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1. INTRODUCTION 

1.1 Increasing concentrations of CO2 and O3 

The consequences of human activities have rapidly increased the concentrations 
of the main greenhouse gases, atmospheric CO2 ([CO2]) and tropospheric ozone 
([O3]). A new report by the Intergovernmental Panel on Climate Change (IPCC) 
shows that global emissions of greenhouse gases have risen to unprecedented 
levels despite a growing number of policies to reduce climate change. Emis-
sions grew more quickly between 2000 and 2010 than in each of the three pre-
vious decades (IPCC 2013). Carbon dioxide concentrations have increased by 
40% since pre-industrial times at the end of the 18th century, primarily from 
fossil fuel emissions and secondarily from net land use change emissions (Kee-
ling et al. 1995, IPCC 2013). In 2011 the concentration of carbon dioxide was 
391 ppm (parts per million). Atmospheric CO2 concentrations will be higher in 
2100 relative to present day as a result of a further increase in cumulative 
emissions of CO2 to the atmosphere during the 21st century (IPCC 2007, 2013). 
According to IPCC 2013, different models predict the [CO2] to rise up to  
421 ppm, 538 ppm, 670 ppm or even 936 ppm by the year 2100. 

Tropospheric ozone is a secondary pollutant created by chemical reactions 
between oxidized nitrogen (NOx) and volatile organic compounds (VOC), pro-
duced by automobiles and biomass burning, in the presence of sunlight (Wang 
et al. 1986, Kull et al. 1996, Karnosky 2007B, Wittig et al. 2007). Unlike 
atmospheric [CO2], which is well mixed in the atmosphere, the concentration of 
ozone varies across regions and occurs in “hot spots”, depending on the proxi-
mity to sources of pollutants and time of day and year. This complicates accu-
rate projections of current regional trends or future concentrations. However, it 
has been suggested that daytime [O3] in the temperate latitudes of the northern 
hemisphere range between 20 and 65ppb (parts per billion) with an average of 
about 40 ppb (Wittig et al. 2009). Tropospheric [O3] is projected to rise globally 
by 20–25% between 2015 and 2050, and by 40–60% by 2100 (Wittig et al. 
2007). Ozone pollution is a concern especially during the summer months be-
cause of strong sunlight and hot weather. The largest [O3] increases are pro-
jected for the northern hemisphere because of both increasing precursor con-
centrations and climatic conditions, which are more favorable to ozone 
formation (Wittig et al. 2007).  

 
 

1.2 Effects of CO2 and/or O3  
on photosynthesis and plant growth 

Elevated [CO2] is generally beneficial for plants, because CO2 is a substrate for 
photosynthesis and causes increases in light-saturated net photosynthesis, Pn 
(Drake et al. 1997, Noormets et al. 2001A,B, Karnosky et al. 2003A, 2007A, 
Long et al. 2004, 2006, Riikonen et al. 2005, Špunda et al. 2005, Bernacchi et 
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al. 2005, 2006, Ainsworth & Rogers 2007, Calfapietra et al. 2008, Lindroth et 
al. 2010, Ellsworth et al. 2012). Elevated [CO2] increases Pn by increasing the 
carboxylation rate of Ribulose-1,5-bisphosphate (RuBP), catalyzed by Rubisco, 
because this reaction is substrate limited at the current atmospheric [CO2] 
(Drake et al. 1997, Ellsworth et al. 2004, Ainsworth & Rogers 2007). Pn 
increases despite the negative effect of CO2 on stomatal conductance (gs), that is 
often found (Field et al. 1995, Paoletti & Grulke 2005, Ainsworth & Rogers 
2007, Riikonen et al. 2008, Lindroth et al. 2010). The intensity of photo-
synthesis is related not only to the substrate concentration, but also to the 
amount and efficiency of the photosynthetic apparatus (Evans et al. 1989, 
Niinemets & Tenhunen 1997, Niinemets 1999, Noormets et al 2010.) Trees 
grown under elevated [CO2] generally but not always (Noormets et al. 2010) 
have lower Rubisco concentration (Drake et al. 1997, Noormets et al. 2001A, 
Wustman et al. 2001, Eichelmann et al. 2004) and lower chlorophyll con-
centration (Centritto & Jarvis 1999, Lütz et al. 2000, Wustman et al. 2001, 
Eichelmann et al. 2004, Noormets et al. 2010), which is usually described as 
negative acclimation of photosynthetic apparatus under elevated [CO2] (Long et 
al. 2004). Also, the reduced availability of nitrogen (N) causes lower levels of 
Rubisco and chlorophyll, and the rise in Pn under elevated [CO2] can be smaller 
(Drake et al. 1997).  

Plant growth generally increases with exposure to elevated [CO2] (Isebrands 
et al. 2001, King et al. 2005, Kubiske et al. 2006, 2007), although the growth 
stimulation by CO2 may be decreasing over time (Kubiske et al. 2006). It is 
argued that competition among individuals may compromise the growth and 
survival of individual trees under elevated [CO2] by decreasing availability or 
acquisition of limiting resources (McDonald 2002). Earlier results from the 
Aspen FACE (free-air carbon dioxide enrichment) experiment indicate that 
competitive status strongly influenced tree growth, and the positive growth 
response to elevated [CO2] was greater for competitively advantaged indivi-
duals than for disadvantaged individuals of most aspen clones (McDonald et al. 
2002, Kubiske et al. 2006). 

Tropospheric ozone is known to have a negative effect on plant growth, 
affecting productivity of crops and forests (Kull et al. 1996, Coleman et al. 
1995A,B, Dickson et al. 1998, Matyssek & Innes 1999, Kaakinen et al. 2004, 
Karnosky et al. 2003B, 2005, 2007B, King et al. 2005, Kontunen-Soppela et al. 
2007, Wittig et al. 2007, 2009, Oksanen et al. 2007, Feng et al. 2008, Matyssek 
et al. 2010, Lindroth 2010, Zhu et al. 2011, Ainsworth et al. 2008A,B, 2012). 
The early symptoms of ozone injury are decreased Rubisco concentration 
(Noormets et al. 2001A, 2010, Häikiö et al. 2009, Wittig et al. 2009), chloro-
phyll content (Wustman et al. 2001, Häikiö et al. 2009, Noormets et al. 2010), 
degradation of chloroplasts (Oksanen et al. 2001) and oxidative damage to cell 
membranes and light harvesting processes (Noormets et al. 2001B, 2010), 
which in turn lead to decreased photosynthetic capacity (Long & Naidu 2002, 
Wittig et al. 2007, 2009). Ozone is entering leaves through stomata and the 
reaction of ozone with water and solutes in the apoplasm leads to the formation 
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of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), which 
can damage cell membranes and the photosynthetic apparatus (Oksanen et al. 
2003). Several studies of crop and tree species have shown that light-saturated 
photosynthesis was significantly decreased by elevated [O3] (Kull et al. 1996, 
Karnosky et al. 2003B, 2005, Kontunen-Soppela et al. 2007, Matyssek et al. 
2010, Ainsworth et al. 2012). For example, a meta-analytic review of northern 
temperate and boreal forests has shown that, relative to preindustrial levels, 
current levels of tropospheric O3 account on average for an 11% depression in 
leaf photosynthetic CO2 uptake, a 13% reduction in stomatal conductance and a 
7% reduction in biomass growth in trees (Wittig et al. 2007, 2009). However, 
H2O2 is also suggested to function as a primary signal molecule, leading to cell 
death (Oksanen et al. 2003), accelerated leaf senescence and early leaf fall (Pell 
et al. 1997, Karnosky et al. 2003B, Riikonen et al. 2004, Lindroth 2010, 
Ainsworth et al. 2012), which are additionally decreasing total carbon accumu-
lation and productivity (Percy et al. 2007). Results from Aspen FACE have also 
shown that the species composition of forest stands can be altered by elevated 
[O3]. For example, aspen trees with a competitive disadvantage were strongly 
affected by elevated [O3], although that effect was also controlled by clonal 
effects (Kubiske et al. 2007). However, as O3 levels continue to rise, further 
decreases in biomass growth of 11% and 17% are predicted for 2050 and 2100, 
respectively (Wittig et al. 2009).  

The flux of ozone into leaves depends on stomatal conductance (the higher 
the conductance, the greater the amount of O3 entering the leaves). Ozone may 
directly decrease stomatal conductance, which reduces ozone uptake and pro-
tects leaves from damage (Reich & Lassoie 1984, Niinemets 2010). However, 
various analyses suggest that decreased stomatal conductance is considered to 
be a secondary response as a result of decreasing carboxylation capacity and 
hence declining intercellular [CO2] (Ci) (e.g. Farage et al. 1991), differing in 
different species. If O3 causes a large-scale decrease in stomatal conductance in 
forests, there may arise additional implications for regional hydrology (Sellers 
et al. 1996).  

When combined, elevated [CO2] may partially ameliorate the negative 
effects of elevated [O3] in plants (Donelly et al. 2000, Percy et al. 2002, Kar-
nosky et al. 2003B, Kubiske et al. 2007, Noormets et al. 2010, Lindroth et al. 
2010). Elevated [CO2] may reduce ozone damage to trees both by decreasing gs 

(and consequent oxidative stress)  and thus the potential O3 flux into leaves 
(Paoletti & Grulke 2005) and by increasing carbohydrate pools for the synthesis 
of antioxidant compounds (Lindroth et al. 2010). However, one study from 
Aspen FACE suggests that it is not possible to explain combined effects only by 
stomatal closure under elevated [CO2], as stomatal flux of O3 was not reduced 
by elevated [CO2]. Instead, there was a significant but unexplained CO2xO3 
interaction on accumulated stomatal flux of O3 (Uddling et al. 2010). Also, CO2 
enrichment seems to ameliorate the impact of oxidative stress, as harmful H2O2 
accumulation was not found from the chloroplasts of aspen and paper birch 
leaves when elevated [CO2] was present (Oksanen et al. 2003), leading to higher 
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NADPH concentrations and increased activity of enzymatic detoxification 
(Podila et al. 2001). Earlier Aspen FACE studies have shown no change 
(Sharma et al. 2003, Karnosky 2003B), decreases (Noormets et al. 2010) or 
small increases (Noormets et al. 2001A) in Pn, whereas tree growth was 
completely annulled or greatly reduced in the combination treatment (King et al. 
2005, Kubiske et al. 2006).  

 
 

1.3 Factors modulating the extent  
of CO2 and/or O3 responses  

Both, CO2 and ozone enrichment have repeatedly been shown to affect photo-
synthesis and growth, but the degree of stimulation has varied widely between 
different studies. Differences also occur between dates within each study (Gun-
derson et al. 2002, Bernacci et al. 2003). For example, previous Aspen FACE 
studies with trembling aspen have shown 0 (Noormets et al. 2010) to 48% 
increases in Pn under elevated [CO2] (Noormets et al. 2001A, Takeuchi et al. 
2001, Sharma et al. 2003, Ellsworth et al. 2004, Calfapietra et al. 2008). The 
effect of O3 on Pn in Populus trees varied from -60% (Sharma et al. 2003) to no 
change (Calfapietra et al. 2008). Studies on factors that alter the sensitivity of 
plants to CO2 and O3 are scarce and were practically absent when this study was 
initiated.  

The effects of CO2 and O3 can differ in different genotypes (Drake et al. 
1997, Ellsworth et al. 2004, 2012, Häikiö et al. 2007, Lindroth et al. 2010, 
Ainsworth et al. 2012). Additionally, all processes in plants can change rapidly, 
but also acclimate under changing environmental conditions (Niinemets 2010). 
We know that Pn increases rapidly when CO2 concentration is raised (A/Ci 
response curve), but the acclimation of different processes that determine 
sensitivity of Pn and gs to elevated concentrations of CO2 and/or O3 can take 
hours, weeks or even years. 

A meta-analytic review from FACE experiment across different C3 and C4 
plant species indicate that trees are generally more responsive to elevated [CO2] 
(showing an average 47% stimulation in Pn) compared to grass, forbs, legumes 
and crops (Ainsworth & Long 2004, Ainsworth & Rogers 2007). The analysis 
of the A/Ci response curves showed that at current [CO2], Pn is Rubisco limited 
in all functional groups, whereas photosynthesis in trees and grasses are 
Rubisco limited at both current and elevated [CO2] (Ainsworth & Rogers 2007). 
Therefore, trees and grasses have the largest potential for stimulation at elevated 
[CO2] (ca. 50%), because rising [CO2] increases carboxylation. In contrast, 
there is lower potential stimulation of photosynthesis in shrubs, legumes and 
crops (ca 30%), because, as [CO2] rises, Pn becomes limited by the capacity for 
RubP regeneration (Ainsworth & Rogers 2007).  

It is argued that conifers can be less sensitive to O3 compared to broadleaved 
trees, possibly due to their lower average stomatal conductance (Nunn et al. 
2006). While this may be the case, a meta-analysis has shown that major angio-
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sperms and gymnosperms showed a similar reduction in Pn under elevated [O3] 
(Wittig et al. 2007). However, Populus taxa in general have rapid growth, high 
photosynthetic rates and stomatal conductance, and a competitive growth strate-
gy designed to take advantage of favorable environmental conditions. Because 
of these characteristics, Populus may be quite sensitive to environmental 
stresses such as O3 exposures (Karnosky et al. 1996, Dickson et al. 2001). 
Indeed, Wittig et al. 2007 have shown in a meta-analytic review that Populus 
species were among the most sensitive angiosperms impacted by ozone. Pn 
decreased under ozone by 26%, 24%, 20%, 14%, 11% and 7% in Populus, 
Prunus, Acer, Betula, Fagus and Querqus families, respectively. However, 
there is considerable clonal variation in the photosynthetic sensitivity to ele-
vated [O3] (Coleman et al. 1995B, Karnosky et al. 2003B, 2005, 2007B, Häikiö 
et al. 2007, 2009, Matyssek et al. 2010). 

Environmental stress has been proposed to play an important role in shaping 
the response of plants to elevated [CO2] and [O3] (Kirchbaum 2004, Nowak et 
al. 2004, Leakey et al. 2006, Ainsworth & Roger 2004, Niinemets 2010, Mäen-
pää et al. 2011, Ellsworth et al. 2012). Plant growth responses can be altered by 
environmental factors such as drought (Gunderson et al. 2002, Niinemets 2010), 
soil moisture (Grulke et al. 2003), temperature (Darbah et al. 2010, Matyssek et 
al. 2010, Mäenpää et al. 2011), light intensity (Fredericksen et al. 1996), and 
nutrient (such as nitrogen) availability (Oren et al. 2001, Häikiö et al. 2007, 
2009). Plants grown in elevated [CO2] have been shown to be less vulnerable to 
drought (Niinemets 2010). Stimulation of photosynthesis at elevated [CO2] is 
theoretically predicted to be greater at higher temperatures (Drake et al. 1997, 
Ainsworth & Long 2004, Kirchbaum 2004) and under water-limited conditions 
(Gunderson et al. 2002, Bernacchi et al. 2006, Ellsworth et al. 2012). A meta-
analytic overview of FACE data among woody and herbaceous plants showed a 
30% increase of Pn when plants were grown at temperatures above 25ºC and a 
19% increase in the case of lower temperatures (below 25ºC) (Ainsworth & 
Long 2004).  

The magnitude of the effect of elevated [CO2] on stomatal conductance also 
varies considerably with environmental factors (Medlyn et al. 2002, Gunderson 
et al. 2002, Ainsworth & Rogers et al. 2007), particularly when temperature is 
high and humidity is low (vapor pressure difference between leaf-air, VPDL, is 
high) and therefore absolute rates of gs are low (Sõber 1980, Gunderson et al. 
2002). Stressful conditions (low N and drought) have been shown to exacerbate 
the decrease in gs under elevated [CO2] (Ainsworth & Long 2004).  

It has been suggested that the negative effect of elevated [O3] on Pn is 
ameliorated by any environmental condition that reduces stomatal conductance, 
such as water stress, drought, low humidity (high VPDL), high temperature, 
elevated [CO2] or nutrient deficiency, thus reducing O3 uptake and lessening the 
potential for oxidant damage (Volin et al. 1998, Long & Naidu 2002, Wittig et 
al. 2007, 2009, Niinemets 2010). In Mäenpää et al. 2011, the ozone effect on Pn 
in silver birch and European aspen was partly compensated for at elevated 
temperature, showing an interactive effect of the treatments. However, Wittig et 
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al.’s 2009 meta-analysis suggests the need for caution in assuming that in-
creasing [CO2] and drought incidence will provide protection against rising 
[O3] – because, as shown in their meta-analysis, field evidence is lacking. Taken 
together, there is much evidence that combined stresses can influence the 
survival of large trees even more than chronic exposure to a single predictable 
stressor, such as CO2 or ozone.  

Photosynthetic activity is also subject to diurnal changes, which are mainly 
influenced by environmental conditions. Under common field conditions, where 
many stress factors occur, the assimilatory apparatus is exposed to variable 
intensities of photosynthetically active radiation (PAR) causing bell-shaped 
daily curves of photosynthesis, although high temperature and low air humidity 
may result in a typical midday depression of Pn during summer days (Singsaas 
et al. 2000, Špunda et al. 2005, Ribeiro et al. 2009). This afternoon decline is 
attributed to stomatal closure and/or photoinhibitory damage (Muraoka et al. 
2000), as well as to increased VPDL (Singsaas et al. 2000), or to subsequent 
decreases in Ci (Špunda et al. 2005) and Rubisco carboxylation efficiency 
(Singsaas et al. 2000). Partial stomatal closure is expected around midday 
(Singsaas et al. 2000, Ribeiro et al. 2009), when VPDL and air temperature 
reach their highest values. If diurnal curves are changing under elevated [CO2] 
and [O3], their effects might change during the day. Nevertheless, in comparison 
with ambient air, elevated [CO2] treatment led to the diminution of midday 
photosynthesis depression that was predominantly caused by stomatal closure 
and the subsequent decrease of Ci (Špunda et al. 2005). This means that a more 
pronounced positive effect of CO2 would be expected in the case of a com-
parison of daily sums, than in the case of a comparison of daily maximum 
values of Pn. However, not much is known about the impacts of elevated [O3] 
alone or in combination with elevated [CO2] on diurnal patterns of Pn. 

It is generally assumed that CO2 response is highest in the middle of the 
growing season, because sink activity is highest during that period (Riikonen et 
al. 2008, Herrick and Thomas 2001, Ellsworth et al. 2004) and that elevated 
[CO2] might improve the C balance of leaves in autumn, thus increasing leaf 
lifespan (Riikonen et al. 2008, Jach et al. 2001). It has been hypothesized that 
later season positive leaf carbon balance (increased C:N ratio) will result in 
delayed leaf senescence when stimulated photosynthetic uptake in elevated 
[CO2] is sustained (Herrick & Thomas 2003). However, studies of leaf sene-
scence in response to atmospheric CO2 enrichment in a variety of herbaceous 
and woody species have produced conflicting results. For example, in an open-
top field chambers experiment with maple trees (Acer rubrum and A. saccha-
rum), elevated [CO2] had no consistent effect on leaf abscission in autumn 
(Norby et al. 2003). Experiments using free-air carbon dioxide enrichment with 
fast growing Populus species have shown a delay in leaf abscission (Tricker et 
al. 2004, Karnosky et al. 2003A,B) but those with sweetgum (Herrick & 
Thomas 2003) have shown no effect on leaf longevity or abscission date. 
Previous findings have shown that elevated [CO2] increased Pn of sweetgum 
trees by 63% during the middle portion of the growing season, but when leaves 
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were senescing, from late September until early November, the magnitude of 
the stimulation varied between 51 and 96% in sun leaves (Herrick and Thomas 
2003), indicating increased sensitivity in Pn in autumn. 

Tree growth and photosynthetic responses to ozone are likely to vary with 
age (Karnosky et al. 2007B, Noormets et al. 2010) and the capacity of the trees 
to detoxify O3 (Matyssek et al. 2008). Some individual studies have shown that 
O3-induced damage on leaf morphology and physiology is most pronounced on 
older leaves undergoing a longer exposure to elevated [O3] (Matyssek et al. 
1993, Coleman et al. 1995B, Morgan et al. 2003, Noormets et al. 2010). Results 
from Aspen FACE have shown that older aspen leaves had a greater accu-
mulation of excess H2O2 in chloroplasts (Oksanen et al. 2003), indicating that 
oxidative stress in chloroplasts increases during leaf ageing. If the O3 exposure 
is long, repair mechanisms are turned on. Because chemical defense is energe-
tically demanding and carbon uptake is reduced, leaf senescence is activated 
earlier under elevated [O3] (Kontunen-Soppela et al. 2010). Alternatively, the 
senescence associated processes, and remobilization and storage of carbo-
hydrates and nutrients may not be completed (Kontunen-Soppela et al. 2010, 
Uddling et al., 2005). However, there is also evidence that the negative effect of 
O3 on Pn diminished as leaves aged (Häikiö et al. 2007, 2009).  

While the shorter-term stimulation of Pn in elevated [CO2] and elevated [O3] 
is well documented, it is not clear whether the leaf carboxylation capacity of 
dominant species will be down-regulated (acclimated) or not in the longer term. 
Acclimation is mostly defined as (those) physiological changes in photo-
synthetic apparatus that occur when plants are grown in high [CO2] (i.e. the 
photosynthetic properties of leaves that have developed at elevated [CO2] differ 
from those developing at current [CO2], Drake et al. 1997). The implication of 
this is that after medium or long term growth in elevated [CO2], the initial 
stimulation of Pn from elevated [CO2] might be reduced (Drake et al. 1997). 
Thus, only the results of long-term experiments can indicate whether changes in 
leaf morphology and biochemistry are a common response to elevated [CO2] 
and whether they preface increases or decreases in photosynthetic capacity 
(Ellsworth et al. 2004). Previous findings reveal that the magnitude of stimu-
lation in Pn at elevated [CO2] and the occurrence of acclimation appeared to be 
both growth-form and environment specific (Nowak et al. 2004, Ainsworth & 
Rogers 2007). A meta-analytic review with findings from FACE experiments 
has demonstrated that all functional groups acclimated to growth at elevated 
[CO2] (maximum carboxylation rate of Rubisco, Vcmax and RuBP regeneration 
capacity, Jmax were significantly reduced in all functional groups), with trees 
having smaller reduction in Vcmax than shrubs, grasses and crops (Ainswoth 
Rogers 2007). Furthermore, negative acclimation of the photosynthetic appa-
ratus under elevated [CO2] can be caused by limitations in the supply of 
nutrients (such as nitrogen). When the supply of nitrogen is limited, the rise in 
photosynthesis is smaller (Drake et al. 1997). Trees grown under elevated [CO2] 
generally have lower N concentrations in their foliage (Lindroth et al. 2001, 
Karnosky 2003A, Riikonen et al. 2005). However, if soil nitrogen is not limited, 
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photosynthetic capacity will increase with increasing N content without any 
negative acclimation. Previous findings from Aspen FACE also showed that 
changes in nitrogen per leaf area drives the change in carboxylation efficiency 
(Sharma et al. 2003). Structural acclimation to elevated [O3] has been reported 
in birch trees grown in open-top chamber experiment (Pääkkonen et al. 1995) 
and in container-grown beech and spruce trees (Luedemann et al. 2005).  

 
 

1.4 Aims of the thesis 

The general aim of this thesis was to find out how and why the long-term 
effects of elevated [CO2] and/or [O3] on photosynthetic responses vary in 
trembling aspen clones with different O3 sensitivity. As reviewed in 1.3, there 
are several factors that can change the photosynthetic responses to elevated 
[CO2] and/or [O3]. The changes in sensitivity of plants to higher concentrations 
of CO2 and O3 may be caused by changing meteorological conditions and other 
environmental stresses, but diurnal, seasonal and interannual differences can 
also occur. In the latter case, the sensitivity of photosynthetic parameters to 
elevated [CO2] and/or [O3] can follow the dynamics of environmental factors or 
acclimate in a different time scale to new conditions. We hypothesized that the 
responses of elevated [CO2] and/or [O3] on photosynthesis would change daily, 
seasonally and interannually. We proposed that the degree of CO2 and ozone 
effects can be influenced by the degree of environmental stress (such as drought 
and high temperature). We expected elevated [CO2] to lengthen the growing 
season by delaying leaf abscission, and elevated [O3] to shorten the growing 
season by accelerating leaf senescence.  
 
The specific aims of this doctoral thesis were: 
1)  To study the effects of elevated [CO2] and [O3] alone and in combination 

on light-saturated net photosynthesis (Pn) and stomatal conductance (gs) in 
Populus tremuloides Michx. (clones 42E and 271, differing in O3 tole-
rance) in a long-term Aspen FACE (free-air carbon dioxide enrichment) 
experiment (I). 

2)  To examine how environmental constraints, such as drought and high tem-
perature, impact the primary responses of elevated [CO2] and/or [O3] on Pn 
and gs (I). 

2)  To study the daily, seasonal and interannual variability in the effects of 
elevated [CO2] and/or [O3] on Pn and gs (I-IV). 

3)  To analyze the possible causal role of environmental stress and acclimation 
in generating variability in the effects of elevated [CO2] and/or [O3] (I and 
IV). 
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2. MATERIALS AND METHODS 

2.1 Experimental design and plant material 

A field experiment was performed at the Aspen FACE experimental site (I–IV) 
in Wisconsin, USA (45º6’N, 89º5’W) in the summers 2004–2005 (I–III) and 
2004–2008 (IV), where the effects of elevated [CO2] (ambient and 200 ppm 
above ambient; ca. 360 and 560 ppm, respectively) and elevated [O3] (ambient 
and 1.5 x ambient O3, ca. 35–45 and 52–67 ppb, respectively) on leaf physio-
logical parameters was studied. In 1997, saplings of aspen (five clones), birch 
(Betula papyrifera) and maple (Acer saccharum) were planted in 30m diameter 
treatment rings, representing the dominant species in northern hardwood forests. 
The experimental site consists of 12 treatment rings, with three replicate rings 
per treatment (ambient [CO2] and [O3], elevated [CO2], elevated [O3] and a 
combination of elevated [CO2] and elevated [O3]). The current thesis studies 
two trembling aspen (Populus tremuloides Michx) clones 42E and 271. Clone 
271 had been previously determined to be relatively tolerant to O3, and Clone 
42E to be more O3 sensitive (Dickson et al. 2000). The trees had been fumigated 
continuously since spring 1998 during daylight hours from bud burst (mid-May) 
to leaf fall (mid- to late-October) (Dickson et al. 2000). The complete design of 
the Aspen FACE and a summary of responses are available elsewhere (Kar-
nosky et al. 1999). 
 

2.2 Environmental conditions 

The microclimatic conditions on the gas exchange measurement days were 
typical for summer months in northern regions of the USA (Fig. 1 in I and II). 
Generally, July was the warmest month and October was the coolest month of 
the growing season in terms of both air and soil temperatures (Kubiske et al. 
2006). Photosynthetically active radiation (PAR) ranged from 1300 to  
1700 µmol m–2 s–1 during daylight hours and under clear sky conditions, ap-
proaching 2000 µmol m–2 s–1 on some days. Leaf temperature (TL) increased 
from a low of about 17–28 Cº around 09:00 h to near 26–39 Cº in the afternoon 
between 15:30–17:00 h (Fig. 1 in I). Vapor pressure difference between leaf and 
air (VPDL) exhibited a strong diurnal variation, climbing from 0.8–2.6 kPa at 
09:00 h to 1.3–4.8 kPa at 15:30–17:00 h, coinciding with the maximum daily air 
temperatures (Fig. 1 in I). 
 
 

2.3 Gas exchange, chlorophyll and  
water potential measurements 

Gas exchange was measured on sun-exposed upper canopy short-shoot leaves 
(three leaves per clone) throughout the growing seasons 2004–2008 (I, II, IV). 
For diurnal curve measurements, gas exchange was measured six times during 
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the day from sunrise to sunset under saturating light conditions (>1000 µmol  
m–2 s–1), Paper I. Measurements were taken while leaves were still attached to 
the trees. Light-saturated net photosynthesis (Pn) was measured with a Li-6400 
(Li-Cor, Lincoln, NE) portable gas exchange apparatus, using growth CO2 
concentrations (360 ppm for control and elevated [O3] treatments and 560 ppm 
for elevated [CO2] and combination treatments), in the leaf chamber (I–IV). 
Leaf temperature and relative humidity (RH) were not controlled. This system 
also measured leaf stomatal conductance (gs), intercellular CO2 (Ci), transpi-
ration rate, vapor pressure difference between leaf and air (VPDL), leaf and air 
temperatures and relative humidity. Leaf water potential (ΨL) was measured 
after each gas exchange measurements using a portable Scholander type pres-
sure chamber (Model 600, PMS Instruments, Corvallis, OR) (I). To measure 
leaf water potential, we detached a leaf from the branch immediately after mea-
suring gas exchange and put it in the pressure chamber (n=3). Leaf chlorophyll 
was measured during gas exchange measurements throughout the growing 
seasons 2004–2005 using SPAD-meter 502 (Minolta Camera Co., Osaka, 
Japan) (I). To test changes in carboxylation efficiency, photosynthetic CO2 
response (A/Ci) was measured before midday (9 AM) and in the late afternoon 
(3 PM) (I, IV). A/Ci curves were then analyzed by computing the Vcmax (maxi-
mum carboxylation rate of Rubisco) and Jmax (RuBP regeneration capacity) 
using the model described by Farquhar et al. (1980).  

For late season photosynthetic behavior, gas exchange was measured until 
the 12th of October, 2004 (III) and until the 7th October, 2005 (II). From the 23rd 
of September, 2004 onwards, the gas exchange measurements were continued 
only in elevated [CO2] and control rings (III). Late season gas exchange was 
measured from six (II) to nine (III) time points during the senescence period 
(n=9 in 2004 and n=6 in 2005).  

To study whether photosynthesis and stomatal conductance acclimates to 
long-term [CO2] and/or [O3] exposures, gas exchange measurements were taken 
throughout the 2004–2008 growing seasons (IV). 
 
 

2.4 Data processing 

The overall mean comparison between treatments was calculated using Facto-
rial Analysis of Variance (ANOVA) (I–IV). To elucidate whether environ-
mental stress affects the relative impact of elevated [CO2] and/or [O3] treatment 
on trees, we considered days with a daily average gs > 0.15 mol m–2 s–1 to be 
environmentally unstressed and days with a daily average gs < 0.15 mol m–2 s–1 
to be environmentally stressed (I). To assess the main factors responsible for 
afternoon depression in Pn, we calculated the relative changes in individual 
parameters across the whole dataset, between 9:00 h and 16:30 h, and then used 
linear regression analysis to find coefficient of determination (R2) and P values 
(I). Treatment effects on diurnal decline in Pn were compared using General 
Linear Models (GLM). The maximum rate of Rubisco carboxylation (Vcmax) 
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was calculated by fitting A/Ci curve data to the model described by Farquhar et 
al. (1980) (I, IV). In all cases, P values <0.05 were considered significant. 
Treatment effects on seasonal CO2 uptake were calculated according to the area 
under the vegetational curves of Pn. 
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3. RESULTS AND DISCUSSION 

3.1 Treatment effects on  
leaf-level photosynthetic parameters 

Treatment effects on photosynthetic parameters of Populus tremuloides clones 
followed the already known pattern for different species with different tolerance 
to ozone. Elevated [CO2] on average increased light-saturated net photo-
synthesis (Pn) by 33% in Clone 42E and by 46% in Clone 271 (P < 0.001,  
Fig. 1), reduced stomatal conductance (gs) by 21% in Clone 42E and by 16% in 
Clone 271 (P < 0.001, Fig. 1) and increased leaf chlorophyll content (P < 0.001, 
Fig. 3 in I) compared to the control treatment. Elevated [O3] decreased Pn by 
21% (P = 0.03) and gs by 12% (P = 0.03) in ozone sensitive Clone 42E (Fig. 1). 
In Clone 271, we found a slight but non-significant decrease in Pn and no 
change in gs (Fig. 1). Leaf chlorophyll content decreased by 14% (P < 0.001) 
for both clones under elevated [O3] compared to the control (Fig. 3 in I).  
 
 

      
Figure 1. Light-saturated net photosynthesis (Pn) and stomatal conductance (gs) in 
aspen Clones 42E and 271 exposed to elevated [CO2] and/or [O3]. Measurements were 
taken in June, July and August, 2005, between 9:00 and 10:00 h at the Aspen FACE 
site. Data shown are means ± SE (n = 27, ANOVA).  
 
 
It has been previously shown that Populus species in general are often found to 
be the most sensitive angiosperms impacted by ozone, with an average 
reduction in Pn of 26% (Wittig et al. 2007) and an average reduction in total 
biomass of 22% (Wittig et al. 2009). In contrast, Häikiö et al. 2007, 2009 did 
not find very strong evidence of the ozone sensitivity of Populus species in a 
short-term experiment, but the concentration of O3 was relatively low in this 
study compared to other studies. In the combination treatment, photosynthetic 
rates remained about similar to the rates in the elevated [CO2] treatment. Pn 
increased ~ 32% in Clone 42E and ~ 50% in Clone 271 compared to the control 
(P < 0.05), Fig. 1. Leaf chlorophyll content exhibited a slight (4–5%) but signi-
ficant (P < 0.04) decrease under elevated [CO2+O3] in both clones, but this 
decrease was smaller than that in the elevated [O3] treatment (Fig. 3 in I). 
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Stomatal conductance was reduced by 29% in Clone 42E and by 16% in Clone 
271 (P < 0.05, Fig. 1).  

The magnitude of the effect of elevated [CO2] and/or [O3] on Pn varies con-
siderably between studies. It has been shown in many experimental studies that 
C3 photosynthesis responds strongly to CO2 concentration (Bernacci et al. 2003, 
Karnosky et al. 2003A, 2005, Ainsworth & Rogers 2007, Calfapietra et al. 
2008, Lindroth et al. 2010, Ellsworth et al. 2012). For example, a meta-analytic 
review, where data were averaged across all FACE experiments, has shown a 
47% increase in Pn at elevated [CO2] (Ainsworth and Long 2004). However, 
individual studies from Aspen FACE with various Populus genotypes have 
shown 25–73% enhanced Pn (Noormets et al. 2001A, Takeuchi et al. 2001, 
Karnosky et al. 2003A, Sharma et al. 2003, Ellsworth et al. 2004, Calfapietra et 
al. 2008, Papers I, II, IV) under elevated [CO2]. More specifically, 33–73% 
increments in Pn for Clone 42E and 33–52% increments in Pn for Clone 271 
under elevated [CO2] were documented (Calfapietra et al. 2008, Papers I, II, 
IV). Elevated [O3] has been shown to decrease Pn from –7% to  
–46% for Clone 42E and from no change to -40% for Clone 271 (Calfapietra et 
al. 2008, Papers I, II and IV). Results from Aspen FACE have also shown that 
the Pn under the combined treatment is either similar to control values or shows 
up to 58% increase in Pn (Noormets et al. 2001A, Karnosky et al. 2003B, 
Sharma et al. 2003, Calfapietra et al. 2008, Noormets et al. 2010, Papers I, II, 
IV). Together, we can see that there is huge variability in the effects of CO2 and 
O3 on Pn. In the current thesis we will search for factors and processes that  
can change the sensitivity of Pn to long-term elevation of CO2 and/or O3 
concentrations.  

 
 
3.2 Does environmental stress modify the responses  

of elevated [CO2] and/or [O3] on Pn and gs? 

To study whether the relative effects of elevated [CO2] and/or [O3] on Pn and gs 
are changing under drought and high-temperature stress, we compared the 
differences in Pn, gs and in the daily sum of absorbed CO2 (Pnsum, g CO2 m

–2) 
between treatments in days with and without stress. As gs is a good indicator of 
drought stress, the data were separated into two groups: data on days when daily 
average gs > 0.15 mol m–2 s–1 was referred to as data from unstressed trees and 
data on days when daily average gs < 0.15 mol m–2 s–1 was referred to as data 
from stressed trees (I).  
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Figure 2. Relative difference of light-saturated net photosynthesis (Pn), absorbed CO2 
(Pnsum) and stomatal conductance (gs) measured under elevated [CO2] and/or [O3] from 
control treatment in aspen Clones 42E and 271. Percentages were calculated from 
measurements taken in June, July and August 2005. Pn and gs were measured between 
9:00–10:00 h, Pnsum was calculated as summary CO2 uptake between 9:00–17:00. Plants 
measured on days when daily average gs was below 0.15 mol m–2 s–1 were defined as 
“stressed” and plants with gs above 0.15 mol m–2 s–1 as “unstressed”. A – relative 
difference of Pn and Pnsum in Clone 42E in stressed and in unstressed trees. B – relative 
difference of Pn and Pnsum in Clone 271 in stressed and in unstressed plants. C – relative 
difference of gs in Clone 42E in stressed and in unstressed trees. D - relative difference 
of gs in Clone 271 in stressed and in unstressed trees. 
 
 
We found that exposure to elevated [CO2] alone or combined with elevated [O3] 
results in a greater relative impact on Pn and Pnsum in plants exposed to stress, at 
least for stresses that reduce gs (drought, high temperature), Fig. 2A,B. Simi-
larly, the relative reduction in gs under elevated [CO2] and combined treatment 
was more pronounced in stressed trees compared to unstressed trees (Fig. 
2C,D). The drought enhancement of the effect of CO2 on Pn is in agreement 
with earlier predictions that greater photosynthetic enhancement by elevated 
[CO2] is expected under dry conditions compared to wet conditions (Gunderson 
et al. 2002, Ainsworth & Long 2004, Kirchbaum 2004, Nowak et al. 2004, 
Ellsworth et al. 2012). These predictions are based on the studies of several 
authors who have reported a greater relative enhancement due to elevated CO2 
concentrations during drought (Dixon et al. 1995, Scarascia-Mugnozza et al. 
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1996) or in elevated temperatures (Kellomäki & Wang 1996). Some authors 
have, however, reported reduced enhancement during drought (Ellsworth 1999). 
One explanation for more pronounced relative responses in Pn is that drier 
conditions will shift the operational set-point for plant gas exchange to the more 
responsive part of the photosynthetic CO2 response curve (e.g., the initial slope 
region of A/Ci curve), Nowak et al. 2004, Ellsworth et al. 2012. This expla-
nation can be valid in cases where the saturating value of the A/Ci curve itself 
does not drop significantly under elevated [CO2]. It is more complicated to 
analyze the relative differences in Pn when the saturation value of the A/Ci 
curve and Vcmax are decreasing, which is probably the case in studies where a 
decreased CO2 effect under drought conditions was documented (Ellsworth 
1999). However, there is also an explanation based on the strong temperature × 
CO2 interaction (Kirchbaum et al. 2004). Rubisco can react either with CO2, or 
with O2, with CO2 being released (Kirchbaum et al. 2004, Farquhar et al. 1980, 
Farquhar and von Caemmerer 1982). The relative reaction rates with O2 and 
CO2 depend on the relative concentrations of the two gases at the enzyme sites 
and on temperature, with higher temperatures favoring reactions with O2 
(Kirchbaum et al. 2004). This causes photosynthesis to be more under-saturated 
with CO2 at higher temperatures, so that relative responses to increasing CO2 
concentration increase with temperature (Kirchbaum et al. 2004). Both 
explanations may be valid in Aspen FACE, where both drought and high 
temperature occurred.  

More pronounced relative reductions in gs under elevated [CO2] alone and 
combined with elevated [O3] were documented in stressed trees (Fig. 2C,D). 
The recalculation and meta-analysis of data of several studies (Curtis 1996, 
Saxe et al. 1998, Medlyn et al. 2001) also showed the greater relative effect of 
CO2 on gs under stress conditions for several European tree species (Medlyn et 
al. 2001). The negative effect of CO2 on gs can be partly mediated by vapor 
pressure difference between leaf and air (VPDL): VPDL was higher in stress 
conditions, and differences in VPDL correlated with differences in gs (R

2= 0.6, 
p<0.001, I). 

We observed a positive effect of elevated [O3] on Pn (5–13% increments) 
and Pnsum (4–33% increments) in stressed trees, but a typical negative effect in 
unstressed trees (Fig. 2A,B). Elevated [O3] decreased gs similarly in stressed 
and unstressed trees in Clone 42E, but in Clone 271 the effect of ozone on gs 
changed from negative to positive (Fig. 2C,D). Periods of high ozone are 
generally associated with hot, dry weather that reduces gs and therefore can 
offset [O3] impact (Ollinger et al. 1997, Wittig et al. 2009). Drought-driven 
reduced O3 impact on Pn has also been reported for adult beech, silver birch and 
European aspen trees (Matyssek et al. 2010, Maenpaa et al. 2011). Other results 
of the interaction between ozone and abiotic stress effects on Pn are not so clear 
and seem to depend on O3 concentrations used in experiments. For example, the 
study comparing the response of Pn in trees grown at ambient background [O3] 
(44ppb) with Pn in trees grown under elevated [O3] (81 ppb) found no 
significant effect of additional treatment (drought, high temperature) on Pn nor 
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gs. But when the response of Pn in elevated [O3] (78ppb) was compared to Pn in 
charcoal-filtered controls, the negative effect of elevated [O3] on Pn and gs was 
ameliorated by drought (Wittig et al. 2007). Growth concentrations in Aspen 
FACE were relatively low (average ambient [O3] was 37 ppb and average 
elevated [O3] was 53 ppb). The lower ozone concentrations compared to 
Wittig’s group study, but also differences in tree age (Coleman et al. 1995A,B, 
Noormets et al. 2010) can explain the different results. However, our results 
showed that the negative effect of elevated [O3] on Pn and Pnsum was 
ameliorated by drought and high temperature stress and this was likely caused 
by reduced gs and O3 uptake in stressed trees (Fig. 2).  

 
 

3.3 Do treatment effects change during the day?  

Under all treatments, the highest light-saturated net photosynthesis and stomatal 
conductance was found in the morning, between 9:00 and 10:00 h (Fig. 3), 
when environmental conditions were less limiting to leaf gas exchange, relative 
to the rest of the day (vapor pressure difference between leaf and air, VPDL and 
leaf temperature, TL were lower in the morning than in the afternoon, Fig. 1 in 
I). Some diurnal studies with other species have observed peak values of Pn at 
different times (Singsaas et al. 2000, Špunda et al. 2005, Ribeiro et al. 2009). 
For example, Singsaas et al. 2000 found that Pn on leaves of sweetgum peaked 
at 12:00 h and then decreased. It is likely that the peak value of Pn and the time 
of its achievement is different for each field site, year and species, and must be 
evaluated on a case-by-case basis.  
 
 

 
 

Figure 3. Example set of measured diurnal courses of light-saturated net photosynthesis 
(Pn) and stomatal conductance (gs) for Clone 42E in days with no environmental stress 
(daily average gs > 0.15 mol m–2 s–1). Measurements were taken six times a day through-
out the growing seasons of 2004 and 2005. Data points are means ±SE.  

 
 
We observed a decreasing pattern in Pn after midday, with some recovery in the 
afternoon between 14:00 and 15:00 h in some (but not most) days, which were 
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accompanied by trends in gs (Fig. 3). The similar diurnal patterns of Pn and gs 
suggest that both processes are tightly coupled and dependent: the high 
photosynthetic performance in the morning was supported by high stomatal 
conductance. However, absolute values of all parameters varied with daily 
climatic conditions but the diurnal patterns were qualitatively similar on all days 
and for both clones. Pn and gs values of stressed and unstressed plants did not 
differ significantly in the morning hours, but soon these values started to 
decrease in stressed plants (Fig. 2B,D in I). 

The changes in both gs and maximum carboxylation efficiency (Vcmax) 
together probably caused a significant decline in Pn in the afternoon (I). Ac-
cording to Singsaas et al. 2000, Pn can decrease by as much as 40–60% during 
the day as a result of varying environmental factors. Aspen clones exhibited 25–
33% diurnal depression in Pn after 10:00 h. Overall, VPDL remained the most 
significant environmental influence, explaining more of the variation than either 
leaf temperature or leaf water potential (Table 1 in I). Our findings suggest that 
increasing VPDL in the afternoon caused the decreasing trend of gs during the 
day (P < 0.001). Similar results with different species have been reported before 
by Koch et al. 1994 (lowland rain forest canopy), Špunda et al. 2005 (spruce 
trees), Ribeiro et al. 2009 (sweet orange trees). However, we cannot exclude the 
effects of higher TL on gs in the afternoon as it explained the additional portion 
(R2 = 0.2, P < 0.001) of the variation in gs, although R2 for correlation of Δgs/gs 
and ΔTL/TL was low (Table 1 in I). This probably indicates that increased 
transpiration, not the direct effect of temperature, was causing the stomatal 
closure. In addition, we found significant changes in Vcmax between mid-
morning and afternoon in both clones, with Vcmax often lower in the afternoon 
(Fig. 5 in I). These findings are in agreement with Singsaas et al. 2000, who has 
shown that Vcmax in leaves of Liquidambar styraciflua decreased throughout the 
day. Others have shown no significant changes in Vcmax between mid-morning 
and afternoon (Ribeiro et al. 2009). However, the afternoon change in Pn was 
probably not caused only by stomatal closure, as intercellular [CO2] (Ci) 
correlated with the ratio of Δgs/gs and ΔPn/Pn (R2 = 0.7, P < 0.001) better than 
with Δgs/gs and ΔPn/Pn singly (Table 1 in I). During the afternoon, Pn and gs 
declined together in a coordinated way, which most likely allowed Ci to remain 
relatively constant.  

Leaf water potential (ΨL) was more negative in the afternoon than in the 
morning (especially pronounced in stressed trees), indicating higher evaporative 
demand in the afternoon (Fig. 2E,F in I). More negative ΨL is commonly found 
when studying diurnal dynamics of gas exchange (Singsaas et al. 2001, Ribeiro 
et al. 2009) and ΨL was inversely related to the patterns of TL and VPDL (Koch 
et al. 1994). We found slight but significant correlation between ΔPn/Pn and 
ΔΨL/ΨL (R2 = 0.1, P = 0.036), therefore, we cannot exclude the possibility that 
the low leaf water potential initiated the reduction of Pn (Table 1 in I).  

In unstressed trees, we found a significant impact (P < 0.001) of the 
combined treatment on the slope of the diurnal decline of Pn compared to the 
control, with the effect more pronounced in Clone 42E than in Clone 271 (Fig. 
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6A,B in I). We also found a slight but significant impact (P=0.02) of the 
elevated [CO2] treatment on the slope of the diurnal decline of Pn and the effect 
was more pronounced in Clone 271 (Fig. 6A,B in I). The trend to lower 
increments in the daily sum of absorbed CO2, Pnsum, than in morning values of 
Pn (Fig. 2A,B) are in agreement with the more significant diurnal decline of Pn 
under elevated [CO2] alone and combined with elevated [O3]. The more 
significant diurnal decrease in Pn under elevated [CO2+O3] was unrelated to 
more severe stress, as stomata showed the lowest decrease under this treatment 
(Fig. 6C,D in I), and the relative difference of Pn from control did not increase 
(as it happens under stress), but decreased in the afternoon. It is possible that the 
afternoon drop of Pn is caused by down-regulation of Pn in conditions of 
reduced growth and accumulation of unused photosynthetic assimilates in 
leaves (Ainsworth & Rogers 2007). We propose that the rapid reduction in Pn 
under the combined treatment was related to decreasing Vcmax and Rubisco 
activity in the afternoon (Fig. 5 in I). Hence, different results can be found in 
literature. Singsaas et al. 2000 studied three deciduous species (sweetgum, 
eastern redbud and red maple) and found that the overall pattern of Pn 
throughout the day was not significantly affected by the elevated [CO2] 
treatment. However, Špunda et al. 2005 found that elevated [CO2] treatment led 
to the diminution of midday photosynthesis depression, which was predo-
minantly caused by stomatal closure and the subsequent decrease in Ci. 

Contrary to our expectations, we did not find a significant impact of elevated 
[O3] on the overall pattern of Pn (Fig. 6A,B in I), although in Clone 42E the 
negative impact of O3 tended to decrease in the afternoon (Fig. 6A in I). We 
expected to see decreased photosynthetic sensitivity to O3 in the afternoon, 
when many stress factors, such as higher VPDL, that will lead to decreased gs 

occur (Paper I), and because we have shown a less negative effect of elevated 
[O3] on Pn in stressed trees, compared to unstressed trees (Fig. 2A,B). However, 
this expectation was not confirmed. Stomata in Clone 42E exhibited signi-
ficantly slower afternoon closure (P < 0.001) under elevated [O3], being less 
sensitive to ozone in afternoon hours. For Clone 271, the sensitivity of gs to 
ozone decreased in the afternoon only under the combined treatment (P < 0.001, 
Fig. 6C,D in I).  

 
 

3.4 Do the effects of elevated [CO2] and/or [O3] on  
Pn change during the seasonal course? 

Pn measured over the growing season was highest in mid-season (June-August), 
when stomatal conductance was higher, and declined in late-season (September-
October) as the leaf aged (I–III). Such age-related changes in Pn are common in 
a variety of plants, including deciduous trees (Häikio et al. 2007, 2009, Niine-
mets 2010, Noormets et al. 2010). Stomatal conductance followed the same 
seasonal pattern as did Pn (II). Leaf chlorophyll content exhibited almost 
constant values throughout the summer and declined in late-season (III). 
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Generally, elevated [CO2] delayed senescence of leaves in autumn and Pn was 
maintained for longer, whereas elevated [O3] accelerated leaf senescence (II, 
III) in agreement with our hypothesis and in accordance with earlier findings 
with Populus (Karnosky et al. 2003B, Sharma et al. 2003, Tricker et al. 2004, 
Kontunen-Soppela et al. 2010).  

We compared treatment effects in summer and autumn of 2005 on the basis 
of seasonally summarized CO2 uptake (Fig. 4) and found higher late-season 
CO2 effect on carbon uptake (60% in autumn compared to 37% in summer) in 
Clone 42E. In Clone 271, however, the increment in carbon uptake was more 
equally distributed throughout the growing season of 2005 under elevated [CO2] 
(Fig. 4). It is generally assumed that CO2 response is highest during the middle 
of the growing season, because sink activity is highest during that period 
(Riikonen et al. 2008), however, this was not evident from our results. Similar 
seasonal differences in CO2 effects were found for Liquidambar styraciflua, 
studied in the Duke Forest FACE facility (Herrick and Tomas 2003). Results 
from Paper I have shown that the effect of CO2 was more pronounced on days 
with environmental stress (valid for at least those stresses that reduce gs). The 
higher late-season CO2 effect on carbon uptake in this study might also be 
explained through stressors that appear in the late season, when absolute rates in 
gs are low (Fig. 3 in II).  

 

 
 
 
Figure 4. Relative treatment (elevated [CO2], [O3] and [CO2+O3]) effects on seasonally 
summarized CO2 uptake in 2005. Seasons were defined as summer (15.06–29.08) and 
autumn (29.08–07.10). Seasonal CO2 uptake in different treatments was calculated from 
data presented in Paper II, figure 2 (as area under seasonal curve of Pn). 
 
 
When both CO2 and O3 concentrations were elevated, then the negative effect of 
elevated [O3] prevailed over the positive effect of elevated [CO2] in autumn, but 
not in summer (Fig. 4) in both clones. The effect was especially pronounced in 
O3-sensitive Clone 42E, in which the positive effect of CO2 almost disappeared 
in autumn (Fig. 4). This result is in agreement with Noormets et al 2010, who 
demonstrated that the magnitude of the effect of elevated [CO2+O3] on all 
photosynthetic parameters increased with time.  

42E 271
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Under elevated [O3], the response in summary CO2 uptake was severely 
affected in autumn (23–41% decreases in seasonally summarized Pn) compared 
to summer (0–16% decreases in seasonally summarized Pn), and these 
decreases were especially pronounced in the O3-sensitive clone (Fig. 4). In 
agreement with our study, Noormets et al. 2010 found that the O3 effect on 
aspen Pn and chlorophyll content grew progressively with time, especially in 
the O3-sensitive clone. Furthermore, an open top chamber experiment with 
aspen Clones 216, 271 and 259, (Coleman et al. 1995B) and a FACE experi-
ment with soybean (Morgan et al. 2004) have demonstrated that leaves grown in 
elevated [O3] show damage only after prolonged exposure in older leaves. 
Similarly, Calfapietra et al. 2008 did not find significant reduction in Pn in 
Clone 42E in elevated [O3] in 2006 most likely because the campaign was 
carried out quite early in the season. Ozone exposure is suppressing leaf 
chlorphyll content (Chl) and the effect on Chl increases progressively with time 
(Noormets et al. 2010). Hence, degradation of chlorophyll leads to generation of 
ROS that are normally removed by the constitutive antioxidative system in the 
apoplast and symplast of leaves (Häikiö et al. 2009, Foyer & Noctor 2005). In 
senescing leaves, the loss of antioxidative enzymes adds to the increase in ROS 
due to protein breakdown (Häikiö et al. 2009, Zimmermann & Zentgraf 2005) 
leading to further damage to the photosynthetic apparatus. However, there are 
also results showing that leaves are most sensitive to O3 after full expansion 
early in the growing season (Häikiö et al. 2007, 2009). Häikiö et al. 2007, 2009 
have demonstrated that the deleterious impact of ozone on photosynthesis in 
native European aspen (Populus tremula L.) and hybrid aspen (P. tremula L. x 
Populus tremuloides Michx) was more evident in young leaves (during the early 
growing season) and diminished as leaves aged. One explanation for differences 
in O3 sensitivity is the different effect of ozone on gs, as less ozone is entering 
leaves when stomata are more closed. 

 
 

3.5 Do the effects of elevated [CO2] and/or [O3] on  
Pn change during successive years? 

We observed significant enhancement of Pn under elevated [CO2] and 
[CO2+O3] exposure in both clones of P. tremuloides in all study years from 
2004 to 2008 (IV, Fig. 5). Under elevated [CO2], the average increments in Pn 
were between 55% in Clone 42E and 56% in Clone 271, which were even 
higher than the average 47% increments suggested for trees by Ainsworth & 
Rogers 2007. However, in 1998–1999, results from Aspen FACE have shown 
that the clonal average of Pn increased only by approximately 33% (Karnosky 
et al. 1999, 2003B) under elevated [CO2]. Therefore, the effect on Pn has 
increased rather than decreased in time. Our findings are in accordance with leaf 
responses from the Duke FACE experiment (Ellsworth et al. 2012), where 
sustained enhancement of Pn over ten years under elevated [CO2] was found in 
a Pinus taeda canopy. At the beginning of the experiment, elevated [CO2+O3] 
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did not affect Pn and the rates were almost similar to the control (Karnosky et 
al. 2003B). Hence, we have seen on average 35% (Clone 42E) and 43% (Clone 
271) increments in Pn under combined treatment in this study (Fig. 5). How-
ever, the relative increase in Pn was less pronounced under elevated [CO2+O3] 
than under elevated [CO2] in ozone-sensitive Clone 42E, in which Pn was also 
significantly reduced under elevated [O3] treatment, but not in ozone-tolerant 
Clone 271, in which the effect of ozone was not significant at both levels of 
[CO2] (IV, Fig. 5). Average gs did not change under elevated [CO2] and 
[CO2+O3] in some years, while in some years gs increased and in other years 
decreased, compared to the control treatment (IV).  

 
Figure 5. Photosynthetic sensitivity to elevated [CO2], [O3] and [CO2+O3] for the 
growing seasons 2004 through 2008 in aspen Clones 42E and 271, measured at the 
Aspen FACE site. Data are mean values during growing season ± standard errors. 
Relative changes of Pn were calculated from the data of Paper IV, Figure 1.  
 
 
Rogers et al. 2004 reported that photosynthetic capacity can be lost during 
certain conditions under elevated [CO2]. We observed a lower CO2 effect during 
some growing seasons and a higher effect in other seasons. In Clone 42E (but 
not in Clone 271), the increment in Pn correlated negatively with the Pn in the 
control (R2=0.7, data not shown). High values of Pn at elevated [CO2] can be 
down-regulated because of sink limitation and excess of carbohydrates 
(Ainsworth & Rogers 2007). Poplars grown at elevated [CO2] have high capa-
city for starch synthesis and carbon export (Davey et al. 2006). These traits 
usually enable poplars to maintain high photosynthetic rates at elevated [CO2] 
and avoid a major source-sink imbalance that could lead to a deduction in the 
potential for carbon acquisition (Ainsworth & Rogers 2007, Davey et al. 2006). 
It is possible that the mentioned imbalance occurred in Clone 42E, but not in the 
best-growing Clone 271, as the increment of Pn due to elevated [CO2] did not 
decrease with increasing Pn in the latter case (data not shown). On the other 
hand, environmental stresses such as drought and temperature differences most 
likely explain within-experiment variability (Gunderson et al. 2002, Kirchbaum 
et al. 2004, Ainsworth & Roger 2007, Ellsworth et al. 2012). We have shown 
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that exposure to high CO2 alone or combined with high O3 would have a greater 
relative impact on Pn in plants exposed to stresses that reduce gs, seen in Fig. 4. 
But the average value of gs indicated slight drought stress only for Clone 42E in 
2004, when gs was 0,12 mol m–2 s–1 (data not shown) and the relative increase in 
Pn under elevated [CO2] was really very high (Fig. 5).  

Our results indicate that both aspen clones have consistently sustained or 
even increased their enhanced photosynthetic rate and photosynthetic capacity 
under elevated [CO2] and there is no indication of long-term photosynthetic 
down-regulation (IV). This was also true for the elevated [CO2+O3] treatment, 
which did not show any evidence of long-term negative acclimation in Pn 
during the growing seasons 2004 through 2008, and also compared to 1999 
(Karnosky et al. 2003B). This finding is in disagreement with Ainsworth & 
Rogers 2007, who showed in their meta-analysis that all functional groups 
acclimated to elevated [CO2], although trees had the smallest reduction in Vcmax. 
Photosynthetic down-regulation has frequently been related to plant N status, as 
N-containing amines are needed for synthesizing and maintaining photo-
synthetic proteins (Ellsworth et al. 2004, Bloom et al. 2010). Photosynthetic 
down-regulation in elevated [CO2] has been reported to be more pronounced 
when plants are N-limited, and to be absent when N supply is adequate 
(Ellsworth et al. 2004, 2012). Soil fertility levels at the Aspen FACE site were 
within the range of natural aspen forest soil fertility (Karnosky et al. 2003B), 
but sufficient to ensure that tree growth was not limited by nutrient availability. 
Long-term stomatal acclimation was also not found under elevated [CO2] or 
elevated [CO2+O3] treatment (IV). 

On a long-term basis, elevated [O3] has consistently and significantly 
reduced Pn, without any significant trend in this reduction (IV, Fig. 5). The 
reduction in Pn in ozone-sensitive Clone 42E was 21% (averaged in 2004–
2008), which is similar to the reduction in Pn in 1999 (Karnosky et al. 2003B). 
In ozone-tolerant Clone 271, the average reduction in Pn in the measured years 
was 10% (Fig. 5). There was no evidence of positive photosynthetic acclimation 
(up-regulation of photosynthetic variables), but roughly similar damage to the 
photosynthetic apparatus by the reactive oxygen species probably occurred in 
all years (IV). The relative decrease in Pn varied annually, but the absolute 
change in Pn under elevated [O3] correlated negatively with Pn in the control 
(R2=0.6 for Clone 42E and R2=0.5 for Clone 271, data not shown) and turned 
positive at low values of Pn (and gs). This is in agreement with our findings that 
stressful conditions can protect trees from ozone (Fig. 2). Stomatal conductance 
increased in some seasons, decreased in others, and there were some seasons 
with no change compared to the control treatment, indicating that there was no 
evidence of long-term stomatal acclimation (IV).  
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4. CONCLUSIONS 

Our findings demonstrate that the photosynthetic responses of Populus tremu-
loides to increasing [CO2] and/or [O3] are changing in diurnal, seasonal and 
interannual scales and depend on environmental constraints such as drought and 
high temperature. We have demonstrated that drought and high temperature 
stress can protect trees from ozone, and the effect of elevated [CO2] overrode 
the effect of O3 on photosynthesis in the case of the combined action of both 
gases. These findings highlight the importance of multiple factors in deter-
mining the future responses of trees to climate change. The key conclusion of 
this study is that exposure to combined factors can influence trees even more 
than exposure to a single factor. As changes in photosynthesis and stomatal 
conductance are likely to affect both the ability of plants to sequester carbon, 
and plant water use, these changes can affect ecosystem carbon- and hydro-
logical cycles. Consequently, interactions discovered in this thesis should be 
taken into account in models that predict changes in productivity of forest 
ecosystems and the feed-backs from these changes on climate. These results 
also provide novel evidence that the [CO2] effect has been increasing rather than 
decreasing in time, but the negative ozone effect has remained the same over the 
11 years of the study. 
 
Main results and conclusions in more detail: 
1.  Elevated [CO2] and elevated [CO2+O3] increased and elevated [O3] 

decreased significantly the light-saturated net photosynthesis (Pn) in both P. 
tremuloides clones compared to ambient concentrations, with the CO2 effect 
being more pronounced in the ozone-tolerant and the O3 effect in the ozone-
sensitive clone. Stomatal conductance (gs) decreased in both clones under 
elevated [CO2] and [CO2+O3] treatments, but there was no change under 
elevated [O3]. 

2.  Forest trees are exposed to a variety of single and combined stresses diffe-
ring in strength and duration throughout their lifetime, and many of the stress 
factors strongly interact. This study adds additional evidence that drought 
and high temperature stress interact strongly with the effects of elevated 
[CO2] and/or [O3] and modify the primary impact of those gases on Pn as 
well as on gs. We demonstrated that drought and high temperature increased 
the relative impact of elevated [CO2] and decreased the relative impact of 
elevated [O3] on Pn in P. tremuloides, predicting CO2 effects to prevail over 
O3 effects in the case of the combined action of both gases in stress 
conditions.  

3. We have demonstrated that P. tremuloides exhibited a significant afternoon 
reduction (25–33%) in Pn. This reduction in Pn was related to low gs, which 
was a consequence of high vapor pressure difference between leaf and air 
(VPDL), but also of a reduction in maximum carboxylation efficiency 
(Vcmax). Leaf water potential had only a limited influence on the diurnal 
pattern of Pn between 9:00 and 17:00.  
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4.  We found that elevated [CO2+O3] resulted in more pronounced afternoon 
decline in Pn compared to ambient concentrations. This decline was un-
related to decreased stomatal conductance, but rather related to decreased 
Vcmax and Rubisco activity. Growth at elevated [CO2] and elevated [O3] had 
only little effect on the afternoon decline in Pn.  

5.  Elevated CO2 and O3 concentrations altered Pn in a similar way throughout 
the summer, but in autumn, CO2 can delay and O3 can accelerate senescence 
of leaves. We found that the relative effects of elevated [CO2] and/or [O3] on 
Pn were generally more pronounced in autumn compared to summer. The O3 
effect on Pn increased progressively during the late season under both 
ambient and elevated CO2 concentrations, especially in the O3-sensitive 
clone.  

6. This study showed a significant interannual variation in Pn under all treat-
ment. Elevated [CO2] alone or combined with elevated [O3] increased Pn in 
all years (2004–2008) of the study, whereas the [CO2] effect has been 
increasing rather than decreasing in time compared to the first years (1998–
1999) of the Aspen FACE experiment. No indication of Pn down-regulation 
by elevated [CO2] or Pn up-regulation by elevated [O3] was found after 11 
years of fumigation.  
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SUMMARY IN ESTONIAN 

Kõrgendatud CO2 ja O3 kontsentratsioonide mõju  
fotosünteesi parameetritele ameerika haava lehestikus:  

päevased, sesoonsed ja aastatevahelised erinevused 
 

Globaalse soojenemisega kaasneb süsinikdioksiidi kontsentratsiooni ([CO2]) ja 
osooni kontsentratsiooni ([O3]) suurenemine maalähedases atmosfäärikihis. CO2 
kontsentratsioon on industriaalajastueelse ajaga võrreldes suurenenud ca 40%. 
Osooni kontsentratsioonid on viimase 100 aasta vältel kahekordistunud. Käes-
oleval sajandil prognoositakse jätkuvat CO2 ja O3 kontsentratsioonide kasvu. Li-
saks sellele prognoositakse kliima muutumist heitlikumaks ning esineda võib nii 
põua- kui liigniiskuse perioode. Muutused maalähedases atmosfäärikihis võivad 
otseselt mõjutada taimede kasvu, mis omakorda avaldab tagasimõju atmosfääris 
toimuvatele protsessidele.  

Varasema kirjanduse põhjal on teada, et kõrgem [CO2] üldjuhul soodustab 
taimede, sealhulgas puude kasvu, kuna [CO2] tõus põhjustab netofotosünteesi 
(Pn) suurenemist. Kõrged osooni kontsentratsioonid on puude kasvu ja metsa 
produktsiooni seisukohalt aga kahjulikud, kuna osoon on tugev oksüdeerija, mis 
kahjustab fotosünteesiaparaati ning põhjustab Pn vähenemist. Pn väärtus näitab, 
kui palju lehe pinnaühik ajaühikus süsihappegaasi seob ning lehestiku pinnaga 
korrutatult iseloomustab see süsiniku hulka, mida taim ajaühikus kasvuks 
kasutada saab. 

Suurenevate CO2 ja/või O3 kontsentratsioonide mõju taimede fotosünteesile 
ja kasvule ei pruugi olla erinevates tingimustes ühesugune. Tundlikkus nendele 
gaasidele võib erineda liigiti ja perekonniti ning ümbritsevad keskkonnatingi-
mused võivad samuti reaktsioonide ulatust muuta. Suurenevate CO2 ja O3 
kontsentratsioonide toimega samaaegselt mõjutavad taimi veel mitmed muud 
keskkonnategurid, kusjuures üks faktor võib tugevdada või vähendada teise 
faktori mõju. CO2 ja/või O3 mõju ulatus võib varieeruda ka päeva lõikes ning 
vegetatsiooniperioodi vältel. Kuna taimedel on võime keskkonnamuutustega 
kohaneda, siis võib juhtuda, et CO2 ja O3 esialgu esinev tugev mõju pikaajalises 
perspektiivis hoopis kaob. Erinevate stressifaktorite koosmõju taimedele on 
suhteliselt vähe uuritud ja seda tööd alustades ei olnud teada, kas ja kuidas Pn 
reaktsioon suurenevatele CO2 ja/või O3 kontsentratsioonidele erinevates tingi-
mustes muutub. Samas on see aga oluline metsa produktsiooni täpsemaks prog-
noosimiseks. 

Käesoleva doktoritöö üldine eesmärk oli välja selgitada, kuidas mõjutavad 
kõrgendatud CO2 ja/või O3 kontsentratsioonid kiirekasvuliste lehtpuude foto-
sünteesi iseloomustavaid parameetreid ning millest need mõjud sõltuvad. 

 
Töö kitsamad eesmärgid olid järgmised. 
1. Uurida, kuidas mõjutavad kõrgendatud CO2 ja/või O3 kontsentratsioonid 

ameerika haava (Populus tremuloides Michx.) osoonitundliku klooni (42E) 
ja osoonile tolerantse klooni (271) netofotosünteesi (Pn) ja õhulõhede juhti-
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vust (gs) pikaajalises välieksperimendis Aspen FACE (free-air carbon 
dioxide enrichment), I. 

2. Analüüsida, kuidas muudab keskkonnastress kõrgendatud CO2 ja/või O3 
kontsentratsiooni mõju ulatust netofotosünteesile  ja õhulõhede juhtivusele, 
I. 

3. Uurida, kuidas Pn ja gs tundlikkus kõrgendatud CO2 ja/või O3 kontsentrat-
sioonide suhtes muutub päeva jooksul, sesoonselt ja järjestikustel aastatel (I–
IV). 

4. Analüüsida CO2 ja/või O3 tundlikkuse muutusi erinevas ajaskaalas, nii stressi 
mõju kui ka kohanemise kontekstis (I, IV). 

 
Püstitatud küsimustele vastuste leidmiseks mõõdeti lehtede gaasivahetust Aspen 
FACE´i katsealal (Rhinelander, WI, USA). Aspen FACE´i katsealal suurendati 
õhu süsinikdioksiidi ja osooni kontsentratsioone, imiteerides nii looduslikes 
metsakooslustes toimuvaid muutusi. Ameerika haava erinevate kloonide pistok-
sad istutati katseala viljakasse mulda 1997. a. Taimi fumigeeriti iga aasta ve-
getatsiooniperioodil alates 1998. aastast nelja erineva töötlusega: 1) kontroll-
töötlus (ümbritsev [CO2] ja ümbritsev [O3]); 2) kõrgendatud CO2 töötlus (kõr-
gendatud [CO2], ca 560 ppm-i); 3) kõrgendatud O3 töötlus (1,5 x ümbritsev 
[O3]); 4) kombineeritud töötlus (kõrgendatud [CO2] ja kõrgendatud [O3]). Mõõt-
misi tehti päikesele eksponeeritud võrastiku ülaosas ja alati Pn jaoks küllastu-
vatel valguse intensiivsustel (>1000 µmol m–2 s–1). Andmed koguti aastatel 
2004–2008. CO2 ja/või O3 mõjude hindamiseks Pn-i ja gs-i päevastele käikudele 
tehti aastatel 2004 ja 2005 mõõtmisi kuuel korral päevas päikesetõusust 
päikeseloojanguni. Lisaks Pn-i ja gs-i päevastele käikudele mõõdeti ka lehtede 
veepotentsiaali päevaseid käike. Võrastiku ülaosas mõõdeti veel lehtede kloro-
füllisisaldust. Pn sõltuvust intertsellulaarsest CO2-st (A/Ci kõver) mõõdeti nii 
ennelõunal kui pärastlõunal. Stressi mõju hindamiseks võrreldi andmeid 
päevadel, mil keskkonnatingimused kas olid limiteerivad (esines põud või kõrge 
temperatuur) või ei olnud limiteerivad. Et teada saada, kas CO2 ja/või O3 mõjud 
Pn-ile muutuvad vegetatsiooniperioodi vältel, mõõtsime 2004. ja 2005. aastal 
lehtede gaasivahetust suve algusest kuni lehtede märgatava kolletumiseni. 
Selleks, et hinnata, kas vegetatsiooniperioodi Pn ja gs kohanevad pikaajaliste 
CO2 ja/või O3 kontsentratsioonidega, tehti lehe gaasivahetuse mõõtmisi viie 
järjestikuse aasta (2004–2008) suvekuudel.  

Uurimistöö tulemusena selgus, et kontrolltöötlusega võrreldes suurendasid 
kõrgendatud [CO2] ja [CO2+O3] (kombineeritud töötlus) haava kloonide 42E ja 
271 netofotosünteesi, kõrgendatud [O3] põhjustas aga Pn-i vähenemise, võrrel-
duna kontrolltöötlusega. CO2 efekt oli seejuures suurem osoonile tolerantsel 
kloonil (271) ja O3 efekt osoonile tundlikul kloonil (42E). Õhulõhe juhtivus 
vähenes kõrgendatud [CO2] ja [CO2+O3] korral, kuid ei muutunud kõrgendatud 
[O3] tingimustes. Saadud tulemused on kooskõlas varem lehtpuude kohta aval-
datud andmetega.  

Põud ja kõrged temperatuurid muutsid CO2 ja/või osooni poolt põhjustatud 
reaktsioonide ulatust. Kõrgendatud CO2 mõju Pn-le ja gs-le (nii eraldi kui 
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kombineeritult O3-ga) suurenes stressi tingimustes. Põuaperiood ja kõrged tem-
peratuurid vähendasid mõlemal haava kloonil osooni negatiivset toimet foto-
sünteesile. 

Fotosünteesi päevaste käikude analüüs näitas, et pealelõunal vähenes Pn 
hommikusega võrreldes 25–33%, ja seda mitte valguse intensiivsuse muutumise 
tõttu. Pn vähenemise peamine põhjus oli õhulõhede juhtivuse vähenemine, mis 
oli omakorda tingitud suuremast veeauru rõhu defitsiidist (VPDL). Pn vähene-
mine oli osaliselt põhjustatud ka CO2 siduva ensüümi, Rubisco aktiivsuse (ja 
seda iseloomustava parameetri, Vcmax) vähenemisest pärastlõunal. Lehe vee-
potentsiaali muutused seletasid vaid väikese osa Pn-i päevastest muutustest. 

Hindamaks, kas CO2 ja/või O3 kontsentratsioonide mõju ulatus hommikul ja 
õhtupoolikul erineb, võrreldi erinevates töötlustes sirgete tõuse, mis kirjeldasid 
Pn-i ja gs-i langust päeva jooksul. Analüüsi tulemused näitasid, et kõrgendatud 
[CO2] ja [O3] avaldasid üksikult vaid minimaalset mõju. Kõrgendatud [CO2+O3] 
põhjustas aga kontrolltöötlusega võrreldes oluliselt kiirema Pn-i vähenemise, 
mis ei olnud seotud gs-i kiirema vähenemisega, vaid pigem Vcmax-i ja Rubisco 
aktiivsuse vähenemisega õhtupoolikul.  

Vegetatsiooniperioodi vältel tehtud mõõtmiste analüüs näitas, et kõrgenda-
tud [CO2] pikendas lehtede eluiga, kõrgendatud [O3] aga, vastupidi, kiirendas 
lehtede sügisest vananemist. Üldiselt oli CO2 ja/või O3 mõju Pn-ile sügisel suh-
teliselt suurem kui suvel. Kuna valdav osa lehtede gaasivahetuse mõõtmisi 
viiakse läbi taimede kasvuperioodi keskel (suvel), siis CO2 ja/või O3 tegelik 
mõju Pn-le on pigem suurem, kui ainult suviste mõõtmiste põhjal otsustades.  

Käesoleva töö tulemusena selgus, et CO2 positiivne efekt Pn-le on võrreldes 
Aspen FACE´i eksperimendi algusaegadega (1998–1999) pigem kasvanud kui 
kahanenud. Kõrgendatud osooni mõju on aga jäänud 11 aasta jooksul praktili-
selt samasuguseks. 

Kokkuvõtvalt selgus doktoritööst, et ameerika haava Pn ja gs reaktsioonid 
kõrgendatud CO2 ja/või O3 kontsentratsioonidele sarnanesid kvalitatiivselt teiste 
lehtpuude reaktsioonidega. Uudseks tulemuseks saadi, et tundlikkuses kõrgen-
datud CO2 ja/või O3 kontsentratsioonidele esinesid nii päevased, sesoonsed kui 
ka aastatevahelised erinevused. Samuti muutis neid tundlikkusi keskkonnastress 
(põud ja kõrged temperatuurid). Keskkonnastress leevendas osooni negatiivset 
mõju, aga suurendas CO2 positiivset mõju  Pn-ile. Kuna muutused netofoto-
sünteesis ja õhulõhede juhtivuses mõjutavad nii süsiniku sidumist kui vee tarbi-
mist taimede poolt, siis võivad need muutused avaldada märkimisväärset mõju 
kogu ökosüsteemi süsiniku- ja veeringele. Seetõttu tuleks käesolevas doktori-
töös kirjeldatud interaktiivseid mõjusid võtta arvesse ökosüsteemide produkt-
siooni ja aineringet kirjeldavates mudelites.  
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