
DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
45

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
45

PATH PLANNING AND LEARNING
STRATEGIES FOR MOBILE ROBOTS
IN DYNAMIC PARTIALLY UNKNOWN

ENVIRONMENTS

KRISTO HEERO

TARTU UNIVERSITY

P R E S S

Faculty of Mathematics and Computer Science, University of Tartu, Estonia

Dissertation is accepted for the commencement of the degree of Doctor of
Philosophy (PhD) on May 12, 2006, by the Council of the Faculty of
Mathematics and Computer Science, University of Tartu.

Opponent:

Prof. Paolo Fiorini
University of Verona
Verona, Italy

Commencement will take place on June 19, 2006.

ISSN 1024–4212
ISBN 9949–11–307–5 (trükis)
ISBN 9949–11–308–3 (PDF)

Autoriõigus Kristo Heero, 2006

Tartu Ülikooli Kirjastus
www.tyk.ee
Tellimus nr. 252

 5

CONTENTS

LIST OF ORIGINAL PUBLICATIONS... 7

ABSTRACT .. 8

1 INTRODUCTION .. 9
1.1 Motivation.. 9
1.2 Problem Statement... 10

1.2.1 Presumptions.. 10
1.3 Contribution of the Thesis ... 11

2 NAVIGATION IN DYNAMIC PARTIALLY UNKNOWN
ENVIRONMENTS... 12
2.1 World Models and Path Planning .. 12

2.1.1 Topological Maps .. 12
2.1.1.1 Path Planning on Topological Maps .. 13

2.1.2 Metric Maps... 13
2.1.2.1 Path Planning on Metric Maps... 13

2.1.3 Hybrid Approaches .. 15
2.2 Representing Uncertainty .. 16

3 REPEATED TRAVELLING.. 18

4 THE APPROACH .. 19
4.1 Novel Path Generation Algorithm... 20
4.2 Exploration, Learning, and Decision-making.. 21
4.3 Limits... 22

5 EXPERIMENTAL DESIGN .. 23

6 INTRODUCTION TO CONTRIBUTING PUBLICATIONS 25
6.1 Path Selection for Mobile Robots in Dynamic Environments (Paper

Introduction) .. 25
6.2 Robots Find a Better Way: A Learning Method for Mobile Robot

Navigation in Partially Unknown Environments (Paper Introduction) ... 25
6.3 Learning Innovative Routes for Mobile Robots in Dynamic Partially

Unknown Environments (Paper Introduction)... 26
6.4 On the Utility of Exploration on Time-Critical Mobile Robots Missions

(Paper Introduction)... 26
CONCLUSIONS ... 28

 6

REFERENCES .. 30

SISUKOKKUVÕTE.. 34

ACKNOWLEDGEMENTS... 36

APPENDIX A.. 37

APPENDIX B.. 45

APPENDIX C.. 55

APPENDIX D.. 91

APPENDIX E .. 99

APPENDIX F .. 109

APPENDIX G.. 115

 7

LIST OF ORIGINAL PUBLICATIONS

1. K.Heero, U.Puus, J.Willemson. XML based document management in
Estonian legislative system. In Proceedings of the 5th International
Baltic Conference on DB and IS, pages 321-330, Tallinn, Estonia,
June 2002.

2. M.Kruusmaa, J.Willemson, K.Heero. Path Selection for Mobile Robots
in Dynamic Environments. In Proceedings of the 1st European
Conference on Mobile Robots (ECMR’03), pages 113-118,
Radziejowice, Poland, September 2003.

3. K.Heero, J.Willemson, A.Aabloo, M.Kruusmaa. Robots Find a Better
Way: A Learning Method for Mobile Robot Navigation in Partially
Unknown Environments. In Proceedings of the 8th Conference on
Intelligent Autonomous Systems (IAS-8), pages 559-566, Amsterdam,
The Netherlands, March 2004.

4. K.Heero, A.Aabloo, M.Kruusmaa. On The Utility Of Exploration On
Time-Critical Mobile Robots Missions. In Proceedings of the 2nd
European Conference on Mobile Robots (ECMR’05), pages 152-157,
Ancona, Italy, September 2005.

5. K.Heero, A.Aabloo, M.Kruusmaa. Learning Innovative Routes for
Mobile Robots in Dynamic Partially Unknown Environments.
International Journal of Advanced Robotic Systems, 2(3):209-222, 2005.

 8

ABSTRACT

This thesis investigates path planning strategies for mobile robots in large
partially unknown dynamic environments. The aim of this work is to reduce
collision risk and time of path following in cases when robot repeatedly
traverses between predefined target points (e.g. transportation or surveillance
tasks). A novel path selection strategy is examined. The method creates
innovative paths between pre-defined target points and learns to use paths that
are more reliable. This approach is implemented on the research robot Khepera
and verified against the shortest path following by a wave transform algorithm.
Experimental data show that new approach is able to reduce collision risk,
travel time and distance. The robot is also able to learn and adapt quickly in a
changing environment. Test results show that trajectory planned by a wave
transform algorithm is very difficult to predict and control, because even little
unmodelled obstacles can cause a large deviation from the pre-planned path.
The approach used in this thesis makes robot motion more predictable. This
thesis also suggests that the behaviour of the robot depends strongly on the
knowledge about it’s surrounding but not on the path planning strategy used. It
is concluded that in order to optimise travel time, distance and deviation one has
to minimize the occurrence of unknown obstacles since the last one influences
the former parameters. Finally, this thesis addresses the problem of the utility of
exploration on time-critical mobile robot missions. It is argued that in large
environments mission-oriented mobile robot applications can become more
efficient if the exploration strategy considers knowledge already gained and its
applicability during the rest of the mission.

 9

1 INTRODUCTION
Robotics is the science and technology of robots, their design, manufacture, and
application. There are large areas needing further research: robot mapping,
scalable architectures, planning, and world modelling, etc [36, 38].

Navigation is a critical ability for robots that claim to be mobile. It
encompasses the ability of the robot to act based on its knowledge and sensor
values so that it could reach its goal position as efficiently and reliably as
possible. Navigation involves sensing, acting, planning, architecture, hardware,
computational and power efficiencies, etc.

Planning is one obvious aspect of navigation that answers the question: what
is the best way there? Given a map and a goal location, path planning involves
identifying a trajectory that will cause the robot to reach the goal location when
executed. Path planning is a strategic problem-solving competence, as the robot
must decide what to do over the long term to achieve its goals.

This thesis contributes to the area of mobile robotics and path planning in
dynamic partially unknown environments based on the articles added to the
Appendix.

1.1 Motivation
Many mobile robot applications assume repeated traversal between predefined
target points. For example, a mobile robot can be used in industry to transport
details between a store and an assembly line. In military applications the
ammunition transportation is quite usual. Possible working environments are
also harbours, airports, landfills, etc. Also, a mobile robot could be used for
surveillance what implies visiting certain checkpoints on a closed territory.
There are lots of different scenarios where this kind of mobile robot repeated
traversal is needed.

Real-word environments for this kind of mobile robot applications are
complex, large, often unstructured and dynamic by nature. The robot has to
navigate around obstacles that can have an arbitrary size, shape, location, and
appear or disappear after an unknown time period. However, obstacle
avoidance, no matter how good it is, always implies a collision risk due to the
uncertainty in sensor information and motion planning, localization errors,
terrain inequalities or computational imprecision. The robot may harm itself,
slipping into the hole, or getting stuck in jutted constructions, etc. Uncertainty
in the environment can always be hazardous for a mobile robot.

At the same time, mobile robots are expected to be efficient in a sense of
their energy and time consumption. They have to fulfil their mission as fast and

 10

safety as possible. Furthermore, in human inhabited environments safety of
humans and therefore the reliability of the robot are primary.

To navigate successfully, the robot has to acquire a model of the
environment where it is operating. Unfortunately it is impossible to keep the
world model up to date and in accordance with all changes. The robot has
limited recourses and has to struggle with uncertainty caused by changing and
large (partially) unknown environment. On the other hand, the robot has a
mission to complete and therefore it cannot spend all recourses just for
exploration and world model updating (if the mission itself is not exploration of
the environment). In spite of difficulties the robot has to be able to adapt with
changes of the environment with the minimal effort. All this implies application
of learning strategies that are strongly oriented to the mission, since the ultimate
goal is to make the robot to do the right thing.

Path planners used in robotics have been proven to give globally optimal
routes in globally known static environments. The optimality is usually
measured in terms of distance. Other measures are also used, e.g. planetary
rovers consider roughness and slope of the terrain to find reliable paths [15, 18].
However, their efficiency in complex, dynamic and partially unknown
environments during long periods of time has not been investigated. Very few
research studies reported so far consider the problem of path selection in
changing environments. Approaches [16, 17, 19] assume that the structure of
the environment is known a priory. In [29] it is assumed that unknown
environment is static and does not change over time. In [24] uncertainty without
two latest assumptions is considered.

1.2 Problem Statement
The general problem this thesis aims at solving is to find reliable paths for
repeated traversal between previously determined target points so that following
them minimises collision risk, speeds up the mission and increases
predictability of the robot’s behaviour.

Following presumptions are made to specify the problem.

1.2.1 Presumptions

It is assumed that the environment is dynamic and large. The structure of the
environment is unknown and there exist obstacles with unknown size,
orientation and location.

Mapping, path planning and localisation are not the main objectives of the
robot. These are presumptions to make the successful completion of the actual
mission possible. The robot is expected to fulfil its mission as fast and safely as
possible.

 11

Sensorial capabilities of the robot are insufficient to distinguish between
static, dynamic and semi-dynamic obstacles.

Location errors are small and do not accumulate. This enables to follow a
pre-planned path rather precisely.

Consequently it is not feasible to model the world precisely and/or keep it
constantly updated.

1.3 Contribution of the Thesis
This thesis studies path selection strategies in complex dynamic and partially
unknown environments during long periods of time. The contributions is a
novel path-planning and selection strategy as well as general conclusions about
path planning strategies based on experimental data.

One of the conclusions suggests that suboptimal paths (generated with
algorithm in Section 4.1) are at least as good as shortest paths. Also a decision-
making strategy is proposed to decrease collision risk and speed up the mission
if the robot traverses repeatedly between predefined target points in dynamic
partially unknown environments.

Additionally, time-critical mission-oriented exploration heuristics is
presented for mobile robot applications were the robot is operating in large
hazardous and unknown environments.

 12

2 NAVIGATION IN DYNAMIC PARTIALLY
UNKNOWN ENVIRONMENTS

Mobile robot path planning is typically stated as getting from one place to
another. The robot must successfully navigate around obstacles to the target
point and do it efficiently. The Holy Grail is to find the best route to the goal.
The choice of an appropriate path planning method strongly depends on the
model of the world.

Most of real life environments are complex and for path planning in such
environments the key issue is how to model that complicated environment.
However, the nature of the robot’s operation and as well the precision with
which the robot needs to achieve its goal determines the method. The mapping
of the surrounding can be the main purpose of the robot e.g. exploration of the
planetary rovers [49]. Reactive robots based on behaviours do not need a map at
all [31]. But we cannot avoid a world model if we expect deliberative behaviour
of the robot, like planning.

2.1 World Models and Path Planning
World models are usually divided roughly into two categories: topological
(route, qualitative) and metric (layout, grid-based) models [43]. At present, lots
of researches have produced a great variety of path planning methods [31, 37].

2.1.1 Topological Maps

Topological maps describe the connectivity of specific places called landmarks
or gateways. These maps are represented in a form of a graph, where nodes are
distinct places and edges are connections between them. The value of an edge
may reflect then traversability of the respective segment of the path. Additional
information may be attached to edges, such as direction, approximate distance,
or the behaviours needed to navigate that path. If the robot finds a landmark and
it appears on a map, the robot is localized with respect to the map. Examples of
topological approaches include the works [16, 32, 44].

Widely used generalized Voronoi diagrams (GVD) also fall into this
category [7]. GVD is a mapping method that tends to minimize the distance
between the robot and obstacles on the map. The diagram consists of the lines
constructed from all points that are equidistant from two or more obstacles in
the plane. Hierarchical generalized Voronoi graphs (HGVG) is a roadmap that
is an extension of GVD into higher dimensions then two. Choset [8] introduces

 13

technique to incrementally construct the HGVG as the robot explores its
unknown static environment using only line of sight information.

2.1.1.1 Path Planning on Topological Maps

Paths can be computed between to points using standard graph algorithms, such
as the classical Dijkstra’s single source shortest path algorithm [10]. The
Voronoi diagram has a significant weakness in the case of limited range
localisation sensors, since path planning algorithm maximises the distance
between the robot and objects in the environment.

However, the number of paths from one place to another is limited by the
number of edge combinations.

2.1.2 Metric Maps

Metric maps capture geometric properties of the environment. The number of
different map representations is very large; none of them is dominant. The most
common ones are regular grids and quadtrees (and their 3D extension, octrees).

Regular grid is a two-dimensional array of square elements (called pixels).
Regular grids are often called as occupancy grid, because each element in the
grid will hold a value representing whether the location in space is occupied or
empty [11]. Unfortunately, regular grids do not scale up very well. The size of
the map grows with the size of the environment and path planning becomes
computationally expensive. On a coarse grid, path planning is faster but
obstacles are expanded on the grid and narrow corridors can disappear. One
commercial robot that uses a standard occupancy grid is the Cye robot [2]. Also
the tour-guide robots Minerva [42] and Rhino [4] are using occupancy grids.

Quadtrees are recursive grids. They are created by recursively subdividing
each map square with non-uniform attributes into four equal-sized sub-squares.
The division is repeated until a square is uniform or the highest resolution is
reached. Quadtrees reduce memory requirements hereby allowing efficient
partitioning of the environment. A single cell can be used to encode a large
empty region [48].

However, the distinction between metric and topological maps has always
been fuzzy, since virtually all topological approaches rely on geometric
information. In practice, metric maps are finer grained than topological ones.

2.1.2.1 Path Planning on Metric Maps

Most world representation can be converted to graphs (e.g. cell decompositions,
4-connected and 8-connected grids, etc.). Typically graph-based path planners
rely on A* or D* algorithms [6, 39] or on their modification (Incremental A*
[21], Focussed D* [40], D* Lite [20], Delayed D* [13]). These algorithms

 14

generate shortest paths reducing computational complexity in case of highly
connected graphs such as regular grids.

A* algorithm finds a path as good as found by Dijkstra’s algorithm but does
it much more efficiently using an additional heuristic to guide itself to the goal.
Dijkstra’s algorithm uses a best first approach. It works by visiting nodes in the
graph starting from the start point and repeatedly examining the closest not-yet-
examined node until it reaches the goal. A* always first expands the node with
the best cost calculated by)()()(nhngnf += . Where)(ng represents the
cost of the path from the starting point to the node n , and)(nh represents the
heuristic estimated cost from the node n to the goal. Usually, for calculating
the heuristic cost, the Manhattan or the Euclidean distance is used.

D* is the dynamic version of A* producing the same result but much faster
in dynamic environments. In a sense of replanning A* is computationally
expensive because it must replan the entire path to the goal every time new
information is added. In contrast, D* does not require complete replanning since
it adjusts optimal path costs by increasing and lowering the cost only locally
and incrementally as needed. Expansions of D* algorithm, like Focussed D*,
D* Lite, Delayed D*, are accordingly even more efficient.

 Potential fields planners are very widely represented, since they are
extremely easy to implement. The potential field method treats the robot as a
point under the influence of an artificial potential field. The goal acts as an
attractive force on the robot and the obstacles act as repulsive forces. Such an
artificial potential field smoothly guides the robot to the goal while
simultaneously avoiding known obstacles. While potential field planners follow
the gradient descent of the field to the goal they always find the shortest path
from every possible start point. Potential fields have become a common tool in
mobile robot application in spite of the local minima problem [6]. Harmonic
functions can be used to advantage for potential field path planning, since they
do not exhibit spurious local minima [9].

A popular family of path planning methods on grids is wavefront-based
planners. They are based on potential fields, but do not have local minima
problem [2]. The basic principle is that the configuration space is considered to
be a conductive material with heat radiating out from the initial node to the goal
node. Finally the heat will spread and reach the goal, if there is a way. The
optimal path from all grid elements to the goal can be computed as a side effect.
The distance transform planners are well-known wavefront-based planners
propagating distance throughout each grid cell in an outward direction from the
specified goal point to the start point filling the entire free space. The optimal
path from all grid elements to the goal is then found by using the steepest
descent trajectory. Zelinsky introduced a safe path transform method in [50]. In
addition to propagating a distance wavefront from the goal, another wavefront is
propagated which is a combination of the distance from the goal together with a
measure of the discomfort of moving near obstacles. In [45] distance transform
is extended with linear vector combination to estimate shortest global path and

 15

obtain the safe local direction in which a mobile robot moves safely in a local
environment. Trulla also is one of the many wavefront types of path planners
[30]. This algorithm initially computes all possible paths from all possible
locations to the goal. Trulla output is a potential field-like representation of the
best direction the robot should take from any location in the map to the goal,
given the a priori map and terrain preferences.

2.1.3 Hybrid Approaches

Frequently, metric and topological methods are used together. Those hybrid
methods try to combine the advantages of metric-based and topological
planning approaches, since both paradigms have strengths and weaknesses.

For example, topological approaches often have a difficulty determining
distinct places if they look alike. This can be caused by sensor noise and
aliasing. Also, since sensory input usually depends strongly on the viewpoint of
the robot, it may fail to recognize geometrically nearby places even in static
environments. All this makes construction and maintenance of large-scale maps
difficult, particularly if sensor information is highly ambiguous. The key
advantage of topological representation is their compactness, what is the main
shortcoming of the metric maps. Due to compactness, topological representation
permits faster planning than the metric approach. On the other hand, metric
maps permit much more detailed path planning due to the high resolution. Since
topological approach usually does not require the exact determination of the
geometrical position of the robot, it often recovers better from drift and
slippage-phenomena that must constantly be monitored and compensated on
metric-based approaches.

Byun and Kuipers [27] used a multi-level spatial hierarchy. The lowest level
is identifying landmarks. The next layer up is topological, represented on a
relational graph, which supports planning and reasoning. The uppermost level is
metric, where the agent learns the distances and orientation between the
landmarks and can place them in fixed coordinate system. Fabrizzi and Saffiotti
[12] extract the topological map from the previously created grid map analysing
the shapes of the free spaces. Thrun [41] generates topological maps on top of
the grid-based maps by partitioning the latter into coherent regions, separated by
critical lines. Critical lines correspond to narrow passages such as doorways. By
partitioning the metric map into a small number of regions, the number of
topological entities is several orders of magnitude smaller than the number of
cells in the grid representation. Poncela et al. [33] perform exploration path
planning on two levels: global planning is performed on topological level and
local planning is performed on metric level. Such representation permits
exploration in a fast and efficient way. Kruusmaa [22, 23] uses case-base
reasoning with a grid map. A grid-based map permits detailed path planning and
case-base stores travelled paths with traversability information of those paths in
a form of a simple cost function that is easy to update.

 16

2.2 Representing Uncertainty
To carry out complex missions in unknown or partially unknown environments,
the robot must be able to incrementally generate and maintain a map of this
environment. Usually, it gathers sensor information to update its word model
during the traversal [43]. Mapping problem often occurs in conjunction with the
localization problem. To estimate where things are in the environment and
determine the pose of the robot needs to be solved concurrently. This is often
called the simultaneous localization and mapping (SLAM) problem [7].

Usually physical environments change over time. From the viewpoint of the
robot it means appearance and disappearance of obstacles in arbitrary places
and time, or in the worst case, change of the whole structure of the environment.
Dynamic objects are usually considered to be moving obstacles like people,
cars, strollers, etc. But there exists another class of dynamic obstacles with
much more discrete motion, for example objects stored on the factory floors and
warehouses, lightweight furniture, details on construction sites, etc.

In all such dynamic environments mapping is a big challenge, since even
mapping of a static environment is hard problem due to sensor noise,
localization errors and imprecise motion control. To acquire global information,
the robot has to actively explore its environment. Therefore the precision of the
word model depends on the region size and on the intensity of survey. However,
in a large dynamic environment sooner or later the world model will be
desperately incorrect. Due to complexity and dynamism, it is principally
impossible to maintain exact models and to predict their accuracy.

Vast majority of published algorithms make a static world assumption, and
hence are principally unable to cope with dynamic environments [43]. Instead,
the predominant paradigm relies on a static word assumption, in which the robot
is the only time-variant quantity (and everything else that moves is just noise).
The problem of dynamic obstacles is usually tackled in the context of collision
avoidance [14, 34, 47].

There are some attempts to model dynamism, but this field is poorly
explored. Biswas and et al. [3] have proposed an occupancy grid-mapping
algorithm ROMA (robot object mapping algorithm) capable of modelling non-
stationary environments. Their approach uses a straightforward map
differencing technique to detect changes in an environment over time. By
combining data from multiple maps while learning objects models, the resulting
models have higher fidelity than could be obtained from any single map.

A robot using uncertain and inaccurate metric maps can miss short and
easily traversable paths. Therefore the shortest (optimal) path-planners cannot
demonstrate their advantage like in the completely known environments, since
replanning is unavoidable. In such dynamic environments the best path to the
goal is not necessarily the shortest. Taking a longer path can sometimes reduce
the collision risk and speed up the mission.

 17

A topological word-model is much easier to update, since the robot does not
have to know where the obstacles exactly lay and of what shape and size they
are. It only matters how safely and fast the robot follows its path to the goal.
But in dynamic environment it is quite difficult to guarantee that robot can
easily determine new landmarks or distinguishable places that do not change
their location or disappear at all. The robot may get confused and lost.

Storing travelled paths with traversal information is even more flexible then
a topological map. The memory does not have to be reorganized when the
environment changes. It also permits storing a more detailed description of
paths and discovering more edges.

 18

3 REPEATED TRAVELLING
The necessity of exploration in unknown or partially unknown environments
depends on the nature of the robot’s mission. When the entire environment
should be mapped out or covered (e.g. de-mining, search tasks), full coverage
algorithms are used [5, 33, 49]. To reach a specific target location only once, the
navigation algorithms are used [21, 39, 50]. The cases when the robot has to
travel repeatedly a long period of time between predefined goal points in an
unknown dynamic environments is the combination of both algorithms. The
robot needs to find the right balance between exploration of the environment
and performing the actual task via a known suboptimal path. During the mission
the environment may change and the robot has to adapt to changes. Typical
navigation algorithms try to find optimal (shortest) paths to the goal. In such
complex environments the best path to the goal is not necessary the shortest.
Depending on the nature of the environment, there may exist routs that are
longer but easier to follow.

 19

4 THE APPROACH
The contribution of this thesis is a new approach to repeated traversal under
uncertainty. This approach is based on a hybrid path planning method
represented in [23]. This is a path planning approach conducted on grid map,
which permits detailed planning and finds many alternatives for a path planning
problem. Instead of modelling an environment the traversed paths are stored in
robot’s memory. By remembering the past routes the robot learns about the
environment and uses this information to choose the paths, which are most
likely to be easily traversable. The grid map is not updated at all, since the robot
cannot decide which obstacles will be removed and which will stay for a longer
period. The map will just describe start and goal points and the general
geometry of the environment. If necessary, static obstacles can be stored on the
map by an operator (e.g. walls, very hazardous areas). The exploration of the
environment is thus conducted in conjunction with repeated traversal. To
explore the environment innovative paths are generated using probabilistic path
transform method that propagates cell values along the map. Each cell, which
does not contain a fixed obstacle, gets a value, which is a combination of the
distance from the goal, the measure of the discomfort from moving near
obstacles and a parameter with a random value. This method is a modification
of the path transform algorithm [50].

This work improves and extends the work represented in [23]. The drawback
of [23] probabilistic path generation algorithm is that there is no guarantee that
the generated path is different from the original wave transform algorithm and
that the algorithm will find all possible paths from start to goal. This thesis aims
at improving innovative path generation algorithm by eliminating previously
noticed disadvantages. For that we have to establish following requirements to
the path selection algorithm:

• Paths are as much as possible different from each other to let the robot to
find out as many innovative solutions as possible.

• The algorithm is able to discover all virtually possible alternatives.

• The algorithm covers the whole space of innovative paths with as few
alternatives as possible to maintain the robot’s ability to generalize and
keep the memory constrained.

• All paths are easy to follow if free from obstacles.

A novel path selection algorithm (described in next Section 4.1), which

satisfies the criteria above, is used for this purpose.

 20

4.1 Novel Path Generation Algorithm
The path generation algorithm described in [46] is based on covering the
working area with paths segments. The whole area is divided into small path
fragments (of length 2, shown in Figure 1) and the generated paths cover all
these segments. The paths are limited to have only right and up moves. It will
exclude all the unnecessarily long and complex paths (actually all paths having
back turns).

Figure 1. Path fragments of length 2

This algorithm gives a relatively small number of different paths of the

minimal cover and scales up very well. It is proven that for a grid of the size
nm × the cardinality of the minimal cover is 222 −+ nm [46]. It grows

linearly with a small constant. Figure 2 illustrates one possible cover of the
43× grid.

Figure 2. Cover of the 43× grid

The drawback of this type of paths is that the robot would not operate

efficiently in a maze-like environment. However, most of real environments are
not mazes. The second shortcoming is the occurrence of the zigzagged paths
since it is only allowed to move right and up. This is typical to all grid-based
path planners and mobile robots usually use path relaxation techniques to
smoothen the path at runtime.

While [46] gives a through insight to the theoretical aspects of the path
generation algorithm, this thesis investigates its advantages in practice
(experimental design is described in Chapter 5).

 21

4.2 Exploration, Learning, and Decision-making
Instead of modelling the environment as accurately as possible paths where
inaccuracy of the world model does not significantly influence the result of path
planning are found. A set of suboptimal paths is chosen and their traversability
evaluated by trial and error until the satisfied criteria of safety and reliability is
found. The general form of the path selection algorithm is represented in
Figure 3.

When moving from start
to goal is requested to

choose a sub-optimal path.

Follow the path.

Goal is
reached?

No

Store data about its
traversability (replanning,

distance, etc.).

Next trial?

The followed path
satisfies a predefined
criterion (e.g. safety,

reliability, etc.)?

Choose this path.

Yes

No

Start

Yes

No

Yes

End
Figure 3. The general path selection algorithm

 22

An algorithm described in Section 4.1 is used for path generation. The
followed path usually differs from the pre-planned one because unexpected
obstacles deviate the robot from its initial course. It is also crooked since the
robot repeatedly corrects its localization errors and avoids collisions with
obstacles. Therefore the zigzags of the followed path are straightened and gaps
and cycles are removed before storing it. This path relaxation is documented
in [25].

For global (and local) replanning a wave transform algorithm is used [50]. If
an obstacle has blocked the previously planned path, then this path is abandoned
and the shortest path to the goal is generated. Since the environment is changing
and word-model is more or less imprecise, the algorithm does not try to compile
paths from parts previously known to be good. Rather it tries to generate and
evaluate the path as a whole.

After reaching the goal the traversed path is stored with its statistical data:
number of replannings, travelled time, travelled distance, and deviation form the
originally pre-planned path. This approach tries to minimize the hazard of path
following. Therefore paths with lower number of replannings are preferred. The
criterion of path selection among the stored path is the probability inversely
proportional to the number of unexpected obstacles.

At the next trial the stored paths are examined to determine whether some of
them satisfy the criterion. If such a path exists, this path is followed. Otherwise
a new suboptimal path is generated and followed.

The experimental results show that such an exploration, planning and
decision-making procedure minimises risk, time of path following and increases
the predictability of robot’s behaviour.

The pseudo code of the described learning method is represented in
Appendix F.

4.3 Limits
This approach has some severe limits. The method assumes that the robot will
traverse repeatedly between predefined target points. Only this restriction makes
it possible to learn to use the most reliable paths by trial and error.

Second, it assumes that localisation errors are small and do not accumulate
allowing the robot to follow planned trajectories fairly precisely. One possible
solution is to use this method with global positioning system (GPS), differential
global positioning system (DGPS) or with pseudolite navigation [1, 28].

Third, the robot may stuck in a local minimum and not able to test a path
away from its current selection. Whereas the environment is dynamic, the
movement of the obstacles will deflect the robot away from the current route
after some period of time. Also, we have no guarantee in an unknown
environment that somewhere exists a better route and it is easy to find. This
assumes full exploration of the environment.

 23

5 EXPERIMENTAL DESIGN
All experiments are conducted using a well-known research robot Khepera
(shown in Figure 4) manufactured by K-Team [26]. It is a circular mini-robot
(diameter is 53 mm) with differential drive and with eight on-board infrared
range sensors for collision avoidance. It can be connected and commanded with
PC over a serial link. Due to Khepera’s small size it is much easier to create
large environments with respect to the size of the robot and control the changes
in this environment to validate the algorithms.

Figure 4. Research robot Khepera

The behaviour of the robot is controlled with a PC program written in C++

[35, Appendix G]. It has the GUI to create a priori map with known obstacles,
to allocate mission target points, to plot difficult areas which slow down the
motion of the robot, to track the passed paths of the robot, etc. All the
interesting statistics about the experiments is saved into the file for later
analysis.

Since Khepera lacks sensors for accurate localization and there is
considerable error due to the contact between the wheels and the surface or dust
inside the motors the localization is implemented using a global vision system.
A video camera is mounted to the ceiling above the test environment to
recognize the pose of the robot. Additionally, 3 LED in a form of an isosceles
triangle are mounted on the robot to make robot’s pose recognition easier.
During every localisation episode the current image of the camera is processed
in the host computer to identify the robot’s position and orientation (shown in
Figure 5). The vision system is used only to update the location of the robot.
Since the robot does not need to localize itself by means of odometry,
landmarks or onboard sensors but uses an external system, the localization
errors are rather small (comparable to the size of the robot) and do not
accumulate.

 24

robot

camera

host computer
Figure 5. Localization system

The size of the test environment varies from 13901860 × up to

17102320 × mm and the surface is flat. With respect to the robot’s size and
the range of the infrared sensors the environment can be considered to be rather
large.

In the dynamic environments all dynamic obstacles are “movable” (replaced
after every traversal of the robot from the start point to the goal point) but not
moving as usually is considered. This enables exactly control the environment
and interpret experimental results. It is very difficult to control the real
environment with moving obstacles.

All test environments in detail are represented in Appendix E.

 25

6 INTRODUCTION TO CONTRIBUTING
PUBLICATIONS

This chapter gives a brief introduction to the publications that contribute to this
thesis. All these publications are given in full in the appendices A, B, C and D.

6.1 Path Selection for Mobile Robots in Dynamic
Environments (Paper Introduction)

This is the first paper that investigates the performance of the path generation
algorithm (described in Section 4.1) on the real robot. Verification of the path
selection algorithm’s performance has conducted in the dynamic and totally
unknown environment.

The wave transform algorithm to generate shortest paths is compared to path
selection algorithm with global replanning. All four measured parameters
(replanning count, traversal time, deviation, distance) showed better results
using path selection algorithm. First experiments confirmed the usability of the
approach if even very little is known about the surrounding or when the
environment is completely restructured during the mission.

6.2 Robots Find a Better Way: A Learning Method for
Mobile Robot Navigation in Partially Unknown

Environments (Paper Introduction)
This paper presents results of the second series of experiments of the path
selection algorithm focused on partially known environments. The hypothesis
was that as soon as the environment becomes better known to the robot, the
shortest path following strategy would outperform the investigated approach.

The test results did not confirm that initial hypothesis. On the contrary, it
appeared that even if small obstacles are unmodelled, the path selection
algorithm improves the performance. The same comparison between path
planning strategies has conducted as in the first paper. Test environments were
kept static to find out the relation between the environment model and the
behaviour of the robot. Three test environments were examined: all obstacles
were modelled, only large obstacles were modelled and only small obstacles
were modelled on a priory map.

Operating in the totally known environment the robot is able to use all
information available and plan the globally best paths. Statistical data showed
that the behaviour of the robot was well predictable and stable. The deviation

 26

from the original path was not more then the diameter of the robot and only
once a detected obstacle or sensor noise forces the robot to replan its path.
Therefore, it can be concluded that localisation errors, imprecision of
mechanical linkages or the control program did not influence the test results
significantly.

As soon as the environmental model becomes partially unknown the
trajectory of the robot was very difficult to predict and control. Even small
obstacles could cause large deviation from the pre-planned path. More over, it
can be concluded that optimal (shortest) path planning is not a relevant problem
in the partially unknown environments. As soon as the robot does not have all
global knowledge available, suboptimal solutions give at least as good results as
the optimal one. This implies that much more importance should be paid on
modelling the environment and its changes.

6.3 Learning Innovative Routes for Mobile Robots in
Dynamic Partially Unknown Environments (Paper

Introduction)
This paper presents an additional investigation of the path selection algorithm
with local replanning and it’s comparison with all previously conducted
experiments. When unexpected obstacle is detected, local replanning tries to
find its way back to the pre-planned path avoiding sub-goal obsession [31].

It is concluded that global replanning does not improve the performance
compared to the local replanning, since the experimental results do not reveal
any significant difference in performance. The efficiency of path planning
rather depends on the world model than on the planning strategy. A global
planner that does not have all global information available anyway fails to make
a globally optimal plan and therefore the locally replanning agent performs
equally well.

The overall results show that in a complex environment there may exist
paths that are easier to follow then the shortest paths. Finding and following
them helps to reduce collision risk as well as to minimize travel time, distance
and deviation from the originally planned path. It appears that in all different
environments travel time and the number of replannings are highly correlated.

6.4 On the Utility of Exploration on Time-Critical
Mobile Robots Missions (Paper Introduction)

In an unknown or partially unknown environment the robot learns mainly by
trial and error. In hazardous environments learning and exploration can lead to
undesirable damages. If the robot in addition has a time-critical mission, the

 27

utility of expensive exploration becomes questionable. From the utilitarian point
of view, knowledge is useful only as long as it increases the performance of the
robot and thus helps to fulfil the mission. The knowledge that can be used many
times is much more valuable than knowledge used only once.

This paper considers mission-oriented exploration heuristics for mobile
robot applications based on the above statements. It proposes a heuristic
strategy that chooses between exploring new areas and exploiting knowledge
about the already explored areas. The robot having a mission plan, considers the
amount of knowledge acquired so far and its applicability during the rest of the
mission.

The mission plan of the robot in a large unknown environment consists of
target points that it has to reach in a predefined order. Every traversal between
two target points can be viewed as a task of the mission. Usually exists number
of similar tasks (e.g. repeated traversal between some target points) in the
mission. The heuristics of the decision maker at the current task tends to explore
when similar task is not encountered often in the past and if it is needed often
during the rest of the mission. The sooner during the mission new knowledge
will be needed the more exploration is preferred.

This strategy is verified against greedy one that always chooses a new path,
if it is predicted to be better than the best path known so far. Experimental
results show that the robot in the test environment using the heuristic strategy
fulfils the mission faster than robot using the greedy strategy.

 28

CONCLUSIONS

This thesis investigates path planning strategies for repeated traversal in large
dynamic partially unknown environments. The aim of the approach was to
minimize collision risk and speed up the mission by adapting to the changes in
the dynamic environment.

The advantages of the novel path selection algorithm for generating
innovative paths between predefined target points are demonstrated. Over 600
test runs are conducted using the research robot Khepera (all descriptions of the
experiments and experimental results are represented additionally in
Appendix G). The behaviour of the robot is verified against the shortest path
following strategy in various complex environments (varying from static to
dynamic as well as from unknown to partially and totally known).

The experimental results lead to the following general conclusions.
Path planning approach presented in this thesis can be used even if very little

is known about the environment or when the environment is completely
restructured during the mission. The path selection algorithm will efficiently
cover the whole space even if the environment is large. This approach helps to
reduce time, risk of collisions and increases the predictability of robot’s
behaviour.

To optimize travel time, distance, energy consumption, collision risk or
deviation from the original path, unexpected events should be decreased as
changes in the former parameters depend on the last one.

In an uncertain environment the trajectory of the robot is very difficult to
predict and control because the deviation from the planned path is weakly
correlated to the accuracy of the world-model.

Optimal (shortest) path planning is not a relevant problem in partially
unknown environments. The behaviour of the robot is influenced by the
knowledge it has about the environment but does not depend on the path
planning strategy. In order to increase the reliability of mobile robot
applications, much more attention should be paid on modelling the environment
and its changes than an optimisation of path planning algorithms.

Gaining as accurate as possible knowledge about the surrounding is not
necessary beneficial if the mission time is limited in a large hazardous
environment. Mission-oriented exploration heuristics could be considered in
mobile robot applications that are time-critical, where the robot is operating in a
large unknown environment and when this environment is dangerous.

Obviously these experimental results cannot be interpreted as applying to all
possible environments because in appendices A, B, C only one randomly
generated base environment was used as well as in the study in Appendix D.
But if these constructed test worlds are good enough approximations of a large,
unstructured, uncertain and dynamic environment, these results could be

 29

generalised to other cases. The influence of the moving obstacles on the results
is unknown because these type of obstacles are avoided to ensure exact control
over the test environment. However, this affects only replanning algorithm and
not global path selection.

These conclusions certainly cannot be generalised to topological planning
since the models and algorithms considerably differ from those used for grid
maps.

 30

REFERENCES

1. V.Ashkenazi, D.Park, M.Dumville. Robot Positioning and the Global
Navigation Satellite System, Industrial Robots: An International
Journal, 27(6):419-426, 2000.

2. P.H.Batavia, I.Nourbakhsh. Path planning for the Cye personal robot.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2000.

3. R.Biswas, B.Limketaki, S.Sanner, S.Thrun. Towards Object Mapping in
Dynamic Environments with Mobile Robots. In Proceedings of the
Conference on Intelligent Robots and Systems (IROS), Lausanne,
Switzerland, 2002.

4. J.Buhmann, W.Burgard, A.B.Cremers, D.Fox, T.Hofmann, F.Schneider,
J.Strikos, S.Thrun. The Mobile Robot Rhino. AI Magazine, 16(1), 1995.

5. H.Choset. Coverage of Known Spaces: The Boustrophedon Cellular
Decomposition. Autonomous Robots, 9:247-253, Kluwer, 2000.

6. H.Choset, K.M.Lynch, S.Hutchinson, G.Kantor, W.Burgard,
L.E.Kavraki, S.Thrun. Principles of Robot Motion, The MIT Press,
2005.

7. H.Choset, K.Nagatani. Topological Simultaneous Localization and
Mapping (SLAM): Toward Exact Localization Without Explicit
Localization. In IEEE Transactions on Robotics and Automation,
17(2):125-137, April 2001.

8. H.Choset. Sensor Based Motion Planning: The Hierarchical Generalized
Voronoi Graph. PhD thesis, California Institute of Technology, 1996.

9. C.I.Connolly, R.A.Grupen. The Application of Harmonic Functions to
Robotics, Journal of Robotic Systems, 10(7):931-946, 1992.

10. T.H.Cormen, C.E.Leiserson, R.L.Rivest, C.Stein. Introduction to
Algorithms, Section 24.3: Dijkstra’s algorithm, pages 595-601, Second
Edition, MIT Press and McGraw-Hill, 2001.

11. A.Elfes. Using occupancy grids for mobile robot perception and
navigation, IEEE Computer, 22(6):46-57, 1989.

12. E.Fabrizi, A.Saffiotti. Extracting Topology-Based Maps from Gridmaps.
In Proceedings of the 2000 IEEE International Conference of Robotics
and Automation (ICRA 2000), pages 2973-2978, 2000.

 31

13. D.Ferguson, A.Stentz, The Delayed D* Algorithm for Efficient Path
Replanning. In Proceedings of the 2005 IEEE International Conference
on Robotics and Automation (ICRA 2005), April 2005.

14. P.Fiorini, Z.Shiller. Motion Planning in Dynamic Environments. The 7th
International Symposium of Robotics Research, pages 237-248, Munich,
Germany, October 1995.

15. D.B.Gennery. Traversability Analysis and Path Planning for Planetary
Rovers. Autonomous Robots, 6:131-146, Kluwer, 1999.

16. K.Z.Haigh, M.M.Veloso. Planning, Execution and Learning in a Robotic
Agent. The 4th International Conference on Artificial Intelligence
Planning Systems (AIPS-98), pages 120-127, June 1998.

17. K.Z.Haigh, M.M.Veloso. Route Planning by Analog. In Proceedings of
Case-Based Reasoning Research and Development, First International
Conference (ICCBR-95), pages 169-180, Springer-Verlag, 1995.

18. A.Howard, H.Seraji. Vision-Based Terrain Characterization and
Traversability Assessment. Journal of Robotic Systems, 18(10):577-587,
Wiley periodicals, 2001.

19. H.Hu, M.Brady. Dynamic Global Path Planning with Uncertainty for
Mobile Robots in Manufacturing. IEEE Transactions on Robotic and
Automation, 13(5):760-767, October 1997.

20. S.Koenig, M.Likhachev. Improved Fast Replanning for Robot
Navigation in Unknown Terrain. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2002.

21. S.Koenig, M.Likhachev. Incremental A*. In Proceedings of the Neural
Information Processing Systems, 2001.

22. M.Kruusmaa. Global Level Path Planning for Mobile Robots in
Dynamic Environments. Journal of Intelligent and Robotic Systems,
special issue for Robot Motion Planning, Kluwer, 38(1):55-83,
September 2003.

23. M.Kruusmaa. Global Navigation in Dynamic Environments Using Case-
Based Reasoning. Autonomous Robots, Kluwer, 14(1):71-91, 2003.

24. M.Kruusmaa. Repeated Path Planning for Mobile Robots in Dynamic
Environments. PhD thesis, Chalmers University of Technology,
Gothenburg, Sweden, 2002.

25. M.Kruusmaa. Repeated Path Planning for Mobile Robots in Uncertain
Environments. In Proceedings of the IASTED International Conference
on Robotics and Automation, pages 226-231, 2001.

 32

26. K-Team official website. Available at http://www.k-team.com. Visited
on 19.03.2006.

27. B.Kuipers, Y.T.Byun. A Robot Exploration and Mapping Strategy
Based on a Semantic Hierarchy of Spatial Representation. Robotics and
Autonomous Systems, 8: 47-63, 1991.

28. E.Lemaster, S.Rock. A Local-Area GPS Pseudolite-Based Navigation
System for Mars Rover. Autonomous Robots, 14:209-224, 2003.

29. R.Meshulam, A.Felner, S.Kraus. Utility-based multi-agent system for
performing repeated navigation tasks. In Proceedings of the 4th
International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 887-894, The Netherlands, 2005.

30. R.R.Murphy, K.Hughes, A.Marzilli, E.Noll. Integrating explicit path
planning with reactive control of mobile robots using Trulla. Robotics
and Autonomous Systems, 27(4):225-245, Elsevier Science, 1997.

31. R.R.Murphy. Introduction to AI Robotics. The MIT Press, 2000.

32. U.Nehmzow, C.Owen. Robot Navigation in the Real World:
Experiments with Manchester’s Forty Two in Unmodified Large
Environments. Robotics and Autonomous Systems, 33:223-242, Elsevier
Science, 2000.

33. A.Poncela, E.J.Perez, A.Bandera, C.Urdiales, F.Sandoval. Efficient
Integration of Metric and Topological Maps for Directed Exploration of
Unknown Environments. Robotics and Autonomous Systems, 41:21-39,
2002.

34. E.Prassler, J.Scholz, P.Fiorini. A Robotic Wheelchair Roaming in a
Railway Station, IEEE International Conference on Field and Service
Robotics, Pittsburg, USA, August 1999.

35. Program code and experimental results of the thesis. Available at
http://math.ut.ee/~kristo/phd/.

36. M.A.Salichs, L.Moreno. Navigation of Mobile Robots: Open Questions.
Robotica, 18:227-234, Cambridge University Press, 2000.

37. R.Siegwart, I.R.Nourbakhsh. Introduction to Autonomous Mobile
Robots, The MIT Press, 2004.

38. D.J.Spero. A Review of Outdoor Robotics Research. Technical Report
MECSE-17-2004, Department of Electrical and Computer Systems,
Monash University, Melbourne, November 2004.

39. A.Strentz. Optimal and Efficient Path Planning for Partially-Known
Environments. In Proceedings of the IEEE International Conference on
Robotics and Automation, May 1994.

 33

40. A.Strentz. The Focussed D* Algorithm for Real-Time Replanning. In
Proceedings of the 1995 International Joint Conference on Artificial
Intelligence, 1995.

41. S.Thrun. Learning Metric-Topological Maps for Indoor Mobile Robot
Navigation. Artificial Intelligence, 18(1):21-71, 1998.

42. S.Thrun, M.Beetz, M.Bennewitz, W.Burgard, A.B.Cremers, F.Dellaert,
D.Fox, D.Hähnel, C.Rosenberg, N.Roy, J.Schulte, D.Schulz.
Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot
Minerva. International Journal of Robotics Research, 19(11):972-999,
2000.

43. S.Thrun. Robotics mapping: A Survey. Technical Report
CMU-CS-02-111, School of Computer Science, Carnegie Mellon
University, Pittsburg, PA 15213, February 2002.

44. N.Tomatis, R.Philippsen B.Jensen, K.O.Arras, G.Terrien, R.Piguet,
R.Siegwart. Building a Fully Autonomous Tour Guide Robot: Where
Academic Research Meets Industry. In Proceedings of the 33rd
International Symposium on Robotics (ISR’2002), Stockholm, Sweden,
October 2002.

45. S.Trihatmo, R.A.Jarvis. Short-Safe Compromise Path for Mobile Robot
Navigation in a Dynamic Unknown Environment. Accepted for
presentation at Australian Conference on Robotics and Automation
2003, Brisbane, December 2003.

46. J.Willemson, M.Kruusmaa. Algorithmic Generation of Path Fragment
Covers for Mobile Robot Path Planning. In Proceedings of the 3rd IEEE
Conference on Intelligent Systems (IEEE IS'06), to appear.

47. F.Xu, H. van Brussel, M.Nuttin, R.Moreas. Concepts for Dynamic
Obstacle Avoidance and Their Extended Application in Underground
Navigation. Robotics and Autonomous Systems, 42(1):1-15, 2003.

48. A.Yahja, S.Singh, A.Stentz. An Efficient on-line Path Planner for
Outdoor Mobile Robots. Robotics and Autonomous Systems,
32:129-143, Elsevier Science, 2000.

49. B.Yamauchi. A Frontier-Based Approach for Autonomous Exploration.
In Proceedings of the 1997 IEEE International Symposium on
Computational Intelligence in Robotics and Automation, pages 146-151,
Monterey, July 1997.

50. A.Zelinsky. Using Path Transforms to Guide the Search for Findpath in
2D. International Journal of Robotics Research, 13(4):315-325, August
1994.

 34

MOBIILSETE ROBOTITE TEE PLANEERIMINE
JA ÕPISTRATEEGIAD DÜNAAMILISTES JA

OSALISELT TUNDMATUTES KESKKONDADES

SISUKOKKUVÕTE

Mobiilsete robotite tähtsaimaks omaduseks on navigeerimisvõime. Edukaks
navigeerimiseks vajatakse teede planeerimisalgoritme, mis võimaldavad robotil
jõuda sihtmärgini efektiivselt ning takistustega kokku põrkamata. Tee
planeerimine eeldab, et robotil on olemas ettekujutus keskkonnast, milles ta
opereerib. Keskkonna mudeli loomine sõltub enamasti roboti andurite
võimalustest tajuda ümbritsevat. Tee planeerimismeetodite valik baseerub
omakorda sellel, kuidas reaalset keskkonda kujutatakse roboti mälus. Näiteks
võrestikkaartidel on levinud lainefrondi planeerimisalgoritmid, graafina esitatud
teede planeerimisalgoritmid põhinevad aga graafi lühimate või hinnanguliselt
parimate teede otsimisel kahe tipu vahel.

Isegi staatilise keskkonna kaardistamine on oma olemuselt keeruline
protsess, sest arvestada tuleb andurite müraga, vigadega roboti positsiooni
määramisel, roboti liikumisest põhjustatud hälvetega, piiratud ressurssidega
(näiteks arvutusvõimsus) ja muu taolisega. Seda enam on tee planeerimine
komplitseeritum reaalsetes keskkondades, mis on enamasti oma olemuselt
dünaamilised, kindla struktuurita või robotile osaliselt või täiesti tundmatud.

Paljud mobiilsete robotite rakendused eeldavad korduvat liikumist kahe või
enama sihtmärgi vahel. Siia kuuluvad transpordiülesanded tööstus- ja
militaarvaldkonnas, piirkonna seire, konvoeerimine, päästeoperatsioonid jne.

Käesolev väitekiri uuribki võimalusi, kuidas leida usaldusväärseid teid
korduval liikumisel kahe eeldefineeritud asukoha vahel. Sealjuures tehakse
järgmisi eeldusi:

• Keskkond on suur ja dünaamiline, selle struktuur pole teada ning
suvaliste mõõtmetega takistused võivad asuda teadmata kohtades.

• Robotilt eeldatakse efektiivset ja turvalist missiooni täitmist, mis
iseenesest ei ole keskkonna kaardistamine ja roboti positsiooni
määramine. Viimased on vaid vajalikud meetmed eesmärgi
saavutamiseks.

• Roboti andurid ei ole võimelised eristama dünaamilisi objekte
staatilistest. Lokaliseerimishälbed on väiksed ning ei akumuleeru, mis
omakorda võimaldab planeeritud teed suhteliselt täpselt järgida.

 35

• Keskkonna keerukust ja roboti võimalusi arvestades ei ole võimalik
keskkonna mudelit täpselt koostada ning tegelikkusega kooskõlas hoida.

Roboti võime adapteeruda ning käituda ennustatavalt keerukas keskkonnas

eeldab selle tundmaõppimist. Käesolevas töös ei püüta selleks otseselt
kaardistada tundmatut keskkonda vaid selle asemel hoitakse mälus juba läbitud
teid koos statistiliste andmetega (läbitud tee pikkus, kulunud aeg,
ümberplaneerimiste arv, jmt). Salvestatud teed on edaspidise efektiivsuse
huvides teataval määral õgvendatud ning välja on visatud mõttetud tsüklid. Igal
järgmisel katsel eeldefineeritud sihtpunktide vahel liikumiseks on robotil
võimalus valida kas uue genereeritud tee või juba mällu salvestatud parima tee
vahel. Tee planeerimisstrateegia püüab vähendada marsruudi läbimise ohtlikust
valides sellise tee, mis on kõige tõenäolisemalt takistustest vaba.
Valikukriteeriumiks juba salvestatud teede jaoks on tõenäosus, mis on
proportsionaalselt pöördvõrdeline ümberplaneerimiste arvuga. Kui seatud
kriteeriumile vastavat teed ei leita, siis robot kasutab sihtmärgini jõudmiseks uut
genereeritud teed. Selleks kasutatakse hästi skaleeruvat (keskkonna mõõtmete
suurenemise mõttes) algoritmi, mis produtseerib perekonna suboptimaalseid
teid. Kõik teed on üksteisest võimalikult erinevad ning katavad ära terve
keskkonna. Selliste teede kasutamine tagab sihikindla keskkonna avastamise
ning võimalikult ohutu tee leidmise.

Töö käigus on mini-robotiga Khepera läbi viidud üle 600 testjuhtumi
erinevates (täiesti tundmatu, osaliselt teada, dünaamiline, staatiline)
keskkondades. Uut suboptimaalsete teede genereerimisalgoritmi on testitud
lühimate teede strateegia vastu. Katsed näitasid, et suboptimaalsed teed annavad
vähemasti sama hea tulemuse, kui lühimad teed täiesti või osaliselt tundmatutes
keskkondades. Välja on pakutud uus teede planeerimismeetod, mida kirjeldatud
keerukas keskkonnas kasutades on robot võimeline adapteeruma, vähendama
kollisiooni riski ning missiooni täitmiseks kuluvat aega.

Lisaks käsitletakse tundmatu ja robotile ohtliku keskkonna uurimise
kasulikkust missioonidel, mille kestvus on ajaliselt piiratud ning pakutakse
selleks uut võimalikku heuristilist teede planeerimise lahendust.

 36

ACKNOWLEDGEMENTS

I wish to express my highest appreciation and gratitude to my supervisors
Maarja Kruusmaa and Jan Villemson for the encouragement, suggestions and
all-around support necessary for this work.

I also thank my colleague Alvo Aabloo, who has made a lot of
organisational work and has been a valuable buffer between different
departments of University of Tartu and the third party.

I would also like to thank my chiefs Monika Oit and Uuno Puus at
Cybernetica AS, who supported my studies in parallel to the commercial
software development.

Also, I would acknowledge my financial support by Estonian Science
Foundation grant No. 5613 and Tiger Leap Program of The Estonian
Information Technology Foundation.

And last but not least – I would like to thank all my family members and
friends for their tolerance while seeing me as often as an eclipse of the moon
during the past months. When this thesis will be ready, I promise to have more
time for my wife Eve and my baby son Iko.

 37

APPENDIX A

M.Kruusmaa, J.Willemson, K.Heero. Path Selection for Mobile Robots in
Dynamic Environments. In Proceedings of the 1st European Conference on
Mobile Robots (ECMR’03), pages 113-118, Radziejowice, Poland,
September 2003.

Path Selection for Mobile Robots in Dynamic Environments?

Maarja Kruusmaa Jan Willemson Kristo Heero
Maarja.Kruusmaa@ide.hh.se jan@cs.ut.ee kristo@math.ut.ee

Halmstad University, Tartu University, Tartu University,
School of Computer Science, Dpt. of Computer Science Dpt. of Computer Science

Electrical and Electronic Engineering Liivi 2, Tartu, Estonia Liivi 2, Tartu, Estonia
BOX 823, Halmstad, Sweden

Abstract. This paper evaluates a path selection algorithm for mobile robots in large dynamic environments. The
aim of the work is to reduce the risk of collisions and time of path following in cases when the robot repeatedly
traverses between predefined target points (e.g. for transportation or inspection tasks). The algorithm is usable even
if very little is known about the environment or if it gets completely restructured during the mission. This article
concentrates on evaluating the performance of the algorithm. The tests are completed on the mini-robot Khepera that
operates in an unknown dynamically changing environment. The test results show that the path selection algorithm is
able to reduce collision risk, travel time and travel distances as well as increase the predictability of robot’s behaviour
and its degree of autonomy.

1 Introduction

The approach presented in this paper is motivated by the fact that many mobile robot applications imply
repeated traversal between predefined target points in a dynamically changing environment. Examples of
this kind of implementations are fetch-and-carry task of industrial and agricultural applications or visiting
certain checkpoints in security and surveillance applications.

An efficiently operating robot is expected to fulfill its assignment as fast and as safely as possible. It
means that it is worthwhile to avoid situations where the robot is forced to replan its route, take a detour,
can drive into a deadlock or collide with unexpected obstacles.

Real world environments are dynamic by nature. Therefore, all the possible situations that can delay the
robot or imply a hazard cannot be foreseen. However, by modeling the environment or learning its properties,
the time delays can be minimized and the risk can be reduced.

1.1 Problem Statement

It is further assumed that:

1. The environment is dynamic and large. It is not possible or feasible to model it precisely or keep the
model constantly updated.

2. The environment contains obstacles with unknown size and location. Traversing this environment implies
risk of colliding with these obstacles, being delayed when maneuvering around them or ending up in a
deadlock.

3. Sensorial capabilities of the robot are insufficient to distinguish between static, dynamic and semi-
dynamic obstacles (e.g. between pillars and people, steady and replaced furniture).

4. The robot is working under time constraints and it has limited computational resources. It is expected
to fulfill its mission as fast and safely as possible.

5. Localization errors are small and do not accumulate (like it is with GPS) and it is therefore possible to
follow a preplanned path rather precisely.

? This research was supported by Estonian Science Foundation grant ETF5613.

39

The problem we aim at solving is the following: find paths between previously determined target points
so that following them minimizes risk of collisions and speeds up the mission.

Our approach to the problem is based on the following observation. In a dynamic environment with an
unknown obstacle distribution, the best path to the goal is not necessarily the shortest one. Depending on
the nature of the environment, there may exist routes that are longer but easier to follow. By introducing
a path generation algorithm, the robot can test several alternatives to reach the goal. By remembering its
path following experiences, it can learn to follow paths that save time and reduce risk. As the environment
changes, the robot will reevaluate its past experience and adapt to use new easily traversable paths.

1.2 Related Work

For a mobile robot operating in an uncertain environment, a natural requirement is obstacle avoidance
(e.g. several implementations of potential fields [3]). However, obstacle avoidance, no matter how good it is,
always implies a collision risk due to the uncertainty in sensor readings, motion planning, obstacle position
or computational imprecision.

To minimize collision risk and time delays it is therefore important to select paths where as few obstacles
as possible are encountered. Very few research studies reported so far consider the problem of path selection in
dynamic environments [1, 2]. Unlike these approaches, we do not assume that the structure of the environment
is known a priori.

The other difference from the above-cited approaches is that instead of the topological map we use a
grid-based map to model the environment. The advantage of the grid-based map in this context is that the
model does not have to be reorganized when the world changes and it therefore permits the robot to learn
and adapt even in situations when very little is known about the environment or when the whole structure
of the environment changes.

In our own previous work, we have used an heuristic algorithm to generate new innovative paths [4]. The
tests have revealed that the robot is quickly able to adapt to the changes in the environment. As a result,
the risk of collisions, time delays and traveled distances are minimized.

However, the tests also pointed to the shortcomings of the approach. During the tests it was observed
that many paths that the heuristic algorithm generated were similar to each other. The robot spent much
time waiting for a different solution to be found. It also appeared that sometimes the robot got trapped to
local minima – some paths that would have been easy to follow where never generated.

To overcome this problem we created a new algorithm for paths generation [6]. The aim was to generate a
minimal cover of the solution space. We proved that we can seed the memory with a relatively small number
of alternative solutions and can keep it constrained without loosing the robots ability to learn and generalize.

This paper tests another, improved path selection mechanism. In the next section, we describe the
algorithm and motivate our approach. Next, we describe some experiments with the mini-robot Khepera to
compare our approach with the traditional shortest-path following and demonstrate the advantages of our
approach. Finally, we end this paper with conclusions and directions for the future work.

2 Path Selection in Dynamic Environments

Figure 1 describes building blocks of our approach. The global planner receives tasks from the user. The tasks
are requests to move to a specific point from its present location. Given a new task, the global planner can
trust on its ealier experiences stored in the memory and use paths that have proven to be easy to traverse. If
the properties of the paths in the memory are not good enough (e.g. too risky, long or crooked), the global
planner can use the path generation unit to suggest new solutions for traversing to the given goal.

The task of the path generation unit is to generate innovative solutions to the path planning problem
using the map of the environment. If a new solution turns out to be good, it can be stored in the memory
and used later when the same problem will be encountered.

The chosen path will be presented to the low-level planning and execution unit that is responsible for
task decomposition (if necessary), replanning, localisation, sensor data processing and actuator control.

In this paper we concentrate on finding a good path generation mechanism that generates possibly
dissimilar paths from a given start to a given goal thus permitting the robot to try as many alternative
approaches in its search for better paths as possible.

40

localisation unit
Navigation and Local planner

Actuators Sensors

User interface

���������
���������
���������
��������� ����������

MemoryGlobal planner

Path generation unit

Fig. 1. General overview of path planning

Theoretically, the number of different paths on a grid-based map is overwhelming. There are too many
alternatives to travel between two points and the robot could never try them all. In addition, most of those
paths are infeasibly long, crooked and two difficult to follow. So the aim of the path selection algorithm is
to:

1. generate paths that are easy to follow if they are free from obstacles;
2. generate paths that are as much different from each other as possible to let the robot find out as many

innovative solutions as possible;
3. provide a mechanism that is able to discover virtually all possible alternatives;
4. cover the whole space of innovative solutions with as few alternatives as possible in order to maintain

the robot’s ability to generalize and keep the memory constrained.

We propose a method that works by dividing the grid into paths segments and then generating paths
that cover all these segments. Full description of the method and its formal analysis is presented in [5].

Figure 2 illustrates one possible cover of the 3× 4 grid.

Fig. 2. Cover of the 3× 4 grid

The paths selected by the robot are limited to those not having back turns and covering all the grid
segments of length 2. In practice, paths relaxation is used to smoothen the paths and the zig-zags will be
straightened.

It is proven in [5] that for a grid of the size m × n, the cardinality of the minimal cover is 2m + 2n− 2
paths. It means that the number of different paths is very small and grows linearly with a small constant,
that makes it well scalable for very large domains.

While [5] gives a thorough insight to the theoretical aspects of the algorithm, this paper concentrates on
demonstrating its advantages in practice. The following sections describe the test environment, experiments
and compares the results of the path selection algorithm to the shortest paths approach.

3 Experimental Setup

The experiments are conducted using mini-robot Khepera. Khepera is a differencial drive miniature circular
robot (with radius 26 mm) equipped with IR sensors for collision avoidance and it can be connected to a
PC over serial link.

The size of our test environment is 1860×1390 mm. Since Khepera lacks sensors for accurate localization
we solved this problem with a global vision system. The localization system is presented in figure 3. A video

41

camera is mounted to the ceiling to recognize the position of the robot. The PC processes the camera image
to find robot’s position and an algorithm running on it controls the robot over a serial link. In this way the
localization errors are rather small (usually comparable to the size of the robot).

���������������
���������

���������������
���������������

��������������������

��������������������
		

host computer

camera

robot

Fig. 3. Localization system

The environment is represented in figure 4, left. Figure 4, right, represents the same environment as
shown from the overview camera.

Fig. 4. Environment in reality and as seen from the overview camera

The presence and location of the obstacles on the scene is randomly changed and unknown for the robot.
The details of the obstacle distribution are presented in table 1. The frequency of obstacle replacement
depends on its size, the 8 smallest obstacles are replaced after every traversal, and so the robot faces
a changed environment for every traversal. An independent program using a random number generator
determines the locations of the obstacles before every traversal.

I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4

amount 2 2 1 1 1 10 8

size (mm) 320× 40 120× 320 & 160× 280 160× 240× 160 140× 385 100× 105 80× 80 40× 40

changing probability 0 0 0 0 0 0 1

Table 1. Obstacles

Figure 5 represents the model of the environment. The robot does not know anything about its environ-
ment except its size and the location of the target points. It has no idea about the presence and location of
the obstacles, neither does it know about the program that determines the obstacle distribution. Therefore
its model of the environment describes only the geometry of the environment and the location of its target
points (marked with the letter G). Encountered obstacles that cause the robot to replan its route are marked
with black rectangles. Since the robot cannot distinguish between frequently replaced and static obstacles,
the obstacle map is cleaned after every traversal. The solid line represents the planned path from start to
goal, the dotted line represents the actually followed path.

42

Fig. 5. Model of the environment

The mission of the robot consists of 50 tasks of traversing between the target points. Every task implies
selecting a path, following the path, replanning on-line when obstacles occur and storing the parameters of
the path when reaching the goal.

To evaluate the efficiency of our path selection algorithm, two missions consisting of 50 tasks are compared.
The first mission is the conventional path following procedure. The robot always follows the shortest path
to the goal. A wave transform algorithm is used to calculate the shortest path [7].

The second mission tests our path selection algorithm. When a new task is given, the robot either uses
the path selection algorithm to generate an innovative path or selects an old path from its memory. The
better the path in its memory is, the more likely it will be selected. The criterion of the path quality is the
number of obstacles encountered on its way:

path choosing probability =





1, if replannings < 5;
0, replannings > 30;
1− replannings/30, otherwise.

If the path selection algorithm is efficient, it helps the robot to find innovative paths that are easier traversable
than the shortest path. As a result, the risk of collisions and time delays should be reduced.

4 Experimental Results

Table 2 represents our experimental results.

replannings time (s) deviation (mm) length (mm) interruptions

shortest path algorithm 23,8 273,1 381,5 3878,5 20

path selection algorithm 9,9 191,2 281.0 3020,7 8

performance improvements 58% 30% 26% 22% 60%

Table 2. Experimental results

Five parameters were recorded and compared. The number of replannings is the parameter we explicitly
wanted to minimize. Every time the robot detects an obstacle in its vicinity, it will replan its path. The
number of replannings thus reveals the number of situations where a possible collision with an obstacle
would have occurred. The test results show that the path selection algorithm reduced the number of possibly
hazardous situation more than by half.

Although the paths generated by the path selection algorithm are longer than paths generated by the
shortest path algorithm, they lead the robot faster to the goal. The time of path following was reduced

43

mainly because the robot did not spend so much time on replanning its route and maneuvering between
obstacles.

The deviation from the originally planned path reveals the predictability of robot’s behaviour. When the
deviation is small, the robot followed more closely the route that it intended to. The path selection algorithm
helped to reduce the deviation by 26%.

Although we did not aim at minimizing the traveled distance, on the contrary, longer paths were preferred
if they were safer, the paths selection algorithm reduced the length of the paths by 22%. The reason is mainly
that maneuvering around the obstacles increases the traveled distances.

During the tests, there were occasions when the robot got stuck in the corners of obstacles or did not
manage to localize itself and therefore needed help from the experimenter. These cases were removed from
statistics since the mission usually got interrupted and data was incomplete. However, it is important to
notice that when the paths selection algorithm was used, the autonomy of the robot significantly increased.
The occasions when the experimenter had to intervene were reduced by 60%.

Generally, it can be said that compared to the shortest path algorithm, the path selection algorithm
improved all the measured parameters of the performance of the robot.

5 Conclusions and Future Work

This paper analyzed a path selection algorithm for repeated traversal in dynamic environments. The algo-
rithm generates innovative paths between predefined target points and helps the robot to reduce time and
risk of collisions. Compared to the other approaches to this problem, this approach is usable even when
very little is known about the environment or when the environment is completely restructured during the
mission. The disadvantage of the approach is that if very little is known about the surrounding, the robot
needs a global localization system to keep track on its position.

The advantage of the current approach compared to our own earlier work is that we can prove theoretically
the number of possible solutions and show that a relatively low number of solutions is needed to cover all
path segments. An even more important theoretical outcome is that the algorithm scales up well to large
domains. The number of solutions increases linearly with a small constant when the size of the environment
increases. The practical advantage of this algorithm was supported by experiments. The algorithm helped
to reduce the number of replannings, travel time, and distances as well as to increase the predictability of
robot’s performance and its degree of autonomy.

A possible direction of the future work could be to modify this approach to solve combined problems
where the robot simultaneously works on two missions. The possible examples are carrying a load and
cleaning the environment, or visiting checkpoints and inspecting the area at the same time. In these kind
of missions it is favorable to use as different paths between target points as possible. The path selection
algorithm will very efficiently cover the whole space even if the environment is large.

References

1. Karen Zita Haigh and Maria Manuela Veloso. Planning, execution and learning in a robotic agent. In AIPS-98,
pages 120 – 127, June 1998.

2. H. Hu and M. Brady. Dynamic Global Path Planning with Uncertainty for Mobile Robots in Manufacturing.
IEEE Transactions on Robotics and Automation, 13(5):760–767, October 1997.

3. J.S.Zelek. Dynamic issues for mobile robot real-time discovery and path planning. In Proc. of Computational
Intelligence in Robotics and Automation (CIRA’99), pages 232–237, 1999.

4. Maarja Kruusmaa. Global navigation in dynamic environments using case-based reasoning. Autonomous Robots,
14:71–91, 2003.

5. Maarja Kruusmaa and Jan Willemson. Algorithmic Generation of Path Fragment Covers for Mobile Robot Path
Planning. Technical Raport, 2003.

6. Maarja Kruusmaa and Jan Willemson. Covering the Path Space: A Casebase Analysis for Mobile Robot Path
Planning. Knowledge-Based Systems, 2003. Elsevier Science, to appear.

7. A. Zelinsky. Using path transforms to guide the search for findpath in 2D. The Int. Journal of Robotics Research,
13(4):315–325, August 1994.

This article was processed using
the TEX macro package with ECMR2003 style

44

 45

APPENDIX B

K.Heero, J.Willemson, A.Aabloo, M.Kruusmaa. Robots Find a Better Way: A
Learning Method for Mobile Robot Navigation in Partially Unknown
Environments. In Proceedings of the 8th Conference on Intelligent Autonomous
Systems (IAS-8), pages 559-566, Amsterdam, The Netherlands, March 2004.

 47

Robots Find a Better Way: A Learning
Method for Mobile Robot Navigation in
Partially Unknown Environments*

Kristo HEERO1, Jan WILLEMSON1, Alvo AABLOO2 and
Maarja KRUUSMAA2†

1Dept. of Computer Science, Tartu University, Liivi 2, 50409 Tartu, Estonia
2Institute of Technology, Tartu University, Vanemuise 21, 51014 Tartu, Estonia

Abstract. This paper represents a method for mobile robot navigation in
environments where obstacles are partially unknown. The method uses a path
selection mechanism that creates innovative paths through the unknown environment
and learns to use routes that are more reliable. This approach is implemented on
Khepera robot and verified against shortest path following by wave transform
algorithms. Based on the experimental data, we claim that robot’s trajectory planned
by wave transform algorithms is difficult to predict and control unless the
environment is completely modelled and the localisation errors are small. We show
that even small unmodelled obstacles can cause large deviation from the preplanned
path. Our complementary approach of path selection decreases the risk of path
following and increases the predictability of robot’s behaviour.

 Introduction

Mobile robots in human inhabited environments are expected to navigate safely and reliably
as well as minimize travel time and energy consumption. Since real-world environments are
complex, often unstructured and dynamic, it is impossible to build a complete model of
robot’s surrounding and keep it up to date. The robot is thus expected to operate as efficiently
as possible with a rather limited amount of information.

Until now, research in mobile robot path planning has focused on finding optimal routes
from start to goal. The optimality is usually measured in terms of travelled distances [1]. Other
measures are also used, e.g. confidence value [2]. For planetary rovers the efficiency of a path
is often expressed in terms of slope or roughness of the surface [3, 4].

Robots use local replanning to avoid unexpected obstacles in partially unknown
environments. Since local planners do not use global knowledge, the behaviour of the robot is
not globally optimised. Salich and Moreno have referred to this problem as to the dilemma of
authority vs. freedom [5]. The dilemma rises from the fact that classic planners produce rigid
orders while the behaviour of local reactive planners is unpredictable. Some researchers try to
overcome this problem by incorporating global information to local decision making [6, 7].

Path planning algorithms used in robotics have been proven to give a globally optimal
solution in globally known static environments. Their efficiency is not investigated in

* This research is supported by Estonian Science Foundation grant ETF5613.
† Corresponding author. E-mail: maarja.kruusmaa@ut.ee

 48

complex, dynamic and partially unknown environments during long periods of time. Our
experimental data suggests, that the dilemma local vs. global decision making is not so
important as it is anticipated e.g. in [8]. It rather appears that if the global planner does not
have all the global information about the environment. It anyway fails to create globally
optimal plans.

Based on our experimental data we conclude that the environment has a much more
significant effect on the behaviour of the robot than the algorithm used. Even if the robot
always replans globally and always uses all the global knowledge available, it has a minor
effect on the total outcome unless the environment is completely modelled. Our tests also
show that robot’s trajectory is difficult to predict and control. Even small unmodelled
obstacles can considerably deviate the robot away from its globally planned path.

A good characteristic of a learning system is the predictability of its behaviour. The
systems that better predict the outcome have learned the environment better. A mobile robot
can predict its behaviour when it knows its position with a great certainty after a certain period
of time. The ability to predict the trajectory makes it possible to optimise other parameters like
travel time or energy consumption.

The problem we try to solve is thus how to optimise the behaviour of the robot in a
partially unknown environment during a long period of time. There are two complementary
approaches to increase the predictability of robot’s behaviour. It is possible to gather more
information about the environment to plan optimal paths. But since our experiments show that
even small imprecision in input data or noise can considerably affect the robots trajectory, we
have chosen an opposite approach. Instead of trying to model the environment we look for
trajectories in a partially unmodelled environment that can be followed with a great precision.

We propose a method of covering a rectangular grid-based map with suboptimal paths.
Previously we have described the method in detail [9] and have proven that the number of
possible trajectories grows linearly with a small constant when the size of the map is
increased. Therefore the method we describe can be used even in large-scale environments.
The robot will then try to follow these paths and memorise them until it finds a trajectory that
is sufficiently stable and easy to follow.

In our previous work [10], we have tested or approach in a totally unknown changing
environment. The results show that the robot is able to adapt to the changes when the
unknown obstacles are frequently replaced and learns to use trajectories that take it safer to the
goal.

In this paper we report a series of tests to investigate the robot’s behaviour in partially
known environments. The environment is static to show the cause-effect relationship between
the model of the environment and the robots behaviour. It allows us to draw a conclusion that
the behaviour is influenced by the environmental model and the path planning algorithm but
not by the robot’s ability (or inability) to adapt to the changes.

Our paths selection algorithm is verified against shortest path following by a wave
transform algorithm of [11] with global replanning.

Our initial hypothesis was that the shortest path following with global replanning would
soon outperform our method when the environment becomes better known and when the
unknown obstacles are smaller. We guessed that the shortest path planner would find the
optimal path more likely if it knows the environment better. Tests did not confirm that
hypothesis. On the contrary, the experimental data shows that wave transform algorithms are
very sensitive to small imprecision in an environmental model. Even small unknown obstacles
(or possibly sensor noise) can cause large deviation from the originally planned path.

Our method of path selection has two limits. First, it assumes that the robot will repeatedly
traverse between two entry points. This assumption makes it possible to try several alternative
trajectories. Fortunately there are plenty of mobile robot applications (e.g. transportation,
surveillance, convoying) that presume repeated traversal between specified target points.

 49

Second, the robot needs a fairly precise positioning system to follow the trajectories it has
planned. In our tests we use an overhead camera to determine the robot’s pose. We therefore
suggest that the method works equally well with a satellite or pseudolite-based navigation.
Since we test our approach in an environment where some static obstacles are modelled, it is
principally possible to use these objects as landmarks. Yet we do not have any experience on
how the robot would behave when the localisation errors are large, like it often happens with
landmark based navigation.

In the next section we form the problem and list the assumptions we have made. We then
describe briefly our path selection mechanism. After that, we describe the experiments and
draw conclusions based on the experimental data.

1. Problem statement

It is further assumed that:
1. The environment is dynamic and large. It is not possible or feasible to model it

precisely and/or keep the model constantly updated.
2. The environment contains obstacles with unknown size and location. Traversing

this environment implies risk of colliding with these obstacles, being delayed when
manoeuvring around them or ending up in a deadlock.

3. Sensorial capabilities of the robot are insufficient to distinguish between static,
dynamic and semi-dynamic obstacles (e.g. between pillars and people, steady and replaced
furniture).

4. Mapping, path planning and localisation are not the main objectives of the robot.
These are presumptions to make the successful completion of a mission possible. Therefore
they cannot take all of time and the computational recourses. Some resources are also
needed for the main task that should be fulfilled as fast and safely as possible.

5. Localisation errors are small and do not accumulate and therefore it is possible to
follow a preplanned path rather precisely.

The assumptions 1 and 3 seem to contradict with the experimental design where the
environment is actually kept static. However, a static environment is not the necessary
precondition of the approach. The environment is kept static only to find out the causal
relation between an environmental model and the behaviour of the robot.

The problem we aim at solving is the following: find reliable paths between previously
determined target points so that following them minimises collision risk and speeds up the
mission.

Our approach to the problem solving is based on the following observation: in a
dynamic environment with an unknown obstacle distribution, the best path to the goal is
not necessarily the shortest. Depending on the nature of the environment, there may exist
routes that are longer but easier to follow in terms of time or safety. By introducing a path
generation algorithm, the robot can test several alternatives to reach the goal. By
remembering its path following experiences, it can learn to follow paths that save time and
reduce risk. As the environment changes, the robot will re-evaluate its experience and will
adapt to use new easily traversable paths.

 50

2. Path selection

Theoretically the number of different paths on a grid-based map is overwhelming. There
are too many alternatives to travel between two points and the robot could never try all of
them. In addition, most of those paths are unfeasibly long, crooked and difficult to follow.
So the aim of the path selection algorithm is to:

• generate paths that are easy to follow if free from obstacles;
• generate paths that are as much as possible different from each other to let the robot

find out as many innovative solutions as possible;
• provide a mechanism that in practice is able to discover virtually all possible

alternatives;
• cover whole space of innovative solutions with as few alternatives as possible in

order to maintain the robot's ability to generalise and keep the memory constrained.
We propose a method that works by dividing the grid into paths segments and then

generating paths that cover all these segments. The full description of the method and its
formal analysis is presented in [8].

Figure 1: The cover of a 43× grid.

The paths selected by the robot are limited to those not having back turns and covering

all the grid segments of length 2. Theoretically there are)1)(2()2)(1(2 −−+−− nmnm possible ways to
cover a nm × grid with such a minimal cover. Figure 1 shows one possible cover of a 43×
grid. In practice, paths relaxation is used to smoothen the paths and the zigzags will be
straightened.

It is proven in [8] that for a grid of the size nm × , the cardinality of the minimal cover
is 222 −+ nm paths. It means that the number of different paths is very small and grows
linearly with a small constant, which makes it well scalable for very large domains.

3. Experimental Design

The experiments are conducted using a mini-robot Khepera. It is a differential drive
miniature circular robot (with radius 26 mm) equipped with IR sensors for collision
avoidance and it can be connected to a PC over a serial link.

The localisation system is presented in Figure 2. A video camera is mounted to the
ceiling to recognise the position and orientation of the robot. The PC processes the camera
image to find robot's position and a computer algorithm controls the robot over a serial
link. In this way the localisation errors are rather small (usually comparable to the size of
the robot).

 51

Figure 2. Localisation system.

The size of our test environment is 13901860 × mm. It is represented in Figure 3 to the

left. The picture in the middle represents the same environment as shown from the
overview camera. The picture to the right in Figure 3 is the graphical interface of the
computer program that controls the robot and monitors its behaviour.

Figure 3. The test environment (to the left), the same environment seen through the overview camera (in

the middle) and as modelled by the control program (to the right).

The robot traverses repeatedly between the lower left corner and upper right corner of

the environment in Figure 3. The physical environment for all test runs is the same but the
environmental model varies. Figure 4 represents 3 different maps that are used to determine
how much the environmental model affects the results.

Figure 4. Environmental models used in experiments: a fully known environment (to the left),

environment with large obstacles modelled (in the middle) and with small obstacles modelled (to the right).

The map to the left of Figure 4 is the precise model of the environment, containing the

precise location of all obstacles. The map in the middle models only large obstacles while
the location of small obstacles in unknown. The map to the right models only small
obstacles while the large obstacles are unknown.

We compare our path selection method to shortest path following by a wave transform
algorithm[10] with global replanning. Table 1 shows the number of trials with every
environmental model with both path planning algorithms, shortest path planning vs. path
selection. The number of trials depends on how fast the process stabilises.

 52

Table 1. Number of trials.

Nr. of trials Environmental model

Path selection Shortest path
1.All obstacles known 10
2.Large obstacles known 20 50
3.Small obstacles known 20 50

The efficiency of the path planning algorithm is characterised by four parameters:

number of replannings, travel time, travel distance and deviation from the originally pre-
planned path.

One trial means planning a path from the lower left corner of the test environment to
the upper right corner (or back again), following this path, replanning when an unknown
obstacle is detected and recording the data when the robot reaches the goal.

The shortest path planning algorithm is the following:
1. Plan off-line a path from current start to current goal. This path is the shortest path to

the goal calculated by a distance transform method [10].
2. Follow the path.
3. If an obstacle is detected plan a new path from its current position to the goal by a

distance transform algorithm.
4. Repeat steps 2 and 3 until goal is reached.
5. Record travel time, travel distance, number of obstacles detected and deviation from the

path planned at step 1.

The path selection algorithm is the following:

1. At the first trial select a suboptimal path planned by the method described in Section 3.
2. Follow the path.
3. If an obstacle is detected plan a new path from its current position to the goal by a

distance transform algorithm.
4. Repeat steps 2 and 3 until goal is reached.
5. Smoothen the actually followed path to remove cycles, zigzags and gaps caused by

localisation errors.
6. Store the smoothened path together with the travel time, distance, number of

replannings and deviation.
7. At next trial check if there is a stored path with acceptably low number of replannings.

If yes, follow this path. If no, choose a new path by using a method described in
Section 3.

8. Repeat steps 2 to 7.

4. Experimental Results

All data from experiments, including recorded parameters at every trial, snapshots of every
followed path and code of the control program are available at
http://math.ut.ee/~kristo/khepera/. We here represent only some general statistics to
compare the path planning strategies described above.

Table 2 represents data on the shortest path planning experiment. Table 3 represents
data on path planning with path selection.

The efficiency of the path selection mechanism in case of a small number of trials
largely depends on how fast the robot finds a suboptimal path that is easy to follow. While

 53

running the test in the 3rd environment (with small obstacles known) the robot found an
easy-to-follow suboptimal path at the first trial. For the sake of an unbiased interpretation
we also represent data of another experiment that shows the worst case we have
encountered. The robot had to try 4 suboptimal paths before it found one that was good
enough. The last row of Table 3 therefore gives two figures for every parameter, the best
result vs. the worst result.

Table 2. Results of shortest path planning.

Environmental model Nr. of

replannings
 Travel time Travel distance Deviation

from the
preplanned path

1.All obstacles known 0.3 104 2555.0 43.8
2.Large obstacles known 12.7 123.3 2697.3 114.7
3.Small obstacles known 14.8 134.3 2768.0 107.0

Table 3. Results of planning with path selection.

Environmental model Nr. of

replannings
Travel time Travel distance Deviation

from the
preplanned path

1.All obstacles known
2.Large obstacles known 0 104.1 2584.6 29.2
3.Small obstacles known 0/5.7 129.8/123.5 2534.2/2805.5 29.2/145.0

5. Discussion and conclusions

The first trials test the shortest path following strategy in a completely known environment
(the first row in Table 2). It is the ideal case where globally best paths are planned with all
available information. A closer look to the statistical data (available at the website) shows
that the behaviour of the robot is predictable and stable. It means that we are able to control
the robot with the great precision. Localisation errors, imprecision of mechanical linkages
and sensor noise have no significant effect to the test results. Keeping all other things equal
and changing only the environmental model or the path planning algorithm we can claim
that the changes in experimental results are caused by one of the latter reasons.

Next we have verified the behaviour of the robot using two path planning strategies.
Speaking in terms of decision-making theory, in case of shortest path planning, the robot
can be described as a rational utility maximising agent. It always tries to find the shortest
path to the goal considering all information available. In the case of path selection, the
robot can be described as an explorative agent. It randomly tries suboptimal solutions to
escape the local minimum and find a globally best solution.

The results show that by and all, the explorative agent is more successful. The
advantage is apparent despite that the number of trials with the path selection method is
smaller than the number of trials with the shortest path algorithm. Since the environment is
static, larger number of trials would simply increase the advantages of the path selection
mechanism since the robot would use the already found good solutions. At the same time
the robot using the shortest path planning strategy does not learn and its behaviour never
stabilises.

Another conclusion is that as soon as the environment is not modelled completely, the
trajectory of the robot is hard to predict and control. Table 2 shows that small obstacles can

 54

cause large deviation than large ones. The path selection algorithm represented here is one
possibility to find reliable trajectories that increase the predictability of robot’s behaviour.

Finally, we conclude that shortest path planning is not a relevant problem in partially
unknown environments. As soon as the robot does not have all global knowledge available,
suboptimal solutions give at least as good results as the optimal one. In order to increase
the reliability of mobile robot applications, much more importance should be paid on
modelling the environment and its changes.

This study obviously raises a question of how well the test environment models a real
large-scale dynamic environment and how much Khepera can be considered as a model of
a real robot. We suggest that the first question can be answered positively since this study
focuses rather on modelling than navigation. We therefore expect the main conclusion that
the environmental model plays a more important role than the path planning strategy, to
hold also in real-world applications. However, we cannot be certain how much this
conclusion can be extended to nonholonomic robots that due to their kinematics are not
able to follow any possible pre-planned trajectory.

References

[1] A.Yahja, S.Singh, A.Stentz, “An Efficient on-line Path Planner for Outdoor Mobile Robots”. Robotics
and Autonomous Systems, 32, pp. 129-143, Elsevier Science, 2000.

[2] U.Nehmzow, C.Owen, “Robot Navigation in the Real World: Experiments with Manchester’s Forty Two
in Unmodified Large Environments”, Robotics and Autonomous Systems, 33, pp.223-242, Elsevier
Science, 2000

[3] A. Howard, H.Seraji, “Vision-Based Terrain Characterization and Traversability Assessment”, Journal of
Robotic Systems, Vol. 18, No.10, pp. 577-587, Wiley periodicals, 2001.

[4] D.B.Gennery, “Traversability Analysis and Path Planning for Planetary Rovers”, Autonomous Robots,
Vol. 6. pp. 131-146, Kluwer, Academic Publishers, 1999..

[5] M.A. Salichs and L. Moreno. “Navigation of Mobile Robots: Open Questions”, Robotica, Vol. 18, pp.
227-234, Cambridge University Press, 2000.

[6] H.Seraji, “New Traversability Indices and Traversability Grid for Integrated Sensor/Map-Based
Navigation”, Journal of Robotic Systems, Vol. 20, No.3, pp. 121-134, Wiley periodicals, 2003.

[7] A. Sgorbissa, R.Zaccaria, "Roaming Stripes: integrating path planning and reactive navigation in a
partially known environment", 11th International Conference on Advanced Robotics - ICAR 2003,
Coimbra, Portugal, July 2003

[8] Robin R. Murphy, Ken Hughes, Alisa Marzilli and Eva Noll, “Integrating explicit path planning with
reactive control of mobile robots using Trulla”, Robotics and Autonomous Systems, Vol. 27, Issue 4, pp.
225-245, Elsevier Science, 1997.

[9] M.Kruusmaa, J.Willemson. “Algorithmic Generation of path Fragment Covers for Mobile Robot Path
Planning”, Technical Report, 2003.

[10] M. Kruusmaa, J.Willemson, K.Heero. “Path Selection for Mobile Robots in Dynamic Environments”,
Proc. of the 1st European Conference on Mobile Robots, pp. 113 - 118., Poland 2003.

[11] A. Zelinsky. “Using Path Transforms to Guide the Search for Findpath in 2D. The Int. Journal of
Robotics Research, Vol. 3 No. 4, pp. 315-325, August, 1994.

 55

APPENDIX C

K.Heero, A.Aabloo, M.Kruusmaa. Learning Innovative Routes for Mobile
Robots in Dynamic Partially Unknown Environments. International Journal of
Advanced Robotic Systems, 2(3):209-222, 2005.

 57

Learning Innovative Routes for Mobile Robots in Dynamic
Partially Unknown Environments

Kristo Heero, Alvo Aabloo, Maarja Kruusmaa

Institute of Technology, Tartu University
Vanemuise 21, 51014 Tartu, Estonia

maarja.kruusmaa@ut.ee

Abstract: This paper examines path planning strategies in partially unknown
dynamic environments and introduces an approach to learning innovative
routes. The approach is verified against shortest path planning with a distance
transform algorithm, local and global replanning and suboptimal route
following in unknown, partially unknown, static and dynamic environments. We
show that the learned routes are more reliable and when traversed repeatedly
the robot’s behaviour becomes more predictable. The test results also suggest
that the robot’s behaviour depends on knowledge about the environment but not
about the path planning strategy used.

Keywords: path planning, mobile robots, dynamic environment, robot
learning.

1 Introduction
Mobile robots in human inhabited environments should operate safely and
reliably. At the same time they are expected to minimise energy consumption,
travel time and distance. Optimisation of these parameters implies that the robot
must be able to predict its behaviour in a partially unknown and changing
environment.

Robots use path planning algorithms to plan a path from start to goal. In
dynamic environments the environment can change during path following. To
avoid collisions with unknown obstacles robots use local replanning. While
classic AI planners are used to produce the global path to the goal, local
replanners usually act reactively.

Mobile robot path planning is considered to be a well-established field
incorporating several efficient path planning techniques and their modifications
[1, 2, 3, 4, 5]. These path planners are proven to give a globally optimal plan in
a static completely modelled environment. Several implementations also prove
that by combining global and local path planning methods mobile robots are

 58

able to operate in dynamic environments [6, 7, 8, 9]. However, there is no study
that investigates their efficiency during long periods of time and the
predictability of their behaviour.

Some studies investigate the long-term behaviour of localisation methods
[10], fault tolerance [11] and reactive behaviour [12] but efficiency of path
planners is usually evaluated only by examining few trials. Results prove that a
robot using path planning methods is able to negotiate unknown obstacles and
find a way to the goal but do not address the problem of the stability of its
behaviour and optimality of solutions.

The reason for it might be that most of mobile robot path planners originally
stem from the research with robot manipulators. The algorithms worked
perfectly in small-size well-defined worlds and were easily adapted for 2D
environments. As the field of mobile robotics developed the test environments
grew large and more complex. Local replanning techniques and probability
maps were introduced to cope with the new situation. At the same time global
behaviour of path planning algorithms have remained unattended.

Predictability of robot’s behaviour is an important parameter of a mobile
robot. A robot that can predict its behaviour can estimate its position after a
certain period of time. Increased predictability, in turn, makes it possible to
optimize other parameters like travel time, distance, energy consumption,
collision risk, etc. For robots working in a team predictability of each other’s
actions is inevitable. A robot interacting with a human is also expected to be
stable and predictable. Knowing robot’s location with a great precision makes it
easier to find a lost robot in very large and complex environments.

The goal of this study is to investigate robot’s behaviour in large and
partially unknown environments as well as to find a way to increase
predictability of robot’s behaviour. We have set up a model environment for a
mini-robot Khepera [13] and completed 600 test runs to investigate its long-
term behaviour. We plan paths with wave transform algorithms widely used in
mobile robotics [14]. The questions that we aim at answering are the following:

• How much does the efficiency of path planning algorithms depend on

the accuracy of the world model?
• How much does explicit global replanning help to improve the

performance of a path planner?
• How important is it to find a globally optimal path?
• Is it possible to increase predictability of robot’s long-term behaviour if

the environment is dynamic and partially unmodelled?

To answer the last question we introduce a learning method for fetch-and-

carry tasks that looks for reliable trajectories in a partially modelled dynamic
environment and compare its efficiency against shortest path following with a
wavetransform algorithm. The results show that in a complex environment there
may exist paths that are easier to follow than the shortest path. Finding these

 59

innovative traits and following them helps to reduce collision risk as well as to
minimize travel time, distance and deviation from the originally planned path.

To examine the performance of path planners we verify:

• Optimal path planning to suboptimal path planning
• Local path planning to global path planning
• Path planning in static and dynamic environments
• Path planning in known partially known and unknown environments.

The next section we describe finding innovative paths. The goal of this

method is to find reliable trajectories to complete fetch-and carry tasks. Next,
we describe the experimental setup. In section 4 we represent the experimental
results. Section 5 discusses the experimental results.

2 Finding Innovative Routes
To illustrate the problem and to explain its relevance let us verify two test runs
with the robot Khepera (Figure 1 and Figure 2). The robot has to traverse from
the start point in the lower left corner of the map to the goal point in the upper
right corner in both cases. The environment is completely unknown. Black
rectangles on the grid map represent obstacles that the robot has detected during
path following. Every detected obstacle causes the robot to replan globally.

Replanning is done with a wavetransform algorithm. The solid line on the
figures is the path that the robot has planned, the dotted line is the actual path
detected with an overview camera. The only difference is that while in Figure 1
the robot always plans the shortest path; in Figure 2 the robot first takes a
suboptimal path to the goal until it counts the first unknown obstacle. At this
point both of the algorithms become identical.

Eventually it appears that the robot in Figure 1 has taken a much longer
route to the goal and deviated considerably from its original course. The
suboptimal path in Figure 2 appears to be much shorter and easier to follow.
Since the robot counts only few obstacles, collision risk is less. Replanning does
not cause large deviation. Even when the robot replans it eventually drifts back
to its original course.

Many mobile robot applications assume repeated traversal between
predefined target points. The most common is a transportation task (fetch and
carry), but also surveillance, guiding, rescuing etc. may fall into this category. If
the robot was able to find stable trajectories like in Figure 2 then following
them would considerably speed up the mission, reduce risk to the robot or to the
environment and reduce energy consumption.

The problem is thus how to find trajectories that increase the predictability
of robot’s behaviour and reduce risk.

 60

Figure 1. Path planning in an unknown environment. Shortest path planning
with a wavetransform algorithm

Figure 2. Path planning in an unknown environemnt. Suboptimal path
following

One possibility would be to include information about reliability on the map.
For grid-based maps, there exist reliable methods for incorporating ambiguity
caused by sensor readings to the map [15]. Land-rovers also consider roughness
and slope of the terrain to find the most reliable path [16, 17]. The optimal path
is thus not expressed in terms of distance, but in terms of a cost function
considering the traversability of the path. Cost functions are also used with
topological path planning since exact distances between graph nodes are often
unknown [18].

 61

To increase reliability of path planning it would be necessary to include
information about dynamic obstacles to the map. In [19] this is done by
observing the obstacle distribution with an overview camera. A path planner
then avoids areas that are more likely occupied. If it is not possible to observe
the environment globally, the map is very difficult to keep up to date.
Moreover, from Figure 1and Figure 2 it appears that some obstacles deviate the
robot more away from its original path than others and to decrease deviation
form the original path this information should also be taken into account.

To increase predictability of robot’s behaviour, the grid map had to reflect
the ambiguity caused by sensor readings, localization errors, dynamic obstacles
and their effect to replanning procedures. To permit efficient path planning this
map must be constantly updated. At the moment there is no such a method
available that combines all these sources of uncertainty in a reliable manner and
is easy to manage in real time.

To increase the predictability of path following for fetch and carry tasks we
look at the problem from an opposite viewpoint. Instead of modelling the
environment as accurately as possible we look for paths where inaccuracy of the
world model does not significantly influence the result of path planning.
Practically we choose a set of suboptimal paths and evaluate their traversability
by trail-and error until we find some that satisfies our criteria of safety and
reliability.

This approach is applicable for fetch and carries tasks since it implies
repeated traversal between predefined targets. It also presumes that localisation
errors are small and do not accumulate since the robot is expected to determine
its position rather accurately. It is therefore easiest to apply the method if GPS
or pseudolite navigation is used, for example like in [20].

2.1 Problem Statement
It is further assumed that:

1. The environment is dynamic and large. It is not possible or feasible to
model it precisely and/or keep the model constantly updated.

2. The environment contains obstacles with unknown size and location.
Traversing this environment implies risk of colliding with these
obstacles, being delayed when manoeuvring around them or ending up
in a deadlock.

3. Sensorial capabilities of the robot are insufficient to distinguish
between static, dynamic and semi-dynamic obstacles (e.g. between
pillars and people, steady and replaced furniture).

4. The environment is unstructured or the structure of the environment is
unknown.

5. Mapping, path planning and localisation are not the main objectives of
the robot. These are presumptions to make the successful completion of
a mission possible. Therefore they cannot take all of time and the

 62

computational recourses as some resources are also needed for the main
task.

6. The robot is expected to fulfil its mission as fast and safely as possible.
7. Localisation errors are small and do not accumulate and therefore it is

possible to follow a pre-planned path rather precisely.

The problem we aim at solving is the following: find reliable paths between
previously determined target points so that following them minimises collision
risk and speeds up the mission.

Our approach to the problem solving is based on the following observation.
In a dynamic environment with an unknown obstacle distribution, the best path
to the goal is not necessarily the shortest. Depending on the nature of the
environment, there may exist routes that are longer but easier to follow in terms
of time or safety. By generating innovative tracks with a path generation
algorithm, the robot can test several alternatives to reach the goal. By
remembering its path following experiences, it can learn to follow paths that
save time and reduce risk. As the environment changes, the robot will re-
evaluate its experience and will adapt to use new easily traversable paths.

2.2 Suboptimal Path Generation
Theoretically the number of different paths on a grid-based map is
overwhelming. There are too many alternatives to travel between two points
and the robot could never try them all. In addition, most of those paths are
unfeasibly long, crooked and difficult to follow. So the aim of the path selection
algorithm is to:

• generate innovative routes that are easy to follow if free from obstacles;
• generate paths that are as much as possible different from each other to

let the robot find out as many innovative solutions as possible;
• provide a mechanism that in practice is able to discover virtually all

possible alternatives;
• cover the whole space of innovative solutions with as few alternatives

as possible in order to maintain the robot's ability to generalise and keep
the memory constrained.

We propose a method that works by dividing the grid into paths segments
and then generating paths that cover all these segments. The full description of
the method and its formal analysis is presented in [21].

Figure 3 illustrates one possible cover of a 43× grid. The paths selected by
the robot are limited to those not having back turns and covering all the grid
segments of length 2. In practice, paths relaxation is used to smoothen the paths
and the zig-zags will be straightened.

 63

Figure 3. The cover of a 43× grid

It is proven in [21] that for a grid of the size nm × , the cardinality of the
minimal cover is 222 −+ nm paths. It means that the number of different
paths is very small and grows linearly with a small constant, which makes it
well scalable for very large domains.

2.3 Learning Innovative Routes
In the previous section we presented a method of covering the m × n grid map
with a set of suboptimal path. We assume that although these paths are longer
than the shortest one, in a dynamic and partially modelled environment some of
these routes may be easier to follow. Since the map may be inadequate and does
not contain information that permits to evaluate reliability of paths, we can
evaluate their traversability only after following them. Therefore the application
of the algorithm is also limited to missions that assume repeated traversal
between predefined targets. The general form of the algorithm represented in
Figure 4.

In the next section we describe the experimental design and after that
represent the results of the experiments. The experiments were set up to verify
the path selection algorithm against shortest path following, specifically to show
how dynamic or how well modelled the environment can be for the path
selection algorithm to outperform shortest path following. For the sake of
completeness and in order to draw some more general conclusions we have also
included some test runs published earlier in [22] and [23].

3 Experimental Design

3.1 Robot
The experiments are conducted using a mini-robot Khepera (see Figure 5). It is
a differential drive miniature circular robot (with radius 26 mm) equipped with
IR sensors for collision avoidance and it can be connected to a PC over a serial
link.

 64

When moving from start to
goal is requested choose a

suboptimal path.

Follow the path.

Goal is
reached?

No

Store data about its
traversability (replanning,

distance, etc.).

Next trial?

The followed path
satisfies a predefined
criterion (e.g. safety,

reliability, etc.)?

Choose this path.

Yes

No

Start

Yes

No

Yes

End

Figure 4. The path selection algorithm

Figure 5. The Khepera robot. LEDs are mounted on its top to detect it with an
overview camera

 65

3.2 Localization
The localization system is presented in Figure 6. A video camera is mounted to
the ceiling to recognize the position and orientation of the robot. The PC
processes the camera image to find robot's position and a computer algorithm
controls the robot over a serial link. In this way the localisation errors are rather
small (usually comparable to the size of the robot).

Figure 6. Localization system with an overview camera

3.3 Test Environments
To test the path planning algorithms we have set up a test environment
represented in Figure 7. The size of the test environment is 1860 mm × 1390
mm and it contains replaceable obstacles. Figure 8 represents the same
environment observed though the overview camera. Khepera is detected with
the help of 3 LEDs mounted on its top. The robot is shown in the middle of the
Figure 8, the serial cable connecting it to the computer is also visible. The
isosceles triangle formed by the LEDs determines the position as well as
orientation of the robot.

Figure 7. The test environment

 66

Figure 8. The test environment seen through the overview camera

Figure 9. The user interface of the control program

A computer program controls the robot, detects its position with the

overview camera and records its behaviour. The user interface of the program is
shown in Figure 9.

The robot repeatedly traverses between the lower-left and upper-right
corner of the test environment and back again. Black rectangles in Figure 9 are
occupied cells; either modelled a priori or detected with the IR sensors of
Khepera. Every obstacle that the robot detects forces it to replan its route

 67

according to a previously determined strategy. The solid line is the planned
route; the dotted line is the actual route of the robot recorded with help of the
localization system.

3.4 Obstacles
The specification of the obstacles is given in Table 1. Their location is
generated with a random number generator. The location of the larger obstacles
specified as I-shape, L-shape, C-shape, rect.1 and rect2 is kept constant during
all the test runs (Figure 8 shows their locations). In dynamic environments we
change the location of obstacles rect. 3 and rect.4. Keeping the location of the
static obstacles constant during all the test runs makes it possible to verify the
experimental results.

The performance of the robot is verified in 6 environments with a different
degree of dynamicity and different amount of a priori known information. In
next subsections, we describe in detail the path planning algorithms and test
environments.

Table 1. Specification of the obstacles

 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4

amount 2 2 1 1 1 10 8
size (mm) 320×40 120×320

&
160×280

160×240×160 140×385 100×105 80×80 40×40

changing
probability

0 0 0 0 0 0 0

type modelled modelled modelled modelled modelled unknown unknown

Table 2. Obstacles in environment 2

 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4

amount 2 2 1 1 1 10 8
size (mm) 320×40 120×320

&
160×280

160×240×160 140×385 100×105 80×80 40×40

changing
probability

0 0 0 0 0 0 0

type unknown unknown unknown unknown unknown modelled modelled

Table 3. Obstacles in environment 3

 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4
amount 2 2 1 1 1 10 8

size (mm) 320×40 120×320
&

160×280

160×240×160 140×385 100×105 80×80 40×40

 68

 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4

amount 2 2 1 1 1 10 8
size (mm) 320 ×40 120×320

&
160×280

160×240×160 140×385 100×105 80×80 40×40

changing
probability

0 0 0 0 0 0 0

type unknown unknown unknown unknown unknown unknown unknown

Table 4. Obstacles in environment 4
 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4

amount 2 2 1 1 1 10 8
size (mm) 320×40 120×320

&
160×280

160×240×160 140×385 100×105 80×80 40×40

changing
probability

0 0 0 0 0 0 1

type unknown unknown unknown unknown unknown unknown unknown

Table 5. Obstacles in environment 5
 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4

amount 2 2 1 1 1 10 8
size (mm) 320×40 120×320

&
160×280

160×240×160 140×385 100×105 80×80 40×40

changing
probability

0 0 0 0 0 0.2 1

type unknown unknown unknown unknown unknown unknown unknown
Table 6. Obstacles in environment 6

3.4.1 Environment 1 – Static, Known

This environment is set up to test the performance of the robot in perfect
conditions.

The environment 1 is the complete and correct model of the environment.
Locations of all obstacles is precisely known and do not change. The model is
represented in Figure 10. The start and goal points are indicated with a letter G.

3.4.2 Environment 2 – Static, Large Obstacles Known
The physical environments 1, 2 and 3 are identical, only the models of the
environments differ. All the obstacles in this environment are kept static during
the tests.

The environments 2 and 3 were set up to verify the performance of the path
selection algorithm in a partially modelled world.

In environment 2 the large obstacles are known a priori while the presence
and location of small obstacles is unknown (see Table 2 for details). The model
of the environment 2 is shown in Figure 11.

 69

Figure 10. The complete model of the environment. The letter G indicates start
and goal points

Figure 11. The partially modelled environment. Large obstacles are modelled

3.4.3 Environment 3 – Static, Small Obstacles Known

The model of the environment 3 is the reverse of the model of the
environment 2. All obstacles that were known in environment 2 are unknown
while all obstacles, which were unknown in environment 2, are known here (see
Table 3). Like it was stated above, the physical environment that the robot
traverses is the same for environments 1, 2 and 3. The model of the
environment 3 is represented in Figure 12.

 70

Figure 12. The model of the test environment with small obstacles modelled

Figure 13. Model of the unknown environment

3.4.4 Environment 4 – Static Unknown
The test environment 4 was set up to test the performance of the path selection
algorithm in an extreme case where nothing is known about the environment
except its size and goal locations.

The model of the environment is represented in Figure 13. All obstacles are
static (see Table 4).

 71

3.4.5 Environment 5 – Slightly Dynamic, Unknown
The environments 5 and 6 are dynamic and unknown. Tests in these
environments evaluate how well does the path selection algorithm adapt to the
environmental changes.

Environment 5 is unmodelled with the 8 obstacles replaced after every trial.
The model of the environment is represented in Figure 13.

Obstacle distribution is presented in Table 5. Locations of all 8 obstacles
specified as rect. 4 are replaced before every trial with probability 1. Their new
locations are generated randomly. If the new location of an obstacle coincides
with an existing obstacle, a new location is generated.

A realistic environment can change during the path following. However, this
is a feature that we were not able to model, since changing the environment
during the path following would have disturbed the localisation system that uses
an overview camera. We therefore changed the environment before every trial.
In this way the robot faces a new changed world every time it travels to its goal
location, but it does not observe the environment changing during the path
following.

3.4.6 Environment 6 – Moderately Dynamic, Unknown
The model of the environment is the same as in Figure 11. Environment 6 is
more dynamic as 18 obstacles are replaced after every trial. The obstacle
distributions are represented in Table 6. Like in the environment 5, the obstacles
specified as rect. 4 are replaced with the probability 1.0. In addition 10 more,
twice as large obstacles rect. 3, are replaced after every trial, each with a
probability 0.2.

Dynamic obstacles actually correspond to those that are unknown in
environment 2 while all static obstacles correspond to those that are known in
environment 2.

3.5 Algorithms
This subsection describes path planning strategies used to evaluate the path
selection algorithm. The performance of the path selection algorithm is verified
against shortest path following with wavetransform algorithms. The
wavetransform algorithm is selected as one of the commonly used path planning
methods on a grid map. Also our own path selection algorithm uses the same
wavetransform methods for replanning. Therefore we can assure that any
differences in performance are caused only by the learning algorithm but not by
the replanning method.

The robot uses 3 different path planning strategies:
1. Shortest path following always plans the shortest path to the goal from

its current position.
2. Path selection with global replanning uses the path selection algorithm

to look for suboptimal routes to the goal. It follows the suboptimal route

 72

until the first unexpected obstacles is detected. Then the shortest path
following is used to reach the goal.

3. Path selection with local replanning uses the path selection algorithm to
find suboptimal routes to the goal. When unexpected obstacles are
detected, local replanning is used to find its way back to the pre-
planned route.

Next, we describe every path planning strategy in detail. The program code

corresponding to every algorithm is available at
http://math.ut.ee/~kristo/khepera/.

Plan an off-line path from start
to goal with a distance
transform algorithm.

Follow the path.

Is an obstacle
detected?

No

Is goal
reached?

Plan a new path from its current
position to the goal by a

distance transform algorithm.

Yes

Start

No

Yes

Record travel time, travel distance,
number of obstacles detected and

deviation from the path.

End
Figure 14. The algorithm of shortest path following

3.5.1 Shortest Path Following

Figure 14 describes the shortest path following strategy. A robot using this
strategy always tries to find the shortest possible path to the goal considering all

 73

global information available. To find the shortest path, the distance transform
algorithm is used [14]. This algorithm always finds the globally optimal path to
the goal and at the same time keeps the robot at the safe distance from
obstacles. This strategy uses no memory to store the information about
previously followed tracks.

Select a suboptimal path.

Follow the path.

Is an obstacle
detected?

No

Is goal
reached?

Plan a new path from its current
position to the goal by a distance

transform algorithm.
Yes

Start

No

Yes

Smoothen the actually followed path
to remove cycles, zig-zags and gaps

caused by localisation errors.

End

Strore the smoothened path together
with travel time, distance, number of

replannings and deviation.

Next trial?

No

Does a path exist
with acceptably
low number of
replannings?

Yes

No

Yes

Figure 15. Path selection algorithm with global replanning

 74

3.5.2 Path Selection With Global Replanning
Figure 15 represents the flow diagram of the path selection algorithm with
global replanning. The bottom line of this path following strategy is to first
travel a suboptimal route and if this route appears to be blocked with an
obstacle, abandon the pre-planned route and turn to the shortest path following
strategy.

The followed path is usually different from the pre-planned one because
unknown obstacles deviate the robot from its initial course. It is also crooked
since the robot repeatedly corrects its localization error and avoids collisions
with obstacles. The zigzags of the followed path are therefore straightened and
gaps and cycles are removed. This procedure is documented in [24]. When the
goal is reached the followed path is remembered and stored together with
statistical data (nr. of obstacles detected, travel time, distance, deviation from
the original path).

This strategy minimizes the risk of path following; therefore it chooses
routes that are most likely to be free from obstacles. The robot first looks for a
stored path with an acceptably low number of replannings while repeatedly
traversing between the target points. If such a path exists, it is repeatedly
followed as long as it satisfies the robot’s criterion of safety. Otherwise a new
suboptimal route is chosen, followed and remembered. The criterion of path
selection among the stored paths is the probability inversely proportional to the
number of unexpected events:









−
>
<

=
otherwise ,30/1

30 ,0
5 ,1

sreplanning
sreplanning
sreplanning

yprobabilit

Equation 1.

Obviously, the efficiency of this algorithm depends on how fast the robot
finds a route with acceptable parameters. When this route or several good routes
are found, it usually keeps following them, robot’s behaviour stabilizes and the
overall performance increases. The final result thus largely depends on how
many trials are performed and how lucky the robot is to find a good route.
Longer test runs would thus increase the efficiency of the path selection
algorithm compared to shortest path following strategy which does not learn
and remember and therefore does not improve its performance. To avoid a
biased interpretation of the test results we have therefore analyzed separately
the parameters of innovative suboptimal routes and learned (repeatedly
traversed) routes.

3.5.3 Path Selection With Local Replanning

This path planning strategy described in Figure 16 follows the initially chosen
suboptimal route to the end. When the unexpected obstacle is detected, it plans

 75

a path around it and tries to return to the pre-planned path. If new obstacles are
detected during replanning, it always tries to turn back to the pre-planned path a
little further away from the initial returning point. The local replanning
algorithm is therefore somewhat smarter than the plain global task
decomposition algorithm. It does not try to reach to a certain sub-goal that could
be hard to achieve but chooses a new sub-goal. Put differently, it avoids sub-
goal obsession, as R. Murphy calls it [25]. To replan locally the robot uses the
same distance transform algorithm that is used for shortest path planning.

Like in case of the previous strategy, the test results depend on how lucky
the robot is to find a good route and how long is the test run. Therefore in
experimental results, the innovative suboptimal path and learned path are
analyzed separately.

Select a suboptimal path.

Follow the path.

Is an obstacle
detected?

No

Is goal
reached?

Plan a path from its current
location back to the

preplanned path.
Yes

Start

No

Yes

Smoothen the actually followed path
to remove cycles, zig-zags and gaps

caused by localisation errors.

End

Strore the smoothened path together
with travel time, distance, number of

replannings and deviation.

Next trial?

No

Does a path with
an acceptably low

number of
replannings exist?

Yes

No

Yes

Follow the local path back to
the p+i cell.

Is an obstacle
detected?

Is p+i cell
reached?

No

No

i = i + 1

Yes

Yes

Figure 16. Path selection algorithm with local replanning

 76

4 Experimental Results

4.1 Shortest Path Following in a Fully Modelled Static
Environment

We here represent the detailed results of 10 test runs in a fully modelled static
environment. This test evaluates the efficiency and stability of shortest path
planning with a wavetransform algorithm and gives a reference for evaluating
the performance in partially modelled and unknown environments.

One trial means planning a path from the start to the goal, following the path
and replanning if necessary. In the end of every trail four parameters are
recorded: number of replannings due to unexpected obstacles, travel time,
deviation from the originally planned path and travel distance.

Table 7 represents detailed experimental results. Figure 17 represents the 5th
trail recorded by the computer program and Figure 18 represents the 6th trial
where the robot traverses in the opposite direction.

This data indicates that the program is able to control the robot rather
precisely and the behaviour of the robot is predictable. The deviation from the
original path is not more than by the diameter of the robot and only in one case
a detected obstacle or sensor noise forces the robot to replan its course (trial
nr. 3).

We can conclude that localisation errors, imprecision of mechanical linkages
or the control program do no influence the test results significantly. Keeping all
other things equal and changing only the model of the environment or the path
planning algorithm we can thus claim that any changes in performance are
caused by one of these reasons.

The tests represented in this paper consist of 600 trials. In the following
subsections we represent only the average values of all the test runs. The
detailed data about every trail as well as snapshots of every followed path
similar to Figure 17 and Figure 18 are available online at
http://math.ut.ee/~kristo/khepera/.

 77

No. of
trial

No. of
replannings

Travel time
(sec)

Deviation
(mm)

Distance
 (mm)

1 0 105 29,2 2535,3
2 0 103 58,4 2551,2
3 3 108 29,2 2561,3
4 0 104 58,4 2576,9
5 0 102 29,2 2535,7
6 0 104 58,4 2592,7
7 0 104 29,2 2540,8
8 0 102 58,4 2540,8
9 0 105 29,2 2543,0

 10 0 103 58,4 2573,0
Average 0,3 104 43,8 2555,1

Table 7. Shortest path following in a fully modelled static environment

Figure 17. Path followed in a fully modelled static environment. Robot moves
from the lower-left corner to the upper-right corner

Environment 1 2 3 4 5 6
Shortest path following 10 50 50 50 50 50

Suboptimal path - 1 5 16 14 31 Path selection with
global replanning Learned path - 9 25 34 36 19

Suboptimal path - - - 8 28 17 Path selection with
local replanning Learned path - - - 42 22 33

Table 8. Number of trials

 78

Figure 18. Path followed in a fully modelled static environment. Robot moves
from the upper-right corner to the lower-left corner

The number of trials in every test environment is represented in Table 8.

Except the trials in a static fully modelled environment where the process was
very stable, all other tests to evaluate shortest path following consist of 50 trials.

Path planning with path selection algorithm in unknown environments also
consists of 50 trials. As it was described above, the path selection algorithm
tries several innovative suboptimal paths and learns to follow this suboptimal
path, which are more stable. Learned suboptimal path and innovative
suboptimal paths are therefore analyzed separately and depending on the
environment the number of trials differ. However, the total number of trials is
still 50 in unknown environments. Since in partially known environments the
learning process stabilizes very quickly, the total number of trials is less (10 in
environment 4 and 30 in environment 6).

4.2 Number of Replannings
Figure 19 represents the average number of replannings caused by unexpected
obstacles. This is the parameter that the path selection algorithm explicitly
minimizes and therefore learning considerably minimizes the risk of collisions.
The number of replannings also decreases when the environment becomes
better known, which is not a surprising result since the modelled obstacles can
now be avoided in advance. The unexpected result is that following suboptimal
path gives a better result than following the shortest one. Since the shortest path
following algorithm that globally replans always maximizes the expected
utility, one would expect that the total outcome of this strategy would be better.

 79

Nr.of replannings

0

5

10

15

20

25

30

Environment 1 0,3

Environment 2 12,7 0,0

Environemnt 3 14,8 3,8

Environment 4 24,9 14,3 9,8 17,0 11,1

Environment 5 23,8 13,9 8,4 20,5 15,5

Environment 6 24,9 19,3 9,8 15,2 9,6

Shortest
path

Suboptimal
path global
replanning

Learned
path global
replanning

Suboptimal
path local
replanning

Learned
path local
replanning

 Figure 19. Average number of replannings caused by unexpected obstacles

4.3 Travel distance
Figure 20 shows the average distance travelled at every trial. Although the path
selection algorithm prefers longer path to shorter and risky ones, it can be seen
that learning slightly decreases the average travelled distance. The most logical
explanation is that manoeuvring around obstacles eventually increases the path
length more than covering distances between obstacles. Again, like in case of
replannings, it can be seen that suboptimal path are not worse than optimal
ones.

 80

Distance (mm)

0

1000

2000

3000

4000

Environment 1 2555,1

Environment 2 2697,3 2584,6

Environemnt 3 2768,1 2714,5

Environment 4 2860,5 3100,6 2829,5 3234,9 2874,5

Environment 5 3478,5 3118,9 2982,6 3543,7 3218,7

Environment 6 3310,3 3349,2 2855,1 3437,4 3365,2

Shortest
path

Suboptimal
global

replanning

Learned
path global
replanning

Suboptimal
local

replanning

Learned
path local
replanning

Figure 20. Average distance

4.4 Travel time
Figure 21 shows the average travel time of path following. The general
conclusion about this data is the same as about the previous parameters.
Learning improves the performance and modelling the environment decreases
travel time. Again, following suboptimal path is about as time consuming as
following the globally optimal one.

The very long travel time in the environment 1 with the shortest path
algorithm seems somewhat anomalous. It is caused by few trials where the
robot got trapped in a box canyon (see Figure 22). When trying to escape the
canyon, the robot replanned always it counted an obstacle. Since it replanned
globally, every replanning increased travel time. At the same time travel
distance and deviation almost did not increase and therefore this anomaly is not
visible on other charts.

 81

Travel time (sec)

0

50

100

150

200

250

300

Environment 1 104,0

Environment 2 123,3 104,1

Environemnt 3 134,3 115,8

Environment 4 148,6 146,6 125,6 154,6 132,1

Environment 5 271,1 219,4 180,4 171,9 152,5

Environment 6 163,8 166,6 132,8 166,5 154,2

Shortest
path

Suboptimal
global

replanning

Learned
path global
replanning

Suboptimal
local

replanning

Learned
path local
replanning

Figure 21. Average travel time

Figure 22. The robot escaping the box canyon

 82

4.5 Deviation
Figure 23 shows the average deviation from the original path. Learning usually
decreases deviation but it is not true in all cases. The deviation is large when the
robot follows a suboptimal path and after counting an obstacle replans globally.
This is not surprising since it might have initially driven in another direction
and then switches to shortest path following.

Deviation (mm)

0

100

200

300

400

500

600

700

Environment 1 43,8

Environment 2 114,7 0,0

Environemnt 3 107,1 107,5

Environment 4 153,6 565,8 169,9 193,5 80,0

Environment 5 381,5 540,1 187,2 247,1 192,5

Environment 6 235,9 646,3 394,2 255,9 182,3

Shortest
path

Suboptimal
global

replanning

Learned
path global
replanning

Suboptimal
local

replanning

Learned
path local
replanning

Figure 23. Average deviation from the originally planned path

 83

4.6 Learning
The experimental results represented above show that the path selection
algorithm outperforms shortest path following and the learned routes are better
than the shortest or suboptimal ones in terms of collision risk, travel time,
distance and deviation. However, they do not prove that the performance
increases because of learning and remembering.

Figure 24 shows how the performance of the system increases and the

robot’s behaviour stabilises during the test run. These tests are conducted in the
Environment 4, a static unknown environment. Since the environment is static,
the learning algorithm but not the environment causes any change in the robot’s
behaviour. Since the environment is unknown, it proves that the algorithm is
able to learn even in the extreme case when very little information is available.

The path selection algorithm with both local and global replanning are
verified against shortest path following. Both path selection algorithms stabilize
rather quickly as they find and learn to use path that are better than the shortest
one. The globally replanning path selection algorithm adapts to use a route with
0 replannings (Figure 25), while the path selection algorithm with local
replanning adapts to use a more risky one (Figure 26). These results do not
prove that globally replanning algorithm is better than the locally replanning
algorithm because both of the algorithms look for routes that satisfy their
criterion of safety defined by Equation 1. In this example, a route with couple of
detected obstacles was considered to be good enough and the robot accepted the
result. The globally replanning robot was fortunate to find a route with 0
obstacles and adapted to use this one.

Learning to minimize replannings

0

10

20

30

40

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

trials

nr
. o

f
re

pl
an

ni
ng

s

shortest path

learning paths with implicit replanning

learning paths with explicit replanning

Figure 24. The learning curve of the path selection algorithm in the
environment 4

 84

Figure 25. A learned route with the globally replanning path selection
algorithm

Figure 26. A learned route with the locally replanning path selection algorithm

4.7 Correlations
We here represent some more statistical data that helps to explain the
experimental results. Table 9 represents the correlation coefficients between the
number of replannings and other measured parameters. The data is given about
the shortest path following in environments from 2 to 6. All these test runs
contained 50 trials, which is sufficient for statistical analysis.

It appears that in all cases travel time and the number of replannings are
highly correlated. This result is not surprising because the robot replans globally

 85

using a wavetransform algorithm. For a reactively replanning robot the
correlation could be weaker.

The correlation between the number of replannings and distance is weaker.
This can be explained with that the robot does not have all global information
available when it replans and therefore it does not always minimize the travel
distance.

The correlation between the number of replannings and the deviation from
the pre-planned path varies considerably from one test run to another. For
example, while in environment 3 the correlation is highly negative; in
environment 4 it is highly positive. It means that in some cases larger number of
unknown obstacles causes a small deviation while a small number of unknown
obstacles can cause a large deviation.

Table 9. Correlation coefficients for the shortest path following algorithm

5 Discussion
The most general conclusion about the experimental results is that in a partially
modelled large-scale dynamic environment it is possible to optimize robot’s
behaviour by learning reliable trajectories.

Our initial hypothesis was that the traditional shortest path following
strategy would soon outperform the innovative paths learning algorithm when
the environment becomes known better. The chronological order of performing
the test was in environments 5, 6, 4, 2, 1 and 3. The tests in a partially modelled
environment were actually conducted later than in a unknown environment to
show the limit where the path selection algorithm breaks down (it is also
therefore the test in environments 2 and 3 do not include local replanning
strategy because after conducting experiments in environments 4,5 and 6 it was
not a research issue any more).

The test results did not confirm our initial hypothesis. On the contrary, it
appeared that even if small obstacles are unmodelled the path selection
algorithm improves the performance. The environment 2 depicted in Figure 11
is a good approximation of an unstructured human inhabited environment with
unknown dynamic obstacles (people, vehicles, furniture or even sensor noise).
From the experimental data it can be seen that the efficiency of the shortest path
planning considerably decreases compared to the completely modelled
environment 1.

 Number of replannings
Environment 2 3 4 5 6
Time 0,78 0,98 0,71 0,97 0,96
Distance 0,24 -0,06 0,45 0,63 0,82
Deviation 0,22 -0,67 0,65 -0,06 0,22

 86

Another unexpected conclusion is that global replanning does not improve
the performance compared to the local replanning. We expected the global
replanning strategy to perform better than the local one but the test results did
not reveal any significant difference in performance.

Local replanning is performed mostly because sensorial capabilities and
computational recourses are not sufficient for real-time global decision-making.
Salich and Moreno describe in their paper the dilemma of authority vs. freedom
[26]. The dilemma rises from that the global planner produces rigid orders while
the local planner acts reactively, therefore the results are not globally optimal.

The test results reported here suggest that the dilemma of authority vs.
freedom is irrelevant in partially unmodelled environments. The efficiency of
path planning rather depends on the world model than of the path planning
strategy. A global planner that does not have all global information available
anyway fails to make a globally optimal plan and therefore the locally
replanning agent performs equally well. From the test data it is obvious that
global replanning does not give any particular advantage in terms of time,
distance or collision risk. Moreover, local replanning should be preferred if the
aim is to keep the robot close to its initially planned trajectory.

The next conclusion about the test data is that suboptimal path planning
gives at least as good results as the optimal one. Intuitively one would expect an
opposite conclusion. Speaking in decision theoretic terms, the globally
replanning shortest path planner behaves as a utility maximizing rational agent.
At every occasion it makes a decision that is best considering all global
knowledge available. Therefore one would expect the cumulative utility to be
higher. The suboptimal path planner (either globally or locally replanning) can
be described as an explorative agent. It sometimes makes suboptimal decisions
to explore the solution space and escape the local optimum. A reasonable
explanation is that manoeuvring around obstacles takes significantly more
recourses than traveling the distance between them.

The closer analysis of the test data reveals that among all the measured
parameters, the robot’s trajectory is the one that is most difficult to predict and
control. It is difficult to foresee the extent of the deviation from the original
track caused by an unknown object. Travel time and distance have a higher
correlation to the number of replannings. Any changes in time, distance and
deviation are caused by unexpected obstacles. We therefore can conclude that in
order to optimize any other parameter (like time, distance, energy consumption,
deviation) we have to minimize the number of unexpected events.

The general conclusion about the test data is that robot’s behaviour is much
more dependent on the environmental model than the path planning strategy. In
order to optimize the behaviour of the robot, one should gain better knowledge
about the environment. This can be achieved in two ways. The first option is to
model the environment as closely as possible. The alternative way, reported in
this paper, is to look for routes where uncertainty does not significantly
influence the result.

 87

6 Limits and further questions
Obviously these results cannot be interpreted as applying to all possible
environments. They are limited to one randomly generated environment. If this
environment is a good approximation of an unstructured, large, uncertain and
dynamic working environment of mobile robots, it is likely that the results are
also true in other cases. Repeating these tests in such an environment would
give a confidence that the conclusions hold true in a large variety of scenarios.
The problem rises from that a large, dynamic and uncertain environment is
practically not controllable. The model environment represented here is on the
contrary, fully controllable, and therefore we can be certain about the causes of
the results.

These conclusions certainly cannot be generalised to topological maps and
graph-based path planning since the models and methods considerably differ
from those used for grid maps.

At the same time we suggest that the results can be generalised to other path
planning methods than distance transform on a grid map. The performance of
the shortest path planner and suboptimal path planner are not different.
Therefore it is likely that the performance of the wavetransform planning or any
other planning algorithm do not influence the performance either. Actually, any
path planned on a grid map is suboptimal because the grid is digitized. It is
possible that methods that use a varying resolution like [7] behave differently.

The approach of learning innovative tracks has two severe limitations. First,
it assumes that localisation errors are small and do not accumulate. It is hard to
predict how the localisation errors influence the result of path planning. Second,
it can be applied only to missions where the robot repeatedly traverses between
predefined target points. This assumption makes it possible to try several
suboptimal routes and learn to use the most reliable ones.

7 Conclusions
This paper examined path planning strategies in large partially unknown
environments. The robot learned innovative routes to find reliable trajectories
and optimize robot’s behaviour. The approach was verified to shortest path
following in 6 different environments.

Experimental results lead to the following conclusions:
• The approach of learning and remembering reliable routes increases the

performance of the robot.
• The behaviour of the robot is influenced by the knowledge it has about

the environment but does not depend on the path planning strategy.
• To optimize travel time, distance, energy consumption, collision risk or

deviation from the original path, the probability of unexpected events
should be decreased as changes in the former parameters depend on the
last one.

 88

• Robot’s trajectory in an uncertain environment is very difficult to predict
and control because the deviation from the planned path is weakly
correlated to the certainty of the model.

8 References
1. O.Khatib. Real-time obstacles avoidance for manipulators and mobile

robots. IEEE Int. Conf. On Robotics and Automation, pages 500-505,
March 1985.

2. B.Barraquand, J.Langlois, J.-C.Latombe. Numerical potential field
technique for robot path planning. Tech. Rep. Dept. of Computer
Science, Report No. STAN-Cs-89-1285, Stanford University, 1989.

3. R.Jarvis and K.Kang. A new approach to robot collision-free path
planning. Robots in Australia's Future Conference, pages 71-79, 1986.

4. V.J.Lumelsky. A Comparative study of the path length performance of
the maze-searching and robot motion planning algorithms. IEEE
Transactions on Robotics and Automation,7(1):57-66, February 1991.

5. A.Stentz. The Focussed D* algorithm for real-time replanning. Proc. of
the Int. joint. Conf. Of Artificial Intelligence (IJCAI-95), August 1995.

6. F.Xu, H. van Brussel, M.Nuttin, R.Moreas. Concepts of Dynamic
Obstacle Avodance and Their Extended Application in Underground
Navigation. Robotics and Autonomous Systems, 42 :1-15, 2003.

7. A.Yahja, S.Singh, A.Stentz. An Efficient on-line Path Planner for
Outdoor Mobile Robots. Robotics and Autonomous Systems,
32:129-143, Elsevier Science, 2000.

8. H.Seraji. New Traversability Indices and Traversability Grid for
Integrated Sensor/Map-Based Navigation. Journal of Robotic Systems,
20(3):121-134, Wiley periodicals, 2003.

9. R.R.Murphy, K.Hughes, A.Marzilli and E.Noll. Integrating explicit path
planning with reactive control of mobile robots using Trulla. Robotics
and Autonomous Systems, 27(4):225-245, Elsevier Science, 1997.

10. S.Thrun, M.Bennewitz, W.Burgard, A.B.Cremers, F.Dellaert, D.Fox,
D.Hähnel, C.Rosenberg, N.Roy, J.Schulte, and D.Schulz. Probabilistic
algorithms and the interactive museum tour-guide robot minerva.
International Journal of Robotics Research (IJRR), 19(11), 2000.

11. N.Tomatis, G.Terrien, R.Piguet, D.Burnier, S.Bouabdallah and
R.Siegwart. Design and System Integration for the Expo.02 Robot
Workshop on Robots in Exhibitions, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2002), Switzerland, 2002.

 89

12. U.Nehmzow. Quantitative analysis of robot–environment interaction–
towards "scientific mobile robotics". Robotics and Autonomous Systems,
44(1) :55-68, 2003.

13. http://www.k-eam.com/robots/khepera/index.html

14. A. Zelinsky. Using Path Transforms to Guide the Search for Findpath in
2D. The Int. Journal of Robotics Research, 3(4):315-325, August 1994.

15. A.Elfes. Using occupancy grids for mobile robot perception and
navigation. IEEE Computer, 22(6):46-57, 1989.

16. A.Howard, H.Seraji. Vision-Based Terrain Characterization and
Traversability Assessment. Journal of Robotic Systems, 18(10):577-587,
Wiley periodicals, 2001.

17. D.B.Gennery. Traversability Analysis and Path Planning for Planetary
Rovers. Autonomous Robots, 6:131-146, Kluwer, 1999.

18. U.Nehmzow, C.Owen. Robot Navigation in the Real World:
Experiments with Manchester’s Forty Two in Unmodified Large
Environments. Robotics and Autonomous Systems, 33:223-242, Elsevier
Science, 2000.

19. E.Kruse, F.M.Wahl. Camera-based Observation of Obstacle Motions to
Derive Statistical Data for Mobile Robot Motion Planning. Proc. Of
IEEE Conference of Robotics and Automation, 1:662-667, 1998.

20. E.Lemaster, S.Rock. A Local-Area GPS Pseudolite-Based Navigation
System for Mars Rovers, Autonomous Robots, 14:209-224, 2003.

21. M.Kruusmaa, J.Willemson. Algorithmic Generation of path Fragment
Covers for Mobile Robot Path Planning. Technical Report, 2003.

22. M. Kruusmaa, J.Willemson, K.Heero. Path Selection for Mobile Robots
in Dynamic Environments. Proc. of the 1st European Conference on
Mobile Robots, pages 113-118, Poland 2003.

23. K.Heero, J.Willemson, A.Aabloo, M.Kruusmaa. Robots Find a Better
Way: A Learning Method for Mobile Robot Navigation in Partially
Unknown Environments, submitted to IAS-8.

24. M. Kruusmaa. Repeated Path Planning for Mobile Robots in Uncertain
Environments. Proc. of the IASTED Int. Conf. Robotics and Automation,
pages 226-231, 2001.

25. R.Murphy, Introduction to AI Robotics, MIT Press 2000.

26. M.A.Salichs and L.Moreno. Navigation of Mobile Robots: Open
Questions. Robotica, 18:227-234, Cambridge University Press, 2000.

 90

 91

APPENDIX D

K.Heero, A.Aabloo, M.Kruusmaa. On The Utility Of Exploration On Time-
Critical Mobile Robots Missions. In Proceedings of the 2nd European
Conference on Mobile Robots (ECMR’05), pages 152-157, Ancona, Italy,
September 2005.

 93

ON THE UTILITY OF EXPLORATION ON TIME-CRITICAL MOBILE ROBOT MISSIONS

 Kristo Heero Alvo Aabloo Maarja Kruusmaa

 Data Security Laboratory Institute of Technology Institute of Technology
 Cybernetica AS Tartu University Tartu University
Akadeemia tee 21, 12618 Tallinn Vanemuise 21, 51014 Tartu Vanemuise 21, 51014 Tartu
 Estonia Estonia Estonia
 kristo.heero@cyber.ee alvo.aabloo@ut.ee maarja.kruusmaa@ut.ee

ABSTRACT

This paper addresses the problem of the utility of
exploration on time-critical mobile-robot missions. It is
argued that in large environments mission-oriented mobile
robot applications can become more efficient if the
exploration strategy considers knowledge already gained
and its applicability during the rest of the mission. This
hypothesis is verified in a model test environment with
Khepera robot. The conclusion is that mission-oriented
exploration heuristics could be considered in mobile robot
applications that are time-critical, where the robot is
operating in a large unknown environment and if this
environment is hazardous.

1. INTRODUCTION

A mobile robot operating in a real-world environment
faces several fundamental problems. Most important of
them is the ability to build the model of the environment
[1], to plan routes [2] and to follow them while avoiding
unknown obstacles [3].

These problems need to be tacked in all applications of
mobile robots, such as transportation, surveillance or
guidance [4, 5]. Vast amount of mobile robot research
addresses the problem of exploration and environment
mapping [6, 7]. Gaining knowledge about the surrounding
environment and keeping it updated is the necessary
precondition of successful performance.

In practical applications, exploration of the
environment is usually risky and time-consuming. The
environment can be hazardous and damage the robot.
Exploration of a large environment takes lots of time and
computational resources.

From the utilitarian point of view, knowledge about the
environment is useful only as long as it increases the
performance of the robot. In many cases the application
does not require the exploration of the whole environment
(e.q. fetch and carry tasks) while in other applications,

such as demining or search and rescue, the task definition
implies a systematic search of the whole area [8, 9, 10].

This paper addresses the problem of the utility of
exploration for time-critical mobile robot missions. It is
assumed that the environment is very large and therefore
exploration is time-consuming. The environment can also
be hazardous and degrade the performance of the robot or
slow it down. The assumption is that exploration and
mapping are not goals by itself but means that permit the
robot to fulfill its mission.

Related work that consider the utility of route planning
usually do not address the utility of exploration but rather
evaluate the risk of navigation locally, e.g. in terms of
possible collisions or the characteristics of the terrain [11,
12, 13, 14].

We propose a heuristic exploration strategy that
chooses between exploring new areas and exploiting
knowledge about the already explored areas. The decision-
making is based on the mission plan. The heuristic
decision maker takes into consideration the amount of
knowledge acquired so far and its applicability during the
rest of the mission.

We test the strategy in a model environment with the
Khepera robot. The test results show that this mission-
oriented heuristic can be useful for mobile robots on time-
critical missions.

2. MISSION-ORIENTED EXPLORATION

In this section we describe the problem and outline the

exploration strategy of the robot.
We assume that the robot is operating in a previously

unknown environment. The goal of the robot is to fulfill a
mission plan. The mission plan is known in advance,
consisting of target points that the robot has to reach in a
predefined order (e.g. a transportation task, escorting or
surveillance problem).

The target points are defined by their global
coordinates. This paper is concerned about exploration

 94

strategy of time critical missions and therefore we do not
address the problem of map building and localization in
this context. We therefore assume that the robot is able to
localize itself rather accurately (e.g. as with GPS or
pseudolite localization). It is also assumed to have an
environmental model in the form of a grid-based map. In
the beginning of the mission the environment is unknown
and the map contains only very general information (the
size and shape of the environment). The robot has no
knowledge about the obstacles or any other environmental
factors that can degrade its performance. The robot learns
the environment while traversing it and completing its
mission. It updates the map when it detects obstacles with
its on-board sensors.

2.1. Exploration Strategies

We verify two exploration strategies that are exploration
oriented to a different extent. The bottom line of the first
strategy is to always take a new route to the target (i.e.
explore the environment) if it is expected to be better than
the routes known so far.

The second strategy has a more conservative attitude
against exploration. The difference from the first, greedy
strategy is that, when gaining new knowledge it also
considers the mission plan. The new knowledge is gained
more probably when it is often used during the rest of the
mission. Also knowledge that is used in the nearest future
is gained more probably than knowledge used after a long
time.

The robot has to reach predefined target points
},,,{ 21 ngggG �= where g is the grid cell on the map

of the robot. The mission consists of traversing the target
points in a predefined order
 kii mmmmmmM ,...,,,...,,, 1321 += , where

),(vuj ggm = and),(1 wvj ggm =+ for kj <≤1 , if

nwvu ≤≤ ,,1 .
In addition to the map that is constantly updated the

robot also saves the entire followed path P . A path is
stored as a sequence of grid cells. For every task im of
the mission M it can choose between using an already
followed path and a new path. The new path can contain
segments that traverse unexplored regions.

The traversed paths are stored together with statistics
characterizing their traversability. The average time of
following a path)(Pt is used later when the strategy
chooses between exploration and exploitation of the
known tracks.

Every time the robot traverses the environment the
map is updated so that the knowledge about the

environment accumulates during the mission and every
time when a new path is planned this new knowledge is
taken into account.

2.2. Greedy Exploration Strategy

The greedy exploration strategy always chooses a new
path if it predicts it to be better than the best known one.
The predicted average time of the new path)(newPt is
verified to the best average time of the paths stored so far

)(bestPt . If)()(bestnew PtPt < then the new path newP is
chosen.

While following the planned path, the robot does not
try to stay on the predefined path if the obstacles are
encountered but replans a new path to the target point
through the possibly unexplored regions.

2.3. Conservative Exploration Strategy

This exploration strategy makes the decision between
using the best-known path bestP and a new path newP by
considering exploitation of this knowledge in the future. It
chooses newP if the task im is not encountered often in the
past and if it is needed often during the rest of the mission.
The sooner during the mission new knowledge will be
needed the more newP is preferred.

Let

 ∑
−

= 

 =

=
1

1 otherwise ,0
 ,1i

p

ip mm
Past

denote the number of similar tasks completed in the
past. Since it was assumed that the robot knows its mission
plan it can be counted how many times a task similar to

im has to be completed in the future.

∑
∑

+=

+=










=
−



 =

+=
k

ir
ir

r

iq

iq

mm
ir

mm

Future
1

1

otherwise ,0

 ,
otherwise ,0

 ,1

1

If 1>
Future
Past

, then it is determined that the robot has

gained enough knowledge about the environment and the
further exploration is not beneficial. The path bestP will
be chosen and followed. If unexpected obstacles are
encountered during the path following, the robot replans

 95

the path but tries to return back to the initially chosen path

bestP to avoid unexplored regions.

If 1≤
Future
Past

 then the robot chooses newP because very

little of the environment is still explored or because the
new knowledge gained can be used in the future to
increase the performance.

3. EXPERIMENTAL SETUP

3.1. Test Environment

The experiments are conducted using a mini-robot
Khepera. It is a differential drive miniature circular robot
(with radius 26 mm) equipped with IR sensors for
collision avoidance and it can be connected to a PC over a
serial link.

The localization system is presented in Figure 1. A
video camera is mounted to the ceiling to recognize the
position and orientation of the robot. The PC processes the
camera image to find robot's position and a computer
algorithm controls the robot over a serial link. In this way
localization errors are rather small (usually comparable to
the size of the robot).

Figure 1. The experimental setup.

The test environment is represented in Figure 2. The

size of the test environment is 2320mm × 1710mm.
Figure 3 shows the test environment as seen from the

overhead camera. The position and the orientation of the
robot are recognized with the help of 3 LEDs forming an
equilateral rectangle.

Figure 4 is the graphical interface of the computer
program that controls the robot and monitors its behavior.
The coordinates of the target points are marked with the
symbols G1, G2, etc. The thick line represents the path of
the robot to the goal. Black cells represent obstacles
detected with the onboard sensors. The gray and dark gray
boxes are respectively unknown areas of slow and extra
slow motion.

Figure 2. The test environment.

Figure 3. The test environment looked through the
overview camera with the robot recognized by the 3
LEDs.

In the beginning of the mission the robot is not aware
of any obstacles in the environment. While it traverses the
environment it updates the map and records all the
detected obstacles so that as the mission proceeds its
environmental model becomes more and more complete
and consistent.

In addition to the obstacles there are some regions in
the environment where the motion of the robot is slowed
down. These regions are introduced to simulate regions
that in real robot applications are difficult to traverse (e.g.
because of rough terrain). The robot is not aware of the
presence and location of such regions and these are also

 96

not reflected on the map. These areas are represented in
the Figure 4 as the shaded regions.

Figure 4. The control interface of the robot.

3.2. Test trials

The purpose of the experiments is to test whether the
conservative exploration strategy gives better results than
the greedy strategy in the presence of hazard and
uncertainty.

We test both missions in equal conditions. The robot
is given a mission consisting of 31 tasks and the goal of
the robot is to fulfill the mission as fast as possible.

The environment, the task and the robot are identical
in both cases. The test trials only differ by the exploration
strategy used.

The mission plan (the sequence of target points to be
traversed) is the following:

G1 G2 G1 G3 G1 G2 G4 G2 G1 G2 G1 G3

G1 G2 G4 G2 G1 G2 G1 G3 G1 G2 G4 G2 G1 G2
G1 G3 G1 G2 G4 G2

The target point G1 corresponds to the point marked

with G1 in Figure 4 in the lower-left corner, G2 in the
upper-left corner, etc. in the clockwise direction. This plan
implies that the robot traverses often between G1 and G2
but quite seldom between the target points G2 and G4 or
G1 and G3. Some parts of the environment, like those
between G4 and G3 are not traversed at all.

Since the different regions of the map are traversed
with the different intensity, exploring some regions
becomes more important from the point of view of the
mission than exploration of other regions.

The model environment is kept static during the
mission. No dynamic obstacles are introduced. Obviously,

this is not a realistic assumption on real robot missions.
However, the goal of the tests is to show the advantages or
disadvantages of an exploration strategy and the static
environment guarantees that if one exploration strategy
outperforms another then this is caused by the strategy but
not by the changes in the environment.

Although the environment is kept static, the robot in
the model environment still has to tackle problems caused
by uncertainty of sensor readings, odometric errors and
small localization errors due to the image recognition
system. The generation of new paths newP is stochastic
and therefore the performance of the robot depends to a
great extent on a stochastic algorithm. We therefore
conducted several pairs of test trials to show how much
the test results diverge.

The map and the memory (containing the traversed
paths and their average traveling time) are stored after
every task. All test data is available at
http://math.ut.ee/~kristo/khepera/heuristic/.

4. EXPERIMENTAL RESULTS

The goal of the robot was to fulfill the mission as fast as
possible. Therefore the average time of the mission is the
most important parameter indicating the efficiency of the
exploration strategy.

The chart in Figure 5 shows the duration of the
mission. Time of fulfilling 31 tasks is 16.74% shorter
when the conservative exploration strategy is used. While
both of the exploration strategies perform equally well in
the beginning of the mission, the conservative learning
strategy starts outperforming the greedy strategy after 10
first tasks.

Figure 5. The duration of the mission.

The white areas in Figure 6 show regions explored during
the mission when the conservative exploration strategy is
used. The mission plan requested frequent traversing
between the lower left and upper left corner of the

 97

environment and it appears that the robot has explored
these regions most extensively while the rest of the
environment is searched less thoroughly.

Figure 6. Explored areas with the conservative exploration
strategy.

Figure 7. Explored areas with the greedy exploration
strategy.

The white areas in Figure 7 show regions explored
with the greedy exploration strategy. It appears that almost
the whole environment is searched and most of the
obstacles are mapped. The robot has also been extensively
traversing the areas of slow motion (marked with gray)
that have eventually slowed the mission down as well as
frequent replanning and maneuvering around detected
obstacles.

Another indicator that shows the difference between
the conservative and the greedy exploration algorithm is
the number of reused paths. Traversed paths are stored in
robot’s memory together with statistics showing their

average traversing time. Results show that the greedily
exploring robot used already traversed paths in 51% of
tasks while the conservative robot relied on its past
experiences in 67% of the cases.

5. CONCLUSIONS

This paper presented an exploration strategy for a mobile
robot in large hazardous environments. It was presumed
that the robot is working under time constraints. We
presented a heuristic exploration strategy that chooses
between exploration and exploitation considering the
amount of knowledge gained so far and the applicability of
this knowledge during the rest of the mission.

We simulated a time-critical mission by conducting
experiments in a model environment with a Khepera and
verified the heuristics with a greedy exploration strategy.
The test results showed that the robot using the
conservative exploration strategy is able to fulfill the
mission approximately 17% faster than the robot using the
greedy exploration strategy.

These test results reveal that it can be useful to
choose between exploration of the environment and the
exploitation of the knowledge gained depending of the
nature of the mission and the environment. Gaining as
much knowledge as possible about the surrounding is not
necessary beneficial if the mission time is limited.

The performance of the conservative exploration
strategy undoubtedly depends on the environment where
the robot is operating and on the mission assigned. We
therefore are careful with generalizing these results too
much. Certainly, there exist environments and assignments
where the greedy exploration strategy would be more
efficient. More experiments in different environments (e.g.
cluttered, free space, corridor-environments, multiple
rooms, etc.) and different path planning methods are
required to validate the presented approach.

We conclude that mission-oriented exploration
heuristics could be considered in mobile robot
applications that are time-critical, where the robot is
operation in a large unknown environment and when this
environment is dangerous. We also suggest that this or
similar heuristics can be applied for other learning
problems in mobile robotics.

ACKNOWLEDGEMENTS

This paper is supported by Estonian Science Foundation grant
No. 5613, and Tiger Leap Program of The Estonian Information
Technology Foundation.

 98

6. REFERENCES

[1] Thrun, S., Burgard, W., and Fox, D. A probabilistic approach
to concurrent mapping and localization for mobile robots.
Machine Learning Vol. 31, pp. 29-53, 1998.

[2] D. Ferguson and A. Stentz, “The Delayed D* Algorithm for
Efficient Path Replanning.” Proc. of the 2005 IEEE Int. Conf.
on Robotic and Automation, (ICRA 2005),Barcelona, Spain,
April, 18-22.

[3] J. Latombe, “Robot Motion Planning.” Kluwer Academic
Publishers, Boston, MA, 1991.

[4] B.Brumitt, A. Stentz, M. Herbert and The CMU UGV
Group, “Autonomous Driving with Concurrent Goals and
Multiple Vehicles: Mission Planning and Architecture,”
Autonomous Robots, Vol. 11, Kluwer Academic Publishers, pp.
103-115, 2001.

[5] B.Brumitt, A. Stentz, M. Herbert and The CMU UGV
Group, “Autonomous Driving with Concurrent Goals and
Multiple Vehicles: Experiments and Mobility Components,
Autonomous Robots, Vol. 12, Kluwer Academic Publishers, pp.
135-156, 2002.

[6] Thrun, S. Robotics mapping: A survey. Tech. Rep. CMU-
CS-02-111, School of Computer Science, Carnegie Mellon
University, Pittsburg, PA 15213, February 2002.

[7] F. Amigoni and A. Gallo, “A Multi-Objective Exploration
Strategy for Mobile Robots.” Proc. of the 2005 IEEE Int. Conf.
on Robotic and Automation, (ICRA 2005),Barcelona, Spain,
April, 18-22.

[8] E. Garcia and P. Gonzalez de Santos, “Mobile-robot
navigation with complete coverage of unstructured
environments,” Robotics and Autonomous Systems, Vol. 46,
Elsevier Science, pp. 195-204, 2004.

[9] H. Choset, “Coverage of Known Spaces: The Boustrophedon
Cellular Decomposition,” Autonomous Robots, Vol. 9, Kluwer
Academic Publishers, pp. 247-253, 2000.

[10] A. Poncela, E. J Perez and A. Bandera, C. Urdiales, F.
Sandoval, “Efficient integration of metric and topological maps
for directed exploration of unknown environments,” Robotics
and Autonomous Systems, Vol. 41, pp. 21-39, 2002.

[11] R. Manduchi, “Obstacle Detection and Terrain
Classification for Autonomous Off-Road Navigation,”
Autonomous Robots, Vol. 18, Kluwer Academic Publishers, pp.
81-102, 2005.

[12] T. Belker, M. Hammel and J. Hertzberg, „Learning to
Optimize Mobile Robot Navigation Based in HTN Plans,“ Proc.
Of the 2003 IEEE Int. Conf. on Robotic and Automation, (ICRA
2003), Taipei, Taiwan Sept. 14-19, pp. 4136 – 4141, 2003.

[13] Z. Shung and J. Reif, „On Energy-minimizing Path on
Tarrains for a Mobile Robot,“ Proc. of the 2003 IEEE Int. Conf.
on Robotic and Automation, (ICRA 2003), Taipei, Taiwan Sept.
14-19, pp. 3782 – 3788, 2003.

[14] R. Philippsen and R. Siegwart, “An Interpolated Dynamic
Navigation Function.” Proc. of the 2005 IEEE Int. Conf. on
Robotic and Automation, (ICRA 2005),Barcelona, Spain, April,
18-22.

 99

APPENDIX E

Detailed Description of the Test Environments

 101

Introduction
This Appendix describes in detail all test environments used in Appendices A,
B, C, and D. There are 7 different environments. In Appendix A is used
environment 5; in Appendix B is used environments 1, 2, and 3; in Appendix C
is used environments 1, 2, 3, 4, 5, and 6; in Appendix D is used environment 7.

Common in Environments 1 - 6
The size of the environment is 1860×1390 mm. Example of the real
environment is represented in Figure 1. It is divided into 20×15 cells indexed
with numbers 1-300 (started from upper-left cell and propagated from left to
right) for the placement of obstacles. Shapes and amount of the obstacles are
represented in Table 1.

Figure 1. Example of the real environment

Table 1. Shapes and amount of obstacles
 I-shapes L-shapes C-shapes Rect. 1 Rect. 2 Rect. 3 Rect. 4
Amount 2 2 1 1 1 10 8
Size
(mm)

320×40 120×320
&
160×280

160×240×160 140×385 100×105 80×80 40×40

All locations of the obstacles and orientations (N, W, S, E) of the

unsymmetrical obstacles (I-shapes, L-shapes, C-Shapes, rec. 1, and rect. 2) on a
placement grid are generated using a random number function.

 102

Obstacles of type I-shapes, L-shapes, C-Shapes, rec. 1, and rect. 2 are set
down on the placement grid if randomly chosen cell and necessary adjacent
cells are free, otherwise next cell is randomly chosen.

Obstacles of type Rect. 3 are set down on the placement grid if randomly
chosen cell is free, otherwise new cell is randomly chosen.

Obstacles of type Rect. 4 are set down on the placement grid only if
randomly chosen cell is free.

Randomly generated poses of the obstacles in the environments 1-4, 5, and 6
are represented in Table 2, Table 3, and Table 4 respectively.

Table 2. Poses of the obstacles in environments 1 – 4
Type Cell Index (and Orientation)
Unsym. 83-1; 233-4; 152-3; 170-1; 25-4; 18-1; 109-2
Rect. 3 75; 229; 213; 117; 166; 267; 28; 4; 209; 43; 196; 241; 104; 247; 168; 146; 199; 189; 200; 126
Rect. 4 62; 81; 85; 91; 115; 136; 271; 278; 45; 274; 126; 77; 185; 36; 80; 2

Table 3. Poses of the obstacles in environments 5
Type Cell Index (and Orientation)
Unsym. 83-1; 233-4; 152-3; 170-1; 25-4; 18-1; 109-2
Rect. 3 154; 73; 107; 77; 257; 199; 134; 266; 143; 188; 275; 291; 3
Rect. 4 1. 287;197;274;211;71;191;230;275;223;78;238;71;104;145

 2. 253;120;134;234;9;3;288;225;299;90;36;111;79;234
 3. 206;291;154;1;237;110;66;71;295;81;174;107;221;143
 4. 31;210;296;253;228;59;266;183;49;152;142;30;180;156
 5. 97;93;113;282;281;127;113;77;282;246;68;261;240;160
 6. 290;207;62;233;197;283;224;149;245;146;21;158;28;133
 7. 52;108;22;107;289;20;194;229;232;121;244;102;286;185
 8. 116;153;74;4;123;215;6;239;238;63;39;58;4;163
 9. 131;137;87;201;227;207;52;243;90;34;278;285;100;221
10. 175;68;50;4;53;287;45;138;277;190;249;250;262;197
11. 274;255;260;13;63;296;73;285;60;124;54;84;113;170
12. 28;34;12;125;293;88;206;277;34;276;190;230;19;14
13. 20;251;89;105;48;157;132;19;117;106;146;283;227;2
14. 272;173;4;63;19;230;180;173;244;98;123;274;222;7
15. 27;299;270;291;283;125;146;77;63;131;94;29;229;138
16. 173;67;291;33;210;274;246;144;233;100;297;158;134;156
17. 4;62;189;236;60;108;15;245;138;251;270;76;208;291
18. 184;11;269;256;32;79;197;154;129;274;53;140;62;43
19. 143;214;228;141;285;207;118;191;278;68;197;124;117;5
20. 10;36;153;195;295;55;40;223;209;135;276;48;154;181
21. 77;276;107;128;183;225;50;54;137;269;200;275;152;36
22. 116;298;88;159;120;164;255;53;182;73;181;300;2;21
23. 41;48;264;126;2;73;80;99;63;123;186;18;166;6
24. 35;259;140;218;134;57;152;184;167;37;54;116;58;101
25. 65;42;214;96;293;231;2;59;46;149;1;268;118;183
26. 178;279;13;273;134;189;182;264;173;15;46;46;26;106
27. 76;86;297;292;199;104;161;90;114;121;268;56;63;119
28. 199;23;164;131;29;2;151;22;116;80;5;173;11;6
29. 39;209;180;193;28;10;231;27;125;135;67;6;172;192
30. 20;12;140;96;114;221;102;36;200;278;90;203;211;221
31. 18;290;189;286;37;134;224;91;5;282;252;3;219;282
32. 165;119;20;60;180;244;300;88;94;192;219;18;114;216
33. 172;159;56;273;116;108;206;36;180;76;60;166;184;145
34. 11;142;190;290;100;74;193;293;24;292;199;1;197;138
35. 283;240;251;249;75;35;198;167;276;65;18;55;240;192

 103

36. 202;156;228;86;218;189;284;99;122;89;113;1;191;118
37. 28;238;189;231;150;14;52;32;11;168;296;108;263;46
38. 45;65;225;231;271;71;184;40;243;7;80;147;193;55
39. 185;145;278;104;212;198;148;18;58;199;15;240;127;196
40. 16;270;224;285;263;210;79;142;198;191;182;288;216;186
41. 291;169;286;133;298;231;41;157;210;77;160;216;31;200
42. 201;172;202;251;232;203;90;162;208;158;277;69;224;170
43. 138;261;125;232;65;96;79;157;128;111;298;2;17;269
44. 19;13;176;69;227;147;251;64;31;25;178;2;176;295
45. 31;55;298;232;51;33;118;79;284;57;163;232;30;286
46. 222;89;161;164;130;72;86;206;170;8;225;161;7;129
47. 288;179;21;231;286;37;81;276;7;27;203;77;265;77
48. 237;135;150;102;49;89;204;249;8;124;36;156;269;19
49. 7;66;163;276;5;213;59;299;123;151;141;169;173;113
50. 246;102;159;79;10;217;113;152;173;94;244;7;75;174

Table 4. Poses of the obstacles in environments 6
Type Cell Index (and Orientation)
Unsym. 83-1; 233-4; 152-3; 170-1; 25-4; 18-1; 109-2
Rect. 3 1. 236;254;77;14;270;243;13;244;97;103;82;121;292;57;109;9;104;31;160;155

 2. 236;254;77;122;270;262;13;146;97;103;82;121;292;141;109;89;104;4;160;155
 3. 236;134;77;122;270;262;43;146;97;103;82;59;292;141;109;89;196;4;160;155
 4. 236;134;77;122;270;91;43;146;97;103;82;59;292;141;109;45;196;4;160;155
 5. 236;60;228;122;270;91;240;146;239;103;82;141;281;141;109;45;164;4;299;155
 6. 236;60;228;122;77;91;240;146;239;103;82;141;281;141;130;45;164;4;299;155
 7. 236;60;228;122;86;91;240;182;196;18;82;141;281;141;258;45;164;36;168;160
 8. 236;60;206;20;86;91;240;182;196;18;82;141;98;271;258;45;164;36;168;160
 9. 139;60;9;67;86;91;240;182;196;179;213;141;209;113;258;45;164;36;168;69
10. 139;60;9;155;24;91;240;182;196;179;213;141;209;9;206;45;164;36;168;69
11. 194;60;9;288;66;261;202;55;196;179;129;141;209;257;72;145;296;82;168;69
12. 194;60;134;288;249;261;202;240;196;246;129;141;279;257;184;145;296;82;168;296
13. 194;60;134;28;249;179;202;240;196;224;129;141;279;190;184;299;296;82;168;185
14. 194;60;5;28;207;179;202;240;196;224;129;141;196;190;76;299;296;82;168;185
15. 194;60;5;28;167;216;202;240;196;224;129;141;196;190;116;37;296;82;168;185
16. 75;178;200;28;167;216;202;240;196;224;134;52;294;190;116;37;296;82;168;185
17. 75;178;200;28;167;216;202;240;196;224;134;52;294;190;116;37;296;82;168;185
18. 75;176;200;28;229;216;202;62;196;224;134;270;294;190;118;37;296;177;168;185
19. 75;176;27;75;259;216;202;62;196;224;134;270;114;135;47;37;296;177;168;185
20. 116;176;27;75;259;216;202;62;196;224;126;270;114;135;47;37;296;177;168;185
21. 116;176;27;75;259;216;202;283;196;224;126;270;114;135;47;37;296;198;168;185
22. 116;176;27;75;259;127;202;283;196;224;126;270;114;135;47;21;296;198;168;185
23. 241;170;27;75;118;76;103;283;272;224;254;73;114;135;267;292;96;198;268;185
24. 241;170;206;75;118;76;103;93;180;224;254;73;204;135;267;292;96;36;80;185
25. 241;170;206;75;118;76;103;184;180;13;254;73;204;135;267;292;96;10;80;236
26. 191;170;56;75;118;76;99;117;180;13;7;73;103;135;267;292;107;60;80;236
27. 191;170;33;75;118;76;99;117;180;13;7;73;166;135;267;292;107;60;80;236
28. 57;170;33;75;118;76;99;117;180;13;291;73;166;135;267;292;107;60;80;236
29. 57;120;33;75;118;76;15;197;180;274;291;156;166;135;267;292;127;1;80;123
30. 57;120;252;75;118;76;15;197;180;274;291;156;186;135;267;292;127;1;80;123
31. 131;120;252;75;118;76;15;197;180;168;178;156;186;135;267;292;127;1;80;276
32. 131;120;252;279;293;76;15;197;180;168;178;156;186;70;174;292;127;1;80;276
33. 131;32;252;279;293;76;15;197;180;168;178;237;186;70;174;292;127;1;80;276
34. 147;32;252;279;293;76;15;197;180;168;168;237;186;70;174;292;127;1;80;276
35. 147;32;252;279;74;76;298;197;129;168;168;237;186;70;88;292;79;1;238;276
36. 147;32;252;279;74;76;298;197;129;168;168;237;186;70;88;292;79;1;238;276
37. 147;32;252;279;74;76;298;197;129;168;168;237;186;70;88;292;79;1;238;276
38. 146;208;252;279;32;226;298;197;129;168;50;79;186;70;45;1;79;1;238;276
39. 146;208;252;279;32;226;99;197;129;71;50;79;186;70;45;1;259;1;238;50
40. 261;53;252;279;32;226;99;197;248;71;172;125;186;70;45;1;259;1;260;50
41. 50;53;252;279;32;226;99;197;248;71;215;125;186;70;45;1;259;1;260;50

 104

42. 50;53;95;279;32;226;99;197;248;71;215;125;242;70;45;1;259;1;260;50
43. 50;53;95;279;32;226;99;197;243;71;215;125;242;70;45;1;259;1;85;50
44. 50;14;95;279;32;226;115;197;243;71;215;253;242;70;45;1;253;1;85;50
45. 50;207;228;12;32;226;115;197;243;235;215;251;106;54;45;1;253;1;85;23
46. 50;207;228;117;32;226;146;100;243;235;215;251;106;21;45;1;271;209;85;23
47. 50;207;44;117;32;226;240;100;243;235;215;251;93;21;45;1;185;209;85;23
48. 137;207;44;117;18;226;240;100;243;199;15;251;93;21;174;1;185;209;85;257
49. 137;207;44;117;159;226;240;154;243;110;15;251;93;21;245;1;185;159;85;210
50. 109;207;235;117;159;226;240;158;243;110;45;251;121;21;245;1;185;39;85;210

Rect. 4 1. 5;43;50;73;167;187;256;295;114;263;60;16;83;53;235;243;
 2. 15;16;51;60;115;148;183;194;12;178;277;68;57;30;206;250;
 3. 12;49;50;93;129;207;269;270;47;173;271;233;257;265;268;191;
 4. 9;141;142;156;215;245;279;280;97;15;250;175;177;267;30;13;
 5. 3;44;79;146;172;241;289;292;262;104;109;53;239;7;234;85;
 6. 19;69;100;112;177;187;214;258;280;47;200;64;5;42;201;108;
 7. 10;21;83;87;124;226;249;288;168;205;243;74;287;295;172;27;
 8. 9;33;37;80;249;252;291;297;187;111;134;185;66;300;93;232;
 9. 80;90;131;163;233;240;254;300;160;22;10;227;103;76;132;12;
10. 33;155;193;204;208;217;241;276;274;264;70;89;47;118;255;103;
11. 52;72;81;162;183;199;210;259;127;7;205;255;219;281;89;220;
12. 42;57;88;108;127;151;184;228;252;218;285;253;59;40;290;135;
13. 1;62;79;107;123;268;289;298;105;57;96;128;18;12;112;54;
14. 102;109;122;146;192;214;272;283;237;143;32;249;243;2;255;92;
15. 34;145;150;201;219;222;235;284;149;296;217;186;196;218;22;117;
16. 64;151;162;163;188;212;230;249;233;178;169;60;184;289;103;285;
17. 27;54;59;85;102;125;164;190;298;42;93;26;103;219;138;90;
18. 53;62;73;92;117;175;275;296;227;232;249;199;259;16;86;188;
19. 5;11;24;40;65;182;280;283;287;144;197;120;168;199;202;239;
20. 76;83;114;143;162;183;189;231;171;111;175;244;219;233;220;19;
21. 1;99;136;146;164;200;229;294;215;249;110;105;51;219;61;10;
22. 53;59;100;120;223;234;274;279;43;10;280;2;27;210;199;145;
23. 1;35;80;99;115;173;239;283;65;113;15;188;215;163;158;272;
24. 116;136;218;260;267;282;291;298;169;154;56;100;127;248;204;75;
25. 96;112;171;188;193;214;228;261;292;51;273;62;141;53;130;184;
26. 43;135;142;158;196;210;266;267;279;250;100;118;167;216;184;247;
27. 106;146;168;193;199;252;277;295;210;176;51;27;227;204;140;55;
28. 92;93;169;190;201;227;230;240;38;249;67;112;41;137;72;211;
29. 21;44;100;129;180;217;220;284;248;112;288;46;111;41;115;223;
30. 3;127;165;209;244;281;295;299;182;46;296;289;71;157;37;43;
31. 49;65;66;90;105;107;125;213;291;109;220;91;129;252;285;5;
32. 29;116;129;157;185;218;271;285;73;63;222;240;204;43;107;183;
33. 18;41;58;68;159;241;242;260;240;233;75;171;269;33;62;218;
34. 46;74;118;168;203;239;251;283;146;270;134;212;145;3;137;64;
35. 10;46;58;98;157;206;256;281;284;40;283;290;175;234;19;205;
36. 56;91;123;158;206;269;288;292;207;213;150;159;282;153;215;120;
37. 4;50;67;81;141;187;212;229;215;224;39;120;189;68;73;243;
38. 58;109;123;128;158;194;214;225;248;247;164;238;229;16;20;165;
39. 42;92;100;123;142;162;164;168;246;30;267;184;47;70;206;121;
40. 94;122;184;201;209;246;274;285;81;26;147;50;120;121;12;235;
41. 47;64;70;73;92;102;190;290;156;224;267;136;130;57;62;208;
42. 67;76;159;177;197;285;287;299;215;298;114;81;194;217;284;210;
43. 10;15;123;130;189;233;244;283;84;99;289;215;96;154;73;29;
44. 27;37;64;87;139;141;185;261;107;194;217;253;158;249;294;6;
45. 11;58;99;106;128;139;256;294;38;31;116;44;33;288;204;262;
46. 58;115;134;162;203;242;249;297;57;292;151;76;53;132;81;176;
47. 35;42;99;123;149;241;266;300;16;291;260;273;249;76;148;143;
48. 62;76;132;142;170;207;242;274;48;211;113;291;265;71;94;104;
49. 1;14;133;218;234;252;260;275;157;222;208;43;256;37;91;110;
50. 43;130;216;246;247;260;284;285;108;171;76;110;69;90;148;141;

 105

Environment 1 - static, known
All obstacles are static and known a priori (shown in Figure 2).

Figure 2. A priori map

Environment 2 - static, large obstacles known
All obstacles are static. Only large obstacles of type I-shapes, L-shapes,
C-Shapes, rec. 1, and rect. 2 are known a priori (shown in Figure 3).

Figure 3. A priori map

 106

Environment 3 - static, small obstacles known
All obstacles are static. Only small obstacles of type Rect. 3 and Rect. 4 are
known a priori (shown in Figure 4).

Figure 4. A priori map

Environment 4 - static, unknown
All obstacles are static and unknown a priori (shown in Figure 5).

Figure 5. A priori map

 107

Environment 5 - slightly dynamic, unknown
All obstacles are unknown a priori (shown in Figure 6). Only small obstacles of
type Rect. 4 are dynamic i.e. after every traversal they are randomly replaced.

Figure 6. A priori map

Environment 6 - moderately dynamic, unknown
All obstacles are unknown a priori (shown in Figure 7). Small obstacles of type
Rect. 3 and Rect. 4 are dynamic i.e. after every traversal they are randomly
replaced with probability 0.2 and 1 respectively. Additionally to obstacle
placement rules, the obstacle of type Rect. 3 is not put down on the grid if
randomly chosen cell is already occupied.

Figure 7. A priori map

 108

Environment 7
The size of the environment is 2320×1710 mm. Real environment is represented
in Figure 8. The environment is static and unknown a priori (shown in
Figure 9).

Figure 8. Real environment

Figure 9. A priori map

 109

APPENDIX F

Pseudo Code of the Learning Method

 111

Introduction
This Appendix describes learning method used in appendices A, B, and C. The
method is represented as pseudo code. The main function is ExecutePlan().
This function gets a predefined plan (goal points) and executes it.

Pseudo Code of the Learning Method

// Grid cell size (mm)
double GRID_SIZE = 29.2

// Similarity measure
double SIMILARITY_CONST = 2 * GRID_SIZE

// Main function
void ExecutePlan(Plan plan)
{

while(plan.IsTaskLeft()) {
DecisionMaker(plan);

}
}

// Plan to the next goal point
void DecisionMaker(Plan plan)
{

Cell start_cell;
Cell goal_cell;
GlobalMap map;

start_cell = plan.GetNextStartCell();
goal_cell = plan.GetNextGoalCell();

// Check for the old solution
Case old_case = FindBestSimilarCase(Case(start_cell, goal_cell));
if (AcceptOldSolution(old_case)) { // chose old solution

map.path = old_case.path;
} else { //chose new solution

map.path = GenerateSuboptimalPath(start_cell, goal_cell);
}

// Traverse to the next goal point using the path “map.path”
map.ReactivePlanner();
// The robot is arrived to the goal point

double cost = CalcCost(map.replannings);
Case new_case = Case(start_cell, goal_cell, map.relaxed_path, cost);
AddToBase(new_case);

}

 112

// Accept or do not accept old solution
bool AcceptOldSolution(Case old_case)
{

if (old_case == NULL)
return FALSE;

if (random() < old_case.cost)
return TRUE;

else
return FALSE;

}

// Find the best similar stored case (path) from the robot’s base.
Case FindBestSimilarCase(Case current_case)
{

Case best_similar_case = NULL;
// check all stored cases in the base
for (int i = 0; i < base.cases(); i++) {

if (Max(Distance(current_case.start_cell, base[i].start_cell),
Distance(curren_case.gaol_cell, base[i].goal_cell)) <
SIMILARITY_CONST) {

if (best_similar_case == NULL) {
best_similar_case = base[i];

} else {
if (best_similar_case.cost > base[i].cost) {

best_similar_case = base[i];
}

}
}

}
return most_similar_case;

}

// Calculate cost to the traversed path
double CalcCost(int replannings)
{

int max_replannings = 30;
if (replannings < 5)

return 1.0;
if (replannings > max_replannings)

return 0;
else

return 1 - replannings / max_replannings;
}

// Store new case (path)
void AddToBase(Case new_case)
{

Case most_similar_case = FindMostSimilarCase(new_case.path);
if (most_similar_case != NULL) {

if (new_case.cost < most_similar_case.cost) {
base.DeleteAndAddCase(new_case);

} else {
most_similar_case.sum_cost += cost;
most_similar_case.visits++;
most_similar_case.cost = most_similar_case->sum_cost /

most_similar_case->visits;
}

} else {
base.AddCase(new_case);

}
}

 113

// Find most similar case (path)
Case FindMostSimilarCase(GlobalPath new_path)
{

Case most_similar_case = NULL;
double min_distance = MAX_NUMBER;

// check all stored cases in the base
for (int i = 0; i < base.cases(); i++) {

distance = FindSimilarity(new_path, base[i].path);
if (distance < min_distance) {

min_distance = distance;
most_similar_case = base[i];

}
}

return most_similar_case;
}

// Find the similarity of the paths
double FindSimilarity(GlobalPath path1, GlobalPath path2)
{

return MaxDistanceBetweenPaths(path1, path2);
}

 115

APPENDIX G

CD - Website of the Experimental Data

 117

Introduction
This Appendix is a website on the CD (also, available online at
http://math.ut.ee/~kristo/phd) added to this thesis. On the website are available
descriptions of the test environments, all experimental results (including the
thumbnails of the traversed paths), and the program code. Open the file
index.html on the CD for looking the website.

 119

CURRICULUM VITAE

Kristo Heero

Citizenship: Estonian Republic
Born: February 21, 1977, Misso, Estonia
Marital status: cohabit, 1 child
Address: Pikk 12-5, 51009 Tartu, Estonia
Contacts: e-mail: kristo@math.ut.ee

Education

1992 – 1995 Specialized math high school in Nõo
1995 – 2000 University of Tartu, Bachelor in Computer Science
2000 – 2002 University of Tartu, MSc in Computer Science

Professional employment

1998 – 2001 University of Tartu, system administrator
2001 – ... Cybernetica AS, researcher and software engineer

Scientific work

The main fields of interest are path planning, robot learning and decision-
making of the intelligent autonomous mobile robots.

Honours/Awards

• The stipend for doctoral student of information and communication
technology of Tiger University, 2005

• The research stipend of the University of Munster, 2005

• The prize of Bernhard Schmidt of The Estonian Academy of Sciences
for research and development of Estonian e-voting system, 2005

 120

CURRICULUM VITAE

Kristo Heero

Kodakondsus: Eesti
Sünniaeg ja –koht: 21. veebruar 1977, Misso, Eesti
Perekonnaseis: vabaabielus, 1 laps
Aadress: Pikk 12-5, 51009 Tartu
Kontaktandmed: e-post: kristo@math.ut.ee

Haridus

1992 – 1995 Nõo Reaalgümnaasium
1995 – 2000 Tartu Ülikool, informaatika bakalaureus
2000 – 2002 Tartu Ülikool, informaatika magister

Erialane teenistuskäik

1998 – 2001 Tartu Ülikooli Arvutuskeskus, süsteemiadministraator
2001 – ... Cybernetica AS, teadur, tarkvarainsener

Teadustegevus

Peamiseks tegevusvaldkonnaks on intelligentsete mobiilsete robotite tee-
planeerimine ja õpistrateegiad.

Tunnustused

• Tiigriülikooli stipendium 2004 IKT doktorandile, 2004

• Münsteri Ülikooli uurimisstipendium, 2005

• Eesti Teaduste Akadeemia Bernhard Schmidti preemia teadus- ja
arendustöö rakenduse eest: "e-hääletamise tarkvaralahendus", 2005

 121

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindri-

cal tubes and circular discs. Tartu, 1991, 23 p.
 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,

1991, 14 p.
 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,

1992, 47 p.
 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,

1992, 15 p.
 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute sum-

mability fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded

rigidplastic structures. Tartu, 1995, 93 p. (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p.

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.
19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,

56 p.
20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000,
107 lk.

23. Varmo Vene. Categorical programming with inductive and coinductive
types. Tartu, 2000, 116 p.

24. Olga Sokratova. Ω-rings, their flat and projective acts with some applica-
tions. Tartu, 2000, 120 p.

25. Maria Zeltser. Investigation of double sequence spaces by soft and hard
analitical methods. Tartu, 2001, 154 p.

26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Eno Tõnisson. Solving of expession manipulation exercises in computer

algebra systems. Tartu, 2002, 92 p.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.
42. Kadre Torn. Shear and bending response of inelastic structures to dynamic

load. Tartu 2006, 142 p.
43. Kristel Mikkor. Uniform factorisation forcompact subsets of banach

spaces of operators. Tartu 2006, 72 p.
44. Darja Saveljeva. Quadratic and cubic spline collocation for volterra

integral equations. Tartu 2006, 117 p.

 124

47.

 125

48.

ISSN 1024–4212

	INTRODUCTION
	Motivation
	Problem Statement
	Presumptions

	Contribution of the Thesis

	NAVIGATION IN DYNAMIC PARTIALLY UNKNOWN ENVIRONMENTS
	World Models and Path Planning
	Topological Maps
	Path Planning on Topological Maps

	Metric Maps
	Path Planning on Metric Maps

	Hybrid Approaches

	Representing Uncertainty

	REPEATED TRAVELLING
	THE APPROACH
	Novel Path Generation Algorithm
	Exploration, Learning, and Decision-making
	Limits

	EXPERIMENTAL DESIGN
	INTRODUCTION TO CONTRIBUTING PUBLICATIONS
	Path Selection for Mobile Robots in Dynamic Environments (Paper Introduction)
	Robots Find a Better Way: A Learning Method for Mobile Robot Navigation in Partially Unknown Environments (Paper Introduction)
	Learning Innovative Routes for Mobile Robots in Dynamic Partially Unknown Environments (Paper Introduction)
	On the Utility of Exploration on Time-Critical Mobile Robots Missions (Paper Introduction)

