEM shows good qualitative and quantitative agreement
between the two methods for all test cases, while additional validation is provided by the
demonstration of similar agreement in the calculated shear strains as well. We have also
demonstrated that the size effect, characteristic for nanoscale systems, is consistent with
previous MD works. The methodology can be easily implemented using commercially
available finite element solutions, making it an attractive analysis tool. Moreover, the needed
input parameters for the elastic properties of the surfaces can be calculated using MD
simulations or obtained from already published data. All these features make the proposed
approach an attractive analysis tool for studying mechanical interactions in nanoscale
materials. The simulation data, that forms the basis of the results (FEM and MD stresses and
strains), are available on request.
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ARTICLE INFO ABSTRACT

Keywords: In the current study we use a model of surface stress for finite element method calculations
Finite element simulations to complement existing bulk stress models. The resulting combined model improves the
Molecular dynamics simulations accuracy of stress calculations near nanoscale imperfections in the material. We verify

Multiscale simulations
Surface stress model
Void under copper surface

the results by simulating differently-shaped voids in single crystal copper both with FEM
and with molecular dynamics, and compare the resulting stress distributions. The com-
pared results agree well within small uncertainties, indicating that the implemented sur-
face stress model is able to capture all the major features of the stress distributions in
the material. Discrepancies occur near surfaces, where the crystal faces were not defined
explicitly in the model. The fast and accurate FEM calculations can be used to estimate
the stress concentration of specific extended defects, such as voids, while studying the
dislocation-mediated mechanisms near these defects in the presence of external stresses
by atomistic techniques.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Materials in very high electric fields are subject to electric discharges between the electrodes - vacuum arcing or vacuum
breakdowns - even in ultra-high vacuum conditions [1]. For example, vacuum breakdowns occur in free electron lasers [2],
vacuum circuit breakers [3], fusion reactors [4] and particle accelerators [5,6]. An example of the latter is the proposed Com-
pact Linear Collider (CLIC) at CERN [7], which is designed to accelerate electrons and positrons using high radiofrequency
electric fields at room temperature. The proposed accelerating electric field is in the range 100 MV/m [8], while the desired
maximum breakdown rate of the copper accelerating structures for optimal operation is estimated to be 3 x 10~7 1/pulse/m
[9].

Understanding the origins of electrical breakdowns is important for controlling them at the desired level. Experiments
under DC conditions have shown that the emission currents prior to breakdown events fit the Fowler-Nordheim model
[10], which includes a so-called local field enhancement factor , which was determined to be in the range of 30 to 140
[11]. This is associated with nanoscale field emitters, whose existence is currently assumed, but not yet experimentally wit-
nessed [11].

Nanoscale phenomena can be modeled by using atomistic methods. For example, the molecular dynamics (MD) method
provides sufficient spatial and temporal resolution (from a few to hundreds of nanometers and up to a few nanoseconds,
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E-mail address: simon.vigonski@ut.ee (S. Vigonski).
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respectively) [12,13]. Previous molecular dynamics (MD) simulations of surface roughening mechanisms have shown that
dislocations nucleating at near-surface stress concentrators, like voids [14,15] or precipitates [16], play a role in the modifi-
cation of surface topology when the material is subjected to strong external stress due to the applied electric field.

Nanoscale dislocation processes influence macroscopic phenomena. In case of a high electric field they may lead to gra-
dual surface modification and, eventually, to vacuum breakdowns [6,17-19]. The time scale from the application of the elec-
tric field to breakdown can range from 100 ns to 1 ms, depending on the applied field strength, the electrode material and
the surface geometry [11]. These time scales are unattainable to the atomistic simulations and a multiscale approach is need-
ed to study such systems. The continuum bulk stress models typically used in FEM simulations of macroscale problems are
not sufficiently accurate at nanoscales, where surface effects must be accounted for [14,20].

Previous work includes the XFEM-based approach by Yvonnet et al. [20], or Cauchy-Born constitutive modeling based on
interatomic potentials by Park et al. [21], He and Li [22] or Javili and Steinmann, incorporating boundary potentials into FEM
models [23-25]. While these methods are relevant and accurate, in the current work we aim to test a simpler way of incor-
porating the surface model together with the bulk model, in order to be able to analyze the effect of the surface stress in the
vicinity of extended defects such as voids. We implement the surface stress model in similar way as presented in [26]. This
approach, although not as accurate as suggested in [21-25], has the advantage of computational efficiency, which is very
valuable for many applications, where it is necessary to assess the relevance of the process to the main mechanism. For
instance, computationally cheap model can be used successfully as estimator for further molecular dynamics studies or in
multiphysics simulations, where several physical phenomena are combined. This becomes especially important in modeling
of material behavior under high electric fields, where multiphysics simulations utilizing thermal effects, emission currents,
external electric fields and material stress must be taken into account simultaneously. Moreover, to obtain reliable results in
nanoscale simulations, the effects discovered using continuum methods must be verified using more accurate approaches,
like molecular dynamics as atomistic nature of the material that cannot be accessed using continuum approach, becomes
important at these length scales. However, while the spherical shape of the void is motivated by the assumption of surface
energy minimization, it was shown that under external stress initially spherical voids in copper can assume irregular shapes
due to the anisotropy of the crystal structure [27]. Moreover, the anisotropic effects are enhanced by surface composition.
The surface of nanovoids in real crystals consists of different crystal faces, each with its own surface stress value [28]. All the
faces contribute to the total surface stress distribution, leading to its dependence on the amount of different crystal faces,
their relative areas and structures. Hence, in the present work, we investigate different void shapes to analyze the surface
stress model sensitivity and the effect of the shape on the stress concentration properties of voids.

We increase the complexity of the geometry by introducing lattice defects with different degree of complexity, gradually
approaching the limiting spherical case. The void shapes serve the purpose of verifying the applied FEM model in case of
controlled adverse surface configurations with planar edges and sharp vertices. This approach allows us to test the robust-
ness and limits of the used model. We compare the behavior of the surface stress model implemented in FEM and the stress-
es calculated in MD simulations to test the sensitivity of the model. We aim to achieve sufficient accuracy for estimation of
surface stress with FEM simulations, preserving the advantage of short simulation time even on an ordinary PC.

2. Methods
2.1. The coupled bulk and surface stress model

To simulate the surface stress effects on mechanical response of materials by using FEM, standard structural mechanics
tools must be augmented with the surface behavior, leading to a combined model of bulk and surface material. First, to mod-

el the bulk we use the large deformation model. In this approach, material deformation is obtained using the deformation
gradient tensor F, connecting the deformed (;) and undeformed (X;) configurations [29]:

Xi = FyX; 1)
The deformation gradient is then used to calculate the corresponding Green-Lagrange strain (E):

E:%(FTF—I) (2)
Finally, material stress (the second Piola-Kirchhoff stress tensor) (S) is obtained [30]:

S=C:E (3)

where C is the elasticity tensor. Cauchy stress (¢) and the first Piola-Kirchhoff stress (P) are related to the second
Piola-Kirchhoff (S) stress as S = F'P and ¢ = J 'PF" = J"'FSF', where the ratio between deformed and undeformed configura-
tions is obtained as J = det(F) = V/V,. To simulate the material surface behavior, we assume already known information about
initial surface stresses and the elastic properties of the surface. In the current study, we use elastic parameters calculated by
Shenoy in [28]. We approximate the surface by a thin elastic layer, coupled to the bulk model. In this approach, we assume
that the surface layer is thin compared to the dimensions of the rest of the geometry. The surface stress t, initial stress t§

and the surface deformations are connected as [28,31]:
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0
Tij = Tjj + Sijlaékt (4)

where ¢ is the elastic strain of the surface and s the surface elasticity tensor. Unlike the bulk stress calculations, where the
equations are specified in the volume occupied by the material, the surface stress model is active only in the surface layer
and is defined in the local boundary coordinate system [32]. As in the case of bulk material, the surface model is derived
using the assumption of large deformations - deformed (x;) and undeformed (X;) surface configurations are connected using
the deformation gradient as x; = F;X; and the surface elastic strain is

6= %(FTF -1, )

Since now we consider the surface, not the bulk behavior, the ratio of areas, instead of volumes, between deformed and
undeformed configurations is calculated as

Joug = /det(FTF) =, /det(I + 2). 6)

Incorporation of the surface stress influence of the material behavior is completed by two-way coupling of the bulk and
surface models. This is done similarly to [26]. We set every surface point to follow the bulk material displacement according
to the following boundary condition:

Ugyi(X,Y,2) = Upuk(X, Y, 2) (7)

Due to the deformation of the bulk material, surface deformation occurs, corrected now by the surface stress model. The
stress in the surface is then introduced in the boundary condition of the bulk material:

F= pn]surf (8)

where p is the pressure, calculated in the surface stress model as p = %(TXX + Tyy + Tz), N the unit normal vector in the
deformed configuration and Jssis defined in Eq. (6). This boundary condition is implemented as load follower - it takes into
account the surface area changes during the simulation and guarantees the correct stress value at the boundary. The cou-
pling between the bulk and surface models, as well as the key parameters are illustrated schematically in Fig. 1.

Finally, to obtain the stress distribution in the material, we utilize the principle of virtual work. In this case, the virtual
work from the internal strains must equal the work from all external forces. As a result, we obtain the distributions of stress-
es, strains and displacements.

Since we simulate the material behavior on nanoscale, it becomes important to use an anisotropic description of the crys-
tal. The components of the elasticity tensor are C;; = 168.4 GPa, Cyy = 75.4 GPa, C;, = 121.4 GPa [29]. The elastic parameters of
the crystal surfaces are presented in Table 1, where s;; and s1,1 are the surface counterparts of the bulk and shear modulus,
respectively. Since the crystal orientation of the material is known from the initial setup of the simulation, and the material
defects consist of different voids with planar surfaces, each void surface is associated with crystal face with corresponding
initial surface stresses and elastic properties. For simplicity we apply the isotropic model of surface stresses, and since the

MD simulations
[23]

l

Surface elasticity tensor S

Bulk elasticity tensor C

d }

™\ Deformation u 7~

Surface stress

Bulk stress model
model

7 Load F \.

d
2" P-K stress tensor S Surface stress T

Combined model

Fig. 1. Schematic of the combined bulk and surface stress model. Surface properties are taken from published MD simulations [23]. The model includes
two-way coupling between the bulk and the surface, resulting in a combined stress value.
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Table 1
Crystal surface parameters used in the simulations, where s;;; and s121 are the surface counterparts of the bulk and shear moduli, respectively [28].
Crystal planes Nonzero components of initial surface Components of surface elasticity tensor
0 A2) 70 A2 - -
stress tensor 19, (eV/A®), 79, (eV/A?) sii(eV/A?) s1212(€V/A?)
{001} 0.0649, 0.0649 0.017 —0.063
{111} 0.0343,0.0343 -0.527 0.009
{110} 0.0621, 0.0373 —2428 —-0.352
Rest of the surface {112} 0.0474, 0.0382 —1.641 —0.252

elastic properties of the {110} and {112} crystal faces on the surfaces are direction-dependent, we use the average value of
the anisotropic surface stresses 7,7 and 7, for the single value of surface stress (isotropic now as it is does not depend on
orientation) for those crystal faces.

As shown in Table 1, some of the surface parameters show significant difference from their bulk counterparts. The elas-
ticity tensor of the bulk must be positive definite to guarantee the stability of the bulk. However, this is not the case with the
surface elasticity tensor as the surface of the material cannot exist independently of the bulk, rather it forms a coupled sys-
tem with it [28].

Even though the material surfaces in the FEM simulations are modeled as infinitely thin layers, the calculations of surface
stress incorporate mathematically finite thickness of the boundary layers. As the surface and bulk stress models are coupled,
the stresses due to the surface effects extend into the bulk.

2.2. Simulated geometries

The simulated system is illustrated in Fig. 2(a). A single crystal Cu sample with a void in the middle corresponds to an
extended Cu surface with a periodic network of voids due to the applied periodic boundary conditions in the lateral direc-
tions. This system is held under a strong external electric field. The electric field induces mechanical tensile stress in the
material due to the interaction of the electrons of the surface atoms with the applied field, resulting in a Lorentz force [34]:

80E2

2 ®)

where ¢ is the normal tensile stress on the surface, E is the magnitude of the applied electric field (normal to the surface) and

&0 is the vacuum permittivity. The electric field and material interaction is modeled as a z-directional force acting on the free

surface. The bottom boundary of the system is fixed to obtain non-zero stress inside the material. The stress distribution in

the system was calculated both with and without external force acting on the material surface. The value of the force was

chosen from previous studies where the influence of the void depth to surface modification was investigated [14]. To quan-

titatively compare the stress distributions in MD and FEM simulations, we present the variation of the local stress along a

vertical line that starts at the surface of the void in the region of maximum stress and ends at the material surface, which
is indicated as a black arrow in the following figures, where the actual stress distribution is presented.

(a) (b)
Force
10 nm
. di°
flO
é Periodic P y -
¢ ) ‘—

Fixed boundary

o,
Fig. 2. Three void geometries were simulated - cube, cut-cube and dodecahedron. The simulation box is periodic in the lateral directions, external force is
applied to the upper boundary; the lower boundary is fixed.
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We studied a number of different void shapes with characteristic size of 10 nm, which can be seen in Fig. 2(b). In [33], we
simulated a spherical void that has a well-defined surface. However, it represents only one special configuration of possible
material defects. In the current work, we apply the surface stress model to a range of void geometries with increasing com-
plexity, approaching step-by-step the limiting, spherical case. We start by simulating a simple cubic void (Fig. 2(b), top), con-
tinue with a cut-cube (Fig. 2(b), middle) and finally use a dodecahedron (Fig. 2(b), bottom). The cut-cube is a cube with the
vertices cut off evenly. The middle cross-section of such a shape is still a square; the thin lines in Fig. 2(b) are a schematic
representation of the cut vertices. The cross-section of the dodecahedron becomes an irregular hexagon. 3D models of the
void shapes are added to the figure to help visualization.

The size of the simulation box was 34.7, 34.7 and 32.7 nm in the x, y and z-directions, respectively. The [110] crystal
direction was set in the z-axis, the [001] crystal direction in the x-axis and the [110] crystal direction in the y-axis. In the
chosen orientation, the faces of the cubic void are all either {100} or {110}. When the vertices of the cube are cut off,
new crystal faces appear, which are not explicitly characterised by available elastic properties of the surfaces (see Table 1).
The contribution of the new faces to the total surface stress increases further when the void assumes dodecahedral shape.
This progression leads away from well-defined crystal faces towards the smooth spherical void simulated in [33]. In the cur-
rent study we aim to investigate the sensitivity of the surface stress model by testing its accuracy with different geometrical
configurations.

2.3. Simulation details

The FEM calculations were conducted using Comsol Multiphysics 4.4 [35] and its Structural Mechanics Toolbox. The
geometries were discretized using tetrahedral quadratic elements while the solution of the equations was conducted using
damped Newton solver [36] in conjunction with Pardiso. The Newton iterations were stopped when the relative residual
became smaller than 1076,

The lateral sides of box were restricted to move only in the z-direction, making the box effectively periodic in the x- and y-
directions. The bottom side of the box was fixed. The calculations were conducted using tetrahedral elements with quadratic
or linear shape functions. The number of elements was from 1.0 x 10° to 1.4 x 10°.

MD simulations were run to benchmark the FEM results. The MD simulations were carried out with the open source MD
code LAMMPS [37] using the Sabochick-Lam embedded atom method (EAM) potential for Cu [38]. The MD results were visu-
alized with the open source OVITO software [39], Voronoi cells needed for proper stress calculations were found with the
help of the open source code Voro++ [40].

The boundaries in the x- and y-directions in MD were periodic and three bottom layers of atoms were fixed. The box con-
tained approximately 3.3 x 10° atoms. The timestep for all simulations was 2 fs. The temperature was set to 293.15 K
throughout all simulations and held constant using the Berendsen thermostat [41]. The system was relaxed for 150 ps. After
this, the external stress on the top surface was linearly ramped at the rate 9 MPa/ps during 150 ps. The system was simulated
for another 300 ps at the maximal stress 1.35 GPa reached at the end of the ramping process.

Atomic stresses were calculated with and without an external stress for every atom in every time step. Atomic stresses
were obtained by calculating the virial stress and dividing it with the atomic volume. The virial stress can be seen as a mea-
sure of the contribution of each atom into the total stress distribution in the system [42,43]. The atomic volumes for the bulk
atoms were obtained from a Voronoi cell tessellation and for the surface atoms by calculating the average bulk atomic vol-
ume. This approach is needed since the Voronoi cells of the surface atoms extend into the void (or the volume above the
surface), leading to a large error in atomic volume estimation. The surface atoms were determined by applying coordination
analysis with a cutoff distance of 0.42 nm to the system. Thus, all nearest and second nearest neighbors of an atom were
considered. All atoms with a coordination number less than or equal to 15 were considered as surface atoms. The resulting
instantaneous atomic stress was averaged over 75 ps to reduce thermal fluctuations.

3. Results and discussion
3.1. Cubic void

The results of the MD and FEM simulations are presented in Fig. 3 where the distribution of the stress tensor component ,,
(parallel to the plane of the surface of the material) is plotted. Fig. 3(a) and (b) show the stress distribution in the MD system
in the unstressed state and under 1.35 GPa external stress, respectively. Fig. 3(c) and (d) show the same results for FEM
simulations.

In the relaxed system (Fig. 3(a) and (c)), regions of positive (red) and negative (blue) shear stress develop at the edges of
the cubic void. At the corners of the void cross-section (the edges of the void), small regions of stress with the opposite sign
are visible in Fig. 3(a) and (b), showing a fast change in the value of the local stress due to the surface effects near the region
of the sharp transition from one crystal face to another. The FEM surface stress model also captures these effects (see Fig. 6),
but they cannot be plotted in Fig. 3(c) and (d) since the actual surface stress (Eq. (4)) is calculated in the surface mesh that
has infinitesimal thickness.
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No external force External force

(c) (d)

|_ I | Ox
x <100> -500 MPa 500 MPa 24 ’

Fig. 3. Middle cross-sections of the shear stress distribution in MD simulations (top row) and finite element (bottom row) simulations, without (left
column) and with external force applied (right column) in case of a cubic void. The xy component of the stress tensor is shown in the xy plane. The circles
show the location of the line (in the z-direction) from the void surface to the material surface along which data was collected for Fig. 6.

FEM

y <110>

The positions of the stressed regions are similar in both MD and FEM simulations. Differences in the absolute values and
the extent of stress concentrations are affected by several factors. The geometry used in FEM represents a perfect shape,
while the one in MD has atomistic resolution and can change during the simulation due to the stochastic movement of
atoms. Also, the surface stress model in FEM contains a number of simplifications. One of the limitations of the surface stress
model is the limited number of implemented crystal faces. In the FEM simulations, any surface which is not {111}, {110} or
{100}, is considered to be {112}. While the FEM model describes the transitions between the different faces smoothly, the
information on other possible faces is not yet included in the model. If this information were available, it would definitely
improve on the accuracy of the calculations, especially for problems where the effect of surface stress is particularly impor-
tant. Nevertheless, the currently proposed model is sufficient for many purposes as it includes the most commonly known
crystal faces of copper and, hence, can provide an estimation of the effect of surface stress on plastic deformations near the
surfaces of porous structural defects. The second significant simplification is the assumption of homogeneous surface prop-
erties, while the actual surface can show significantly inhomogeneous behavior (Table 1, [28]). This approximation may
result in some differences between MD and FEM results. For example, Fig. 3(b) and (d) show similar general behavior,
but different shapes of stress distributions. This difference is the result of the approximation of a homogeneous {110} sur-
face - the surface stress, in this case, is clearly underestimated. While the current implementation captures with consider-
able accuracy the most important effects induced by surface stress, the problem of adverse behavior can be overcome by
incorporating, for example, an anisotropic surface model.

The cubic void has sharp edges and vertices where the crystal faces have sharp transitions. In MD simulations, these tran-
sitions are obviously less sharp as the atoms at the edges and vertices re-arrange minimizing the surface energy and, hence,
smearing the corners. This creates more pronounced differences at the edges due to the atomic level changes in the MD geo-
metry and the smooth transition of surface properties at these edges implemented in the surface stress model in FEM. In
addition, the stress calculated from the FEM surface stress model is assigned to an infinitesimal surface layer (with simulated
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Fig. 4. Middle cross-sections of the gy, distribution in MD simulations (top row) and finite element (bottom row) simulations, without (left column) and
with external force applied (right column) in case of a cut-cube void. The xz component of the stress tensor is shown in the xz plane. The main differences
between MD and FEM results are marked by small circles and arrows. The black arrows show the lines from the point of the highest stress at the void
surface to the surface of the material. Along these lines the data was collected for the plots in Fig. 6.

finite thickness d), while in MD simulations the stress is calculated from the atomic interactions, which allows for smooth
extension into the material.

The large internal stresses near the edges and vertices of the cubic void simulated in MD yielded the nucleation of partial
dislocations. This process was difficult to capture in the FEM model as only elastic deformations were accounted. However,
since this shape is thermodynamically rather unstable and serves a purpose of analysis of contribution of different faces in
the surface stress, we avoid the comparison of the , and ,, stress tensor components obtained in MD and FEM simulations.
External stress reduces the surface stress on the void surface and the dislocations recede in the stressed system. This effect is
reduced in the following geometries, since the sharp vertices causing excessive stress concentration are removed. As such,
the other void geometries did not yield any dislocations, so the comparison of the stress distributions in those sections can be
performed.

3.2. Cut-cube void

The second simulated geometry - the cut-cube void removes sharp stress concentrating corners of the previous, cubic
void and moves towards the spherical shape presented in [33]. Since the geometries are similar, the discussion of the cubic
void stress distribution in the xy plane applies in large extent also to the cut-cube void in the xz plane. When the system was
simulated without external stress, we see a rapid change of sign of g, near the edges of the void (in Fig. 4(a), the corners of
the void cross section). This effect is also present in FEM results, but cannot be seen in the Fig. 4(c) for the same reason as in
Fig. 3. When external stress is exerted on the surface of the material, the surface stress is reduced and this is clearly seen in
both MD and FEM results (Fig. 4(b) and (d)). In fact, the extended areas of the stress distribution, seen in the unstressed sys-
tems in Fig. 4(a) and (c), shrink to the narrow areas almost the size of small lines (only one is marked by circles in both
Fig. 4(b) and (d)). When the external stress is applied to the material surface the stress around the corners changes direction
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compared to the unstressed system (the stress tensor component ,, has an opposite sign, compare Fig. 4(a)-(d)). The FEM
model captures well the sign changes as the external stress is applied. On the other hand, the stress distribution created
in the presence of the external stress extends beyond the corners of the cross-section in MD simulations, as marked by
the arrow in Fig. 4(b). This extension is not seen in FEM results, which is also a result of the simplifications used in the cur-
rent model. However, this effect arising at sharp edges and vertices is not relevant in many calculations as these features
would not appear naturally due to surface energy minimization.

3.3. Dodecahedral void

The case of the dodecahedral void in Fig. 5 confirms that the FEM surface stress model is able to capture the stresses due
to the void surface as well as their interaction with the applied external stress. However, while the general behavior between
FEM and MD remains the same, especially if external loading is considered, the approximations when constructing the sur-
face stress model lead to some differences in the bulk stress distribution without external loading. This difference arises as
the crystal faces which are not defined in the model and are approximated collectively as {112} faces come to dominate the
void surface. Since the shape of the dodecahedron was chosen as a geometrical approximation of a spherical void to test the
surface stress model, the discussed discrepancy found in the stress distribution is rather of little importance as the surfaces
with undefined crystal faces are energetically unfavorable and rarely appear in real systems. The accurate quantitative pre-
diction of surface stress around unusual surfaces requires incorporation of more crystal faces than currently present in
Table 1. However, for many cases, especially, if large uniform surfaces with unknown crystal faces are not present, the used
approximation is sufficient. The method is also useful for a qualitative description of the processes, such as estimating the
effect of stress concentration of modeled void(s) before conducting MD simulations.

No external force External force

(b)

MD

(c) (d)

TN
P

=
[Sa)
. \\/\
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=
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h m = 4
x <100> -500 MPa 500 MPa D

Fig. 5. Middle cross-sections of the shear stress distribution in MD simulations (top row) and finite element (bottom row) simulations, without (left
column) and with external force applied (right column) in case of a dodecahedral void. The xz component of the stress tensor is shown in the xz plane. The
black arrows show the lines from the point of the highest stress at the void surface to the surface of the material. Along these lines the data was collected for
the plots in Fig. 6.
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Fig. 6. Shear stress xz component distribution on a line between the void surface and the surface of Cu for the (a) cubic, (b) cut-cube and (c) dodecahedral
void. The horizontal axis is the distance from the surface of void. Solid green line shows the stress distribution in FEM results with external stress, without
taking into account the surface stress model. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of
this article.)

3.4. Quantitative comparison

A quantitative comparison of the simulations is obtained by plotting the stresses along a line starting at the void surface
and ending at the free surface, as shown in Fig. 3 by the circle marking its position and in Figs. 4 and 5 by the black arrows.
The plots for the xz-component of the stress tensor are presented in Fig. 6. Three graphs are given for the cubic (a), the cut-
cube (b) and the dodecahedral (c) voids. The horizontal axis measures distance from the void surface. The FEM results are
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Table 2
Calculation times for MD and finite element simulations.
Void shape Cube Cut-cube Dodecahedron
MD (core-hours) 937 851 841
FEM (core-minutes) 23 2.5 62° 23°

2 With surface stress model.
b Without surface stress model.

drawn in blue and the MD results in red. The results for the system with no external stress are drawn with dashed lines and
those for a stressed system with solid lines. In addition, the solid green line in Fig. 6(c) shows results for the externally
stressed FEM system in which the surface stress model was disabled.

The surface stress model captures the general behavior of the reference MD stresses for all presented cases. The stress in
the surface layer of the void has a large positive value, which quickly decreases, as seen from the red MD lines on the graph,
just like in case of the cube, cut-cube and dodecahedron cross-sections (Figs. 3-5). In Fig. 6 it can also be seen that the FEM
surface stress model includes this effect, even though it was not visible in the FEM cross-sections. Dashed lines in Fig. 6(a)
and (b) show that the FEM model captures the stress distribution in the material in the case without external stress accu-
rately by demonstrating excellent agreement with the MD calculations. The plotted stress in both FEM and MD cases
gradually vanishes as the distance from the void surface increases. Differences arise between the FEM and MD results in
the case with the external stress in Fig. 6(a) and (b) and the unstressed case in Fig. 6(c). As discussed previously in Sections
3.1-3.3, these are caused by the approximate representation of the elastic properties of the surfaces which are not explicitly
described by the data in Table 1 but calculated with the smoothing algorithm presented in [33] and Eq. (8).

In the absence of the surface stress model, the stresses near the void deviate substantially from MD results both with and
without external stress. If external stress is not applied, zero stress distribution is obtained in FEM calculations, which is not
true for actual material behavior. On the other hand, if the external stress is present, the stress distribution is closer to the
distribution obtained in the MD simulations (see the green line in Fig. 5). The use of the surface stress model is particularly
important in the regions very close to the void surface (up to 2 nm). Beyond this distance even the original FEM model which
does not account for the surface stress shows the same distribution of the stress in the material as in MD.

Besides the data presented in Figs. 3-6, we investigated the stress distribution in a diagonal cross section, passing through
the vertices of the cubic void and the cuts of the cut-cube, by rotating the xz-plane by 45 degrees around the z-axis. The stress
comparison between FEM and MD showed good agreement as in previously presented cases.

3.5. Calculation times

The calculation times for all simulations are given in Table 2. In the case of MD simulations, the times are for the complete
simulations, including the periods of relaxation, ramping and averaging the internal stress. In the FEM case, the times are the
sum of two runs with and without external stress. In both cases, these are the calculation times necessary to obtain the full
set of results presented previously. The MD simulations were performed on a cluster using 128 Intel Xeon 2.6 GHz E5-2670
cores, while the FEM calculations were run on a PC with 4 Intel Core i7-3770 3.4 GHz cores.

The times for MD simulations practically do not depend on the system geometry. Most of the time is consumed by the
calculation of interatomic forces and atomic stresses. In the absence of atomic stress calculation, the time required for
MD simulations is 1.5 times shorter. The calculation time of the dodecahedral void in FEM is larger than that for other void
shapes because in this case the mesh had to be refined to retain acceptable accuracy. From these simulations we can also see
that neglecting the surface stress effect speeds up FEM calculations by about three times due to decreased nonlinear effects.
When taking into account the need of parallelization of the MD calculations, FEM simulations use up to 3 x 10% times less
computing resources.

4. Conclusions

We used a surface stress model in finite element simulations to obtain improved accuracy of standard continuum
mechanics FEM results in nanoscale systems. The model uses material parameters for different crystal faces from MD
simulations. We compared the resulting stress distribution in the material to analogous MD simulations and simulated sin-
gle crystal copper containing regularly-shaped voids with and without external stress and investigated the behavior of the
surface stress model near the voids.

The surface stress model developed previously in [33] was tested now for sensitivity to different geometrical conditions
and showed overall a good agreement with MD results. The resulting stress distributions in both the unstressed and stressed
states capture accurately the influence of the void surfaces. Addition of external stress reduces the surface effect and this is
accurately represented in the FEM results. The model works particularly well near {100}, {110}, {111} and {112} surfaces
where material parameters were available. Inaccuracies occur at the other faces, which were not included in the model.
However, such faces are energetically unfavorable and do not occur in real systems to a significant extent. Taking into
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account at least four main crystal faces of Cu gives a much better estimation of the stress distribution behavior near the sur-
face of voids, improving the comparison of MD simulation results and continuum FEM calculations.

Compared to MD simulations, the FEM calculations are up to 3 x 10% times faster, depending on the desired accuracy. The
used surface stress model proposes good opportunities for quickly testing different material geometries before launching
calculations with more precise, but computationally demanding methods.
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1. Introduction

Atomic diffusion on metal surfaces is a long term process that
may induce undesirable topological modifications down to nanos-
cale, making these changes practically unnoticeable on large
experimental surface areas which easily range from square
micrometers to square centimetres. Understanding diffusion pro-
cesses, including surface diffusion, becomes particularly important
when dealing with applications that demand high technological
precision (< 1 pm), such as the components of accelerating struc-
tures of the future Compact Linear Collider (CLIC) [1]. In CLIC, the
accelerating structures are designed to operate for extensive times
under high gradient electromagnetic fields, which present addi-
tional challenges for keeping the metal surfaces unmodified. For
instance, surface diffusion enhanced by an electric field is believed
to induce nanoscale surface roughening on copper parts of the
accelerating structures. The roughening leads to uncontrollable
appearance of local vacuum discharges, damaging the surface
and increasing the power consumption, thus decreasing the effi-
ciency of the accelerator [2,3].

* Corresponding author.
E-mail address: ekaterina.baibuz@gmail.com (E. Baibuz).

https://doi.org/10.1016/j.commatsci.2017.12.054
0927-0256/© 2017 Elsevier B.V. All rights reserved.

It is important to note that surface diffusion may play a crucial
role also on a nanoscale, in the process of shaping of growing
nanoparticles. For example, in [4], we showed that in a magnetron
sputtering inert gas condensation chamber, iron nanoclusters grow
cubic or spherical depending on sputtering intensity through the
competition between surface diffusion and atom deposition.

The evolution of surfaces is even on a nanoscale a long-term
process, not easily accessible by many existing simulation models.
The kinetic Monte Carlo (KMC) method was specifically developed
to simulate slow diffusional processes, which take place while the
system evolves towards the potential energy minimum. Unlike
other Monte Carlo methods, KMC is not only able to capture the
ground state of thermodynamic equilibrium, but also able to esti-
mate sufficiently well the kinetic path and the required time of a
system to move towards the ground state [5]. The latter is enabled
through the residence time algorithm [6], which estimates the
time needed to complete a single transition.

The physics behind the KMC model is described by the probabil-
ities of diffusion transitions. These probabilities can be estimated
via transition energy barriers. Thus, a successful KMC model relies
on appropriate estimation of the energy barriers of all possible
transitions in the system. The most accurate methods, thus far,
involve calculations of the barriers on the fly using the dimer
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method of finding potential transition paths on the potential
energy surface [7] or applying self-learning procedures during
the simulation [8-10]. Such methods usually operate off-lattice,
allowing the inclusion of a large variety of possible transitions in
the system, and require heavy computational resources. It is also
common to use more simplified approaches for estimating the bar-
riers, such as the approach of counting broken and newly forming
bonds (the bonds before and after the transition) [11-13]. Such
methods are less time consuming and easy to implement but they
inevitably increase the uncertainty of the simulation results.
Sophisticated mathematical techniques have been recently applied
to calculate the energy barriers. Among them are cluster expansion
[14,15], genetic programming [16], and artificial neural network
[17-19] approaches. These methods are used to predict the energy
barriers based on the local atomic environment. In [3], we pre-
sented the atomistic KMC (AKMC) model Kimocs for metal sur-
faces, in which we predefine the allowed transitions in the
system and calculate the sets of energy barriers in advance.

Kimocs was designed to simulate evolution of nanofeatures on
metal surfaces. It is clear that e.g. molecular dynamics (MD) meth-
ods are able to describe similar processes more accurately, since all
the atomic configurations, which the system may have while
evolving towards the energy minimum, occur naturally in MD.
However, the limited time scale of MD methods does not allow
to obtain any appreciable changes of a surface morphology with
significant features and at temperatures well below the melting
point. KMC, on the other hand, offers the possibility to reach rather
long time scales with reasonable computational costs, provided
that all the atomic jumps are described within the rigid lattice
framework.

Since Kimocs was developed with the aim of simulating the
temporal evolution of large nanofeatures, it was crucial to employ
a parameterization scheme, which is both efficient and sufficiently
accurate. We adopted the rigid lattice approximation, which
describes an atomic system with all atoms occupying well defined
positions in a given crystal structure. Within the rigid lattice
approximation, a local atomic environment can be described by a
finite number. Although, the rigid lattice approximation has inevi-
table intrinsic limitations (for example, if surface reconstruction is
expected to occur during the process simulated by KMC on a rigid
lattice, such process will not be taken into account), it is an effi-
cient approximation to develop fast algorithms that are minimiz-
ing computational costs.

In Kimocs, we constrain the transitions in a system to atomic
jumps into vacant lattice sites, which we will henceforth call
vacancies. The jumps may happen on the surface as well as in
the bulk.

The use of a rigid lattice and the limitation on the variety of
transitions make it possible to precalculate the sets of barriers
for each material (Cu and Fe in this work). Precalculation of the
barriers allows us to reach the desired efficiency of the simulation
algorithm that only needs to assign tabulated barrier values to
atomic jumps in this case. To assure the accuracy of calculated bar-
riers we use the Nudged Elastic Band method. Although such a
parameterization scheme seems to be straightforward and easy
to implemented, we faced a number of challenges, which are diffi-
cult to circumvent.

In this article, we will focus on the calculations of energy barri-
ers for AKMC models with a rigid lattice. We will discuss the chal-
lenges of the rigid lattice parameterization and how these
challenges can be overcome in order to precalculate the migration
energy barrier sets. We will present the tethering force approach,
which allows to create nearly complete sets of barriers for all pos-
sible transitions on a rigid lattice. We are using this approach
together with the parameterization scheme of the Kimocs model,
but it is applicable for any other parameterization scheme in a rigid

lattice, where possible transitions are restricted to a certain type,
e.g. first nearest neighbour jumps in face-centred cubic (FCC) lat-
tices (as is the case in Kimocs).

The structure of this paper is as follows. In Section 2, we provide
some details of our KMC model Kimocs and parameterizations that
have been used with it earlier. In Section 2.3 we describe the chal-
lenges that arise when migration barriers are calculated on a rigid
lattice of FCC and BCC structures. In Section 2.4 we present the pos-
sible solutions to circumvent the problems described in Section 2.3
and introduce the tethering force approach (Section 2.4.2), which
allows for calculations of the barriers on semi-rigid lattice, restrict-
ing the freedom of surface atoms to relax far away from they posi-
tions on a rigid lattice. In Section 3, we present different sets of
migration barriers and discuss the limitations of each set along
with the limitations of the Kimocs parameterization approach in
general. In Section 3.2 we concentrate specifically on the sets
where tethering is used and how this approach affects the KMC
simulation results. Finally, we summarize our conclusions in
Section 4.

2. Methodology
2.1. Atomistic Kinetic Monte Carlo on a rigid lattice

Before describing the challenges, which we encountered during
the parameterization of our AKMC code Kimocs [3] for simulations
of surface diffusion processes, we will briefly outline the basic
principles of a rigid lattice AKMC model in general and describe
in detail special features of our Kimocs code. In an AKMC algorithm
within the rigid lattice approximation, a diffusion process proceeds
via atomic jumps to a neighbouring vacancy. The event, which
includes the choice of an atom to jump and the jump itself, is
selected randomly, but with respect to the magnitude of the corre-
sponding transition rates, which are compared for all events. This
way, more probable events occur more frequently. The transition
rates for all events in the system are calculated according to the
Arrhenius formula for thermally activated processes:

—En
I'=vexp (m) (1)

where v is the attempt frequency for the transition to occur, kg is
the Boltzmann constant, T is the temperature of the system, E,, is
the migration energy barrier, which the atom needs to overcome
in order to move from one lattice site to another. For simplicity, v
is considered to be the same for all the transitions.

In Kimocs, the possible jumps in the system are restricted to
primarily 1nn jumps in FCC and BCC materials, but 2nn jumps
may also be allowed if necessary.

We precalculate the full set of the migration energy barriers, Ep,,
for all possible 1nn (and 2nn for BCC) jumps in the system to
reduce the computation costs of simulations. The parameterization
of the E,, barriers is done within the 1nn and 2nn shell. Taking into
account only the atoms in the nearest neighbourhood would result
in insufficient accuracy, since the interaction with the atoms in the
2nn position is also quite strong in both FCC and BCC lattices.

Using both 1nn and 2nn shells in the parameterization scheme
allows us to reach higher accuracy but leads to the full 26 (20 in
BCC) neighbouring atoms description, which we will further refer
to as the 26D parameterization scheme. In this scheme, if all barri-
ers are to be calculated, then even in a mono-elemental metal
~ 2% barriers are needed.

The original more approximative parameterization scheme of
Kimocs uses only four parameters to describe events and we will
therefore refer to it as the 4D parameterization scheme. Within
this scheme, each jump event is represented by four numbers,
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(a,b,c,d), listed in the order of the number of 1nn (a) and 2nn (b)
atoms of the initial configuration of the jumping atom and the cor-
responding numbers (c and d) for the final vacant lattice site. The
number of neighbours of the final vacancy is counted by assuming
that the jump has not yet occurred, that is the jumping atom itself
is included in c. It could also be illustrated as a,b — c,d. A single
permutation (a possible arrangement of neighbouring atoms and
vacancies of the jumping atom, see example in Fig. 16) is chosen
to represent all possible permutations for the given combination
of the numbers (a, b, c,d). Thus, the corresponding migration bar-
rier of such an event, E, (a, b, c,d), is a function of four parameters.
An example of an event description in the 4D approximation is
shown in Fig. 1. Such an approach significantly reduces the set of
necessary barriers down to ~5000 for FCC and ~2000 for BCC lat-
tice structures.

If for some reason no barrier could be calculated for a particular
(a,b,c,d) combination, Kimocs assigns to this process a default
near-infinite value (100 eV has been found to be enough), which
will give a near-zero probability for the process to occur. This
way we can forbid some improbable processes to occur.

The time evolution is an important aspect of a KMC model. The
parameter that affects the time predicted by the calculated transi-
tion rates is the attempt frequency. In our parameterization
scheme, we fit the attempt frequency to the MD simulations by
comparing the flattening time of a surface nanotip as calculated
by both KMC and MD (see details in [3]). In this manner, we obtain
a sufficient accuracy for the time scale of our KMC simulations.

2.2. Nudged Elastic Band method

A key importance for any KMC model is the accuracy of migra-
tion energy barriers, which would allow to follow the correct
kinetic path of the system towards the equilibrium. For systematic
calculation of the actual values of the energy barriers for atomic
jumps, we used the nudged elastic band (NEB) method [20-22]
with semi-empirical potentials. The general algorithm we used
for the calculation of a migration energy barrier with the NEB
approach can be summarized as follows:

‘ adatom

adatom's
* final
position

' Ist layer
2nd layer

Fig. 1. Illustration of a (4,1,5,1) 1nn jump on a {100} FCC surface in Kimocs. Two
surface layers are shown: top layer with orange circles and the layer below with
yellow circles. The adatom (red circle) performs a jump from the site with four 1nn
atoms and one 2nn atom (the atom right below the jumping atom) to a site (dashed
semi-transparent circle) with five 1nn (including the jumping atom itself) and one
2nn atom below it (marked with 2nn;). The number of neighbours of the final
vacancy is counted with the assumption that the jump has not yet occurred, that is,
the jumping atom itself is included in c. To guide the eye, the FCC unit cell is shown
with a square. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

1. Relaxation stage: during this stage both the initial and final con-
figurations of the event are relaxed towards the energy
minimum.

2. Initial guess of the minimum energy path (MEP): usually, as an
initial guess of MEP, the interpolation path from the relaxed ini-
tial position to the relaxed final one is chosen to be a straight
line.

3. Relaxation of the interpolated path: initial energy path is
relaxed towards MEP by using the NEB algorithm with MD
and semi-empirical potentials.

For all the barrier sets for Cu surfaces mentioned in this article,
we used the interatomic potential based on the Corrected Effective
Medium Theory (CEM), developed by Stave et al. [23]. The poten-
tial describes well the properties of Cu surfaces [24]. The surface
energies given by the CEM potential are in good agreement with
both DFT calculations and experiments. The EAM potential devel-
oped by Mendelev et al. [25] was used for the barriers to describe
the diffusion processes on Fe surfaces. Mendelev potential predicts
well the general trend of surface energies of different surface ori-
entations and vacancy formation energy [26], which was impor-
tant for the studies in [4].

The energy barrier is found from the relaxed MEP as a difference
in the potential energies of the initial configuration and the config-
uration at the saddle point. The different examples of MEP on
potential energy surface profiles obtained with the NEB method
are shown in Fig. 2. In the case of a symmetric jump (Fig. 2a), the
potential energies of both the initial and final configurations are
the same, thus the forward and reverse jumps have identical barri-
ers and both events cause no change in the total potential energy.
Such a case is rather specific and mostly, the barriers are asymmet-
ric with respect to the potential energies in the initial and final
configurations. If the final configuration has lower potential
energy, the barrier towards it is also lower than the reverse one
(see Fig. 2b). These barriers ensure that the more energetically
favourable states are prioritised and the whole system evolves
towards the potential energy minimum.

The barriers shown in Fig. 2a and b illustrate the processes that
do not pose any problems in calculations with NEB. In this work we
would like to focus on less clear situations, such as shown in Fig. 2¢
and d, which appear unavoidably during surface diffusion in a rigid
lattice.

2.3. Challenges in barrier calculations on a rigid lattice

The situations in Fig. 2c and d are not trivial to interpret due to
the absence of a clear saddle point on the MEP. Fig. 2¢ presents the
case of spontaneous relaxation of an atom from initial (I = 0.0 in
the figure) to final configurations (I =~ 2.5 A) in a rigid lattice dur-
ing the NEB calculations. In a KMC algorithm, such a process should
be assigned a small barrier to ensure that it happens with a high
probability and within a short time. In [3], it was proposed to avoid
the exactly zero barriers and instead use the following heuristic
formula,

En(a,b,c,d) =ea+ob+ec' +od”' 2)

where € = 1072 eV and 6 = 10~ eV. This formula is designed to pri-
oritise the jumps of atoms with the fewest neighbouring atoms. It
also assumes that it is more favourable for an atom to jump into
a position with a higher number of neighbours. € and ¢ are chosen
so that the number of 1nn atoms contributes more into the value of
migration barriers than the number of 2nn atoms.

The MEP in Fig. 2d has an even more complicated shape, making
it impossible to find a barrier from it. The minimum that occurs
between the initial and final configurations along the MEP show
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Fig. 2. Illustrative examples of minimum energy paths on potential energy surfaces for (a) a symmetric process; (b) an asymmetric process (c), a spontaneous process and (d)
a process with several intermediate minima. I is the distance from the initial position of the jumping atom; E,, — potential energy (the energy reference is the potential energy

at the initial position).

that there are energetically favourable positions, which are off the
lattice sites, but the rigid lattice approximation prevents atoms
from occupying them. For this kind of jumps, it is not straightfor-
ward whether such processes have to be completely excluded from
the simulations, or allowed to happen with some probability.

It is clear that such situations may happen due to a conflict of
using the rigid lattice and an attempt to take into account strong
relaxation effects driven by surface tension. For instance, when
the evolution of a surface is considered in KMC algorithms via
atomic jumps to 1nn vacancies in well-defined lattice sites in a
rigid lattice (as in our Cu studies), many configurations, which
are possible due to surface relaxation effects, are not accessible.
In some cases, the atoms might be inevitably forced into configura-
tions, which are energetically unfavourable and thus, unstable.
These may not occur in a real diffusion process during dynamic
simulations, however, in the rigid lattice, these unstable positions
may be necessary, as they provide the only path for a system to
reach the potential energy minimum state. In other words, if atoms
are forbidden to occupy unstable positions in a rigid lattice, it may
lead a system to the unphysical “frozen” state with no stable posi-
tions available for atoms to jump to. If so, the equilibrium may
never be reached. To ensure that the system continues evolving,
jumps involving atoms in unstable initial or final positions, or even
both of them, should also be available in a rigid lattice, although
these should be assigned the barriers that are estimated using
some other technique.

More specifically, we noticed that atoms in the initial or final
configurations of many jump processes on rigid lattice FCC surfaces
may move and change lattice sites during the relaxation stage of
the barriers calculations, changing the neighbourhood configura-
tion. In other words, the event (a,b,c,d) in the 4D parameteriza-
tion scheme becomes the event (a’, b, ¢’,d') after the relaxation of
the initial and final configurations and if the NEB calculations are
then carried out, the barrier obtained in these calculations clearly
cannot be used to describe the intended (a,b,c,d) event. We call
such configurations that change during the relaxation stage as
unstable.

An example of an unstable configuration is shown in Fig. 3a. The
figure shows the configuration, which is initial for the event (2,1)
— (8,1) and final for the reverse event (7,1) — (3,1) (Note, that we
count the number of neighbours of the initial atom and final
vacancy, i.e. a jumping atom is included in the number of 1nn of
a final configurations, c, in both cases). In Fig. 3b, we show the con-
figuration which is final for the event (2,1) — (8,1) and initial for
the (7,1) — (3,1) event. Already during the initial relaxation stage,
we noticed that the configuration in Fig. 3a turned into the config-
uration in Fig. 3b (the jumping atom shown with blue relaxed one
monolayer down towards the higher number of neighbours). Thus,
we recognize the event (2,1) — (8,1) as spontaneous and assign it a
small near-zero barrier to ensure that this process happens at once
when the initial configuration (2,1) of the process (2,1) — (8,1)

() (b)

Fig. 3. Top view of (a) the unstable initial configuration of the process (2,1) — (8,1)
(final configuration of (7,1) — (3,1)), (b) the initial configuration of the jump (7,1)
— (3,1), which is also final of (2,1) — (8,1); yellow colour corresponds to surface
atoms, red - adatoms, the jumping atom is shown with blue; in (a), the jumping
atom is one monolayer above the adatoms, in (b) - on the same level; a full arrow
shows a jump to one monolayer up; a dashed arrow - to one monolayer down. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

occurs during KMC simulations. A spontaneous process can also
be detected directly from the results of the NEB calculations: if
the initial position has higher potential energy than the final posi-
tion and the saddle point does not appear during the NEB relax-
ation towards the MEP (Fig. 2c).

On the other hand, the reverse event (7,1) — (3,1) in Fig. 3b
should be assigned a high barrier so that this process will seldom
take place in the simulations.

Such an assumption would allow to include (at least indirectly)
the transitions to further than 1nn vacancy as a part of a multi-step
transition. Thus the atoms, which were forced to the physically
unstable positions during the first step, will relax during the next
KMC step either back into the initial position or to another posi-
tion, which is more stable. This issue will be discussed later with
respect to the diffusion in BCC structures.

Moreover, the (a,b,c,d) event can also be modified during the
NEB relaxation steps, although both initial and final configurations
of the process are stable. Since the NEB algorithm forces the system
towards the energy minimum at every step (see Section 2.2) — in
some cases with many vacant lattice sites around the atoms (open
surface, large vacancy clusters, etc.) — it may also force either a
jumping atom away from its initial path or the surrounding atoms
away from their initial positions, confusing the calculation of the
barrier for the initially determined configuration. Fig. 4 shows an
example of a transition on a void {11 1} surface, where the jumping
atom (A) was dragged by the NEB relaxation procedure into the dif-
ferent final position (C) instead of the intended one (B), although
both initial (A) and final (B) configurations of the intended process
are stable.
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Fig. 4. Unstable process on the void {111} surface in FCC structure. Green atoms
are part of the {111} surface, blue atoms are in the {100} surface, grey atoms are
other surfaces. The jumping atom is red. It is set up to jump from the position A to
position B, but instead it is dragged into C by NEB. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

2.4. Possible solutions to circumvent uncertainties in barrier
calculations on a rigid lattice

2.4.1. Simple model to avoid unstable configurations

In [3], we suggested a way to estimate the barriers of many
unstable configurations. We assumed that all events with a < 3
(too few 1nn atoms) were spontaneous, since they are most likely
to involve atoms in unstable initial configurations. These events
were assigned barriers given by Eq. (2), regardless of the stability
of the final positions. The maximum migration energy of processes
with a <3, which can be obtained with Eq. (2), is
En(3,6,1,1) = 0.0047 eV, which is insignificant compared to even
thermal energies (>0.025 eV). Most of the jumps from stable con-
figurations to unstable ones, as (7,1) — (3,1) in Fig. 3 along with
more exotic configurations as in Fig. 2d, are forbidden in this
approach. However, some of this kind of processes were manually
identified to cause a “frozen” state during the nanotip simulations.
If that was the case, we used simplified approaches to calculate
barriers of these processes: in the case if the jumps were from
stable configurations to unstable ones, we performed the NEB cal-
culations with partial relaxation of the final positions (the sur-
rounding atoms were allowed to relax, while a jumping atom
was fixed); in the case of more exotic configurations as in Fig. 2d,
a barrier was either chosen as a difference between a maximum
on the MEP and initial state energy or marked as spontaneous if
initial state energy was the highest point on the MEP.

The use of Eq. (2) for all the atoms with less than three neigh-
bours is not fully justified, although it was motivated by the possi-
bility to avoid artificial scenarios. In AKMC simulations, it becomes
problematic, when a small cluster of atoms with many possible
processes with essentially zero barriers appears on a surface.
Atoms might very well jump away in such an order that one or
more atoms are left behind without any neighbours. An isolated
atom, which has a zero probability to make a jump, has to be either
considered removed from the system (which easily leads to the
destruction of the surface) or left isolated. Either of these options
is artificial as the current parameterization does not include evap-
oration events. Eq. (2) allows to circumvent evaporation of clusters
of atoms. Nevertheless, there is still a chance that many events
with (a < 3) might have higher barriers than given by Eq. (2). This
may lead to over-relaxation of the surface: some events treated as

spontaneous, need a longer time in reality before they can take
place.

Although, a sufficiently large amount of barriers was eventually
calculated in [3] to overcome the problem of a “frozen” state, the
method of calculations was not efficient and time consuming since
many of the processes were treated manually. Also the number of
remaining forbidden events was still not negligible. In the next sec-
tion, we present a recently developed automatized approach to cal-
culate the migration energy barriers within the rigid lattice
approximation that allows to tabulate the whole set of possible
Em(a,b,c,d) barriers and minimise the use of Eq. (2).

2.4.2. Tethering force approach

Since surface relaxation effects in some cases may cause modi-
fications of initial or final configurations during the NEB calcula-
tions of energy barriers, we deployed tethering forces on atoms
to attract them towards the initial lattice positions. Thus, atoms
are positioned on a semi-rigid lattice, where they are allowed to
relax but only within the proximity of their initial lattice positions.
This approach was specifically designed to calculate the barriers
for unstable configurations and appears to be a plausible and effi-
cient solution to the problem at hand.

The automatized scheme for barrier calculations utilizing the
tethering force approach can be described as follows. To calculate
the barrier, the method selects a configuration out of all permuta-
tions corresponding to the same numbers (a, b, c,d), which results
in the lowest sum of the energies of the initial and final states.
Since the choice of permutations is consistent, it is possible to
obtain barriers for both (a,b) — (c,d) and the reverse
(c,d) — (a,b) events from the same minimum energy path calcu-
lated by NEB. The energy of the system depends on the used inter-
atomic potential, so the permutation selection process needs to be
done for each potential separately.

After all configurations representing the families of different
permutations are defined, the energy minimisation algorithm for
initial and final positions is launched. As discussed above, some
configurations, e.g. with too few neighbours, may be unstable. In
our approach, we distinguish between the following different
situations:

1. Both the initial and final positions minimise correctly. In this
case, the NEB calculation proceeds.

2. The process is indicated as spontaneous either during minimi-
sation or the NEB relaxation and assigned the migration energy
according to Eq. (2). The reverse process is calculated as the
energy difference between the initial and final states.

3. The jumping atom relaxes to some unrelated position from
either the initial configuration or the final one. Alternatively,
the neighbouring atoms move during the MEP calculations,
resulting in a modified (a’,b’,c,d’) event compared to the
intended (a,b,c,d). In this case, we do not obtain the barrier
for the (a,b,c,d) event. Moreover, the new event (a’,b’,c,d)
cannot be identified either.

The processes described by the situation 3 are rather unlikely to
happen on real surfaces, but inevitable in the rigid lattice approx-
imation. These also present the biggest challenge in the calculation
of the barriers. To address it, we use the tethering force approach.
During minimisation, an additional spring tether is applied to all
atoms in a simulation box. This spring attracts atoms to the lattice
sites, where they belong. Depending on the strength of the spring
tether, the atoms can deflect from their initial sites more loosely
or more rigidly. In this manner, all the barriers, including the bar-
riers for unstable configurations, may, in principle, be calculated.
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Furthermore, we noticed that during the NEB relaxation, as the
path of the jumping atom converges towards the MEP, the sur-
rounding atoms sometimes also change their positions. These situ-
ations are particularly difficult to detect. Even though the initial
and final states are relaxed (or tethered and relaxed), the potential
energy landscape on the surface can favour different intermediate
positions for the atoms. As a result, the energy values fluctuate
along the path and extra energy minima occur (see Fig. 2d). It
becomes unclear how to define a saddle point for such MEP. To
reduce this effect, we apply tethering also during the NEB calcula-
tions. The spring in this case tethers the neighbouring atoms in
each NEB image to their initial and final positions.

The tethering spring force complements the NEB spring force,
which binds the atoms between images. The energy contribution
from the tethering force is not included in the energy landscape
and migration barrier calculation. However, the energy landscape
is affected indirectly because tethering affects the positions of
the surrounding atoms. In this way, the effect of the tethering force
on migration barriers is minimized (see Section 3.2). Tethering is
not used on a jumping atom, thus allowing it maximum freedom
of movement to find the MEP. However, even with this approach
there are processes with minimum energy paths similar to
Fig. 2d. This issue will be addressed in Section 3.2.

Tethering force approach also allows to overcome the problem
shown in Fig. 4, when a jumping atom is dragged by NEB into a
position, which is different from the intended one.

We chose a constant value of the tethering force in such a way
that it allows to increase significantly the number of barriers
(including unstable configuration events) that can be calculated
in a consistent manner. On the other hand, as the tethering force
implicitly affects the migration barriers (see Fig. 11), it is advisable
to use the lowest working force constant.

A number of stable and unstable configurations were chosen to
test different tethering constants for copper with the CEM poten-
tial. Initial/final state minimisations and NEB calculations were
performed with the tethering parameter values 0.0, 0.35, 0.5, 1.0

and 2.0 eV/A’. We found that all the values up to 1.0 eV/A’ are
not sufficient to hold unstable atoms from relaxing to unrelated

positions. With tethering parameter 2.0 eV/AZ. all barriers were
calculated successfully and the barriers for the event involving
stable positions were also still reasonably close to the barriers cal-
culated without tethering force (see Section 3.2 for details). Thus,

the tethering parameter for Cu was chosen to be 2.0 eV/Az.

The tethering force approach helps to overcome the challenges
introduced by a rigid lattice and calculate the barriers for many
unstable configurations, for example in Fig. 5. The consistency of
the tethering force approach allowed us to develop a framework
for efficient barrier calculations in a rigid lattice. To produce a set
of barriers for Kimocs simulations within the 4D parameterization
scheme, the framework requires only an interatomic potential and
the restricting parameter of how far away atoms can move from
their initial positions (a 1nn distance for FCC materials). The
method is not restricted to the use with Kimocs only, but can be
generalized to any parameterization scheme in a rigid lattice.

In the next section, we will turn our attention to the different
types of challenges that are especially important for the simula-
tions of surface diffusion in BCC metals.

2.5. Specific challenges in parameterization of the {100} BCC surface
and possible solutions

Parameterization of a KMC model for surface diffusion in BCC
metals becomes challenging when a {100} surface is considered.
The assumption that adatoms diffuse on the surface mostly via
1nn jumps is no longer valid. For instance, a jump of an adatom

from a hollow site (on top of four surface atoms) to a neighbouring
hollow site will be a 2nn jump (Fig. 6a). It has been previously seen
that a diagonal exchange is one of the most probable processes on
BCC {100} surfaces [27]. A diagonal exchange is a multi-step diffu-
sion jump. In this process, an adatom dislodges a surface atom in a
1nn site and takes its place. After this, a surface atom is forced up
to the surface (another 1nn jump), occupying a 3nn position with
respect to the starting point of the first adatom, see Fig. 6e. Another
possibility for the dislodged surface atom is to occupy a 2nn posi-
tion with respect to the starting point of the initial adatom
(Fig. 6b). However, this non-diagonal exchange process has much
lower, but not completely negligible, probability than both a diag-
onal exchange and a 2nn jump [28]. In order to fully describe the
diffusion on {100} BCC surfaces, all three types of processes should
be included in the KMC algorithm: 2nn jumps to hollow sites, diag-
onal and non-diagonal exchange processes for all possible local
atomic environments of the jumping atom.

In the rigid lattice description, atomic jump processes are char-
acterized only by initial and final states of the system, the specific
transition path from the initial to the final state does not play any
role. Thus, we do not distinguish between the different transition
paths resulting in the same initial and final states. In other words,
the end result of single-atom jumps and concerted (exchange)
jumps looks the same in Kimocs: like only one atom changed place.
Diagonal and non-diagonal exchange processes will thus appear as
effective 3nn and 2nn jumps, respectively, of the initial adatom in a
rigid lattice (Fig. 6d and a, respectively). Thus, the rigid lattice
parameterization scheme of BCC {100} surfaces should be
extended to the 3nn coordination shell and include the distinction
between the direct and the exchange jumps. This task turns out to
be exceptionally demanding as the computational costs of a KMC
algorithm increase with the increasing number of possible jumps
in the system and as barriers must be calculated for all three types
of jumps described above for various configurations.

Kimocs does not explicitly include the description of exchange
processes, but an exchange process may effectively happen via
two consecutive 1nn jumps: first, a surface atom below the jump-
ing adatom breaks out of the surface layer and becomes an adatom
itself. Then, the two adatoms with equal probability can fill in the
formed vacancy in a spontaneous jump (see Figs. 6¢ and f). For this
to occur, the surface atom must first overcome a barrier to occupy
the 2nn or 3nn position with respect to the “jumping adatom”. If
these barriers are calculated directly by NEB for either process
(to 2nn or 3nn positions), they are much higher than the barriers
calculated for the processes of the dislodging of the surface atom
by the jumping adatom. One of the solutions, which can be sug-
gested to address this problem, is to lower the barrier artificially
for those surface atoms which are close to the adatoms, but in that
case artefacts may appear for some other permutations corre-
sponding to the same numbers describing the event. At the same
time, the direct 2nn jump can easily fit within the 4D parameteri-
zation scheme adopted in Kimocs. This only requires an additional
step to distinguish between 1nn and 2nn jumps, while the event
description numbers (a, b, c,d) can be used for both.

In the diagram shown in Fig. 7 we summarise the challenges,
which arise from the use of a rigid lattice approximation to simu-
late surface diffusion processes and the solutions which can be
used to circumvent the problems related to strong relaxation pro-
cesses on the surface.

2.6. Sets of migration energy barriers
We used the approaches to circumvent the problems related to

surface migration barrier calculations (see Section 2.4) in different
Kimocs parameterization tables, referred hereafter as Sets. Here we
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(©)

(d)

Fig. 5. Example of a configuration on the surface that required the tethering force to enable the calculation of the barrier of an atom shown with blue colour to jump from the
position (a) to the position (c). (b) and (d) show the arrangement of atoms corresponding to the same process but inside the bulk. 1nn and 2nn atoms of the jumping atom
before and after the jump are shown with yellow colour. Orange atoms correspond to those outside the 2nn shell of the jumping atom (shown with small dots in the bulk
pictures). Arrows emphasize that an atom jumps to the 1nn positions one monolayer up (full arrow) or down (dashed). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

present and analyse four sets of barriers: Cu Set 1, Fe Set 1, Cu Set 2
and Cu Set 3. The full sets of copper and iron barriers are submitted
along with this article as Data in Brief entries and can be found in
[29,30], respectively. The sets can be used for simulations with
Kimocs or other similar codes, which parameterize atomic jumps
in the rigid lattice with the number of neighbours of a jumping
atom before and after the transition (e.g. [31,32]). For the reader’s
convenience, we summarize below the ways of how the different
sets were calculated and give more technical details.

2.6.1. Cu Set 1

The first set, Cu Set 1 [29], was calculated as described in Sec-
tion 2.4.1. More specifically, we did not apply a tethering force or
other restrictions during the NEB calculations and some barriers
were identified as spontaneous, while some were forbidden. Cu
Set 1 was successfully used to simulate the Cu surface self-
diffusion in [3]. In this table, permutations were defined at random
on {100}, {110}, {111} surfaces or a bulk system with a random
distribution of vacancies. This set includes the barriers for 4289
(a, b, c,d) events, most of which were calculated in the bulk. Among
these, 2486 events with a < 3 and only 190 events with a > 3 were
classified as spontaneous and assigned the barrier values according
to Eq. (2). The NEB calculations were done using the MD code PAR-
CAS [33-35]. We used the approach described in [36] for the calcu-
lation of the additional NEB spring force between the images. A

sequence of 40 images was used for every jump. The initial and
final images were relaxed with the conjugate gradient method
and then fixed during the NEB calculations. The attempt frequency
was fitted to MD simulations of the flattening time obtained for Cu
surface nanotips (see [3] for further details). The obtained value of
the attempt frequency, v=7-10"s!, compares well with the

Debye frequency for Cu, vp = 4.5 - 10" s~ [37-40].

2.6.2. Fe Set 1

The second set, Fe Set 1 [30], includes 1760 barriers, most of
which were calculated in the bulk, for 1nn jumps with 214 barriers
assessed by using Eq. (2). Barriers for jumps on the {100} and
{110} surfaces were calculated separately and are prioritised in
the set. The same scheme that was used for Cu Set 1 was utilised
for Fe Set 1 as well, although here we did not assume the events
with too few neighbours in the initial configuration to be sponta-
neous. Instead, all the barriers for the range of events with a < 8
were calculated directly. The table of 1nn jumps was comple-
mented with the 16 (a, b, ¢, d) barriers for the direct jumps of ada-
toms to a vacant 2nn site on the {100} surface (these barriers for
2nn jumps are combined to Fe Set 2NN [30]). Fe Set 1 and Fe Set
2NN have been used in [4], where the attempt frequency for all
events was assumed to be v, = 6-10'2 s~ [41]. In [30], we also
provide the set of exchange processes, Fe Set Exchange, on the Fe
{100} surface.
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(e)

Fig. 6. Illustration of the 2nn (non-diagonal, (a)) and 3nn (diagonal, (d)) jump on the BCC {100} surface, which may take place effectively via an exchange process on a rigid
lattice. (b) Illustrates the completion of the non-diagonal jump and (e) the completion of the diagonal jump; (c) and (f) show two possible 1nn jumps that might follow the
first 1nn step of the non-diagonal and the diagonal exchange process in Kimocs (see the main text for details). Adatoms are shown with a red colour; straight arrows show
jumps within the same monolayer; full curved arrows show jumps to one monolayer up; dashed curved arrows show jumps to one monolayer down. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Tethering force approach

En(a,b,c,d) = ea+ 8b+ec™t + 6d?

Unstable lattice
positions

Unstable transition path

Spontaneous process

Concerted moves

Extended parameterization

Fig. 7. Diagram of challenges (in pink) and solutions (in grey) discussed in this work. The tethering force approach helps to overcome problems of stabilization both in initial
and final positions and in transition paths of the jumping atom. For spontaneous processes, Eq. (2) is used. To take account of concerted moves, a different parametrization
scheme would have to be developed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.6.3. Cu Set 2 calculated with the tethering force approach

Cu Set 2 [29] was generated utilizing the tethering force
approach, as was discussed it Section 2.4.2, and was thus generated
in a more rigorous and systematic way than Cu Set 1.

Here, the E,(a, b, c,d) barriers were first calculated for the hop-
on jumps of an adatom on {100}, {110} and {111} Cu surfaces as
we were interested in these surface orientations for simulations of
nanotips. By hop-on jumps of an adatom we henceforth mean the

events where the adatom jumps within the first layer above the
surface having its 1nn and 2nn atoms constrained to the same
layer of adatoms and below. For configurations (a, b, ¢, d) that were
available on more than one surface, the barrier for the {111} sur-
face was prioritised, followed by the {100} surface, with the
{110} surface as the lowest priority. This ordering is based on
the surface energies for Cu [42], with the lowest surface energy
taken as the most important. Barriers that were not available on
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any surface, i.e jumps with a large number of neighbouring atoms
in the initial and final configurations that included many atoms in
unstable positions on the surface (see an example in Fig. 5¢ and
Fig. 3) were calculated in the bulk. Clusters of vacancies were built
around a jumping atom in the bulk (see an example in Fig. 5),
which was periodic in the x and y directions, but not in the z direc-
tion. The vacancies were created so that the number of neighbours
of the jJumping atom corresponded to the given (a, b, c,d) combina-
tion in order to mimic the surface (a, b, ¢, d) event, since the permu-
tations of vacancy positions are not taken into account in the 4D
parameterization scheme approach. This set of barriers, calculated
using the tethering force approach, we will henceforth refer to as
Cu Set 2.

In Cu Set 2, the barriers were calculated both on a surface and in
a bulk. The Lammps MD package [43] was used for the NEB calcu-
lations with a climbing image [22] and an additional tethering
force, with the tethering force constant set to 2.0 eV/AZ was
applied (see Section 2.4.2) and a total of 24 images were used.
The energy barriers for 5103 (a,b,c,d) events were calculated in
Cu Set 2. Only 211 barriers of jump event with a < 3 were assessed
with the use of Eq. (2); the rest of the barriers were calculated with
the tethering force approach. An additional 72 processes were
marked as spontaneous for processes with a > 3. None of the
jumps are forbidden in the tethering force approach, thus Cu Set
2 is complete. The attempt frequency value v =3.1-10" s~ was
again found by fitting of tip flattening time to MD results as
described in [3]. Cu Set 2 was used to reproduce the results of
[3], which will be discussed in Section 3.2.

2.64. Cu Set 3

Cu Set 3 [29] was calculated within the 26D parameterization
scheme, which takes into account permutations of the neighbours
of the jumping atoms.

For Cu Set 3, we first calculated the barriers with many neigh-
bours in the bulk for 334,725 random permutations of random
(a,b, c,d) configurations. We noticed that some of the bulk events
resulted in unphysically high barriers. Inspection of such situations
showed that these barriers resulted from the negative surface
stress on the void surface contracting the entire simulation box
during the NEB relaxation. This problem motivated the return to
the original method to calculate the barriers with too high values
(>1.5 eV) on the surface. The same 1nn and 2nn local atomic envi-
ronment of the jumping atom was constructed close to the surface
as it was in the bulk (see an example in Fig. 5). A tethering force
constant of 2.0 eV/A? was sufficient to hold the atoms in their posi-
tions and only one barrier calculation failed out of more than
330,000.

Cu Set 3 is incomplete, thus we do not recommend this set for
any physical simulations. For a complete 26D set, 8 million barriers
would need to be calculated, which is infeasible for storage and
handling during the present AKMC simulations by Kimocs. A spe-
cial way to link such a large 26D set to the AKMC simulations
has to be designed. Nevertheless, Cu Set 3 is very useful for the
analysis advantages and disadvantages of the 4D versus the full
26D parameterization schemes, used in other above-described
sets.

3. Results and discussions

In this section we will focus on the discussion of reliability of
different approaches chosen to calculate the surface migration
energy barriers described above. For illustrative purpose, we plot
the migration barriers for each set as a function of the difference
of the number of 1nn atoms in initial and final positions, a — c, in
Fig. 8. It is clear that many energy barriers may correspond to

the same a — c value. However, we can follow the variation of
the barriers as a function of a gradual change of the situations:
the negative values, a — c < 0, show barriers for the jumps from
less to more stable positions (more neighbours in the final state)
and the positive ones, a — ¢ > 0, show barriers for the jumps from
more to less stable positions (less neighbours in the final state).
The colour scale corresponds to the amount of events which can
be described by the same a — ¢ and E,, values.

3.1. Kinetics described by the non-tethered sets

At first, we show that even the barriers of Cu Set 1 and Fe Set 1,
which were calculated with the initial simplified schemes, where
surface relaxation effects were approximated via events with
either near-zero barriers (“spontaneous” events) or very high bar-
riers (“forbidden” events), are able to capture the physics of surface
evolution via diffusional processes on copper and iron surfaces,
respectively.

We have previously shown that the results of the KMC simula-
tions of the stability of Cu surface nanotips [3] and formation of Fe
nanocubes [4], where the sets were used, agreed very well both
with MD simulations and experiments. However, in the current
paper we still take a closer look into the kinetics of surface events,
which may not be crucial for the previous results, but still can be
overlooked while using Cu Set 1 and Fe Set 1.

3.1.1. Analysis of the Fe Set 1 barriers

The abundance of the calculated barriers for Fe Set 1 can be seen
in Fig. 8a. Some of the barriers (for no more than 300 events) in this
set were calculated on the surface of a nanowire in order to emu-
late the conditions (a combination of a certain deposition rate and
a temperature), where the formation of nanocubes was observed. It
was found that the growth of Fe nanoparticles into cubic shapes is
due to the difference in the rates of atomic jumps on {100} and
{110} surfaces, which becomes more significant at low
temperatures.

As the analysis of the processes happened during the nanocubes
formations showed, most of the (a, b, c,d) jumps were hop-on pro-
cesses on {110} and {100} surfaces. Other processes correspond to
the deposition events. Thus, neither barriers calculated in the bulk
nor spontaneous processes calculated with Eq. (2) played a crucial
role — in contrast to the barriers calculated on {110} and {100}
surfaces for stable hop-on events.

The hop-on jumps of an adatom surrounded by various num-
bers of 1nn and 2nn, located only in the layer of adatoms, on the
{110} surface have a wide range of barriers from 0.1 eV to 1.1 eV
(Fig. 9). The low barriers correspond to the simple hop-on jumps
with few neighbours and the jumps towards the adatom islands.
High barriers correspond to the detachment of adatoms from ada-
tom islands. On the {100} surface, the diffusion is driven by the
2nn jumps and exchange events, as was discussed in the Sec-
tion 2.5. These processes have barriers higher than 0.6 eV (for sim-
plicity’s sake, non-diagonal exchange processes on {100} surface
are not included in Fig. 9, because of much higher barriers than
2nn and diagonal exchange jumps on Fe BCC {100} surface [28]).
Thus, at low temperature conditions (below 1000 K), where nano-
cube formation was observed in experiments, diffusion of single
adatoms and small nano-islands on the {110} surface is much fas-
ter than on the {100} surface. On the other hand, at high temper-
atures, events on the {100} surface become as probable as jumps
on the {110} surface. Nanoparticles may thus grow into a close-
to-spherical shape driven by the surface minimisation at high
temperatures.

As it was pointed out in Section 2.5, the exchange processes
were not explicitly added to the KMC algorithm. Instead, the
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Fig. 8. Distribution of the migration energies vs. the change in the number of 1nn of the initial and final positions of the jumping atom for (a, b, ¢, d) jumps in (a) Fe Set 1; (b)
Cu Set 1 (a < 3 processes are not included); and (c) Cu Set 2. colour corresponds to the occurrence of the migration energies for certain values (a — c). For simplicity, c does not
include a jumping atom. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Comparison between the diffusion events on {100} and {110} iron surfaces.
A histogram for {110} surface includes only hop-on jumps, {100} includes the
second nearest neighbour hop-on jumps and diagonal exchange processes of Fe Set
2NN and Fe Set Exchange in [30].

exchange events were treated in two steps as shown in Fig. 6. The
first step of the 3nn effective jump corresponds to the 1nn
(5,5,4,1) jump event, which is the same as for a vacancy jump
inside the bulk close to the {110} surface. On the {100} surface,
the (5,5,4,1) event has a barrier 0.72 eV, whereas a vacancy jump
close to the {110} surface has a barrier of 1.65 eV. In order to avoid
artificial void formation inside the bulk, we had to use a higher bar-
rier for the (5,5,4, 1) event in Fe Set 1. If so, the 3nn effective jump,
which takes place most frequently during adatom diffusion on the
{100} surface, was almost inaccessible in our simulations. If such a
high barrier is used, the difference between the KMC and MD sim-
ulations will still appear even at high temperatures, at which the
rates of diffusion on {110} and {100} surfaces become compara-
ble. On the other hand, the rate of the 3nn effective jump at low
temperatures (<1000 K) is still much lower than that of hopping
events on the {110} surface (the corresponding barriers are 0.72
eV and ~0.27 eV). Within this range of temperatures, our KMC sim-
ulations agree well with MD simulations.

To verify that diagonal exchange jumps are not accessible at
low temperatures also in MD, we calculated the barrier for this
multi-step jump with different neighbourhood arrangements of
the adatom’s initial and final positions. The lowest barrier, which
we found with the Mendelev potential, was 0.63 eV (see Fe Set
Exchange in [30]), which is still much higher than 0.27 eV barrier
of hop-on process on {110}.

Based on this analysis, we conclude that the overall difference
in the diffusion rates on {100} and {110} surfaces can be well pre-
dicted already within the 4D parameterization scheme of 1nn and

2nn jumps at low temperatures. However, the exchange events
must be included into the simulations more accurately to predict
reliably the kinetics of events also at high temperatures.

3.1.2. Analysis of the Cu Set 1 barriers

Fig. 8b illustrates the abundance of the barriers in Cu Set 1. In
this figure, neither forbidden nor spontaneous events assigned
close to zero barriers are included. The trend of the plot indicates
a clear monotonic growth from smaller barriers for a—c<0
towards the higher barriers for a — ¢ > 0. The barriers on the left
side are mostly below 0.5 eV. The individual cases of relatively high
barriers (blue dots on the top of each column) correspond to the
unstable final configurations that were handled using the approach
discussed in Section 2.3. The right part of the graph has most of the
barriers greater than 1 eV and no barriers less than 0.5 eV, meaning
that jumps from stronger bonded states are much less likely to
happen. Such a trend is not true for iron barrier distribution (see
Fig. 8a), which can be explained by the FCC materials being closer
packed compared to BCC: it is harder for atoms to break the bonds
in the stronger bonded position in the FCC structure in order to
jump to a lesser bonded state (a — ¢ > 0).

We also see in Fig. 8b that the red colour is more pronounced
for the events with a — ¢ < 0 where it is less probable that the final
configuration of the atom is unstable. Thus, a smaller number of
barriers in the right part could be explained by there being less
combinations of (a,b,c,d) processes, for which we were able to
obtain the barriers with the approach described in Section 2.4.1.
It is also interesting to note that there is a whole range of the bar-
riers (0, 1.5) for the a — ¢ = 0 situations, which indicates the effect
of the 2nn atoms on the value of the barrier. Those were included
in the calculations, but are not shown explicitly in the plot.

Furthermore, we analysed the (a,b,c,d) events that happened
during the flattening of a cuboid nanotip of 13 nm height and 2
nm width constructed on a {110} surface, which was simulated
using Cu Set 1 (for details of the KMC simulations, see [3]). As we
noticed during the flattening process, {111} facets were quickly
built around the foot of the tip, allowing the adatoms to slide down
from the top of the tip towards the surface. We analysed all the
events, which took place during the flattening of the tip at 1000
K. These corresponded to a wide range of the energy barriers from
near-zero (spontaneous) up to 2.0 eV (Fig. 10). Most of the events
were below 0.2 eV, which are the transitions from lower to higher
number of nearest neighbours. Spontaneous events happened only
in 0.1% of the jumps. 1% of all the jumps corresponded to the
events calculated in the bulk.

The analysis of individual events revealed the existence of a key
event involved in flattening: adatoms on a {100} facet of the tip
slide down to the {111} facet near the foot of the tip via the
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Fig. 10. Distribution of the migration energies vs. the change in the number of 1nn
of the initial and final positions of the jumping atom for (a, b, ¢, d) jumps during the
flattening of a Cu cuboid nanotip of 13 nm height and 2 nm width, constructed on a
{110} surface at 1000 K. Colour corresponds to the occurrence of the migration
energies for certain values (a — c). For simplicity, ¢ does not include a jumping atom.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

(5,1) — (5,4) process with a barrier E;,(5,1,5,4) = 0.43 eV. If this
process is excluded from the set, hence becoming effectively for-
bidden, the result shows a detachment of the tip from the substrate
instead of its flattening. We simulated the tip geometry without a
substrate to identify the events responsible for flattening. Only
0.008% of the events in the tip simulations led directly to flatten-
ing, the rest of the time the system spends on faceting, i.e. atoms
moving along the crystallographic channels and hopping on facets.

We can also point out that more than 60% of the jumps are not
advancing ones. The atoms are trapped between the same two con-
figurations hopping back and forth. These trapping configurations
usually have the same number of 1nn atoms. The barriers for those
jumps are small, hence the probability for them to happen is high.

Even though the individual barriers might not correspond to
reality in Cu Set 1 and Fe Set 1, the overall trends of the barrier dis-
tributions predict well the kinetics of the event on Cu and Fe sur-
faces. Although, both sets include many forbidden barriers, the
important events for nanocube formation and tip flattening simu-
lations are included in the sets and have reasonable barriers, thus
the overall evolution of the structures in the KMC simulations pre-
sented in [3,4] were reliable and compared well with the MD sim-
ulations and experiments. The fitted attempt frequencies for Cu Set
1 and Fe Set 1 also allowed us to obtain a time evolution compara-
ble with the MD results in [3,4].

3.2. Tethering force approach for strong relaxation effects

We first analysed the effect of tethering on barriers of stable
events. The histogram in Fig. 11 shows that the normalised differ-
ences between the barriers of most of the stable processes calcu-
lated with and without tethering are within 0.1 eV, which
indicates that tethering does not affect the stable events signifi-
cantly. However, there is around 4% of the processes with the nor-
malised difference exceeding 0.5 eV.

We compared the barriers of the whole Cu Set 1 and Cu Set 2 in
order to investigate the effect of tethering on the calculation of the
barriers for the events involving also unstable configurations. The
correlation of the barriers of both sets corresponding to the same
(a,b,c,d) combination is shown in Fig. 12. The largest disagree-
ment between two sets are for the events with the very small bar-
riers in Cu Set 1, i.e. spontaneous, shown in the insert of Fig. 12.
Most of them correspond to a < 3. With the tethering force, the
spontaneous events of Cu Set 1 can be assigned finite barriers with
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Fig. 11. Histogram of normalised differences between the barriers of the same
stable events calculated with and without tethering.
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Fig. 12. Correlation of the barriers of Cu Set 1 with the barriers of Cu Set 2. Inserted
picture shows the barriers for the events with E,, < 0.0047 eV in Cu Set 1.

the broad range of values up to 2 eV in Cu Set 2. Note, nevertheless,
that even with the tethering force applied, the use of Eq. (2) was
unavoidable for some barriers. However, the number of such barri-
ers decreased to 283, with 211 barriers corresponding to the pro-
cesses with a < 3, compared to 2676 spontaneous processes (out
of which 2486 were for a < 3) in Cu Set 1. These 283 barriers are
not included in the inserted picture in Fig. 12.

The tethering force approach allows to calculate the barriers for
all possible configurations in a rigid lattice. Thus, many (a, b, c,d)
jumps that were forbidden in Cu Set 1, are now allowed in Cu Set

05 1.0 15 20 25 30
E, [eV]

Fig. 13. Histogram of barriers of processes, which are unstable on a rigid lattice
(forbidden in Cu Set 1), but calculated with the tethering force approach in Cu Set 2.
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2. As it can be seen in Fig. 13, many of these unstable configura-
tions are now allowed with high probabilities. One of the reasons
why previously unstable configurations are now found to be stable
and have low barriers is that the permutations in Cu Set 2 were
chosen based on the lowest potential energy of initial and final
states and, thus, could differ from the permutations in Cu Set 1,
which were selected at random. Another reason is that the tether-
ing force approach is not capable to catch the processes with deep
minima such as in Fig. 2d; instead a process like this is assigned
with a small barrier. Whether these processes have impact on
the KMC results or not depends on the considered system. We
identified processes with such deep minima along the MEP
between two rigid lattice positions in the post processing of the
Cu Set 2 and forbade them from happening in the tip flattening
KMC simulations, which will be discussed below. Overall around
10% of the processes were forbidden in post processing, but it made
little difference to the results of the KMC simulations of nanotips.

The spread of the barriers in Cu Set 2 in Fig. 8c looks similar to
the spread observed for Cu Set 1 in Fig. 8b, but it has a much
smoother transition from the region of events with (a — ¢ < 0) to
(a — ¢ > 0). This reflects the consistency we had in choosing the
permutations and treating the events involving unstable atoms in
the calculations of the barriers of Cu Set 2.

We reproduced results of {110} tip flattening KMC simulations
in [3] with Cu Set 2 at 900 K. The profile of the tip flattening is sim-
ilar: faceting of the tip near the foot occurred first and then ada-
toms from the top of the tip slid down towards the surface (see
Fig. 14). The barrier for the same key events describing the sliding
of adatoms downwards is E,(5,1,5,4) = 0.47 eV, which is only
0.04 eV higher than that in Cu Set 1. However, at temperatures
above 900 K, the necking is emphasized and the nanotip detaches
from the substrate instead of flattening down as was seen in sim-
ulations with Cu Set 1. The analysis of the occurred transitions
showed that previously forbidden unstable processes in Cu Set 1
(but now assigned with barriers using the tethering force approach
in Cu Set 2) start to play a significant role in the system evolution at
high temperatures. It should be noted that for such a Cu nanotip,
with a thickness of 2 nm, the system will start to melt already at
~900 K due to finite size effects [44]. A rigid lattice model like
Kimocs would not be able to accurately simulate molten system.

In order to estimate how the tethering force approach affects
the time evolution, we have also compared the time scales of nan-
otip flattening obtained in KMC simulations with Cu Set 1 and Cu
Set 2. The simulations have shown a good agreement for the tem-
perature 900 K: the flattening time of the 11 nm (110) nanotip
with Cu Set 1 was found to be (2.0 + 0.20) pus and with Cu Set 2
— (5.8 +£0.44) ps.

(a) 0.0s

(b) 0.08 pus

For the tethering approach, we can conclude that it offers a
solution for the parameterization of the events in a rigid lattice
in KMC models, especially in those cases when it is not known a
priori which jumps are crucial for surface evolution and it is impor-
tant to generate as complete large tables of parameters as possible.
The comparison between Cu Set 1 and Cu Set 2 indicates that the
tethering force not only enables the calculation of the barriers in
the unstable configurations (strong relaxation is expected in
NEB), but also predicts well the relative distribution of the barriers,
although some individual rigid lattice events can be overestimated
due to their instability caused by relaxation effects. However, the
barriers are not overestimated too much as the distribution of bar-
riers is quite smooth.

3.3. Influence of the interatomic potential on the barrier calculations

Although we have performed most of our calculations of the
barriers with the potentials described in Section 2.2, we analyse
here the sensitivity of the barriers to the choice of the interatomic
potential for the barrier calculations since this is essential for the
validity of the KMC simulations.

The barrier calculation of 1024 possible permutations of hop-on
jumps on Cu {100} surface, calculated with the CEM potential (see
the next section), were repeated by constructing two new sets
using the Mishin [45] and Sabochick-Lam [46] potentials. The aver-
age difference between the barriers calculated with CEM and the
other two potentials is close to zero. Mishin potential barriers
had a difference of 0.0002 +0.09 eV compared to CEM. The
Sabochick-Lam potential resulted in a 0.008 4 0.11 eV difference.
Although the average difference is clearly not significant, we
noticed that some of the rigid lattice adatom positions were iden-
tified as unstable during the NEB relaxation step with the
Sabochick-Lam and Mishin potentials, whereas the same configu-
rations were treated as stable with the CEM potential.

Here we note that KMC simulations rely mostly on the relative
distribution of barriers of different events rather than on the abso-
lute values of the barriers. Fig. 15 shows that the trend in the bar-
riers depending on the change in the number of 1nn atoms of the
jumping atom before and after the jump is quite similar for the
Mishin and Sabochick-Lam potentials. At the same time, the CEM
potential results in a smoother relative distribution of the barriers.

Based on our analysis, we conclude that although the relative
distribution of the migration barriers calculated by using different
interatomic potentials can be similar, still some differences may
exist. This is why it is important to verify the values of crucial bar-
riers for the simulated processes in order to ensure that they are
predicted sufficiently accurately by the potential in use. For

(¢) 0.5 us

Fig. 14. The profile and corresponding time of the 11 nm height and 2 nm wide (110) nanotip, which has flattened in the Kimocs simulations at 900 K with Cu Set 2. Colours
correspond to coordination numbers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Migration energy barriers vs. the change in the number of 1nn of the initial and final positions of the adatom hopping-on on Cu {100} surface calculated with
different interatomic potentials. Left - Corrected Effective Medium Theory (CEM) potential [23], middle - Mishin [45], right - Sabochick-Lam [46].

instance, if adatom diffusion is studied, the potential which was
used to calculate the energy barriers should be able to predict
the barriers for all 1024 hop-on jumps for different arrangements
of neighbouring atoms. In case the event cannot be calculated,
the use of a tethering force is recommended as it will keep the
unstable atoms in their positions, allowing for some relaxation
effects during the transition. This way, the relative distribution of
the barriers can still be obtained in a reliable manner, which will
enable the accurate prediction of the overall evolution of the
system.

3.4. 4D approach versus a 26D description

In the 4D approach, as it has been discussed before, events of
diffusion jumps are described only by counting the numbers of
1nn and 2nn atoms around the initial and final sites of the jumping
atom and the actual position of the neighbours are thus ignored in
the characterization. Subsequently, an uncertainty of the value of
the calculated barrier is expected. In some configurations, the
number of permutations corresponding to the same combination
of 1nn and 2nn neighbours can be significant. As it was mentioned
above, we dealt with this problem by following two simple princi-
ples. A permutation representing a family of events described by
the same (a,b,c,d) numbers, was chosen either (i) randomly, as
in Cu Set 1 and Fe Set 1, or (ii) according to the lowest energy state
of the initial and final configurations, as in Cu Set 2. As an example,
Fig. 16 shows minimum energy paths for three different permuta-

tions of the same (5, 3,7, 3) hop-on jump on Cu {100} surface. As it
can be seen, one of the permutations shows significantly different
MEP with the lowest energy barrier being 0.07 eV, while the other
two, — the black and red curves — result in more similar barriers of
0.28 eV and 0.26 eV, respectively. The (5,3,7,3) configuration has
overall 25 atomic permutations if only considering 1nn and 2nn
atoms in the same layer of the initial and final positions of the hop-
ping atom, while all the neighbouring atoms in the layer below are
present and thus do not affect the permutations). The average bar-
rier for the (5,3,7,3) configuration obtained over all 25 permuta-
tions is 0.23 + 0.1 eV. The permutation corresponding to the
lowest energy initial and final states is assigned with 0.27 eV by
the tethering force approach in Cu Set 2. However, the randomly
chosen permutation happened to be described by the barrier
0.07 eV, which was used in Cu Set 1. We chose the most dramatic
case for illustration of this uncertainty, which actually indicates
that in the approach chosen initially, i.e. adopting a single value
of the barrier for all (a,b,c,d) events, which was calculated for a
randomly selected permutation, may affect the simulation results.
If a key process is assigned a barrier with too imprecise value, arte-
facts may appear in the simulations. The validation of the parame-
terization — and thereby making sure it does not produce artefacts
— can usually be done by comparing the KMC results for small sys-
tems with MD, as it was done in [3].

In our implementation, surfaces with different crystallographic
orientations can be simulated, since all of them can be described
within the same 4D formalism. Even if the positions of neighbouring
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Fig. 16. Minimum energy paths of the different permutations of the (5,3,7,3) jump. I is the distance from the initial position of the jumping atom.
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atoms on a rigid lattice are not the same in different facets, the bar-
riers fit together remarkably well.

In the following, we will give a quantitative estimate of the
uncertainty, which arises when different permutations for the
same number of neighbours are ignored. Consider the case of
hop-on jumps on a {100} FCC surface, where the layer below the
jumping atom is filled completely in all considered permutations.
In this case, the only neighbour sites that can change are the ten
1nn and 2nn atom positions around the initial and final positions
of the jumping atom. The total number of different permutations
in this case is 2'® = 1024, based on whether these 10 sites are
occupied or vacant. In the Kimocs description, there are overall
196 (a,b,c,d) events with 1024 permutations on the {100} FCC
surface. The energy barriers, which were calculated for all permu-
tations in these 196 configurations for Cu are shown in Fig. 17.
Most of the barriers are within the range of [0.1,0.6] eV. The his-
togram also includes the barriers for an atom diffusion on the
close-packed {111} Cu surface. There are only 23 combinations
of (a,b,c,d) events on the {111} surface with most of the barriers
being less than 0.1 eV. Note that our model does not include the
migration to HCP sites on the {111} surface. The average standard
deviation of the energy barriers for the 196 configurations of the
{100} surface was found to be 0.13 eV or 14.8%, which can be used
as the estimate of the accuracy of the energy barrier parameteriza-
tion and, consequently, of our KMC model in general.

To further analyse the effect of permutations on the value of the
barrier, we compared the barriers in Cu Set 2, obtained in the 4D
parameterization scheme, and Cu Set 3, obtained in the full 26D
parameterization scheme. These are comparable as the barriers
in both sets were obtained with the application of the tethering
force. The results of this comparison are presented in Fig. 18. Here
we plot the values of the barriers corresponding to the same
(a,b,c,d) events. If the values agree well, all of them will lie along
the dashed line. In Cu Set 3, many barriers correspond to the same
(a,b,c,d) description due to different permutations. To enable the
comparison, we averaged all the barriers, which belong to the same
family of (a,b,c,d) and plotted the averaged value against the
value found in Cu Set 2 for the same (a, b, c,d) event. The standard
deviation of the mean value shown around the point to indicate
how broadly the values of the barriers fluctuate with different per-
mutations. As one can see, the strong fluctuations of the barriers
around the mean values are mostly observed for some individual
events, while for the vast majority of events, these fluctuations
are not strong and overall all the dots cluster quite closely to the
dashed line. This confirms that the 4D parameterization scheme
is able to capture the relative distribution of barriers quite well.

Our KMC simulations of flattening of Cu nanotips using Cu Set 1
and Cu Set 2 showed that 4D parameterization of atomic jumps was
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Fig. 17. The occurrence of the migration energies of adatom diffusion on {100} and
{111} Cu surfaces.
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Fig. 18. Cu barriers of Cu Set 3 in comparison with Cu Set 2.

sufficient to obtain good agreement with MD simulations. In Sec-
tion 3.1.2, we showed that an important role is played by the sur-
face events in simulations of nanotips, i.e. the events that have less
than ten 1nn and 2nn atoms. As we showed here, ignoring possible
permutations did not introduce a significant uncertainty in barriers
of surface events due to the small number of permutations avail-
able for such events. We note here that ignoring permutations in
Fe Set 1 for the Fe self-diffusion on flat surfaces did not affect the
results obtained for growing iron nanocubes at low temperatures
either, since the surface events played a crucial role also in these
simulations. On the other hand, as we have shown in Fig. 18, in
some cases the 4D description of the events may fail to capture
the physics properly as the permutations hidden within such an
approach may play a crucial role in some specific cases. For exam-
ple, it was not possible to include the exchange events on Fe {100}
surface without introducing artefacts on {110}, thus, at high tem-
peratures, we obtained quite different results in KMC simulations
compared to MD simulations.

4. Conclusions

The rigid lattice approximation allows to create fast and effi-
cient Kinetic Monte Carlo models that are capable to simulate big
systems of millions of atoms and reach much longer time scales
than with e.g. molecular dynamics. The crucial part for any atomis-
tic Kinetic Monte Carlo model is the set of thousands or even mil-
lions of transition barriers that defines the probabilities for any
atom to make a jump in the system. These barriers need to be cal-
culated separately — in our approach using molecular dynamics in
combination with the Nudged Elastic Band method — and then
parameterized and tabulated for use in the Kinetic Monte Carlo
simulations.

In this paper, we have discussed different approaches for calcu-
lating and compiling such barrier sets for FCC and BCC metals. We
have shown that many of the problems with a rigid lattice param-
eterization can be overcome by applying a tethering force in the
Nudged Elastic Band calculations of the barriers; these additional
spring forces prevent the atoms to relax to a position too far from
the lattice positions during the relaxation and the Nudged Elastic
Band calculation of the barriers.

We have calculated three sets of barriers for copper using three
different approaches, including the tethering force approach, and
also sets for iron. Sets of barriers can be found in [29,30]. We have
analysed the distributions of the barriers in each set as well as the
importance of individual barriers in Kinetic Monte Carlo simula-
tions of surface processes. Our barrier sets of thousands of barriers
for Cu and Fe could in principle be used by any Kinetic Monte Carlo
model for atom migration processes in a rigid lattice.
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We have shown that tethering force approach in the calculation
of the migration barriers does not significantly change the physical
outcome of Kinetic Monte Carlo simulations where sets of thou-
sands of such barriers are used. On the contrary, this new approach
provides a systematic way to calculate all barriers needed for
Kinetic Monte Carlo simulations of a single-metal system;
especially in systems where surface processes are important.
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Abstract
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Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability
mechanism. This process is strongly accelerated at elevated temperatures and can completely
hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible
coatings. At the same time, arranged gold nanodots have important applications in
electrochemical sensors. In this paper we perform a series of annealing experiments of gold and
silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 °C,
400 °C, 600 °C and 700 °C) during a time period of 10 min. We show that nanowires are
especially prone to fragmentation around junctions and crossing points even at comparatively
low temperatures. The fragmentation process is highly temperature dependent and the junction
region breaks up at a lower temperature than a single nanowire. We develop a gold
parametrization for kinetic Monte Carlo simulations and demonstrate the surface diffusion origin
of the nanowire junction fragmentation. We show that nanowire fragmentation starts at the
junctions with high reliability and propose that aligning nanowires in a regular grid could be

used as a technique for fabricating arrays of nanodots.

Supplementary material for this article is available online

Keywords: nanowire junctions, rayleigh instability, kinetic monte carlo, gold, fabrication of

nanodots

(Some figures may appear in colour only in the online journal)

1. Introduction

Gold nanostructures are of considerable interest for their
optical, mechanical and electrical properties. For example,
gold nanopillar arrays have been used as highly efficient
electrodes for detecting bioelectrical signals [1, 2], where
their aspect ratio has proven to be of great importance.
Plasmonic trapping of colloidal particles has been demon-
strated using a gold nanopillar [3]. Other structures with a
high surface to volume ratio are porous gold films [4] and
nanoparticles [5], which are used in catalysis and

0957-4484/18/015704+10$33.00

electrochemical sensors. In particular, ordered arrays of gold
nanoparticles can be used for biochemical sensing [6], as well
as wavelength-specific photodetectors [7]. Precise fabrication
techniques allow for a significant level of control of the
resulting geometries and properties [8, 9]. Production of
nanodot arrays is currently performed using vacuum eva-
poration [10] or using a polystyrene template [11].

Metal, including gold, nanowires are a rapidly expanding
area of research as well. For example, gold nanoparticles are
used as a catalyst in the production of nanowires for solar cell
applications [12]. Gold nanowires themselves can be used in

© 2017 IOP Publishing Ltd Printed in the UK
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transparent electrodes for flexible displays [13]. A particularly
important point relating to electrodes is the stability of
nanowires under thermal loading—surface energy minimiza-
tion driven by thermally activated diffusion leads to breakup
of nanowires. This has been observed for Ag [14], Cu [15], as
well as Au [16].

The behavior of nanostructures at elevated temperatures
can differ drastically from the macroscopic situation. It is well
known that small nanoparticles melt at a significantly lower
temperature compared to bulk, and the melting temperature
depends on size [17]. Moreover, if we consider the time
factor, then the situation becomes even more complicated.
Given enough time for surface diffusion processes to happen,
it is possible to observe drastic changes in nanostructure
morphology at very moderate temperatures. For instance, an
Au nanoparticle of 5nm in diameter starts to melt at
approximately 1100 K (830 °C) [18], and for particles over
10 nm melting temperatures are comparable to bulk values
(1337 K/1064 °C). When we consider processes like surface
diffusion and Rayleigh instability [16], we can see fusion and
fragmentation of Au nanostructures at temperatures as low as
473 K (200 °C) [19]. This phenomenon is of great importance
in all applications where nanowires are exposed to elevated
temperatures or require thermal treatment before use to
remove surfactant and other organic residuals. In particular,
for proper functioning of nanowires-based transparent con-
ductive coatings [20], continuous pathways are absolutely
essential for electrons to ensure sufficient electrical con-
ductivity. Heat-induced fragmentation of nanowires will
prevent functioning of nanowire-based electronics.

Using atomistic computer simulations provides insights
into the microscopic processes driving nanopatrticle evolution
which are difficult to observe experimentally. Molecular
dynamics (MD) simulations have been used extensively to
study the elasticity and plasticity of gold nanowires (e.g. [21])
and nanopillars (e.g. [22]), where the significant role of sur-
face stress has been determined. Pareira and Silva [23]
simulated a cold welding process of gold and silver nanowires
with MD, where they identified diffusion, surface relaxation
and reconstruction as the main mechanisms of interest. Monte
Carlo (MC) methods are used to simulate longer time periods
than those approachable by MD simulations. For example,
Kolosov et al [24] studied the coalescence of gold and copper
nanoparticles. The kinetic Monte Carlo (KMC) method was
used by He et al [25] to simulate structural transitions in gold
nanoparticles. Miiller et al [26] showed the formation and
breakup of a Ge nanowire using lattice KMC simulations.

In this paper we examine the breakup of Au nanowire
junctions under thermal treatment and develop a gold para-
metrization for the kinetic Monte Carlo code Kimocs [27] in
order to simulate the breakup process. Kimocs is specially
designed to simulate atomistic diffusion processes on metal
surfaces. It was initially developed for copper, but has also
been successfully applied for Fe nanoparticle simulations
[28], where it was demonstrated that certain combinations of
temperature and deposition rate result in cubic nanoparticle
shapes. Kimocs requires that the transition energy barriers for
all possible surface processes are known in advance.

We show that the thermally activated diffusion of surface
atoms results in preferential breakup at the nanowire junction.
Based on the experimental and simulation analysis we suggest
a method for manufacturing periodic, well controlled arrays
of nanodots.

2. Materials and methods

2.1. Experimental setup

The experimental part of this work was done using gold and
silver nanowires. Silver nanowires were purchased from Blue
Nano (USA), while gold nanowires were prepared by us as
described below.

2.1.1. Synthesis of nanowires. The Au nanowires used in the
current study were synthesized using a 3-stage process
according to a technique described in detail in [29]. First, a
seed solution (SS) of Au nanoparticles was prepared with
18 ml of 0.025 M sodium citrate and 0.1-0.2 ml of 0.0005 M
HAuCly solution added into a 25 ml glass bottle. Ice cold
solution of 0.01 M NaBH, was separately prepared. A volume
of 0.6 ml of the NaBH, solution was added into the solution
of sodium citrate with gold precursor while stirring
vigorously. The resulting SS, slightly orange in color, was
used for synthesis of Au nanowires within 10 min after
preparation.

Next, a growth solution (GS) was prepared in a 300 ml
vessel by mixing 238.5 ml of 0.2 M hexadecyltrimethylam-
monium bromide (CTAB) and 10 ml of 0.0001 M of HAuCl,.
The solution had intensive yellow color. Next, 1.5ml of
0.1 M ascorbic acid was added, making the solution colorless.
The freshly prepared GS was divided into two 25 ml glass
bottles labeled A and B, and 200 ml in vessel C. A volume of
0.25 ml of concentrated HNO5; was added into vessel C. An
amount of 200 yl of the gold SS was added into bottle A and
stirred for few seconds (the solution color was pink). Then
200 il of solution in bottle A was transferred to bottle B and
stirred for several seconds (the solution color was crimson—
violet). Finally, 100 pl of solution in bottle B was transferred
to vessel C and mixed for several seconds (the solution was
colorless in the beginning, but became slightly orange-brick
color after 1h). The solution was kept in at 25 °C for 12 h.
Precipitates of gold nanowires can be observed on the bottom
of the tube after the reaction. The supernatant was poured out,
and the precipitation was re-dispersed in 5ml deionized
water. Remaining CTAB allows storing the Au NWs
suspension at least for 1 year.

2.1.2. Preparation and experimental analysis of samples.

The solution with nanowires contained a high amount of
surfactant (hexadecyltrimethylammonium bromide). In order
to reduce the amount of the surfactant, a special procedure
was performed. The solution containing the nanowires was
left intact for several hours until all nanowires settled out and
the solution became transparent. Immediately prior to the
preparation of samples the liquid above the precipitate was
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removed and replaced by distilled water. The new solution
was stirred until formation of a uniform mixture and then
transferred to separate Si wafers by drop-casting. In total, five
samples were prepared.

A series of annealing experiments were performed at
fixed temperatures 473, 673, 873 and 973 K (200 °C, 400 °C,
600 °C and 700 °C) during a time period of 10 min. However,
only one temperature was used for each sample. In addition,
one sample was treated at 973 K (700 °C) for 1 min. The
procedure of thermal treatment consisted of heating the
furnace up to the required temperature and then inserting the
sample for the chosen period of time. Thermal treatment was
performed in air atmosphere.

Micrographs of nanowires before and after thermal
treatment were obtained with high-resolution scanning
electron microscope (Helios Nanolab 600, FEI) and transmis-
sion electron microscope (TEM, Tecnai GF20, FEI).

2.2. KMC model development

For simulating the Au nanowires we use the kinetic Monte
Carlo for Surfaces code (Kimocs) [27]. Kimocs is an ato-
mistic kinetic Monte Carlo code for simulating single crystal
structures. Kimocs is based on a rigid lattice where atoms can
occupy well-defined lattice sites. A transition occurs when an
atom jumps from an occupied lattice site to a neighboring
vacant lattice site with a rate given by an Arrhenius type
equation:

E,

I'=vexp| ——2|, (1)
kgT

where V is the attempt frequency, E,, is the migration energy

barrier for the transition, T is the temperature and kg is the

Boltzmann constant.

To conduct a simulation, the attempt frequency and
migration barriers for all possible transitions must be known
in advance. Different transitions are characterized by the
number of first and second nearest neighbors of the jumping
atom in the initial and final positions (see [27] for details). For
simplicity we do not take into account the positioning of the
neighbors, only their number, thus drastically reducing the
number of possible transitions. For each such transition, the
migration barrier is calculated using an automated tethered
NEB process (see section 2.2.2 below). As a further simpli-
fication, the attempt frequency is taken to be equal for all
transitions and calculated by fitting nanopillar relaxation
times to MD results (section 2.2.3 below).

As a result, atom jumps are characterized by migration
barriers, which are calculated in MD from the interactions of
the jumping atom with the local atomic environment. Any
atom can move to any neighboring vacant lattice site by
overcoming the energy barrier. Although only first nearest
neighbor jumps are included in the current work, other tran-
sitions are in principle possible as a sequence of jumps that
may include intermediate metastable positions. In this way, an
adatom can, for example, cross the edge between two dif-
ferent surfaces.

2.2.1. Potential selection. In order to adjust the model for use
with Au, a full parametrization of an Au potential had to be
made. We selected the Embedded Atom Method (EAM)
potential by Grochola et al [30]. The energy barriers
calculated for our model are based on an interatomic
potential, which describes the interactions between all the
atoms in the system. The choice of the potential is of utmost
importance as it determines the values for all the energy
barriers, which in turn dictate the evolution of the system.
Interatomic potentials are typically fitted to specific
experimental or ab initio parameters of interest. For our
purposes, the most important properties are the surface
energies, specifically the ordering between the energies of
{111}, {110} and {100} surfaces. According to ab initio
calculations by Vitos et al [31], the surface energies for gold
are (in increasing order; Jm™2): {111}—1.283, {100}—
1.627, {110}—1.700. Thus, the {111} surface is the most
stable and the {110} surface least stable of the ones
mentioned. Although the surface energies reported by
Grochola et al using their potential (J m~2; {111}—1.197,
{100}—1.296, {110}—1.533) are somewhat lower than the
ab initio values, as well as the experimental average surface
energy (1.8511J m~2 at 25 °C and decreasing with increasing
temperature [32]), it has the closest surface energy values to
the ab initio or experimental results, while maintaining
correct surface stability order.

2.2.2. Migration barrier calculations. Transition processes in
Kimocs are defined by the number of first and second nearest
neighbors of the jumping atom in the initial and final
positions. Although the specific positions of the neighbors are
not taken into account during KMC simulations, a single
specific neighborhood, defined as a permutation, must still be
selected when calculating migration energies. Several
different permutations correspond to the same Kimocs
process. For each process, we look at all possible
permutations and choose the one with the lowest sum of
initial and final position energies to use for calculating the
migration barrier.

After a permutation has been selected, we proceed with
migration barrier calculations using the Nudged Elastic Band
(NEB) method [33]. The spring constant for NEB was
1eV A~2 In addition, a tethering approach was used, where
background atoms are tethered to their initial positions in each
NEB image using an additional tethering spring constant
2eV A2, This greatly improves the stability of the system in
case of processes with few neighbors. As a result, almost all
of the possible processes can be calculated in this way. For
processes that remain unstable despite the tethering, the
formula for spontaneous processes from [27] is used.

The details of permutation selection and tethered NEB
migration barrier calculations are more fully presented in [34].

2.2.3. Attempt frequency calculations. The physical time for
each KMC step is calculated based on the sum of transition
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Figure 1. Relaxation time for a nanopillar in MD and KMC
simulations depending on temperature for the temperatures 800, 850,
900, 950, 1000 K. KMC relaxation time has been normalized to the
MD time to minimize discrepancies. Insert: nonlinearized version of
the same data.

rates of all possible processes at that time [27]:

At — —logu

,Zin,

where I; is the rate for a single process calculated using
equation (1) and u € (0, 1] is a uniform random number.

Since v is taken to be equal for all processes, it can be
taken out of the summation. Thus, the total time for a process
to occur is t = N - (Ar), where N is the number of steps and
(Ar) is the average time interval for a single step. Taking into
account equation (1), and assuming that the number of
possible processes at each step and their migration barriers do
not vary considerably over the whole simulation, the
expression for the total time is

Z‘*IC €X E
v pkBT’

where E is the average effective transition energy barrier and
c is a factor which incorporates the average number of
possible transitions in the system and is proportional to the
number of simulation steps.

As a result, simulations can be conducted using the value
1 for the attempt frequency, leading to results in normalized
time units. The total normalized time can later be divided by
the fitted attempt frequency to transform it into physical time.

To estimate the attempt frequency, we use the same
approach as detailed in [27]. We fit the relaxation time of a
nanopillar on the {110} surface to MD results. A nanopillar
with a rectangular cross-section (dimensions 2.0 x 2.8 X
1.7 nm; 12 monolayers, see [27] for details) is relaxed in both
MD (using LAMMPS [35]) and KMC. The time taken for the
pillar to reach half its original height is recorded from the MD
simulations and compared with the normalized time for the
same process to occur in KMC. The attempt frequency is then
calculated from the ratio of these two times.

@)

3

Figure 1 shows the relaxation time of the pillar for MD
and KMC simulations at different temperatures. For each
temperature, the system relaxation was performed for 10
cases with different random seeds to obtain a statistical
estimate. Taking into account equation (3), the graph has been
linearized by plotting the logarithm of the relaxation time
against the inverse of the temperature. The different slopes
indicate that the average effective transition energy barrier
(parameter E in equation (3)) differs between MD and KMC.
This is not surprising, since the method of calculating
migration barriers makes several assumptions and simplifica-
tions (e.g. the rigid lattice and only nearest neighbor jumps).

The intercepts of the linear fits depend on the attempt
frequency. Because of the difference in slopes between MD
and KMC, the relaxation times cannot be made equal for all
temperatures simultaneously. We selected an attempt fre-
quency value that minimizes the sum of the differences
between the measurement points. The resulting value is
v =122 x 107 s7! and it has been used to normalize the
KMC data points. The fitted lines intersect at 895 K.

The difference from typical MD atom oscillation
frequency of ~10"*s! could possibly be explained by the
fact that second nearest neighbor or longer jumps are not
included in the model. These long jumps are known to have
attempt frequencies that can be even four to seven orders of
magnitude higher than the nearest neighbor jumps in the case
of tungsten [36]. However, in our model, the same surface
evolution is achieved by only allowing nearest neighbor
jumps while second nearest neighbor jumps etc are covered
by almost immediate follow-up jumps from unstable locations
to stable ones. Since a series of such short jumps may happen
with a different probability compared to a single long jump,
the high attempt frequency we obtain by comparing with MD
might be an indication that the long jumps may play a role.
The sum of transition rates in equation (2) does not include
these long jumps, increasing the time taken at each KMC
step. However, since our model gives good agreement with
experiments for the surface evolution (see section 4), the
inclusion of long jumps would likely only affect the time
estimate and thus lower the attempt frequency. The attempt
frequency used in the current model can be seen as a
normalization factor to fit the timescale to the more accurate
MD method.

Similarly to previous results of attempt frequency
calculations for Cu [27], the general temperature dependence
using the two methods is similar. KMC tends to under-
estimate the relaxation time at lower temperatures and slightly
overestimate it at higher temperatures. The variance in both
MD and KMC increases significantly with decreasing
temperature. The fact that the variance between repeated
runs is the same for both MD and KMC, shows that it is
caused by the underlying energetics of the system, rather than
the method used to calculate the relaxation process.

The set of calculated migration barriers is included as
supplementary material and is available online at stacks.iop.
org/NANO/29/015704 /mmedia.
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Figure 2. SEM (a) and TEM (b, c) images of untreated Au nanowires.

3. Results

3.1. Experimental results

According to SEM observation of an untreated sample
(figure 2), synthesis yielded uniform high-aspect ratio nano-
wires with regular shape, well-pronounced facets (inset in
figure 2(a)) and smooth surface, indicating a crystalline
structure, confirmed by TEM imaging (figures 2(b) and (c)).
Based on the SEM and TEM images, as well as according to
the literature data [37, 38], obtained nanowires were grown
along (110) direction and had pentagonal structure with outer
planes being {100}. In addition to nanowires, the mixture
contained nanorods, nanoparticles and plates.

After treatment at 473 K (200 °C) for 10 min, most of the
separate nanowires did not show any noticeable signs of
changes in morphology and unity. However, decomposition
(fragmentation) of nanowires was observed at places where
they cross or contact (figure 3(a)). Initial positions of nano-
wires can be deduced from traces left on the substrate by the
surfactant. It can be seen that Au atoms migrated towards the
contact point causing decomposition of nanowire ends.

At 673 K (400 °C) the phenomenon known as Rayleigh
instability [39] appeared. Namely, in addition to decomposi-
tion at crossing and contact points (inset in figure 3(b)), some
nanowires appeared to be fragmented to shorter pieces
(figure 3(b)). Fragments had the same regular faceted struc-
ture as original nanowires.

At 873 K (600 °C) a large fraction of the nanowires was
fragmented and fragments were shorter, although still had
regular faceted structure (figure 3(c)).

At 973K (700 °C) both for 1 min and 10 min most of
the nanowires were fragmented to faceted nanoparticles
(figure 3(d)).

It should be noted, that even at 973 K (700 °C) some
intact nanowires or long nanowire fragments were found
indicating that thermal stability and onset of fragmentation
process may be very sensitive to the presence of certain cri-
tical defects in nanowires.

Similar annealing experiments were performed also on
Ag nanowires and it was found that silver is even less stable
at mild heating. Already after 10 min at 398 K (125 °C), a
considerable fraction of the nanowires were broken at

crossing points (figure 4). Note, that in figure 4(b) the inter-
mediate state of fragmentation at the crossing point is pic-
tured. It can be seen that material starts to diffuse from one
nanowire to another.

We would like to note, that we made a series of high-
magnification SEM images of crossing nanowires before
heating to compare the same nanowires before and after
thermal treatment. However, it was found that all crossing
nanowires that were previously exposed to focused electron
beam (e-beam) irradiation, survived thermal treatment with-
out any noticeable signs of morphological changes. At the
same time surrounding nanowires were fragmented and bro-
ken. We believe that this effect is caused by electron beam
induced carbon deposition caused by the presence of surfac-
tant (carbon containing organics) on the surface of nanowires
and substrate before heating. This phenomenon is well known
in the field of electron microscopy and is called ‘electron
beam induced deposition’ [40-42]. Organic molecules
decompose under focused e-beam and re-deposit on the sur-
face of the nanowires forming a dense carbon coating. This
coating, for instance, may hinder the mobility of atoms and
prevent fusion and fragmentation of nanowires.

3.2. KMC simulation results

3.2.1. Rayleigh instability of a nanowire. The Rayleigh
instability driven breakup of nanowires was simulated using
the developed KMC model in order to validate it. This
process is driven by surface energy minimization, where the
resulting nanoclusters tend to be bounded by {111} surfaces.

Figure 5 shows four snapshots of a (111) nanowire (the
(I11) crystal direction was along the wire) as the breakup
progresses. The nanowire’s initial radius is 1 nm and the
simulations are run at 1000 K. Atoms are colored according to
type of surface they belong to. The surface type is determined
by inspecting the number of nearest neighbors. The wire
surfaces are initially {110}, which transition into the more
energetically favorable surfaces {111} and {100}. As a result,
the nanowire breaks up into three nanoclusters.

To obtain sufficient statistics of the resulting nanoparticle
size and separation, we used smaller nanowires with a radius
of 0.5 nm. For surface diffusion driven nanowire breakup, the
average nanoparticle diameter and separation are related to
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300 nm

500 nm

Figure 3. SEM images of Au nanowires after thermal treatment for 10 min at 200 °C (a), 400 °C (b), 600 °C (c) and 700 °C (d).

300 nm

300 nm

Figure 4. Fragmentation of Ag nanowires at crossing points as a result of thermal treatment for 10 min at 398 K (125 °C).

the initial nanowire radius. For a 0.5nm nanowire, the
theoretical average particle diameter is d = 1.89 nm and the
average separation is A = 4.45 nm [16, 39, 43]. From a series
of simulations with (100) and (111) nanowires, we observed
the formation of a total of 210 clusters. (110) wires are much
more stable when it comes to surface diffusion processes and
they do not break up in a reasonable simulation timeframe.
The average measures for the 210 observed particles in our
simulations are: d =201 £ 0.17nm and A =492+
1.07 nm. These results correspond very well with theoretical

predictions, as well as other simulations [26], and confirm the
validity of our parametrization.

3.2.2. Nanowire junctions. The same surface diffusion
mechanism that is responsible for the breakup of a single
nanowire acts when two wires are touching. Figure 6 depicts a
sequence of simulation snapshots as a nanowire junction
undergoes breakup. The simulation box is periodic along the
wires, so both wires can be thought of as being infinitely long.
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Figure 5. Breakup of (111) gold nanowire with radius 1 nm into
clusters due to Rayleigh instability at 1000 K. The system is periodic
along the wire. Atoms are colored according to surface type.
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Figure 6. Breakup of a 1 nm radius nanowire junction where the

crossing wires lie on top of each other at 1000 K (a). Atoms start
collecting in the junction region (b), leading to a separation of the
central droplet (c). Eventually, wires decompose into droplets (d).

Both wires are (100) in this case. The nanowire radius was
I nm and the simulations were performed at 1000 K.

The simulation was repeated 20 times and the time of the
first detachment was recorded (the moment in figure 6(b)).
The average time for a first detachment to occur was
4.0 £ 0.8 ns. In all cases the first detachment happened near
the junction and almost always the central cluster was the first
to form completely, although in some cases a nearby cluster

(@) (b) (©)
% ® , ®

@ {111} @ {100} @ Other

Figure 7. Breakup of a junction of non-periodic 1 nm radius wires at
an oblique angle (1000 K). Initial configuration (a), intermediate
state (b), and fragmented state (c). Available as movie 2 in
supplementary materials.

(a) (b) (©) 1
I
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Figure 8. Crossing 0.6 nm (110) wires that break around the junction
(1000 K). Initial configuration (a), first detachment (b) and
completely separated central cluster (c). Available as movie 3 in
supplementary materials.

would form before the central cluster could detach from all
four sides. A single longer simulation was run at 800 K where
the time until the first detachment was 140 ns (see movie 1 in
supplementary materials).

Simulation of a less perfect system where the wires cross
at an oblique angle (figure 7) also results in the wires breaking
at the junction, even though in this case the wires are much
shorter (the system is non-periodic). The horizontal wire was
(100), as before.

In order to more closely approach the experimental
five-fold twinned nanowires, we simulated crossing (110)
nanowires. Figure 8 shows two periodic (110) wires breaking
up around their point of contact. Because (110) nanowire
breakup is much slower, the system had to be reduced in size
to nanowire radius of 0.6 nm.

We simulated an explicit array of nanowires. In a larger
system, significantly more computational resources need to be
spent to reach the same physical time. Even so, already at
5.4 ns we can see fragments forming at both junctions where
two of the wires have separated (figure 9).

4. Discussion

From the simulations we can see that nanowire breakup
around junctions is driven by surface diffusion of atoms,
similarly to the Rayleigh instability breakup. In case of a
single nanowire, the size and positioning of the resulting
clusters is random, though, the average size and separation
can be predicted based on the initial nanowire radius. In case
of a nanowire junction, however, a cluster always forms at the
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Figure 9. Formation of fragments at two nearby junctions in an array
of crossing nanowires. Initial configuration (a) and partially detached
central fragments at 5.7 ns (b). Available as movie 4 in
supplementary materials.

point where the wires intersect, and its size tends to be larger
than the surrounding clusters due to the contribution of atoms
from two wires instead of just one. Additionally, the breakup
always starts at the junction because the intersecting nanowire
surfaces act as defects, breaking the symmetry and encoura-
ging atom diffusion.

In general, atoms have a higher probability to jump to
sites with more neighbors. This explains the preference of
atoms to accumulate at the wire crossing because the presence
of two intersecting surfaces creates vacant sites with more
neighbors than available on a single surface.

(100) FCC nanowires are unstable due to the shape
memory effect [44] as they tend to rearrange their lattice to
have the (110) direction along the wire. Such a rearrangement
is outside the scope of fixed lattice KMC simulations. How-
ever, both (100) and (111) led to the same end result with
fragmentation driven by surface energy minimization. Even
though simulating the Rayleigh instability breakup of a single
(110) wire proved impractical, placing two of them into
contact in a reduced system resulted in a breakup process
around the junction point, as seen in figure 8. Therefore, it is
reasonable to assume that the characterization of the junction
breakups seen in (100) wire simulations is applicable also to
the (110) case.

The wires used in experiment have a five-fold twinned
structure, where the crystal direction along the wire is (110).
Because of the on-lattice nature of the KMC model, simu-
lating such a structure is impossible. The closest structure,
which we could use in the simulations to imitate the experi-
ment, is to use a single crystal NW with the (110) direction
along the wire. However, we can see similar structures
forming both in experiments and in simulations irrespective
of wire orientation, which indicates that the breakup process
is driven by atom diffusion that is independent of the specific
configuration.

Because of the thermally activated nature of the atomic
diffusion, the timeframe of nanowire breakup is highly
temperature dependent. Reducing the simulation temperature
by just 20% resulted in a 30-fold increase in the time until the
first detachment from the junction. In the experiment, treating
nanowires at a temperature of 473 K (200 °C) for 10 min

showed fragmentation almost exclusively at junctions only,
which clearly shows the accelerating effect these sites have on
nanowire fragmentation. Separate nanowires were Sig-
nificantly more stable at elevated temperatures.

The size of wires in simulations is necessarily much
smaller than in experiments because of the large amount of
computational resources required. However, as the KMC
model does not include size effects, the result of atom dif-
fusion is similar to the larger experimental systems. To further
speed up the calculations, the temperature is also elevated
compared to experiments. This is justified as we are still
below melting temperature in its classical meaning, so that
heating only accelerates processes that happen also at lower
temperatures.

The breakup of nanowires due to Rayleigh instability has
been observed for other FCC metals as well, and we have
previously simulated this effect for Cu. Thus, the junction
effect should behave in a similar manner for nanowires made
of these metals. This is confirmed experimentally for the case
of Ag, as seen in figure 4. Here we note that the non-spherical
shapes can be explained by rather low temperatures used in
the experiments with Ag NWs (T = 398 K; 125 °C), which
resulted in only partial decomposition of the junction and an
elongated central fragment. This is also observed for Au NWs
in figures 3(a) and (b) for the temperatures <400 °C. At
higher temperatures or longer thermal treatment times, all the
NWs will break into fragments due to Rayleigh instability and
the fragments will relax to spherical shapes as seen in
figures 3(c) and (d). Because the temperature in KMC
simulations is much higher (1000 K), fragments quickly
become spherical, although elongated intermediate shapes can
be seen in figure 6(d).

Because a cluster is always expected to form at a nano-
wire junction during annealing, we hypothesize that it is
possible to fabricate regular arrays of nanodots by arranging
nanowires in a grid and annealing them to induce the clusters
to form at junctions. Furthermore, between the junctions, the
nanowires will form nanodots with an average spacing
A = 8.89 - r given by the Rayleigh instability, where r is the
radius of the original wire [39, 43]. Nanowires can be rela-
tively easily arranged and aligned e.g. by dielectrophoresis
[45]. The simulation with an array of wires (figure 9) indicates
that the clusters can be expected to form at the junction points
with high reliability. When fragmentation is undesirable, a
dense coating can be applied on nanowires to prevent diffu-
sion of atoms as was found in present work.

5. Conclusions

We performed annealing experiments and corresponding
kinetic Monte Carlo simulations which show that two
touching Au nanowires will break up in a specific manner
where a cluster will form at the former junction of the
nanowires. Annealing was conducted with Au and Ag
nanowires at fixed temperatures 473, 673, 873 and 973K
(200 °C, 400 °C, 600 °C and 700 °C) during a time period of
10min. In all cases, the junction breakup happened in a
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similar fashion for both metals. The experiments showed that
junctions tended to break up even at lower temperatures when
the wires themselves remained whole. We have developed a
gold parametrization for the KMC code Kimocs which we
have used to show that the breakup can be entirely explained
by atom diffusion processes and the breakup of nanowires
will always start at the junction. The point of nanowire con-
tact acts as a preferential site for atomic diffusion due to the
greater number of neighboring atoms present near surface
intersections. The accumulation of atoms results in the for-
mation of a cluster that is cut off from the nanowires. Thermal
treatment significantly accelerates this process. We propose
that nanowire junctions can be used to control the positioning
of nanodots after thermal annealing of nanowires and that
regular arrays of nanodots can be fabricated by aligning the
nanowires in a grid.
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