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ABSTRACT 

This thesis investigates path planning strategies for mobile robots in large 
partially unknown dynamic environments. The aim of this work is to reduce 
collision risk and time of path following in cases when robot repeatedly 
traverses between predefined target points (e.g. transportation or surveillance 
tasks). A novel path selection strategy is examined. The method creates 
innovative paths between pre-defined target points and learns to use paths that 
are more reliable. This approach is implemented on the research robot Khepera 
and verified against the shortest path following by a wave transform algorithm. 
Experimental data show that new approach is able to reduce collision risk, 
travel time and distance. The robot is also able to learn and adapt quickly in a 
changing environment. Test results show that trajectory planned by a wave 
transform algorithm is very difficult to predict and control, because even little 
unmodelled obstacles can cause a large deviation from the pre-planned path. 
The approach used in this thesis makes robot motion more predictable. This 
thesis also suggests that the behaviour of the robot depends strongly on the 
knowledge about it’s surrounding but not on the path planning strategy used. It 
is concluded that in order to optimise travel time, distance and deviation one has 
to minimize the occurrence of unknown obstacles since the last one influences 
the former parameters. Finally, this thesis addresses the problem of the utility of 
exploration on time-critical mobile robot missions. It is argued that in large 
environments mission-oriented mobile robot applications can become more 
efficient if the exploration strategy considers knowledge already gained and its 
applicability during the rest of the mission.  
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1 INTRODUCTION 
Robotics is the science and technology of robots, their design, manufacture, and 
application. There are large areas needing further research: robot mapping, 
scalable architectures, planning, and world modelling, etc [36, 38]. 

Navigation is a critical ability for robots that claim to be mobile. It 
encompasses the ability of the robot to act based on its knowledge and sensor 
values so that it could reach its goal position as efficiently and reliably as 
possible. Navigation involves sensing, acting, planning, architecture, hardware, 
computational and power efficiencies, etc.  

Planning is one obvious aspect of navigation that answers the question: what 
is the best way there? Given a map and a goal location, path planning involves 
identifying a trajectory that will cause the robot to reach the goal location when 
executed. Path planning is a strategic problem-solving competence, as the robot 
must decide what to do over the long term to achieve its goals. 

This thesis contributes to the area of mobile robotics and path planning in 
dynamic partially unknown environments based on the articles added to the 
Appendix. 

1.1 Motivation 
Many mobile robot applications assume repeated traversal between predefined 
target points. For example, a mobile robot can be used in industry to transport 
details between a store and an assembly line. In military applications the 
ammunition transportation is quite usual. Possible working environments are 
also harbours, airports, landfills, etc. Also, a mobile robot could be used for 
surveillance what implies visiting certain checkpoints on a closed territory. 
There are lots of different scenarios where this kind of mobile robot repeated 
traversal is needed. 

Real-word environments for this kind of mobile robot applications are 
complex, large, often unstructured and dynamic by nature. The robot has to 
navigate around obstacles that can have an arbitrary size, shape, location, and 
appear or disappear after an unknown time period. However, obstacle 
avoidance, no matter how good it is, always implies a collision risk due to the 
uncertainty in sensor information and motion planning, localization errors, 
terrain inequalities or computational imprecision. The robot may harm itself, 
slipping into the hole, or getting stuck in jutted constructions, etc. Uncertainty 
in the environment can always be hazardous for a mobile robot. 

At the same time, mobile robots are expected to be efficient in a sense of 
their energy and time consumption. They have to fulfil their mission as fast and 
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safety as possible. Furthermore, in human inhabited environments safety of 
humans and therefore the reliability of the robot are primary. 

To navigate successfully, the robot has to acquire a model of the 
environment where it is operating. Unfortunately it is impossible to keep the 
world model up to date and in accordance with all changes. The robot has 
limited recourses and has to struggle with uncertainty caused by changing and 
large (partially) unknown environment. On the other hand, the robot has a 
mission to complete and therefore it cannot spend all recourses just for 
exploration and world model updating (if the mission itself is not exploration of 
the environment). In spite of difficulties the robot has to be able to adapt with 
changes of the environment with the minimal effort. All this implies application 
of learning strategies that are strongly oriented to the mission, since the ultimate 
goal is to make the robot to do the right thing. 

Path planners used in robotics have been proven to give globally optimal 
routes in globally known static environments. The optimality is usually 
measured in terms of distance. Other measures are also used, e.g. planetary 
rovers consider roughness and slope of the terrain to find reliable paths [15, 18]. 
However, their efficiency in complex, dynamic and partially unknown 
environments during long periods of time has not been investigated. Very few 
research studies reported so far consider the problem of path selection in 
changing environments. Approaches [16, 17, 19] assume that the structure of 
the environment is known a priory. In [29] it is assumed that unknown 
environment is static and does not change over time. In [24] uncertainty without 
two latest assumptions is considered. 

1.2 Problem Statement 
The general problem this thesis aims at solving is to find reliable paths for 
repeated traversal between previously determined target points so that following 
them minimises collision risk, speeds up the mission and increases 
predictability of the robot’s behaviour.  

Following presumptions are made to specify the problem. 

1.2.1 Presumptions 

It is assumed that the environment is dynamic and large. The structure of the 
environment is unknown and there exist obstacles with unknown size, 
orientation and location.  

Mapping, path planning and localisation are not the main objectives of the 
robot. These are presumptions to make the successful completion of the actual 
mission possible. The robot is expected to fulfil its mission as fast and safely as 
possible. 
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Sensorial capabilities of the robot are insufficient to distinguish between 
static, dynamic and semi-dynamic obstacles.  

Location errors are small and do not accumulate. This enables to follow a 
pre-planned path rather precisely. 

Consequently it is not feasible to model the world precisely and/or keep it 
constantly updated. 

1.3 Contribution of the Thesis 
This thesis studies path selection strategies in complex dynamic and partially 
unknown environments during long periods of time. The contributions is a 
novel path-planning and selection strategy as well as general conclusions about 
path planning strategies based on experimental data. 

One of the conclusions suggests that suboptimal paths (generated with 
algorithm in Section 4.1) are at least as good as shortest paths. Also a decision-
making strategy is proposed to decrease collision risk and speed up the mission 
if the robot traverses repeatedly between predefined target points in dynamic 
partially unknown environments.  

Additionally, time-critical mission-oriented exploration heuristics is 
presented for mobile robot applications were the robot is operating in large 
hazardous and unknown environments. 
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2  NAVIGATION IN DYNAMIC PARTIALLY 
UNKNOWN ENVIRONMENTS 

Mobile robot path planning is typically stated as getting from one place to 
another. The robot must successfully navigate around obstacles to the target 
point and do it efficiently. The Holy Grail is to find the best route to the goal. 
The choice of an appropriate path planning method strongly depends on the 
model of the world.  

Most of real life environments are complex and for path planning in such 
environments the key issue is how to model that complicated environment. 
However, the nature of the robot’s operation and as well the precision with 
which the robot needs to achieve its goal determines the method. The mapping 
of the surrounding can be the main purpose of the robot e.g. exploration of the 
planetary rovers [49]. Reactive robots based on behaviours do not need a map at 
all [31]. But we cannot avoid a world model if we expect deliberative behaviour 
of the robot, like planning.  

2.1 World Models and Path Planning 
World models are usually divided roughly into two categories: topological 
(route, qualitative) and metric (layout, grid-based) models [43]. At present, lots 
of researches have produced a great variety of path planning methods [31, 37]. 

2.1.1 Topological Maps 

Topological maps describe the connectivity of specific places called landmarks 
or gateways. These maps are represented in a form of a graph, where nodes are 
distinct places and edges are connections between them. The value of an edge 
may reflect then traversability of the respective segment of the path. Additional 
information may be attached to edges, such as direction, approximate distance, 
or the behaviours needed to navigate that path. If the robot finds a landmark and 
it appears on a map, the robot is localized with respect to the map. Examples of 
topological approaches include the works [16, 32, 44]. 

Widely used generalized Voronoi diagrams (GVD) also fall into this 
category [7]. GVD is a mapping method that tends to minimize the distance 
between the robot and obstacles on the map. The diagram consists of the lines 
constructed from all points that are equidistant from two or more obstacles in 
the plane. Hierarchical generalized Voronoi graphs (HGVG) is a roadmap that 
is an extension of GVD into higher dimensions then two. Choset [8] introduces 
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technique to incrementally construct the HGVG as the robot explores its 
unknown static environment using only line of sight information.   

2.1.1.1 Path Planning on Topological Maps  

Paths can be computed between to points using standard graph algorithms, such 
as the classical Dijkstra’s single source shortest path algorithm [10]. The 
Voronoi diagram has a significant weakness in the case of limited range 
localisation sensors, since path planning algorithm maximises the distance 
between the robot and objects in the environment.  

However, the number of paths from one place to another is limited by the 
number of edge combinations. 

2.1.2 Metric Maps 

Metric maps capture geometric properties of the environment. The number of 
different map representations is very large; none of them is dominant. The most 
common ones are regular grids and quadtrees (and their 3D extension, octrees). 

Regular grid is a two-dimensional array of square elements (called pixels). 
Regular grids are often called as occupancy grid, because each element in the 
grid will hold a value representing whether the location in space is occupied or 
empty [11]. Unfortunately, regular grids do not scale up very well. The size of 
the map grows with the size of the environment and path planning becomes 
computationally expensive. On a coarse grid, path planning is faster but 
obstacles are expanded on the grid and narrow corridors can disappear. One 
commercial robot that uses a standard occupancy grid is the Cye robot [2]. Also 
the tour-guide robots Minerva [42] and Rhino [4] are using occupancy grids.  

Quadtrees are recursive grids. They are created by recursively subdividing 
each map square with non-uniform attributes into four equal-sized sub-squares. 
The division is repeated until a square is uniform or the highest resolution is 
reached. Quadtrees reduce memory requirements hereby allowing efficient 
partitioning of the environment. A single cell can be used to encode a large 
empty region [48]. 

However, the distinction between metric and topological maps has always 
been fuzzy, since virtually all topological approaches rely on geometric 
information. In practice, metric maps are finer grained than topological ones.  

2.1.2.1 Path Planning on Metric Maps 

Most world representation can be converted to graphs (e.g. cell decompositions, 
4-connected and 8-connected grids, etc.). Typically graph-based path planners 
rely on A* or D* algorithms [6, 39] or on their modification (Incremental A* 
[21], Focussed D* [40], D* Lite [20], Delayed D* [13]). These algorithms 
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generate shortest paths reducing computational complexity in case of highly 
connected graphs such as regular grids. 

A* algorithm finds a path as good as found by Dijkstra’s algorithm but does 
it much more efficiently using an additional heuristic to guide itself to the goal. 
Dijkstra’s algorithm uses a best first approach. It works by visiting nodes in the 
graph starting from the start point and repeatedly examining the closest not-yet-
examined node until it reaches the goal. A* always first expands the node with 
the best cost calculated by )()()( nhngnf += . Where )(ng  represents the 
cost of the path from the starting point to the node n , and )(nh  represents the 
heuristic estimated cost from the node n  to the goal. Usually, for calculating 
the heuristic cost, the Manhattan or the Euclidean distance is used.  

D* is the dynamic version of A* producing the same result but much faster 
in dynamic environments. In a sense of replanning A* is computationally 
expensive because it must replan the entire path to the goal every time new 
information is added. In contrast, D* does not require complete replanning since 
it adjusts optimal path costs by increasing and lowering the cost only locally 
and incrementally as needed. Expansions of D* algorithm, like Focussed D*, 
D* Lite, Delayed D*, are accordingly even more efficient. 

 Potential fields planners are very widely represented, since they are 
extremely easy to implement. The potential field method treats the robot as a 
point under the influence of an artificial potential field. The goal acts as an 
attractive force on the robot and the obstacles act as repulsive forces. Such an 
artificial potential field smoothly guides the robot to the goal while 
simultaneously avoiding known obstacles. While potential field planners follow 
the gradient descent of the field to the goal they always find the shortest path 
from every possible start point. Potential fields have become a common tool in 
mobile robot application in spite of the local minima problem [6]. Harmonic 
functions can be used to advantage for potential field path planning, since they 
do not exhibit spurious local minima [9]. 

A popular family of path planning methods on grids is wavefront-based 
planners. They are based on potential fields, but do not have local minima 
problem [2]. The basic principle is that the configuration space is considered to 
be a conductive material with heat radiating out from the initial node to the goal 
node. Finally the heat will spread and reach the goal, if there is a way. The 
optimal path from all grid elements to the goal can be computed as a side effect. 
The distance transform planners are well-known wavefront-based planners 
propagating distance throughout each grid cell in an outward direction from the 
specified goal point to the start point filling the entire free space. The optimal 
path from all grid elements to the goal is then found by using the steepest 
descent trajectory. Zelinsky introduced a safe path transform method in [50]. In 
addition to propagating a distance wavefront from the goal, another wavefront is 
propagated which is a combination of the distance from the goal together with a 
measure of the discomfort of moving near obstacles. In [45] distance transform 
is extended with linear vector combination to estimate shortest global path and 
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obtain the safe local direction in which a mobile robot moves safely in a local 
environment. Trulla also is one of the many wavefront types of path planners 
[30]. This algorithm initially computes all possible paths from all possible 
locations to the goal. Trulla output is a potential field-like representation of the 
best direction the robot should take from any location in the map to the goal, 
given the a priori map and terrain preferences.  

2.1.3 Hybrid Approaches 

Frequently, metric and topological methods are used together. Those hybrid 
methods try to combine the advantages of metric-based and topological 
planning approaches, since both paradigms have strengths and weaknesses.  

For example, topological approaches often have a difficulty determining 
distinct places if they look alike. This can be caused by sensor noise and 
aliasing. Also, since sensory input usually depends strongly on the viewpoint of 
the robot, it may fail to recognize geometrically nearby places even in static 
environments. All this makes construction and maintenance of large-scale maps 
difficult, particularly if sensor information is highly ambiguous. The key 
advantage of topological representation is their compactness, what is the main 
shortcoming of the metric maps. Due to compactness, topological representation 
permits faster planning than the metric approach. On the other hand, metric 
maps permit much more detailed path planning due to the high resolution. Since 
topological approach usually does not require the exact determination of the 
geometrical position of the robot, it often recovers better from drift and 
slippage-phenomena that must constantly be monitored and compensated on 
metric-based approaches.  

Byun and Kuipers [27] used a multi-level spatial hierarchy. The lowest level 
is identifying landmarks. The next layer up is topological, represented on a 
relational graph, which supports planning and reasoning. The uppermost level is 
metric, where the agent learns the distances and orientation between the 
landmarks and can place them in fixed coordinate system. Fabrizzi and Saffiotti 
[12] extract the topological map from the previously created grid map analysing 
the shapes of the free spaces. Thrun [41] generates topological maps on top of 
the grid-based maps by partitioning the latter into coherent regions, separated by 
critical lines. Critical lines correspond to narrow passages such as doorways. By 
partitioning the metric map into a small number of regions, the number of 
topological entities is several orders of magnitude smaller than the number of 
cells in the grid representation. Poncela et al. [33] perform exploration path 
planning on two levels: global planning is performed on topological level and 
local planning is performed on metric level. Such representation permits 
exploration in a fast and efficient way. Kruusmaa [22, 23] uses case-base 
reasoning with a grid map. A grid-based map permits detailed path planning and 
case-base stores travelled paths with traversability information of those paths in 
a form of a simple cost function that is easy to update. 
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2.2 Representing Uncertainty 
To carry out complex missions in unknown or partially unknown environments, 
the robot must be able to incrementally generate and maintain a map of this 
environment. Usually, it gathers sensor information to update its word model 
during the traversal [43]. Mapping problem often occurs in conjunction with the 
localization problem. To estimate where things are in the environment and 
determine the pose of the robot needs to be solved concurrently. This is often 
called the simultaneous localization and mapping (SLAM) problem [7].  

Usually physical environments change over time. From the viewpoint of the 
robot it means appearance and disappearance of obstacles in arbitrary places 
and time, or in the worst case, change of the whole structure of the environment. 
Dynamic objects are usually considered to be moving obstacles like people, 
cars, strollers, etc. But there exists another class of dynamic obstacles with 
much more discrete motion, for example objects stored on the factory floors and 
warehouses, lightweight furniture, details on construction sites, etc. 

In all such dynamic environments mapping is a big challenge, since even 
mapping of a static environment is hard problem due to sensor noise, 
localization errors and imprecise motion control. To acquire global information, 
the robot has to actively explore its environment. Therefore the precision of the 
word model depends on the region size and on the intensity of survey. However, 
in a large dynamic environment sooner or later the world model will be 
desperately incorrect. Due to complexity and dynamism, it is principally 
impossible to maintain exact models and to predict their accuracy. 

Vast majority of published algorithms make a static world assumption, and 
hence are principally unable to cope with dynamic environments [43]. Instead, 
the predominant paradigm relies on a static word assumption, in which the robot 
is the only time-variant quantity (and everything else that moves is just noise). 
The problem of dynamic obstacles is usually tackled in the context of collision 
avoidance [14, 34, 47]. 

There are some attempts to model dynamism, but this field is poorly 
explored. Biswas and et al. [3] have proposed an occupancy grid-mapping 
algorithm ROMA (robot object mapping algorithm) capable of modelling non-
stationary environments. Their approach uses a straightforward map 
differencing technique to detect changes in an environment over time. By 
combining data from multiple maps while learning objects models, the resulting 
models have higher fidelity than could be obtained from any single map. 

A robot using uncertain and inaccurate metric maps can miss short and 
easily traversable paths. Therefore the shortest (optimal) path-planners cannot 
demonstrate their advantage like in the completely known environments, since 
replanning is unavoidable. In such dynamic environments the best path to the 
goal is not necessarily the shortest. Taking a longer path can sometimes reduce 
the collision risk and speed up the mission.  
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A topological word-model is much easier to update, since the robot does not 
have to know where the obstacles exactly lay and of what shape and size they 
are. It only matters how safely and fast the robot follows its path to the goal. 
But in dynamic environment it is quite difficult to guarantee that robot can 
easily determine new landmarks or distinguishable places that do not change 
their location or disappear at all. The robot may get confused and lost. 

Storing travelled paths with traversal information is even more flexible then 
a topological map. The memory does not have to be reorganized when the 
environment changes. It also permits storing a more detailed description of 
paths and discovering more edges.  
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3 REPEATED TRAVELLING 
The necessity of exploration in unknown or partially unknown environments 
depends on the nature of the robot’s mission. When the entire environment 
should be mapped out or covered (e.g. de-mining, search tasks), full coverage 
algorithms are used [5, 33, 49]. To reach a specific target location only once, the 
navigation algorithms are used [21, 39, 50]. The cases when the robot has to 
travel repeatedly a long period of time between predefined goal points in an 
unknown dynamic environments is the combination of both algorithms. The 
robot needs to find the right balance between exploration of the environment 
and performing the actual task via a known suboptimal path. During the mission 
the environment may change and the robot has to adapt to changes. Typical 
navigation algorithms try to find optimal (shortest) paths to the goal. In such 
complex environments the best path to the goal is not necessary the shortest. 
Depending on the nature of the environment, there may exist routs that are 
longer but easier to follow.  
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4 THE APPROACH 
The contribution of this thesis is a new approach to repeated traversal under 
uncertainty. This approach is based on a hybrid path planning method 
represented in [23]. This is a path planning approach conducted on grid map, 
which permits detailed planning and finds many alternatives for a path planning 
problem. Instead of modelling an environment the traversed paths are stored in 
robot’s memory. By remembering the past routes the robot learns about the 
environment and uses this information to choose the paths, which are most 
likely to be easily traversable. The grid map is not updated at all, since the robot 
cannot decide which obstacles will be removed and which will stay for a longer 
period. The map will just describe start and goal points and the general 
geometry of the environment. If necessary, static obstacles can be stored on the 
map by an operator (e.g. walls, very hazardous areas). The exploration of the 
environment is thus conducted in conjunction with repeated traversal. To 
explore the environment innovative paths are generated using probabilistic path 
transform method that propagates cell values along the map. Each cell, which 
does not contain a fixed obstacle, gets a value, which is a combination of the 
distance from the goal, the measure of the discomfort from moving near 
obstacles and a parameter with a random value. This method is a modification 
of the path transform algorithm [50]. 

This work improves and extends the work represented in [23]. The drawback 
of [23] probabilistic path generation algorithm is that there is no guarantee that 
the generated path is different from the original wave transform algorithm and 
that the algorithm will find all possible paths from start to goal. This thesis aims 
at improving innovative path generation algorithm by eliminating previously 
noticed disadvantages. For that we have to establish following requirements to 
the path selection algorithm:  

 

• Paths are as much as possible different from each other to let the robot to 
find out as many innovative solutions as possible. 

• The algorithm is able to discover all virtually possible alternatives. 

• The algorithm covers the whole space of innovative paths with as few 
alternatives as possible to maintain the robot’s ability to generalize and 
keep the memory constrained. 

• All paths are easy to follow if free from obstacles. 

 
A novel path selection algorithm (described in next Section 4.1), which 

satisfies the criteria above, is used for this purpose.  
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4.1 Novel Path Generation Algorithm 
The path generation algorithm described in [46] is based on covering the 
working area with paths segments. The whole area is divided into small path 
fragments (of length 2, shown in Figure 1) and the generated paths cover all 
these segments. The paths are limited to have only right and up moves. It will 
exclude all the unnecessarily long and complex paths (actually all paths having 
back turns). 
 

 
Figure 1. Path fragments of length 2 

 
This algorithm gives a relatively small number of different paths of the 

minimal cover and scales up very well. It is proven that for a grid of the size 
nm ×  the cardinality of the minimal cover is 222 −+ nm  [46]. It grows 

linearly with a small constant. Figure 2 illustrates one possible cover of the 
43×  grid. 

 

 
Figure 2. Cover of the 43×  grid 

 
The drawback of this type of paths is that the robot would not operate 

efficiently in a maze-like environment. However, most of real environments are 
not mazes. The second shortcoming is the occurrence of the zigzagged paths 
since it is only allowed to move right and up. This is typical to all grid-based 
path planners and mobile robots usually use path relaxation techniques to 
smoothen the path at runtime. 

While [46] gives a through insight to the theoretical aspects of the path 
generation algorithm, this thesis investigates its advantages in practice 
(experimental design is described in Chapter 5).  
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4.2 Exploration, Learning, and Decision-making 
Instead of modelling the environment as accurately as possible paths where 
inaccuracy of the world model does not significantly influence the result of path 
planning are found. A set of suboptimal paths is chosen and their traversability 
evaluated by trial and error until the satisfied criteria of safety and reliability is 
found. The general form of the path selection algorithm is represented in 
Figure 3. 
 
 
 

When moving from start 
to goal is requested to 

choose a sub-optimal path. 

Follow the path. 

Goal is 
reached? 

No 

Store data about its 
traversability (replanning, 

distance, etc.). 

Next trial? 

The followed path 
satisfies a predefined 
criterion (e.g. safety, 

reliability, etc.)? 

Choose this path. 

Yes 

No 

Start 

Yes 

No 

Yes 

End  
Figure 3. The general path selection algorithm 

 



 
 

 22

An algorithm described in Section 4.1 is used for path generation. The 
followed path usually differs from the pre-planned one because unexpected 
obstacles deviate the robot from its initial course. It is also crooked since the 
robot repeatedly corrects its localization errors and avoids collisions with 
obstacles. Therefore the zigzags of the followed path are straightened and gaps 
and cycles are removed before storing it. This path relaxation is documented 
in [25].  

For global (and local) replanning a wave transform algorithm is used [50]. If 
an obstacle has blocked the previously planned path, then this path is abandoned 
and the shortest path to the goal is generated. Since the environment is changing 
and word-model is more or less imprecise, the algorithm does not try to compile 
paths from parts previously known to be good. Rather it tries to generate and 
evaluate the path as a whole. 

After reaching the goal the traversed path is stored with its statistical data: 
number of replannings, travelled time, travelled distance, and deviation form the 
originally pre-planned path. This approach tries to minimize the hazard of path 
following. Therefore paths with lower number of replannings are preferred. The 
criterion of path selection among the stored path is the probability inversely 
proportional to the number of unexpected obstacles.  

At the next trial the stored paths are examined to determine whether some of 
them satisfy the criterion. If such a path exists, this path is followed. Otherwise 
a new suboptimal path is generated and followed. 

The experimental results show that such an exploration, planning and 
decision-making procedure minimises risk, time of path following and increases 
the predictability of robot’s behaviour. 

The pseudo code of the described learning method is represented in 
Appendix F. 

4.3 Limits 
This approach has some severe limits. The method assumes that the robot will 
traverse repeatedly between predefined target points. Only this restriction makes 
it possible to learn to use the most reliable paths by trial and error. 

Second, it assumes that localisation errors are small and do not accumulate 
allowing the robot to follow planned trajectories fairly precisely. One possible 
solution is to use this method with global positioning system (GPS), differential 
global positioning system (DGPS) or with pseudolite navigation [1, 28]. 

Third, the robot may stuck in a local minimum and not able to test a path 
away from its current selection. Whereas the environment is dynamic, the 
movement of the obstacles will deflect the robot away from the current route 
after some period of time. Also, we have no guarantee in an unknown 
environment that somewhere exists a better route and it is easy to find. This 
assumes full exploration of the environment. 



 
 

 23

5 EXPERIMENTAL DESIGN 
All experiments are conducted using a well-known research robot Khepera 
(shown in Figure 4) manufactured by K-Team [26]. It is a circular mini-robot 
(diameter is 53 mm) with differential drive and with eight on-board infrared 
range sensors for collision avoidance. It can be connected and commanded with 
PC over a serial link. Due to Khepera’s small size it is much easier to create 
large environments with respect to the size of the robot and control the changes 
in this environment to validate the algorithms. 

 

 
Figure 4. Research robot Khepera 

 
The behaviour of the robot is controlled with a PC program written in C++ 

[35, Appendix G]. It has the GUI to create a priori map with known obstacles, 
to allocate mission target points, to plot difficult areas which slow down the 
motion of the robot, to track the passed paths of the robot, etc. All the 
interesting statistics about the experiments is saved into the file for later 
analysis. 

Since Khepera lacks sensors for accurate localization and there is 
considerable error due to the contact between the wheels and the surface or dust 
inside the motors the localization is implemented using a global vision system. 
A video camera is mounted to the ceiling above the test environment to 
recognize the pose of the robot. Additionally, 3 LED in a form of an isosceles 
triangle are mounted on the robot to make robot’s pose recognition easier. 
During every localisation episode the current image of the camera is processed 
in the host computer to identify the robot’s position and orientation (shown in 
Figure 5). The vision system is used only to update the location of the robot. 
Since the robot does not need to localize itself by means of odometry, 
landmarks or onboard sensors but uses an external system, the localization 
errors are rather small (comparable to the size of the robot) and do not 
accumulate. 
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robot

camera

host computer  
Figure 5. Localization system 

 
 
The size of the test environment varies from 13901860 ×  up to 

17102320 ×  mm and the surface is flat. With respect to the robot’s size and 
the range of the infrared sensors the environment can be considered to be rather 
large.  

In the dynamic environments all dynamic obstacles are “movable” (replaced 
after every traversal of the robot from the start point to the goal point) but not 
moving as usually is considered. This enables exactly control the environment 
and interpret experimental results. It is very difficult to control the real 
environment with moving obstacles.    

All test environments in detail are represented in Appendix E. 
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6 INTRODUCTION TO CONTRIBUTING 
PUBLICATIONS 

This chapter gives a brief introduction to the publications that contribute to this 
thesis. All these publications are given in full in the appendices A, B, C and D.  

6.1 Path Selection for Mobile Robots in Dynamic 
Environments (Paper Introduction) 

This is the first paper that investigates the performance of the path generation 
algorithm (described in Section 4.1) on the real robot. Verification of the path 
selection algorithm’s performance has conducted in the dynamic and totally 
unknown environment. 

The wave transform algorithm to generate shortest paths is compared to path 
selection algorithm with global replanning. All four measured parameters 
(replanning count, traversal time, deviation, distance) showed better results 
using path selection algorithm. First experiments confirmed the usability of the 
approach if even very little is known about the surrounding or when the 
environment is completely restructured during the mission. 

6.2 Robots Find a Better Way: A Learning Method for 
Mobile Robot Navigation in Partially Unknown 

Environments (Paper Introduction) 
This paper presents results of the second series of experiments of the path 
selection algorithm focused on partially known environments. The hypothesis 
was that as soon as the environment becomes better known to the robot, the 
shortest path following strategy would outperform the investigated approach. 

The test results did not confirm that initial hypothesis. On the contrary, it 
appeared that even if small obstacles are unmodelled, the path selection 
algorithm improves the performance. The same comparison between path 
planning strategies has conducted as in the first paper. Test environments were 
kept static to find out the relation between the environment model and the 
behaviour of the robot. Three test environments were examined: all obstacles 
were modelled, only large obstacles were modelled and only small obstacles 
were modelled on a priory map.  

Operating in the totally known environment the robot is able to use all 
information available and plan the globally best paths. Statistical data showed 
that the behaviour of the robot was well predictable and stable. The deviation 
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from the original path was not more then the diameter of the robot and only 
once a detected obstacle or sensor noise forces the robot to replan its path. 
Therefore, it can be concluded that localisation errors, imprecision of 
mechanical linkages or the control program did not influence the test results 
significantly. 

As soon as the environmental model becomes partially unknown the 
trajectory of the robot was very difficult to predict and control. Even small 
obstacles could cause large deviation from the pre-planned path. More over, it 
can be concluded that optimal (shortest) path planning is not a relevant problem 
in the partially unknown environments. As soon as the robot does not have all 
global knowledge available, suboptimal solutions give at least as good results as 
the optimal one. This implies that much more importance should be paid on 
modelling the environment and its changes. 

6.3 Learning Innovative Routes for Mobile Robots in 
Dynamic Partially Unknown Environments (Paper 

Introduction) 
This paper presents an additional investigation of the path selection algorithm 
with local replanning and it’s comparison with all previously conducted 
experiments. When unexpected obstacle is detected, local replanning tries to 
find its way back to the pre-planned path avoiding sub-goal obsession [31]. 

It is concluded that global replanning does not improve the performance 
compared to the local replanning, since the experimental results do not reveal 
any significant difference in performance. The efficiency of path planning 
rather depends on the world model than on the planning strategy. A global 
planner that does not have all global information available anyway fails to make 
a globally optimal plan and therefore the locally replanning agent performs 
equally well.  

The overall results show that in a complex environment there may exist 
paths that are easier to follow then the shortest paths. Finding and following 
them helps to reduce collision risk as well as to minimize travel time, distance 
and deviation from the originally planned path. It appears that in all different 
environments travel time and the number of replannings are highly correlated.  

6.4 On the Utility of Exploration on Time-Critical 
Mobile Robots Missions (Paper Introduction) 

In an unknown or partially unknown environment the robot learns mainly by 
trial and error. In hazardous environments learning and exploration can lead to 
undesirable damages. If the robot in addition has a time-critical mission, the 
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utility of expensive exploration becomes questionable. From the utilitarian point 
of view, knowledge is useful only as long as it increases the performance of the 
robot and thus helps to fulfil the mission. The knowledge that can be used many 
times is much more valuable than knowledge used only once. 

This paper considers mission-oriented exploration heuristics for mobile 
robot applications based on the above statements. It proposes a heuristic 
strategy that chooses between exploring new areas and exploiting knowledge 
about the already explored areas. The robot having a mission plan, considers the 
amount of knowledge acquired so far and its applicability during the rest of the 
mission. 

The mission plan of the robot in a large unknown environment consists of 
target points that it has to reach in a predefined order. Every traversal between 
two target points can be viewed as a task of the mission. Usually exists number 
of similar tasks (e.g. repeated traversal between some target points) in the 
mission. The heuristics of the decision maker at the current task tends to explore 
when similar task is not encountered often in the past and if it is needed often 
during the rest of the mission. The sooner during the mission new knowledge 
will be needed the more exploration is preferred. 

This strategy is verified against greedy one that always chooses a new path, 
if it is predicted to be better than the best path known so far. Experimental 
results show that the robot in the test environment using the heuristic strategy 
fulfils the mission faster than robot using the greedy strategy. 
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CONCLUSIONS 

This thesis investigates path planning strategies for repeated traversal in large 
dynamic partially unknown environments. The aim of the approach was to 
minimize collision risk and speed up the mission by adapting to the changes in 
the dynamic environment.  

The advantages of the novel path selection algorithm for generating 
innovative paths between predefined target points are demonstrated. Over 600 
test runs are conducted using the research robot Khepera (all descriptions of the 
experiments and experimental results are represented additionally in 
Appendix G). The behaviour of the robot is verified against the shortest path 
following strategy in various complex environments (varying from static to 
dynamic as well as from unknown to partially and totally known). 

The experimental results lead to the following general conclusions.  
Path planning approach presented in this thesis can be used even if very little 

is known about the environment or when the environment is completely 
restructured during the mission. The path selection algorithm will efficiently 
cover the whole space even if the environment is large. This approach helps to 
reduce time, risk of collisions and increases the predictability of robot’s 
behaviour. 

To optimize travel time, distance, energy consumption, collision risk or 
deviation from the original path, unexpected events should be decreased as 
changes in the former parameters depend on the last one. 

In an uncertain environment the trajectory of the robot is very difficult to 
predict and control because the deviation from the planned path is weakly 
correlated to the accuracy of the world-model. 

Optimal (shortest) path planning is not a relevant problem in partially 
unknown environments. The behaviour of the robot is influenced by the 
knowledge it has about the environment but does not depend on the path 
planning strategy. In order to increase the reliability of mobile robot 
applications, much more attention should be paid on modelling the environment 
and its changes than an optimisation of path planning algorithms. 

Gaining as accurate as possible knowledge about the surrounding is not 
necessary beneficial if the mission time is limited in a large hazardous 
environment. Mission-oriented exploration heuristics could be considered in 
mobile robot applications that are time-critical, where the robot is operating in a 
large unknown environment and when this environment is dangerous.  

Obviously these experimental results cannot be interpreted as applying to all 
possible environments because in appendices A, B, C only one randomly 
generated base environment was used as well as in the study in Appendix D. 
But if these constructed test worlds are good enough approximations of a large, 
unstructured, uncertain and dynamic environment, these results could be 
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generalised to other cases. The influence of the moving obstacles on the results 
is unknown because these type of obstacles are avoided to ensure exact control 
over the test environment. However, this affects only replanning algorithm and 
not global path selection. 

These conclusions certainly cannot be generalised to topological planning 
since the models and algorithms considerably differ from those used for grid 
maps.  
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MOBIILSETE ROBOTITE TEE PLANEERIMINE 
JA ÕPISTRATEEGIAD DÜNAAMILISTES JA 

OSALISELT TUNDMATUTES KESKKONDADES 

SISUKOKKUVÕTE 

Mobiilsete robotite tähtsaimaks omaduseks on navigeerimisvõime. Edukaks 
navigeerimiseks vajatakse teede planeerimisalgoritme, mis võimaldavad robotil 
jõuda sihtmärgini efektiivselt ning takistustega kokku põrkamata. Tee 
planeerimine eeldab, et robotil on olemas ettekujutus keskkonnast, milles ta 
opereerib. Keskkonna mudeli loomine sõltub enamasti roboti andurite 
võimalustest tajuda ümbritsevat. Tee planeerimismeetodite valik baseerub 
omakorda sellel, kuidas reaalset keskkonda kujutatakse roboti mälus. Näiteks 
võrestikkaartidel on levinud lainefrondi planeerimisalgoritmid, graafina esitatud 
teede planeerimisalgoritmid põhinevad aga graafi lühimate või hinnanguliselt 
parimate teede otsimisel kahe tipu vahel.  

Isegi staatilise keskkonna kaardistamine on oma olemuselt keeruline 
protsess, sest arvestada tuleb andurite müraga, vigadega roboti positsiooni 
määramisel, roboti liikumisest põhjustatud hälvetega, piiratud ressurssidega 
(näiteks arvutusvõimsus) ja muu taolisega. Seda enam on tee planeerimine 
komplitseeritum reaalsetes keskkondades, mis on enamasti oma olemuselt 
dünaamilised, kindla struktuurita või robotile osaliselt või täiesti tundmatud. 

Paljud mobiilsete robotite rakendused eeldavad korduvat liikumist kahe või 
enama sihtmärgi vahel. Siia kuuluvad transpordiülesanded tööstus- ja 
militaarvaldkonnas, piirkonna seire, konvoeerimine, päästeoperatsioonid jne. 

Käesolev väitekiri uuribki võimalusi, kuidas leida usaldusväärseid teid 
korduval liikumisel kahe eeldefineeritud asukoha vahel. Sealjuures tehakse 
järgmisi eeldusi: 

• Keskkond on suur ja dünaamiline, selle struktuur pole teada ning 
suvaliste mõõtmetega takistused võivad asuda teadmata kohtades. 

• Robotilt eeldatakse efektiivset ja turvalist missiooni täitmist, mis 
iseenesest ei ole keskkonna kaardistamine ja roboti positsiooni 
määramine. Viimased on vaid vajalikud meetmed eesmärgi 
saavutamiseks. 

• Roboti andurid ei ole võimelised eristama dünaamilisi objekte 
staatilistest. Lokaliseerimishälbed on väiksed ning ei akumuleeru, mis 
omakorda võimaldab planeeritud teed suhteliselt täpselt järgida. 
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• Keskkonna keerukust ja roboti võimalusi arvestades ei ole võimalik 
keskkonna mudelit täpselt koostada ning tegelikkusega kooskõlas hoida. 

 
Roboti võime adapteeruda ning käituda ennustatavalt keerukas keskkonnas 

eeldab selle tundmaõppimist. Käesolevas töös ei püüta selleks otseselt 
kaardistada tundmatut keskkonda vaid selle asemel hoitakse mälus juba läbitud 
teid koos statistiliste andmetega (läbitud tee pikkus, kulunud aeg, 
ümberplaneerimiste arv, jmt). Salvestatud teed on edaspidise efektiivsuse 
huvides teataval määral õgvendatud ning välja on visatud mõttetud tsüklid. Igal 
järgmisel katsel eeldefineeritud sihtpunktide vahel liikumiseks on robotil 
võimalus valida kas uue genereeritud tee või juba mällu salvestatud parima tee 
vahel. Tee planeerimisstrateegia püüab vähendada marsruudi läbimise ohtlikust 
valides sellise tee, mis on kõige tõenäolisemalt takistustest vaba. 
Valikukriteeriumiks juba salvestatud teede jaoks on tõenäosus, mis on 
proportsionaalselt pöördvõrdeline ümberplaneerimiste arvuga. Kui seatud 
kriteeriumile vastavat teed ei leita, siis robot kasutab sihtmärgini jõudmiseks uut 
genereeritud teed. Selleks kasutatakse hästi skaleeruvat (keskkonna mõõtmete 
suurenemise mõttes) algoritmi, mis produtseerib perekonna suboptimaalseid 
teid. Kõik teed on üksteisest võimalikult erinevad ning katavad ära terve 
keskkonna. Selliste teede kasutamine tagab sihikindla keskkonna avastamise 
ning võimalikult ohutu tee leidmise. 

Töö käigus on mini-robotiga Khepera läbi viidud üle 600 testjuhtumi 
erinevates (täiesti tundmatu, osaliselt teada, dünaamiline, staatiline) 
keskkondades. Uut suboptimaalsete teede genereerimisalgoritmi on testitud 
lühimate teede strateegia vastu. Katsed näitasid, et suboptimaalsed teed annavad 
vähemasti sama hea tulemuse, kui lühimad teed täiesti või osaliselt tundmatutes 
keskkondades. Välja on pakutud uus teede planeerimismeetod, mida kirjeldatud 
keerukas keskkonnas kasutades on robot võimeline adapteeruma, vähendama 
kollisiooni riski ning missiooni täitmiseks kuluvat aega. 

Lisaks käsitletakse tundmatu ja robotile ohtliku keskkonna uurimise 
kasulikkust missioonidel, mille kestvus on ajaliselt piiratud ning pakutakse 
selleks uut võimalikku heuristilist teede planeerimise lahendust. 
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Abstract. This paper evaluates a path selection algorithm for mobile robots in large dynamic environments. The
aim of the work is to reduce the risk of collisions and time of path following in cases when the robot repeatedly
traverses between predefined target points (e.g. for transportation or inspection tasks). The algorithm is usable even
if very little is known about the environment or if it gets completely restructured during the mission. This article
concentrates on evaluating the performance of the algorithm. The tests are completed on the mini-robot Khepera that
operates in an unknown dynamically changing environment. The test results show that the path selection algorithm is
able to reduce collision risk, travel time and travel distances as well as increase the predictability of robot’s behaviour
and its degree of autonomy.

1 Introduction

The approach presented in this paper is motivated by the fact that many mobile robot applications imply
repeated traversal between predefined target points in a dynamically changing environment. Examples of
this kind of implementations are fetch-and-carry task of industrial and agricultural applications or visiting
certain checkpoints in security and surveillance applications.

An efficiently operating robot is expected to fulfill its assignment as fast and as safely as possible. It
means that it is worthwhile to avoid situations where the robot is forced to replan its route, take a detour,
can drive into a deadlock or collide with unexpected obstacles.

Real world environments are dynamic by nature. Therefore, all the possible situations that can delay the
robot or imply a hazard cannot be foreseen. However, by modeling the environment or learning its properties,
the time delays can be minimized and the risk can be reduced.

1.1 Problem Statement

It is further assumed that:

1. The environment is dynamic and large. It is not possible or feasible to model it precisely or keep the
model constantly updated.

2. The environment contains obstacles with unknown size and location. Traversing this environment implies
risk of colliding with these obstacles, being delayed when maneuvering around them or ending up in a
deadlock.

3. Sensorial capabilities of the robot are insufficient to distinguish between static, dynamic and semi-
dynamic obstacles (e.g. between pillars and people, steady and replaced furniture).

4. The robot is working under time constraints and it has limited computational resources. It is expected
to fulfill its mission as fast and safely as possible.

5. Localization errors are small and do not accumulate (like it is with GPS) and it is therefore possible to
follow a preplanned path rather precisely.

? This research was supported by Estonian Science Foundation grant ETF5613.
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The problem we aim at solving is the following: find paths between previously determined target points
so that following them minimizes risk of collisions and speeds up the mission.

Our approach to the problem is based on the following observation. In a dynamic environment with an
unknown obstacle distribution, the best path to the goal is not necessarily the shortest one. Depending on
the nature of the environment, there may exist routes that are longer but easier to follow. By introducing
a path generation algorithm, the robot can test several alternatives to reach the goal. By remembering its
path following experiences, it can learn to follow paths that save time and reduce risk. As the environment
changes, the robot will reevaluate its past experience and adapt to use new easily traversable paths.

1.2 Related Work

For a mobile robot operating in an uncertain environment, a natural requirement is obstacle avoidance
(e.g. several implementations of potential fields [3]). However, obstacle avoidance, no matter how good it is,
always implies a collision risk due to the uncertainty in sensor readings, motion planning, obstacle position
or computational imprecision.

To minimize collision risk and time delays it is therefore important to select paths where as few obstacles
as possible are encountered. Very few research studies reported so far consider the problem of path selection in
dynamic environments [1, 2]. Unlike these approaches, we do not assume that the structure of the environment
is known a priori.

The other difference from the above-cited approaches is that instead of the topological map we use a
grid-based map to model the environment. The advantage of the grid-based map in this context is that the
model does not have to be reorganized when the world changes and it therefore permits the robot to learn
and adapt even in situations when very little is known about the environment or when the whole structure
of the environment changes.

In our own previous work, we have used an heuristic algorithm to generate new innovative paths [4]. The
tests have revealed that the robot is quickly able to adapt to the changes in the environment. As a result,
the risk of collisions, time delays and traveled distances are minimized.

However, the tests also pointed to the shortcomings of the approach. During the tests it was observed
that many paths that the heuristic algorithm generated were similar to each other. The robot spent much
time waiting for a different solution to be found. It also appeared that sometimes the robot got trapped to
local minima – some paths that would have been easy to follow where never generated.

To overcome this problem we created a new algorithm for paths generation [6]. The aim was to generate a
minimal cover of the solution space. We proved that we can seed the memory with a relatively small number
of alternative solutions and can keep it constrained without loosing the robots ability to learn and generalize.

This paper tests another, improved path selection mechanism. In the next section, we describe the
algorithm and motivate our approach. Next, we describe some experiments with the mini-robot Khepera to
compare our approach with the traditional shortest-path following and demonstrate the advantages of our
approach. Finally, we end this paper with conclusions and directions for the future work.

2 Path Selection in Dynamic Environments

Figure 1 describes building blocks of our approach. The global planner receives tasks from the user. The tasks
are requests to move to a specific point from its present location. Given a new task, the global planner can
trust on its ealier experiences stored in the memory and use paths that have proven to be easy to traverse. If
the properties of the paths in the memory are not good enough (e.g. too risky, long or crooked), the global
planner can use the path generation unit to suggest new solutions for traversing to the given goal.

The task of the path generation unit is to generate innovative solutions to the path planning problem
using the map of the environment. If a new solution turns out to be good, it can be stored in the memory
and used later when the same problem will be encountered.

The chosen path will be presented to the low-level planning and execution unit that is responsible for
task decomposition (if necessary), replanning, localisation, sensor data processing and actuator control.

In this paper we concentrate on finding a good path generation mechanism that generates possibly
dissimilar paths from a given start to a given goal thus permitting the robot to try as many alternative
approaches in its search for better paths as possible.
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Fig. 1. General overview of path planning

Theoretically, the number of different paths on a grid-based map is overwhelming. There are too many
alternatives to travel between two points and the robot could never try them all. In addition, most of those
paths are infeasibly long, crooked and two difficult to follow. So the aim of the path selection algorithm is
to:

1. generate paths that are easy to follow if they are free from obstacles;
2. generate paths that are as much different from each other as possible to let the robot find out as many

innovative solutions as possible;
3. provide a mechanism that is able to discover virtually all possible alternatives;
4. cover the whole space of innovative solutions with as few alternatives as possible in order to maintain

the robot’s ability to generalize and keep the memory constrained.

We propose a method that works by dividing the grid into paths segments and then generating paths
that cover all these segments. Full description of the method and its formal analysis is presented in [5].

Figure 2 illustrates one possible cover of the 3× 4 grid.

Fig. 2. Cover of the 3× 4 grid

The paths selected by the robot are limited to those not having back turns and covering all the grid
segments of length 2. In practice, paths relaxation is used to smoothen the paths and the zig-zags will be
straightened.

It is proven in [5] that for a grid of the size m × n, the cardinality of the minimal cover is 2m + 2n− 2
paths. It means that the number of different paths is very small and grows linearly with a small constant,
that makes it well scalable for very large domains.

While [5] gives a thorough insight to the theoretical aspects of the algorithm, this paper concentrates on
demonstrating its advantages in practice. The following sections describe the test environment, experiments
and compares the results of the path selection algorithm to the shortest paths approach.

3 Experimental Setup

The experiments are conducted using mini-robot Khepera. Khepera is a differencial drive miniature circular
robot (with radius 26 mm) equipped with IR sensors for collision avoidance and it can be connected to a
PC over serial link.

The size of our test environment is 1860×1390 mm. Since Khepera lacks sensors for accurate localization
we solved this problem with a global vision system. The localization system is presented in figure 3. A video
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camera is mounted to the ceiling to recognize the position of the robot. The PC processes the camera image
to find robot’s position and an algorithm running on it controls the robot over a serial link. In this way the
localization errors are rather small (usually comparable to the size of the robot).
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Fig. 3. Localization system

The environment is represented in figure 4, left. Figure 4, right, represents the same environment as
shown from the overview camera.

Fig. 4. Environment in reality and as seen from the overview camera

The presence and location of the obstacles on the scene is randomly changed and unknown for the robot.
The details of the obstacle distribution are presented in table 1. The frequency of obstacle replacement
depends on its size, the 8 smallest obstacles are replaced after every traversal, and so the robot faces
a changed environment for every traversal. An independent program using a random number generator
determines the locations of the obstacles before every traversal.

I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4

amount 2 2 1 1 1 10 8

size (mm) 320× 40 120× 320 & 160× 280 160× 240× 160 140× 385 100× 105 80× 80 40× 40

changing probability 0 0 0 0 0 0 1

Table 1. Obstacles

Figure 5 represents the model of the environment. The robot does not know anything about its environ-
ment except its size and the location of the target points. It has no idea about the presence and location of
the obstacles, neither does it know about the program that determines the obstacle distribution. Therefore
its model of the environment describes only the geometry of the environment and the location of its target
points (marked with the letter G). Encountered obstacles that cause the robot to replan its route are marked
with black rectangles. Since the robot cannot distinguish between frequently replaced and static obstacles,
the obstacle map is cleaned after every traversal. The solid line represents the planned path from start to
goal, the dotted line represents the actually followed path.
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Fig. 5. Model of the environment

The mission of the robot consists of 50 tasks of traversing between the target points. Every task implies
selecting a path, following the path, replanning on-line when obstacles occur and storing the parameters of
the path when reaching the goal.

To evaluate the efficiency of our path selection algorithm, two missions consisting of 50 tasks are compared.
The first mission is the conventional path following procedure. The robot always follows the shortest path
to the goal. A wave transform algorithm is used to calculate the shortest path [7].

The second mission tests our path selection algorithm. When a new task is given, the robot either uses
the path selection algorithm to generate an innovative path or selects an old path from its memory. The
better the path in its memory is, the more likely it will be selected. The criterion of the path quality is the
number of obstacles encountered on its way:

path choosing probability =





1, if replannings < 5;
0, replannings > 30;
1− replannings/30, otherwise.

If the path selection algorithm is efficient, it helps the robot to find innovative paths that are easier traversable
than the shortest path. As a result, the risk of collisions and time delays should be reduced.

4 Experimental Results

Table 2 represents our experimental results.

replannings time (s) deviation (mm) length (mm) interruptions

shortest path algorithm 23,8 273,1 381,5 3878,5 20

path selection algorithm 9,9 191,2 281.0 3020,7 8

performance improvements 58% 30% 26% 22% 60%

Table 2. Experimental results

Five parameters were recorded and compared. The number of replannings is the parameter we explicitly
wanted to minimize. Every time the robot detects an obstacle in its vicinity, it will replan its path. The
number of replannings thus reveals the number of situations where a possible collision with an obstacle
would have occurred. The test results show that the path selection algorithm reduced the number of possibly
hazardous situation more than by half.

Although the paths generated by the path selection algorithm are longer than paths generated by the
shortest path algorithm, they lead the robot faster to the goal. The time of path following was reduced
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mainly because the robot did not spend so much time on replanning its route and maneuvering between
obstacles.

The deviation from the originally planned path reveals the predictability of robot’s behaviour. When the
deviation is small, the robot followed more closely the route that it intended to. The path selection algorithm
helped to reduce the deviation by 26%.

Although we did not aim at minimizing the traveled distance, on the contrary, longer paths were preferred
if they were safer, the paths selection algorithm reduced the length of the paths by 22%. The reason is mainly
that maneuvering around the obstacles increases the traveled distances.

During the tests, there were occasions when the robot got stuck in the corners of obstacles or did not
manage to localize itself and therefore needed help from the experimenter. These cases were removed from
statistics since the mission usually got interrupted and data was incomplete. However, it is important to
notice that when the paths selection algorithm was used, the autonomy of the robot significantly increased.
The occasions when the experimenter had to intervene were reduced by 60%.

Generally, it can be said that compared to the shortest path algorithm, the path selection algorithm
improved all the measured parameters of the performance of the robot.

5 Conclusions and Future Work

This paper analyzed a path selection algorithm for repeated traversal in dynamic environments. The algo-
rithm generates innovative paths between predefined target points and helps the robot to reduce time and
risk of collisions. Compared to the other approaches to this problem, this approach is usable even when
very little is known about the environment or when the environment is completely restructured during the
mission. The disadvantage of the approach is that if very little is known about the surrounding, the robot
needs a global localization system to keep track on its position.

The advantage of the current approach compared to our own earlier work is that we can prove theoretically
the number of possible solutions and show that a relatively low number of solutions is needed to cover all
path segments. An even more important theoretical outcome is that the algorithm scales up well to large
domains. The number of solutions increases linearly with a small constant when the size of the environment
increases. The practical advantage of this algorithm was supported by experiments. The algorithm helped
to reduce the number of replannings, travel time, and distances as well as to increase the predictability of
robot’s performance and its degree of autonomy.

A possible direction of the future work could be to modify this approach to solve combined problems
where the robot simultaneously works on two missions. The possible examples are carrying a load and
cleaning the environment, or visiting checkpoints and inspecting the area at the same time. In these kind
of missions it is favorable to use as different paths between target points as possible. The path selection
algorithm will very efficiently cover the whole space even if the environment is large.
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Abstract. This paper represents a method for mobile robot navigation in 
environments where obstacles are partially unknown. The method uses a path 
selection mechanism that creates innovative paths through the unknown environment 
and learns to use routes that are more reliable. This approach is implemented on 
Khepera robot and verified against shortest path following by wave transform 
algorithms. Based on the experimental data, we claim that robot’s trajectory planned 
by wave transform algorithms is difficult to predict and control unless the 
environment is completely modelled and the localisation errors are small. We show 
that even small unmodelled obstacles can cause large deviation from the preplanned 
path. Our complementary approach of path selection decreases the risk of path 
following and increases the predictability of robot’s behaviour.  

 
 

 Introduction 
 
Mobile robots in human inhabited environments are expected to navigate safely and reliably 
as well as minimize travel time and energy consumption. Since real-world environments are 
complex, often unstructured and dynamic, it is impossible to build a complete model of 
robot’s surrounding and keep it up to date. The robot is thus expected to operate as efficiently 
as possible with a rather limited amount of information.  

Until now, research in mobile robot path planning has focused on finding optimal routes 
from start to goal. The optimality is usually measured in terms of travelled distances [1]. Other 
measures are also used, e.g. confidence value [2]. For planetary rovers the efficiency of a path 
is often expressed in terms of slope or roughness of the surface [3, 4]. 

Robots use local replanning to avoid unexpected obstacles in partially unknown 
environments. Since local planners do not use global knowledge, the behaviour of the robot is 
not globally optimised. Salich and Moreno have referred to this problem as to the dilemma of 
authority vs. freedom [5]. The dilemma rises from the fact that classic planners produce rigid 
orders while the behaviour of local reactive planners is unpredictable. Some researchers try to 
overcome this problem by incorporating global information to local decision making [6, 7]. 

Path planning algorithms used in robotics have been proven to give a globally optimal 
solution in globally known static environments. Their efficiency is not investigated in 
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complex, dynamic and partially unknown environments during long periods of time. Our 
experimental data suggests, that the dilemma local vs. global decision making is not so 
important as it is anticipated e.g. in [8]. It rather appears that if the global planner does not 
have all the global information about the environment. It anyway fails to create globally 
optimal plans.  

Based on our experimental data we conclude that the environment has a much more 
significant effect on the behaviour of the robot than the algorithm used. Even if the robot 
always replans globally and always uses all the global knowledge available, it has a minor 
effect on the total outcome unless the environment is completely modelled. Our tests also 
show that robot’s trajectory is difficult to predict and control. Even small unmodelled 
obstacles can considerably deviate the robot away from its globally planned path.  

A good characteristic of a learning system is the predictability of its behaviour. The 
systems that better predict the outcome have learned the environment better. A mobile robot 
can predict its behaviour when it knows its position with a great certainty after a certain period 
of time. The ability to predict the trajectory makes it possible to optimise other parameters like 
travel time or energy consumption.  

The problem we try to solve is thus how to optimise the behaviour of the robot in a 
partially unknown environment during a long period of time. There are two complementary 
approaches to increase the predictability of robot’s behaviour. It is possible to gather more 
information about the environment to plan optimal paths. But since our experiments show that 
even small imprecision in input data or noise can considerably affect the robots trajectory, we 
have chosen an opposite approach. Instead of trying to model the environment we look for 
trajectories in a partially unmodelled environment that can be followed with a great precision. 

We propose a method of covering a rectangular grid-based map with suboptimal paths. 
Previously we have described the method in detail [9] and have proven that the number of 
possible trajectories grows linearly with a small constant when the size of the map is 
increased. Therefore the method we describe can be used even in large-scale environments. 
The robot will then try to follow these paths and memorise them until it finds a trajectory that 
is sufficiently stable and easy to follow.  

In our previous work [10], we have tested or approach in a totally unknown changing 
environment. The results show that the robot is able to adapt to the changes when the 
unknown obstacles are frequently replaced and learns to use trajectories that take it safer to the 
goal. 

In this paper we report a series of tests to investigate the robot’s behaviour in partially 
known environments. The environment is static to show the cause-effect relationship between 
the model of the environment and the robots behaviour. It allows us to draw a conclusion that 
the behaviour is influenced by the environmental model and the path planning algorithm but 
not by the robot’s ability (or inability) to adapt to the changes.  

Our paths selection algorithm is verified against shortest path following by a wave 
transform algorithm of [11] with global replanning. 

Our initial hypothesis was that the shortest path following with global replanning would 
soon outperform our method when the environment becomes better known and when the 
unknown obstacles are smaller. We guessed that the shortest path planner would find the 
optimal path more likely if it knows the environment better. Tests did not confirm that 
hypothesis. On the contrary, the experimental data shows that wave transform algorithms are 
very sensitive to small imprecision in an environmental model. Even small unknown obstacles 
(or possibly sensor noise) can cause large deviation from the originally planned path.  

Our method of path selection has two limits. First, it assumes that the robot will repeatedly 
traverse between two entry points. This assumption makes it possible to try several alternative 
trajectories. Fortunately there are plenty of mobile robot applications (e.g. transportation, 
surveillance, convoying) that presume repeated traversal between specified target points.  
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Second, the robot needs a fairly precise positioning system to follow the trajectories it has 
planned. In our tests we use an overhead camera to determine the robot’s pose. We therefore 
suggest that the method works equally well with a satellite or pseudolite-based navigation. 
Since we test our approach in an environment where some static obstacles are modelled, it is 
principally possible to use these objects as landmarks. Yet we do not have any experience on 
how the robot would behave when the localisation errors are large, like it often happens with 
landmark based navigation. 

In the next section we form the problem and list the assumptions we have made. We then 
describe briefly our path selection mechanism. After that, we describe the experiments and 
draw conclusions based on the experimental data. 

 
 
1. Problem statement 
 

It is further assumed that: 
1. The environment is dynamic and large. It is not possible or feasible to model it 

precisely and/or keep the model constantly updated.  
2. The environment contains obstacles with unknown size and location. Traversing 

this environment implies risk of colliding with these obstacles, being delayed when 
manoeuvring around them or ending up in a deadlock. 

3. Sensorial capabilities of the robot are insufficient to distinguish between static, 
dynamic and semi-dynamic obstacles (e.g. between pillars and people, steady and replaced 
furniture). 

4. Mapping, path planning and localisation are not the main objectives of the robot. 
These are presumptions to make the successful completion of a mission possible. Therefore 
they cannot take all of time and the computational recourses. Some resources are also 
needed for the main task that should be fulfilled as fast and safely as possible. 

5. Localisation errors are small and do not accumulate and therefore it is possible to 
follow a preplanned path rather precisely.  

The assumptions 1 and 3 seem to contradict with the experimental design where the 
environment is actually kept static. However, a static environment is not the necessary 
precondition of the approach. The environment is kept static only to find out the causal 
relation between an environmental model and the behaviour of the robot. 

The problem we aim at solving is the following: find reliable paths between previously 
determined target points so that following them minimises collision risk and speeds up the 
mission. 

Our approach to the problem solving is based on the following observation: in a 
dynamic environment with an unknown obstacle distribution, the best path to the goal is 
not necessarily the shortest. Depending on the nature of the environment, there may exist 
routes that are longer but easier to follow in terms of time or safety. By introducing a path 
generation algorithm, the robot can test several alternatives to reach the goal. By 
remembering its path following experiences, it can learn to follow paths that save time and 
reduce risk. As the environment changes, the robot will re-evaluate its experience and will 
adapt to use new easily traversable paths.  
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2. Path selection 
 

Theoretically the number of different paths on a grid-based map is overwhelming. There 
are too many alternatives to travel between two points and the robot could never try all of 
them. In addition, most of those paths are unfeasibly long, crooked and difficult to follow. 
So the aim of the path selection algorithm is to: 

• generate paths that are easy to follow if free from obstacles; 
• generate paths that are as much as possible different from each other to let the robot 

find out as many innovative solutions as possible; 
• provide a mechanism that in practice is able to discover virtually all possible 

alternatives; 
• cover whole space of innovative solutions with as few alternatives as possible in 

order to maintain the robot's ability to generalise and keep the memory constrained. 
We propose a method that works by dividing the grid into paths segments and then 

generating paths that cover all these segments. The full description of the method and its 
formal analysis is presented in [8].  

 

 
Figure 1: The cover of a 43×  grid. 
 
The paths selected by the robot are limited to those not having back turns and covering 

all the grid segments of length 2. Theoretically there are )1)(2()2)(1(2 −−+−− nmnm  possible ways to 
cover a nm ×  grid with such a minimal cover. Figure 1 shows one possible cover of a 43×  
grid. In practice, paths relaxation is used to smoothen the paths and the zigzags will be 
straightened.  

It is proven in [8] that for a grid of the size nm × , the cardinality of the minimal cover 
is 222 −+ nm  paths. It means that the number of different paths is very small and grows 
linearly with a small constant, which makes it well scalable for very large domains.  

 
 
3. Experimental Design 
 

The experiments are conducted using a mini-robot Khepera. It is a differential drive 
miniature circular robot (with radius 26 mm) equipped with IR sensors for collision 
avoidance and it can be connected to a PC over a serial link.  

The localisation system is presented in Figure 2. A video camera is mounted to the 
ceiling to recognise the position and orientation of the robot. The PC processes the camera 
image to find robot's position and a computer algorithm controls the robot over a serial 
link. In this way the localisation errors are rather small (usually comparable to the size of 
the robot). 
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Figure 2. Localisation system. 
 
The size of our test environment is 13901860 ×  mm. It is represented in Figure 3 to the 

left. The picture in the middle represents the same environment as shown from the 
overview camera. The picture to the right in Figure 3 is the graphical interface of the 
computer program that controls the robot and monitors its behaviour.  

 

   
 
Figure 3. The test environment (to the left), the same environment seen through the overview camera (in 

the middle) and as modelled by the control program (to the right). 
 
The robot traverses repeatedly between the lower left corner and upper right corner of 

the environment in Figure 3. The physical environment for all test runs is the same but the 
environmental model varies. Figure 4 represents 3 different maps that are used to determine 
how much the environmental model affects the results.  

 

     
 
Figure 4. Environmental models used in experiments: a fully known environment (to the left), 

environment with large obstacles modelled (in the middle) and with small obstacles modelled (to the right). 
 
The map to the left of Figure 4 is the precise model of the environment, containing the 

precise location of all obstacles. The map in the middle models only large obstacles while 
the location of small obstacles in unknown. The map to the right models only small 
obstacles while the large obstacles are unknown.  

We compare our path selection method to shortest path following by a wave transform 
algorithm[10] with global replanning. Table 1 shows the number of trials with every 
environmental model with both path planning algorithms, shortest path planning vs. path 
selection. The number of trials depends on how fast the process stabilises. 



 52

 
Table 1. Number of trials. 

 
Nr. of trials Environmental model 

Path selection Shortest path 
1.All obstacles known  10 
2.Large obstacles known 20 50 
3.Small obstacles known 20 50 
 
 
The efficiency of the path planning algorithm is characterised by four parameters: 

number of replannings, travel time, travel distance and deviation from the originally pre-
planned path.  

One trial means planning a path from the lower left corner of the test environment to 
the upper right corner (or back again), following this path, replanning when an unknown 
obstacle is detected and recording the data when the robot reaches the goal. 

The shortest path planning algorithm is the following: 
1. Plan off-line a path from current start to current goal. This path is the shortest path to 

the goal calculated by a distance transform method [10]. 
2. Follow the path. 
3. If an obstacle is detected plan a new path from its current position to the goal by a 

distance transform algorithm. 
4. Repeat steps 2 and 3 until goal is reached. 
5. Record travel time, travel distance, number of obstacles detected and deviation from the 

path planned at step 1. 
 
The path selection algorithm is the following: 

1. At the first trial select a suboptimal path planned by the method described in Section 3. 
2. Follow the path. 
3. If an obstacle is detected plan a new path from its current position to the goal by a 

distance transform algorithm. 
4. Repeat steps 2 and 3 until goal is reached. 
5. Smoothen the actually followed path to remove cycles, zigzags and gaps caused by 

localisation errors. 
6. Store the smoothened path together with the travel time, distance, number of 

replannings and deviation. 
7. At next trial check if there is a stored path with acceptably low number of replannings. 

If yes, follow this path. If no, choose a new path by using a method described in 
Section 3. 

8. Repeat steps 2 to 7. 
 
 
4. Experimental Results 
 

All data from experiments, including recorded parameters at every trial, snapshots of every 
followed path and code of the control program are available at 
http://math.ut.ee/~kristo/khepera/. We here represent only some general statistics to 
compare the path planning strategies described above. 

Table 2 represents data on the shortest path planning experiment. Table 3 represents 
data on path planning with path selection.  

The efficiency of the path selection mechanism in case of a small number of trials 
largely depends on how fast the robot finds a suboptimal path that is easy to follow. While 
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running the test in the 3rd environment (with small obstacles known) the robot found an 
easy-to-follow suboptimal path at the first trial. For the sake of an unbiased interpretation 
we also represent data of another experiment that shows the worst case we have 
encountered. The robot had to try 4 suboptimal paths before it found one that was good 
enough. The last row of Table 3 therefore gives two figures for every parameter, the best 
result vs. the worst result. 

 
Table 2. Results of shortest path planning. 

 
Environmental model Nr. of 

replannings 
   Travel time Travel distance Deviation 

from the 
preplanned path 

1.All obstacles known 0.3 104 2555.0 43.8 
2.Large obstacles known 12.7 123.3 2697.3 114.7 
3.Small obstacles known 14.8 134.3 2768.0 107.0 

 
 

Table 3. Results of planning with path selection. 
 
Environmental model Nr. of 

replannings 
Travel time Travel distance Deviation 

from the 
preplanned path 

1.All obstacles known     
2.Large obstacles known 0 104.1 2584.6 29.2 
3.Small obstacles known 0/5.7 129.8/123.5 2534.2/2805.5 29.2/145.0 

 
 
5. Discussion and conclusions 
 

The first trials test the shortest path following strategy in a completely known environment 
(the first row in Table 2). It is the ideal case where globally best paths are planned with all 
available information. A closer look to the statistical data (available at the website) shows 
that the behaviour of the robot is predictable and stable. It means that we are able to control 
the robot with the great precision. Localisation errors, imprecision of mechanical linkages 
and sensor noise have no significant effect to the test results. Keeping all other things equal 
and changing only the environmental model or the path planning algorithm we can claim 
that the changes in experimental results are caused by one of the latter reasons.  

Next we have verified the behaviour of the robot using two path planning strategies. 
Speaking in terms of decision-making theory, in case of shortest path planning, the robot 
can be described as a rational utility maximising agent. It always tries to find the shortest 
path to the goal considering all information available. In the case of path selection, the 
robot can be described as an explorative agent. It randomly tries suboptimal solutions to 
escape the local minimum and find a globally best solution.  

The results show that by and all, the explorative agent is more successful. The 
advantage is apparent despite that the number of trials with the path selection method is 
smaller than the number of trials with the shortest path algorithm. Since the environment is 
static, larger number of trials would simply increase the advantages of the path selection 
mechanism since the robot would use the already found good solutions. At the same time 
the robot using the shortest path planning strategy does not learn and its behaviour never 
stabilises. 

Another conclusion is that as soon as the environment is not modelled completely, the 
trajectory of the robot is hard to predict and control. Table 2 shows that small obstacles can 
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cause large deviation than large ones. The path selection algorithm represented here is one 
possibility to find reliable trajectories that increase the predictability of robot’s behaviour. 

Finally, we conclude that shortest path planning is not a relevant problem in partially 
unknown environments. As soon as the robot does not have all global knowledge available, 
suboptimal solutions give at least as good results as the optimal one. In order to increase 
the reliability of mobile robot applications, much more importance should be paid on 
modelling the environment and its changes. 

This study obviously raises a question of how well the test environment models a real 
large-scale dynamic environment and how much Khepera can be considered as a model of 
a real robot. We suggest that the first question can be answered positively since this study 
focuses rather on modelling than navigation. We therefore expect the main conclusion that 
the environmental model plays a more important role than the path planning strategy, to 
hold also in real-world applications. However, we cannot be certain how much this 
conclusion can be extended to nonholonomic robots that due to their kinematics are not 
able to follow any possible pre-planned trajectory. 
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Abstract: This paper examines path planning strategies in partially unknown 
dynamic environments and introduces an approach to learning innovative 
routes. The approach is verified against shortest path planning with a distance 
transform algorithm, local and global replanning and suboptimal route 
following in unknown, partially unknown, static and dynamic environments. We 
show that the learned routes are more reliable and when traversed repeatedly 
the robot’s behaviour becomes more predictable. The test results also suggest 
that the robot’s behaviour depends on knowledge about the environment but not 
about the path planning strategy used.  

Keywords: path planning, mobile robots, dynamic environment, robot 
learning.  

1 Introduction 
Mobile robots in human inhabited environments should operate safely and 
reliably. At the same time they are expected to minimise energy consumption, 
travel time and distance. Optimisation of these parameters implies that the robot 
must be able to predict its behaviour in a partially unknown and changing 
environment.  

Robots use path planning algorithms to plan a path from start to goal. In 
dynamic environments the environment can change during path following. To 
avoid collisions with unknown obstacles robots use local replanning. While 
classic AI planners are used to produce the global path to the goal, local 
replanners usually act reactively.  

Mobile robot path planning is considered to be a well-established field 
incorporating several efficient path planning techniques and their modifications 
[1, 2, 3, 4, 5]. These path planners are proven to give a globally optimal plan in 
a static completely modelled environment. Several implementations also prove 
that by combining global and local path planning methods mobile robots are 
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able to operate in dynamic environments [6, 7, 8, 9]. However, there is no study 
that investigates their efficiency during long periods of time and the 
predictability of their behaviour.  

Some studies investigate the long-term behaviour of localisation methods 
[10], fault tolerance [11] and reactive behaviour [12] but efficiency of path 
planners is usually evaluated only by examining few trials. Results prove that a 
robot using path planning methods is able to negotiate unknown obstacles and 
find a way to the goal but do not address the problem of the stability of its 
behaviour and optimality of solutions.  

The reason for it might be that most of mobile robot path planners originally 
stem from the research with robot manipulators. The algorithms worked 
perfectly in small-size well-defined worlds and were easily adapted for 2D 
environments. As the field of mobile robotics developed the test environments 
grew large and more complex. Local replanning techniques and probability 
maps were introduced to cope with the new situation. At the same time global 
behaviour of path planning algorithms have remained unattended.  

Predictability of robot’s behaviour is an important parameter of a mobile 
robot. A robot that can predict its behaviour can estimate its position after a 
certain period of time. Increased predictability, in turn, makes it possible to 
optimize other parameters like travel time, distance, energy consumption, 
collision risk, etc. For robots working in a team predictability of each other’s 
actions is inevitable. A robot interacting with a human is also expected to be 
stable and predictable. Knowing robot’s location with a great precision makes it 
easier to find a lost robot in very large and complex environments.  

The goal of this study is to investigate robot’s behaviour in large and 
partially unknown environments as well as to find a way to increase 
predictability of robot’s behaviour. We have set up a model environment for a 
mini-robot Khepera [13] and completed 600 test runs to investigate its long-
term behaviour. We plan paths with wave transform algorithms widely used in 
mobile robotics [14]. The questions that we aim at answering are the following: 

 
• How much does the efficiency of path planning algorithms depend on 

the accuracy of the world model? 
• How much does explicit global replanning help to improve the 

performance of a path planner? 
• How important is it to find a globally optimal path? 
• Is it possible to increase predictability of robot’s long-term behaviour if 

the environment is dynamic and partially unmodelled? 
 
To answer the last question we introduce a learning method for fetch-and-

carry tasks that looks for reliable trajectories in a partially modelled dynamic 
environment and compare its efficiency against shortest path following with a 
wavetransform algorithm. The results show that in a complex environment there 
may exist paths that are easier to follow than the shortest path. Finding these 
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innovative traits and following them helps to reduce collision risk as well as to 
minimize travel time, distance and deviation from the originally planned path.  

To examine the performance of path planners we verify: 
 
• Optimal path planning to suboptimal path planning 
• Local path planning to global path planning 
• Path planning in static and dynamic environments 
• Path planning in known partially known and unknown environments.  
 
The next section we describe finding innovative paths. The goal of this 

method is to find reliable trajectories to complete fetch-and carry tasks. Next, 
we describe the experimental setup. In section 4 we represent the experimental 
results. Section 5 discusses the experimental results. 

2 Finding Innovative Routes 
To illustrate the problem and to explain its relevance let us verify two test runs 
with the robot Khepera (Figure 1 and Figure 2). The robot has to traverse from 
the start point in the lower left corner of the map to the goal point in the upper 
right corner in both cases. The environment is completely unknown. Black 
rectangles on the grid map represent obstacles that the robot has detected during 
path following. Every detected obstacle causes the robot to replan globally.  

Replanning is done with a wavetransform algorithm. The solid line on the 
figures is the path that the robot has planned, the dotted line is the actual path 
detected with an overview camera. The only difference is that while in Figure 1 
the robot always plans the shortest path; in Figure 2 the robot first takes a 
suboptimal path to the goal until it counts the first unknown obstacle. At this 
point both of the algorithms become identical.  

Eventually it appears that the robot in Figure 1 has taken a much longer 
route to the goal and deviated considerably from its original course. The 
suboptimal path in Figure 2 appears to be much shorter and easier to follow. 
Since the robot counts only few obstacles, collision risk is less. Replanning does 
not cause large deviation. Even when the robot replans it eventually drifts back 
to its original course.  

Many mobile robot applications assume repeated traversal between 
predefined target points. The most common is a transportation task (fetch and 
carry), but also surveillance, guiding, rescuing etc. may fall into this category. If 
the robot was able to find stable trajectories like in Figure 2 then following 
them would considerably speed up the mission, reduce risk to the robot or to the 
environment and reduce energy consumption.  

The problem is thus how to find trajectories that increase the predictability 
of robot’s behaviour and reduce risk.  
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Figure 1. Path planning in an unknown environment. Shortest path planning 
with a wavetransform algorithm 

 
Figure 2. Path planning in an unknown environemnt. Suboptimal path 
following 

One possibility would be to include information about reliability on the map. 
For grid-based maps, there exist reliable methods for incorporating ambiguity 
caused by sensor readings to the map [15]. Land-rovers also consider roughness 
and slope of the terrain to find the most reliable path [16, 17]. The optimal path 
is thus not expressed in terms of distance, but in terms of a cost function 
considering the traversability of the path. Cost functions are also used with 
topological path planning since exact distances between graph nodes are often 
unknown [18].  
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To increase reliability of path planning it would be necessary to include 
information about dynamic obstacles to the map. In [19] this is done by 
observing the obstacle distribution with an overview camera. A path planner 
then avoids areas that are more likely occupied. If it is not possible to observe 
the environment globally, the map is very difficult to keep up to date. 
Moreover, from Figure 1and Figure 2 it appears that some obstacles deviate the 
robot more away from its original path than others and to decrease deviation 
form the original path this information should also be taken into account.  

To increase predictability of robot’s behaviour, the grid map had to reflect 
the ambiguity caused by sensor readings, localization errors, dynamic obstacles 
and their effect to replanning procedures. To permit efficient path planning this 
map must be constantly updated. At the moment there is no such a method 
available that combines all these sources of uncertainty in a reliable manner and 
is easy to manage in real time.  

To increase the predictability of path following for fetch and carry tasks we 
look at the problem from an opposite viewpoint. Instead of modelling the 
environment as accurately as possible we look for paths where inaccuracy of the 
world model does not significantly influence the result of path planning. 
Practically we choose a set of suboptimal paths and evaluate their traversability 
by trail-and error until we find some that satisfies our criteria of safety and 
reliability.  

This approach is applicable for fetch and carries tasks since it implies 
repeated traversal between predefined targets. It also presumes that localisation 
errors are small and do not accumulate since the robot is expected to determine 
its position rather accurately. It is therefore easiest to apply the method if GPS 
or pseudolite navigation is used, for example like in [20]. 

2.1 Problem Statement 
It is further assumed that: 
 

1. The environment is dynamic and large. It is not possible or feasible to 
model it precisely and/or keep the model constantly updated.  

2. The environment contains obstacles with unknown size and location. 
Traversing this environment implies risk of colliding with these 
obstacles, being delayed when manoeuvring around them or ending up 
in a deadlock. 

3. Sensorial capabilities of the robot are insufficient to distinguish 
between static, dynamic and semi-dynamic obstacles (e.g. between 
pillars and people, steady and replaced furniture). 

4. The environment is unstructured or the structure of the environment is 
unknown. 

5. Mapping, path planning and localisation are not the main objectives of 
the robot. These are presumptions to make the successful completion of 
a mission possible. Therefore they cannot take all of time and the 
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computational recourses as some resources are also needed for the main 
task. 

6. The robot is expected to fulfil its mission as fast and safely as possible. 
7. Localisation errors are small and do not accumulate and therefore it is 

possible to follow a pre-planned path rather precisely. 
 

The problem we aim at solving is the following: find reliable paths between 
previously determined target points so that following them minimises collision 
risk and speeds up the mission. 

Our approach to the problem solving is based on the following observation. 
In a dynamic environment with an unknown obstacle distribution, the best path 
to the goal is not necessarily the shortest. Depending on the nature of the 
environment, there may exist routes that are longer but easier to follow in terms 
of time or safety. By generating innovative tracks with a path generation 
algorithm, the robot can test several alternatives to reach the goal. By 
remembering its path following experiences, it can learn to follow paths that 
save time and reduce risk. As the environment changes, the robot will re-
evaluate its experience and will adapt to use new easily traversable paths.  

2.2 Suboptimal Path Generation 
Theoretically the number of different paths on a grid-based map is 
overwhelming. There are too many alternatives to travel between two points 
and the robot could never try them all. In addition, most of those paths are 
unfeasibly long, crooked and difficult to follow. So the aim of the path selection 
algorithm is to: 

• generate innovative routes that are easy to follow if free from obstacles; 
• generate paths that are as much as possible different from each other to 

let the robot find out as many innovative solutions as possible; 
• provide a mechanism that in practice is able to discover virtually all 

possible alternatives; 
• cover the whole space of innovative solutions with as few alternatives 

as possible in order to maintain the robot's ability to generalise and keep 
the memory constrained. 

We propose a method that works by dividing the grid into paths segments 
and then generating paths that cover all these segments. The full description of 
the method and its formal analysis is presented in [21]. 

Figure 3 illustrates one possible cover of a 43×  grid. The paths selected by 
the robot are limited to those not having back turns and covering all the grid 
segments of length 2. In practice, paths relaxation is used to smoothen the paths 
and the zig-zags will be straightened. 
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Figure 3. The cover of a 43×  grid 

It is proven in [21] that for a grid of the size nm × , the cardinality of the 
minimal cover is 222 −+ nm  paths. It means that the number of different 
paths is very small and grows linearly with a small constant, which makes it 
well scalable for very large domains. 

2.3 Learning Innovative Routes 
In the previous section we presented a method of covering the m × n grid map 
with a set of suboptimal path. We assume that although these paths are longer 
than the shortest one, in a dynamic and partially modelled environment some of 
these routes may be easier to follow. Since the map may be inadequate and does 
not contain information that permits to evaluate reliability of paths, we can 
evaluate their traversability only after following them. Therefore the application 
of the algorithm is also limited to missions that assume repeated traversal 
between predefined targets. The general form of the algorithm represented in 
Figure 4. 

In the next section we describe the experimental design and after that 
represent the results of the experiments. The experiments were set up to verify 
the path selection algorithm against shortest path following, specifically to show 
how dynamic or how well modelled the environment can be for the path 
selection algorithm to outperform shortest path following. For the sake of 
completeness and in order to draw some more general conclusions we have also 
included some test runs published earlier in [22] and [23]. 

3 Experimental Design 

3.1 Robot 
The experiments are conducted using a mini-robot Khepera (see Figure 5). It is 
a differential drive miniature circular robot (with radius 26 mm) equipped with 
IR sensors for collision avoidance and it can be connected to a PC over a serial 
link. 
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When moving from start to 
goal is requested choose a 

suboptimal path. 

Follow the path. 

Goal is 
reached? 

No 

Store data about its 
traversability (replanning, 

distance, etc.). 

Next trial? 

The followed path 
satisfies a predefined 
criterion (e.g. safety, 

reliability, etc.)? 

Choose this path. 

Yes

No 

Start 

Yes 

No 

Yes

End   

Figure 4. The path selection algorithm 

 

 
Figure 5. The Khepera robot. LEDs are mounted on its top to detect it with an 
overview camera 
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3.2 Localization 
The localization system is presented in Figure 6. A video camera is mounted to 
the ceiling to recognize the position and orientation of the robot. The PC 
processes the camera image to find robot's position and a computer algorithm 
controls the robot over a serial link. In this way the localisation errors are rather 
small (usually comparable to the size of the robot). 
 

 

 
Figure 6. Localization system with an overview camera 

3.3 Test Environments 
To test the path planning algorithms we have set up a test environment 
represented in Figure 7. The size of the test environment is 1860 mm × 1390 
mm and it contains replaceable obstacles. Figure 8 represents the same 
environment observed though the overview camera. Khepera is detected with 
the help of 3 LEDs mounted on its top. The robot is shown in the middle of the 
Figure 8, the serial cable connecting it to the computer is also visible. The 
isosceles triangle formed by the LEDs determines the position as well as 
orientation of the robot.  

 

 
Figure 7. The test environment 
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Figure 8. The test environment seen through the overview camera 

 

 
Figure 9. The user interface of the control program 

 
A computer program controls the robot, detects its position with the 

overview camera and records its behaviour. The user interface of the program is 
shown in Figure 9.  

The robot repeatedly traverses between the lower-left and upper-right 
corner of the test environment and back again. Black rectangles in Figure 9 are 
occupied cells; either modelled a priori or detected with the IR sensors of 
Khepera. Every obstacle that the robot detects forces it to replan its route 
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according to a previously determined strategy. The solid line is the planned 
route; the dotted line is the actual route of the robot recorded with help of the 
localization system.  

3.4 Obstacles 
The specification of the obstacles is given in Table 1. Their location is 
generated with a random number generator. The location of the larger obstacles 
specified as I-shape, L-shape, C-shape, rect.1 and rect2 is kept constant during 
all the test runs (Figure 8 shows their locations). In dynamic environments we 
change the location of obstacles rect. 3 and rect.4. Keeping the location of the 
static obstacles constant during all the test runs makes it possible to verify the 
experimental results. 

The performance of the robot is verified in 6 environments with a different 
degree of dynamicity and different amount of a priori known information. In 
next subsections, we describe in detail the path planning algorithms and test 
environments. 

 

Table 1. Specification of the obstacles 

 
 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4 

amount 2 2 1 1 1 10 8 
size (mm) 320×40 120×320 

& 
160×280 

160×240×160 140×385 100×105 80×80 40×40 

changing 
probability 

0 0 0 0 0 0 0 

type modelled modelled modelled modelled modelled unknown unknown 

Table 2. Obstacles in environment 2 

 
 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4 

amount 2 2 1 1 1 10 8 
size (mm) 320×40 120×320 

& 
160×280 

160×240×160 140×385 100×105 80×80 40×40 

changing 
probability 

0 0 0 0 0 0 0 

type unknown unknown unknown unknown unknown modelled modelled 

Table 3. Obstacles in environment 3 

 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4 
amount 2 2 1 1 1 10 8 

size (mm) 320×40 120×320  
& 

160×280 

160×240×160 140×385 100×105 80×80 40×40 
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 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4 

amount 2 2 1 1 1 10 8 
size (mm) 320 ×40 120×320 

& 
160×280 

160×240×160 140×385 100×105 80×80 40×40 

changing 
probability 

0 0 0 0 0 0 0 

type unknown unknown unknown unknown unknown unknown unknown 

Table 4. Obstacles in environment 4 
 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4 

amount 2 2 1 1 1 10 8 
size (mm) 320×40 120×320 

& 
160×280 

160×240×160 140×385 100×105 80×80 40×40 

changing 
probability 

0 0 0 0 0 0 1 

type unknown unknown unknown unknown unknown unknown unknown 

Table 5. Obstacles in environment 5 
 I-shapes L-shapes C-shapes rect. 1 rect. 2 rect. 3 rect. 4 

amount 2 2 1 1 1 10 8 
size (mm) 320×40 120×320 

& 
160×280 

160×240×160 140×385 100×105 80×80 40×40 

changing 
probability 

0 0 0 0 0 0.2 1 

type unknown unknown unknown unknown unknown unknown unknown 
Table 6. Obstacles in environment 6 

3.4.1 Environment 1 – Static, Known 

This environment is set up to test the performance of the robot in perfect 
conditions.  

The environment 1 is the complete and correct model of the environment. 
Locations of all obstacles is precisely known and do not change. The model is 
represented in Figure 10. The start and goal points are indicated with a letter G. 

3.4.2 Environment 2 – Static, Large Obstacles Known 
The physical environments 1, 2 and 3 are identical, only the models of the 
environments differ. All the obstacles in this environment are kept static during 
the tests.  

The environments 2 and 3 were set up to verify the performance of the path 
selection algorithm in a partially modelled world. 

In environment 2 the large obstacles are known a priori while the presence 
and location of small obstacles is unknown (see Table 2 for details). The model 
of the environment 2 is shown in Figure 11. 



 69

 
Figure 10. The complete model of the environment. The letter G indicates start 
and goal points 

 
Figure 11. The partially modelled environment. Large obstacles are modelled 

3.4.3 Environment 3 – Static, Small Obstacles Known 

The model of the environment 3 is the reverse of the model of the 
environment 2. All obstacles that were known in environment 2 are unknown 
while all obstacles, which were unknown in environment 2, are known here (see 
Table 3). Like it was stated above, the physical environment that the robot 
traverses is the same for environments 1, 2 and 3. The model of the 
environment 3 is represented in Figure 12. 
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Figure 12. The model of the test environment with small obstacles modelled  

 
Figure 13. Model of the unknown environment 

3.4.4 Environment 4 – Static Unknown 
The test environment 4 was set up to test the performance of the path selection 
algorithm in an extreme case where nothing is known about the environment 
except its size and goal locations.  

The model of the environment is represented in Figure 13. All obstacles are 
static (see Table 4).  
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3.4.5 Environment 5 – Slightly Dynamic, Unknown 
The environments 5 and 6 are dynamic and unknown. Tests in these 
environments evaluate how well does the path selection algorithm adapt to the 
environmental changes.  

Environment 5 is unmodelled with the 8 obstacles replaced after every trial. 
The model of the environment is represented in Figure 13. 

Obstacle distribution is presented in Table 5. Locations of all 8 obstacles 
specified as rect. 4 are replaced before every trial with probability 1. Their new 
locations are generated randomly. If the new location of an obstacle coincides 
with an existing obstacle, a new location is generated.  

A realistic environment can change during the path following. However, this 
is a feature that we were not able to model, since changing the environment 
during the path following would have disturbed the localisation system that uses 
an overview camera. We therefore changed the environment before every trial. 
In this way the robot faces a new changed world every time it travels to its goal 
location, but it does not observe the environment changing during the path 
following. 

3.4.6 Environment 6 – Moderately Dynamic, Unknown 
The model of the environment is the same as in Figure 11. Environment 6 is 
more dynamic as 18 obstacles are replaced after every trial. The obstacle 
distributions are represented in Table 6. Like in the environment 5, the obstacles 
specified as rect. 4 are replaced with the probability 1.0. In addition 10 more, 
twice as large obstacles rect. 3, are replaced after every trial, each with a 
probability 0.2.  

Dynamic obstacles actually correspond to those that are unknown in 
environment 2 while all static obstacles correspond to those that are known in 
environment 2.  

3.5 Algorithms 
This subsection describes path planning strategies used to evaluate the path 
selection algorithm. The performance of the path selection algorithm is verified 
against shortest path following with wavetransform algorithms. The 
wavetransform algorithm is selected as one of the commonly used path planning 
methods on a grid map. Also our own path selection algorithm uses the same 
wavetransform methods for replanning. Therefore we can assure that any 
differences in performance are caused only by the learning algorithm but not by 
the replanning method.  

The robot uses 3 different path planning strategies: 
1. Shortest path following always plans the shortest path to the goal from 

its current position. 
2. Path selection with global replanning uses the path selection algorithm 

to look for suboptimal routes to the goal. It follows the suboptimal route 
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until the first unexpected obstacles is detected. Then the shortest path 
following is used to reach the goal. 

3. Path selection with local replanning uses the path selection algorithm to 
find suboptimal routes to the goal. When unexpected obstacles are 
detected, local replanning is used to find its way back to the pre-
planned route.  

 
Next, we describe every path planning strategy in detail. The program code 

corresponding to every algorithm is available at 
http://math.ut.ee/~kristo/khepera/. 

 
 
 

Plan an off-line path from start 
to goal with a distance 
transform algorithm. 

Follow the path. 

Is an obstacle 
detected? 

No 

Is goal 
reached? 

Plan a new path from its current 
position to the goal by a 

distance transform algorithm. 

Yes

Start 

No 

Yes 

Record travel time, travel distance, 
number of obstacles detected and 

deviation from the path. 

End  
Figure 14. The algorithm of shortest path following 

3.5.1 Shortest Path Following 

Figure 14 describes the shortest path following strategy. A robot using this 
strategy always tries to find the shortest possible path to the goal considering all 
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global information available. To find the shortest path, the distance transform 
algorithm is used [14]. This algorithm always finds the globally optimal path to 
the goal and at the same time keeps the robot at the safe distance from 
obstacles. This strategy uses no memory to store the information about 
previously followed tracks.  
 
 
 

Select a suboptimal path. 

Follow the path. 

Is an obstacle 
detected? 

No 

Is goal 
reached? 

Plan a new path from its current 
position to the goal by a distance 

transform algorithm. 
Yes

Start 

No 

Yes 

Smoothen the actually followed path 
to remove cycles, zig-zags and gaps 

caused by localisation errors. 

End

Strore the smoothened path together 
with travel time, distance, number of 

replannings and deviation. 

Next trial? 

No 

Does a path exist 
with acceptably 
low number of 
replannings? 

Yes

No

Yes

 
Figure 15. Path selection algorithm with global replanning 
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3.5.2 Path Selection With Global Replanning 
Figure 15 represents the flow diagram of the path selection algorithm with 
global replanning. The bottom line of this path following strategy is to first 
travel a suboptimal route and if this route appears to be blocked with an 
obstacle, abandon the pre-planned route and turn to the shortest path following 
strategy.  

The followed path is usually different from the pre-planned one because 
unknown obstacles deviate the robot from its initial course. It is also crooked 
since the robot repeatedly corrects its localization error and avoids collisions 
with obstacles. The zigzags of the followed path are therefore straightened and 
gaps and cycles are removed. This procedure is documented in [24]. When the 
goal is reached the followed path is remembered and stored together with 
statistical data (nr. of obstacles detected, travel time, distance, deviation from 
the original path).  

This strategy minimizes the risk of path following; therefore it chooses 
routes that are most likely to be free from obstacles. The robot first looks for a 
stored path with an acceptably low number of replannings while repeatedly 
traversing between the target points. If such a path exists, it is repeatedly 
followed as long as it satisfies the robot’s criterion of safety. Otherwise a new 
suboptimal route is chosen, followed and remembered. The criterion of path 
selection among the stored paths is the probability inversely proportional to the 
number of unexpected events: 









−
>
<

=
otherwise   ,30/1

30   ,0
5   ,1

sreplanning
sreplanning
sreplanning

yprobabilit  

Equation 1. 

Obviously, the efficiency of this algorithm depends on how fast the robot 
finds a route with acceptable parameters. When this route or several good routes 
are found, it usually keeps following them, robot’s behaviour stabilizes and the 
overall performance increases. The final result thus largely depends on how 
many trials are performed and how lucky the robot is to find a good route. 
Longer test runs would thus increase the efficiency of the path selection 
algorithm compared to shortest path following strategy which does not learn 
and remember and therefore does not improve its performance. To avoid a 
biased interpretation of the test results we have therefore analyzed separately 
the parameters of innovative suboptimal routes and learned (repeatedly 
traversed) routes.  

3.5.3 Path Selection With Local Replanning 

This path planning strategy described in Figure 16 follows the initially chosen 
suboptimal route to the end. When the unexpected obstacle is detected, it plans 
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a path around it and tries to return to the pre-planned path. If new obstacles are 
detected during replanning, it always tries to turn back to the pre-planned path a 
little further away from the initial returning point. The local replanning 
algorithm is therefore somewhat smarter than the plain global task 
decomposition algorithm. It does not try to reach to a certain sub-goal that could 
be hard to achieve but chooses a new sub-goal. Put differently, it avoids sub-
goal obsession, as R. Murphy calls it [25]. To replan locally the robot uses the 
same distance transform algorithm that is used for shortest path planning.  

Like in case of the previous strategy, the test results depend on how lucky 
the robot is to find a good route and how long is the test run. Therefore in 
experimental results, the innovative suboptimal path and learned path are 
analyzed separately.  

 
 

Select a suboptimal path. 

Follow the path. 

Is an obstacle 
detected? 

No 

Is goal 
reached? 

Plan a path from its current 
location back to the 

preplanned path. 
Yes 

Start 

No 

Yes 

Smoothen the actually followed path 
to remove cycles, zig-zags and gaps 

caused by localisation errors. 

End 

Strore the smoothened path together 
with travel time, distance, number of 

replannings and deviation. 

Next trial? 

No

Does a path with 
an acceptably low 

number of 
replannings exist? 

Yes 

No

Yes 

Follow the local path back to 
the p+i cell. 

Is an obstacle 
detected? 

Is p+i cell 
reached? 

No

No

i = i + 1 

Yes 

Yes 

 
Figure 16. Path selection algorithm with local replanning 
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4 Experimental Results 

4.1 Shortest Path Following in a Fully Modelled Static 
Environment 

We here represent the detailed results of 10 test runs in a fully modelled static 
environment. This test evaluates the efficiency and stability of shortest path 
planning with a wavetransform algorithm and gives a reference for evaluating 
the performance in partially modelled and unknown environments.  

One trial means planning a path from the start to the goal, following the path 
and replanning if necessary. In the end of every trail four parameters are 
recorded: number of replannings due to unexpected obstacles, travel time, 
deviation from the originally planned path and travel distance.  

Table 7 represents detailed experimental results. Figure 17 represents the 5th 
trail recorded by the computer program and Figure 18 represents the 6th trial 
where the robot traverses in the opposite direction. 

This data indicates that the program is able to control the robot rather 
precisely and the behaviour of the robot is predictable. The deviation from the 
original path is not more than by the diameter of the robot and only in one case 
a detected obstacle or sensor noise forces the robot to replan its course (trial 
nr. 3).  

We can conclude that localisation errors, imprecision of mechanical linkages 
or the control program do no influence the test results significantly. Keeping all 
other things equal and changing only the model of the environment or the path 
planning algorithm we can thus claim that any changes in performance are 
caused by one of these reasons.  

The tests represented in this paper consist of 600 trials. In the following 
subsections we represent only the average values of all the test runs. The 
detailed data about every trail as well as snapshots of every followed path 
similar to Figure 17 and Figure 18 are available online at 
http://math.ut.ee/~kristo/khepera/.
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No. of  
trial 

No. of  
replannings 

Travel time  
(sec) 

Deviation  
(mm) 

Distance  
 (mm) 

1 0 105 29,2 2535,3 
2 0 103 58,4 2551,2 
3 3 108 29,2 2561,3 
4 0 104 58,4 2576,9 
5 0 102 29,2 2535,7 
6 0 104 58,4 2592,7 
7 0 104 29,2 2540,8 
8 0 102 58,4 2540,8 
9 0 105 29,2 2543,0 

   10 0 103 58,4 2573,0 
Average 0,3 104 43,8 2555,1 

Table 7. Shortest path following in a fully modelled static environment 

 

 
Figure 17. Path followed in a fully modelled static environment. Robot moves 
from the lower-left corner to the upper-right corner 

 
Environment 1 2 3 4 5 6 
Shortest path following 10 50 50 50 50 50 

Suboptimal path  - 1 5 16 14 31 Path selection with  
global replanning Learned path  - 9 25 34 36 19 

Suboptimal path  - - - 8 28 17 Path selection with  
local replanning Learned path  - - - 42 22 33 

Table 8. Number of trials 
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Figure 18. Path followed in a fully modelled static environment. Robot moves 
from the upper-right corner to the lower-left corner 

 
The number of trials in every test environment is represented in Table 8. 

Except the trials in a static fully modelled environment where the process was 
very stable, all other tests to evaluate shortest path following consist of 50 trials.  

Path planning with path selection algorithm in unknown environments also 
consists of 50 trials. As it was described above, the path selection algorithm 
tries several innovative suboptimal paths and learns to follow this suboptimal 
path, which are more stable. Learned suboptimal path and innovative 
suboptimal paths are therefore analyzed separately and depending on the 
environment the number of trials differ. However, the total number of trials is 
still 50 in unknown environments. Since in partially known environments the 
learning process stabilizes very quickly, the total number of trials is less (10 in 
environment 4 and 30 in environment 6). 

4.2 Number of Replannings 
Figure 19 represents the average number of replannings caused by unexpected 
obstacles. This is the parameter that the path selection algorithm explicitly 
minimizes and therefore learning considerably minimizes the risk of collisions. 
The number of replannings also decreases when the environment becomes 
better known, which is not a surprising result since the modelled obstacles can 
now be avoided in advance. The unexpected result is that following suboptimal 
path gives a better result than following the shortest one. Since the shortest path 
following algorithm that globally replans always maximizes the expected 
utility, one would expect that the total outcome of this strategy would be better.  
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Nr.of replannings
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Environment 2 12,7 0,0

Environemnt 3 14,8 3,8

Environment 4 24,9 14,3 9,8 17,0 11,1

Environment 5 23,8 13,9 8,4 20,5 15,5

Environment 6 24,9 19,3 9,8 15,2 9,6

Shortest 
path

Suboptimal 
path global 
replanning

Learned 
path global 
replanning

Suboptimal 
path local 
replanning

Learned 
path local 
replanning

 
 Figure 19. Average number of replannings caused by unexpected obstacles 

4.3 Travel distance 
Figure 20 shows the average distance travelled at every trial. Although the path 
selection algorithm prefers longer path to shorter and risky ones, it can be seen 
that learning slightly decreases the average travelled distance. The most logical 
explanation is that manoeuvring around obstacles eventually increases the path 
length more than covering distances between obstacles. Again, like in case of 
replannings, it can be seen that suboptimal path are not worse than optimal 
ones. 
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Distance (mm)
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replanning

Learned 
path local 
replanning

 
Figure 20. Average distance  

4.4 Travel time 
Figure 21 shows the average travel time of path following. The general 
conclusion about this data is the same as about the previous parameters. 
Learning improves the performance and modelling the environment decreases 
travel time. Again, following suboptimal path is about as time consuming as 
following the globally optimal one.  

The very long travel time in the environment 1 with the shortest path 
algorithm seems somewhat anomalous. It is caused by few trials where the 
robot got trapped in a box canyon (see Figure 22). When trying to escape the 
canyon, the robot replanned always it counted an obstacle. Since it replanned 
globally, every replanning increased travel time. At the same time travel 
distance and deviation almost did not increase and therefore this anomaly is not 
visible on other charts.  
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Travel time (sec)
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Figure 21. Average travel time 

 

 
Figure 22. The robot escaping the box canyon 
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4.5 Deviation 
Figure 23 shows the average deviation from the original path. Learning usually 
decreases deviation but it is not true in all cases. The deviation is large when the 
robot follows a suboptimal path and after counting an obstacle replans globally. 
This is not surprising since it might have initially driven in another direction 
and then switches to shortest path following. 
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Figure 23. Average deviation from the originally planned path 
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4.6 Learning 
The experimental results represented above show that the path selection 
algorithm outperforms shortest path following and the learned routes are better 
than the shortest or suboptimal ones in terms of collision risk, travel time, 
distance and deviation. However, they do not prove that the performance 
increases because of learning and remembering.  

 
Figure 24 shows how the performance of the system increases and the 

robot’s behaviour stabilises during the test run. These tests are conducted in the 
Environment 4, a static unknown environment. Since the environment is static, 
the learning algorithm but not the environment causes any change in the robot’s 
behaviour. Since the environment is unknown, it proves that the algorithm is 
able to learn even in the extreme case when very little information is available. 

The path selection algorithm with both local and global replanning are 
verified against shortest path following. Both path selection algorithms stabilize 
rather quickly as they find and learn to use path that are better than the shortest 
one. The globally replanning path selection algorithm adapts to use a route with 
0 replannings (Figure 25), while the path selection algorithm with local 
replanning adapts to use a more risky one (Figure 26). These results do not 
prove that globally replanning algorithm is better than the locally replanning 
algorithm because both of the algorithms look for routes that satisfy their 
criterion of safety defined by Equation 1. In this example, a route with couple of 
detected obstacles was considered to be good enough and the robot accepted the 
result. The globally replanning robot was fortunate to find a route with 0 
obstacles and adapted to use this one.  
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Figure 24. The learning curve of the path selection algorithm in the 
environment 4 
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Figure 25. A learned route with the globally replanning path selection 
algorithm 

  
Figure 26. A learned route with the locally replanning path selection algorithm 

4.7 Correlations 
We here represent some more statistical data that helps to explain the 
experimental results. Table 9 represents the correlation coefficients between the 
number of replannings and other measured parameters. The data is given about 
the shortest path following in environments from 2 to 6. All these test runs 
contained 50 trials, which is sufficient for statistical analysis.  

It appears that in all cases travel time and the number of replannings are 
highly correlated. This result is not surprising because the robot replans globally 
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using a wavetransform algorithm. For a reactively replanning robot the 
correlation could be weaker.  

The correlation between the number of replannings and distance is weaker. 
This can be explained with that the robot does not have all global information 
available when it replans and therefore it does not always minimize the travel 
distance.  

The correlation between the number of replannings and the deviation from 
the pre-planned path varies considerably from one test run to another. For 
example, while in environment 3 the correlation is highly negative; in 
environment 4 it is highly positive. It means that in some cases larger number of 
unknown obstacles causes a small deviation while a small number of unknown 
obstacles can cause a large deviation. 

 

Table 9. Correlation coefficients for the shortest path following algorithm 

5 Discussion 
The most general conclusion about the experimental results is that in a partially 
modelled large-scale dynamic environment it is possible to optimize robot’s 
behaviour by learning reliable trajectories.  

Our initial hypothesis was that the traditional shortest path following 
strategy would soon outperform the innovative paths learning algorithm when 
the environment becomes known better. The chronological order of performing 
the test was in environments 5, 6, 4, 2, 1 and 3. The tests in a partially modelled 
environment were actually conducted later than in a unknown environment to 
show the limit where the path selection algorithm breaks down (it is also 
therefore the test in environments 2 and 3 do not include local replanning 
strategy because after conducting experiments in environments 4,5 and 6 it was 
not a research issue any more).  

The test results did not confirm our initial hypothesis. On the contrary, it 
appeared that even if small obstacles are unmodelled the path selection 
algorithm improves the performance. The environment 2 depicted in Figure 11 
is a good approximation of an unstructured human inhabited environment with 
unknown dynamic obstacles (people, vehicles, furniture or even sensor noise). 
From the experimental data it can be seen that the efficiency of the shortest path 
planning considerably decreases compared to the completely modelled 
environment 1.  

  Number of replannings 
Environment 2 3 4 5 6 
Time 0,78 0,98 0,71 0,97 0,96 
Distance 0,24 -0,06 0,45 0,63 0,82 
Deviation 0,22 -0,67 0,65 -0,06 0,22 
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Another unexpected conclusion is that global replanning does not improve 
the performance compared to the local replanning. We expected the global 
replanning strategy to perform better than the local one but the test results did 
not reveal any significant difference in performance. 

Local replanning is performed mostly because sensorial capabilities and 
computational recourses are not sufficient for real-time global decision-making. 
Salich and Moreno describe in their paper the dilemma of authority vs. freedom 
[26]. The dilemma rises from that the global planner produces rigid orders while 
the local planner acts reactively, therefore the results are not globally optimal.  

The test results reported here suggest that the dilemma of authority vs. 
freedom is irrelevant in partially unmodelled environments. The efficiency of 
path planning rather depends on the world model than of the path planning 
strategy. A global planner that does not have all global information available 
anyway fails to make a globally optimal plan and therefore the locally 
replanning agent performs equally well. From the test data it is obvious that 
global replanning does not give any particular advantage in terms of time, 
distance or collision risk. Moreover, local replanning should be preferred if the 
aim is to keep the robot close to its initially planned trajectory. 

The next conclusion about the test data is that suboptimal path planning 
gives at least as good results as the optimal one. Intuitively one would expect an 
opposite conclusion. Speaking in decision theoretic terms, the globally 
replanning shortest path planner behaves as a utility maximizing rational agent. 
At every occasion it makes a decision that is best considering all global 
knowledge available. Therefore one would expect the cumulative utility to be 
higher. The suboptimal path planner (either globally or locally replanning) can 
be described as an explorative agent. It sometimes makes suboptimal decisions 
to explore the solution space and escape the local optimum. A reasonable 
explanation is that manoeuvring around obstacles takes significantly more 
recourses than traveling the distance between them.  

The closer analysis of the test data reveals that among all the measured 
parameters, the robot’s trajectory is the one that is most difficult to predict and 
control. It is difficult to foresee the extent of the deviation from the original 
track caused by an unknown object. Travel time and distance have a higher 
correlation to the number of replannings. Any changes in time, distance and 
deviation are caused by unexpected obstacles. We therefore can conclude that in 
order to optimize any other parameter (like time, distance, energy consumption, 
deviation) we have to minimize the number of unexpected events.  

The general conclusion about the test data is that robot’s behaviour is much 
more dependent on the environmental model than the path planning strategy. In 
order to optimize the behaviour of the robot, one should gain better knowledge 
about the environment. This can be achieved in two ways. The first option is to 
model the environment as closely as possible. The alternative way, reported in 
this paper, is to look for routes where uncertainty does not significantly 
influence the result.  
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6 Limits and further questions 
Obviously these results cannot be interpreted as applying to all possible 
environments. They are limited to one randomly generated environment. If this 
environment is a good approximation of an unstructured, large, uncertain and 
dynamic working environment of mobile robots, it is likely that the results are 
also true in other cases. Repeating these tests in such an environment would 
give a confidence that the conclusions hold true in a large variety of scenarios. 
The problem rises from that a large, dynamic and uncertain environment is 
practically not controllable. The model environment represented here is on the 
contrary, fully controllable, and therefore we can be certain about the causes of 
the results. 

These conclusions certainly cannot be generalised to topological maps and 
graph-based path planning since the models and methods considerably differ 
from those used for grid maps. 

At the same time we suggest that the results can be generalised to other path 
planning methods than distance transform on a grid map. The performance of 
the shortest path planner and suboptimal path planner are not different. 
Therefore it is likely that the performance of the wavetransform planning or any 
other planning algorithm do not influence the performance either. Actually, any 
path planned on a grid map is suboptimal because the grid is digitized. It is 
possible that methods that use a varying resolution like [7] behave differently. 

The approach of learning innovative tracks has two severe limitations. First, 
it assumes that localisation errors are small and do not accumulate. It is hard to 
predict how the localisation errors influence the result of path planning. Second, 
it can be applied only to missions where the robot repeatedly traverses between 
predefined target points. This assumption makes it possible to try several 
suboptimal routes and learn to use the most reliable ones.  

7 Conclusions 
This paper examined path planning strategies in large partially unknown 
environments. The robot learned innovative routes to find reliable trajectories 
and optimize robot’s behaviour. The approach was verified to shortest path 
following in 6 different environments. 

Experimental results lead to the following conclusions: 
• The approach of learning and remembering reliable routes increases the 

performance of the robot. 
• The behaviour of the robot is influenced by the knowledge it has about 

the environment but does not depend on the path planning strategy. 
• To optimize travel time, distance, energy consumption, collision risk or 

deviation from the original path, the probability of unexpected events 
should be decreased as changes in the former parameters depend on the 
last one. 
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• Robot’s trajectory in an uncertain environment is very difficult to predict 
and control because the deviation from the planned path is weakly 
correlated to the certainty of the model. 
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ABSTRACT 

 
This paper addresses the problem of the utility of 
exploration on time-critical mobile-robot missions. It is 
argued that in large environments mission-oriented mobile 
robot applications can become more efficient if the 
exploration strategy considers knowledge already gained 
and its applicability during the rest of the mission. This 
hypothesis is verified in a model test environment with 
Khepera robot. The conclusion is that mission-oriented 
exploration heuristics could be considered in mobile robot 
applications that are time-critical, where the robot is 
operating in a large unknown environment and if this 
environment is hazardous. 
 

1. INTRODUCTION 
 
A mobile robot operating in a real-world environment 
faces several fundamental problems. Most important of 
them is the ability to build the model of the environment 
[1], to plan routes [2] and to follow them while avoiding 
unknown obstacles [3].  

These problems need to be tacked in all applications of 
mobile robots, such as transportation, surveillance or 
guidance [4, 5]. Vast amount of mobile robot research 
addresses the problem of exploration and environment 
mapping [6, 7]. Gaining knowledge about the surrounding 
environment and keeping it updated is the necessary 
precondition of successful performance.  

In practical applications, exploration of the 
environment is usually risky and time-consuming. The 
environment can be hazardous and damage the robot. 
Exploration of a large environment takes lots of time and 
computational resources.  

From the utilitarian point of view, knowledge about the 
environment is useful only as long as it increases the 
performance of the robot. In many cases the application 
does not require the exploration of the whole environment 
(e.q. fetch and carry tasks) while in other applications, 

such as demining or search and rescue, the task definition 
implies a systematic search of the whole area [8, 9, 10]. 

This paper addresses the problem of the utility of 
exploration for time-critical mobile robot missions. It is 
assumed that the environment is very large and therefore 
exploration is time-consuming. The environment can also 
be hazardous and degrade the performance of the robot or 
slow it down. The assumption is that exploration and 
mapping are not goals by itself but means that permit the 
robot to fulfill its mission. 

Related work that consider the utility of route planning 
usually do not address the utility of exploration but rather 
evaluate the risk of navigation locally, e.g. in terms of 
possible collisions or the characteristics of the terrain [11, 
12, 13, 14]. 

We propose a heuristic exploration strategy that 
chooses between exploring new areas and exploiting 
knowledge about the already explored areas. The decision-
making is based on the mission plan. The heuristic 
decision maker takes into consideration the amount of 
knowledge acquired so far and its applicability during the 
rest of the mission. 

We test the strategy in a model environment with the 
Khepera robot. The test results show that this mission-
oriented heuristic can be useful for mobile robots on time-
critical missions. 

 
2. MISSION-ORIENTED EXPLORATION 

 
In this section we describe the problem and outline the 

exploration strategy of the robot.  
We assume that the robot is operating in a previously 

unknown environment. The goal of the robot is to fulfill a 
mission plan. The mission plan is known in advance, 
consisting of target points that the robot has to reach in a 
predefined order (e.g. a transportation task, escorting or 
surveillance problem).  

The target points are defined by their global 
coordinates. This paper is concerned about exploration 
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strategy of time critical missions and therefore we do not 
address the problem of map building and localization in 
this context. We therefore assume that the robot is able to 
localize itself rather accurately (e.g. as with GPS or 
pseudolite localization). It is also assumed to have an 
environmental model in the form of a grid-based map. In 
the beginning of the mission the environment is unknown 
and the map contains only very general information (the 
size and shape of the environment). The robot has no 
knowledge about the obstacles or any other environmental 
factors that can degrade its performance. The robot learns 
the environment while traversing it and completing its 
mission. It updates the map when it detects obstacles with 
its on-board sensors.  
 
2.1. Exploration Strategies 
 
We verify two exploration strategies that are exploration 
oriented to a different extent. The bottom line of the first 
strategy is to always take a new route to the target (i.e. 
explore the environment) if it is expected to be better than 
the routes known so far.  

The second strategy has a more conservative attitude 
against exploration. The difference from the first, greedy 
strategy is that, when gaining new knowledge it also 
considers the mission plan. The new knowledge is gained 
more probably when it is often used during the rest of the 
mission. Also knowledge that is used in the nearest future 
is gained more probably than knowledge used after a long 
time. 

The robot has to reach predefined target points 
},,,{ 21 ngggG �=  where g is the grid cell on the map 

of the robot. The mission consists of traversing the target 
points in a predefined order 
 kii mmmmmmM ,...,,,...,,, 1321 += , where   

),( vuj ggm =  and ),(1 wvj ggm =+ for kj <≤1 , if 

nwvu ≤≤ ,,1 . 
In addition to the map that is constantly updated the 

robot also saves the entire followed path P . A path is 
stored as a sequence of grid cells. For every task im  of 
the mission M it can choose between using an already 
followed path and a new path. The new path can contain 
segments that traverse unexplored regions.  

The traversed paths are stored together with statistics 
characterizing their traversability. The average time of 
following a path )(Pt is used later when the strategy 
chooses between exploration and exploitation of the 
known tracks. 

Every time the robot traverses the environment the 
map is updated so that the knowledge about the 

environment accumulates during the mission and every 
time when a new path is planned this new knowledge is 
taken into account. 
 
2.2. Greedy Exploration Strategy 
 
The greedy exploration strategy always chooses a new 
path if it predicts it to be better than the best known one. 
The predicted average time of the new path )( newPt  is 
verified to the best average time of the paths stored so far 

)( bestPt . If )()( bestnew PtPt < then the new path newP  is 
chosen.  

While following the planned path, the robot does not 
try to stay on the predefined path if the obstacles are 
encountered but replans a new path to the target point 
through the possibly unexplored regions.  

 
2.3. Conservative Exploration Strategy 
 

This exploration strategy makes the decision between 
using the best-known path bestP  and a new path newP  by 
considering exploitation of this knowledge in the future. It 
chooses newP  if the task im is not encountered often in the 
past and if it is needed often during the rest of the mission. 
The sooner during the mission new knowledge will be 
needed the more newP  is preferred. 

Let 
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denote the number of similar tasks completed in the 
past. Since it was assumed that the robot knows its mission 
plan it can be counted how many times a task similar to 
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If 1>
Future
Past

, then it is determined that the robot has 

gained enough knowledge about the environment and the 
further exploration is not beneficial. The path bestP  will 
be chosen and followed. If unexpected obstacles are 
encountered during the path following, the robot replans 
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the path but tries to return back to the initially chosen path 

bestP  to avoid unexplored regions. 

If 1≤
Future
Past

 then the robot chooses newP  because very 

little of the environment is still explored or because the 
new knowledge gained can be used in the future to 
increase the performance. 
 

3. EXPERIMENTAL SETUP 
 

3.1. Test Environment 
 
The experiments are conducted using a mini-robot 
Khepera. It is a differential drive miniature circular robot 
(with radius 26 mm) equipped with IR sensors for 
collision avoidance and it can be connected to a PC over a 
serial link.  

The localization system is presented in Figure 1. A 
video camera is mounted to the ceiling to recognize the 
position and orientation of the robot. The PC processes the 
camera image to find robot's position and a computer 
algorithm controls the robot over a serial link. In this way 
localization errors are rather small (usually comparable to 
the size of the robot). 

 

 
 
Figure 1. The experimental setup. 

 
The test environment is represented in Figure 2. The 

size of the test environment is 2320mm × 1710mm. 
Figure 3 shows the test environment as seen from the 

overhead camera. The position and the orientation of the 
robot are recognized with the help of 3 LEDs forming an 
equilateral rectangle.  

Figure 4 is the graphical interface of the computer 
program that controls the robot and monitors its behavior. 
The coordinates of the target points are marked with the 
symbols G1, G2, etc. The thick line represents the path of 
the robot to the goal. Black cells represent obstacles 
detected with the onboard sensors. The gray and dark gray 
boxes are respectively unknown areas of slow and extra 
slow motion. 

 
 

 
 
Figure 2. The test environment. 
 

 
 
Figure 3. The test environment looked through the 
overview camera with the robot recognized by the 3 
LEDs. 
 

In the beginning of the mission the robot is not aware 
of any obstacles in the environment. While it traverses the 
environment it updates the map and records all the 
detected obstacles so that as the mission proceeds its 
environmental model becomes more and more complete 
and consistent.  

In addition to the obstacles there are some regions in 
the environment where the motion of the robot is slowed 
down. These regions are introduced to simulate regions 
that in real robot applications are difficult to traverse (e.g. 
because of rough terrain). The robot is not aware of the 
presence and location of such regions and these are also 
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not reflected on the map. These areas are represented in 
the Figure 4 as the shaded regions. 
 

 
 
Figure 4. The control interface of the robot.  
 
3.2. Test trials 
 
The purpose of the experiments is to test whether the 
conservative exploration strategy gives better results than 
the greedy strategy in the presence of hazard and 
uncertainty. 

We test both missions in equal conditions. The robot 
is given a mission consisting of 31 tasks and the goal of 
the robot is to fulfill the mission as fast as possible.  

The environment, the task and the robot are identical 
in both cases. The test trials only differ by the exploration 
strategy used.  

The mission plan (the sequence of target points to be 
traversed) is the following: 

 
G1  G2  G1  G3  G1  G2  G4  G2 G1  G2  G1  G3  

G1  G2  G4  G2 G1  G2  G1  G3  G1  G2  G4  G2 G1  G2  
G1  G3  G1  G2  G4  G2 

 
The target point G1 corresponds to the point marked 

with G1 in Figure 4 in the lower-left corner, G2 in the 
upper-left corner, etc. in the clockwise direction. This plan 
implies that the robot traverses often between G1 and G2 
but quite seldom between the target points G2 and G4 or 
G1 and G3. Some parts of the environment, like those 
between G4 and G3 are not traversed at all. 

Since the different regions of the map are traversed 
with the different intensity, exploring some regions 
becomes more important from the point of view of the 
mission than exploration of other regions.  

The model environment is kept static during the 
mission. No dynamic obstacles are introduced. Obviously, 

this is not a realistic assumption on real robot missions. 
However, the goal of the tests is to show the advantages or 
disadvantages of an exploration strategy and the static 
environment guarantees that if one exploration strategy 
outperforms another then this is caused by the strategy but 
not by the changes in the environment.  

Although the environment is kept static, the robot in 
the model environment still has to tackle problems caused 
by uncertainty of sensor readings, odometric errors and 
small localization errors due to the image recognition 
system. The generation of new paths newP  is stochastic 
and therefore the performance of the robot depends to a 
great extent on a stochastic algorithm. We therefore 
conducted several pairs of test trials to show how much 
the test results diverge.  

The map and the memory (containing the traversed 
paths and their average traveling time) are stored after 
every task. All test data is available at 
http://math.ut.ee/~kristo/khepera/heuristic/. 
 

4. EXPERIMENTAL RESULTS 
 

The goal of the robot was to fulfill the mission as fast as 
possible. Therefore the average time of the mission is the 
most important parameter indicating the efficiency of the 
exploration strategy.  

The chart in Figure 5 shows the duration of the 
mission. Time of fulfilling 31 tasks is 16.74% shorter 
when the conservative exploration strategy is used. While 
both of the exploration strategies perform equally well in 
the beginning of the mission, the conservative learning 
strategy starts outperforming the greedy strategy after 10 
first tasks.  
 

 
 
Figure 5. The duration of the mission. 
 
The white areas in Figure 6 show regions explored during 
the mission when the conservative exploration strategy is 
used. The mission plan requested frequent traversing 
between the lower left and upper left corner of the 
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environment and it appears that the robot has explored 
these regions most extensively while the rest of the 
environment is searched less thoroughly. 

 
 
Figure 6. Explored areas with the conservative exploration 
strategy. 
 

 
 
Figure 7. Explored areas with the greedy exploration 
strategy. 
 

The white areas in Figure 7 show regions explored 
with the greedy exploration strategy. It appears that almost 
the whole environment is searched and most of the 
obstacles are mapped. The robot has also been extensively 
traversing the areas of slow motion (marked with gray) 
that have eventually slowed the mission down as well as 
frequent replanning and maneuvering around detected 
obstacles.  

Another indicator that shows the difference between 
the conservative and the greedy exploration algorithm is 
the number of reused paths. Traversed paths are stored in 
robot’s memory together with statistics showing their 

average traversing time. Results show that the greedily 
exploring robot used already traversed paths in 51% of 
tasks while the conservative robot relied on its past 
experiences in 67% of the cases.  
 

5. CONCLUSIONS 
 
This paper presented an exploration strategy for a mobile 
robot in large hazardous environments. It was presumed 
that the robot is working under time constraints. We 
presented a heuristic exploration strategy that chooses 
between exploration and exploitation considering the 
amount of knowledge gained so far and the applicability of 
this knowledge during the rest of the mission.  

We simulated a time-critical mission by conducting 
experiments in a model environment with a Khepera and 
verified the heuristics with a greedy exploration strategy. 
The test results showed that the robot using the 
conservative exploration strategy is able to fulfill the 
mission approximately 17% faster than the robot using the 
greedy exploration strategy. 

These test results reveal that it can be useful to 
choose between exploration of the environment and the 
exploitation of the knowledge gained depending of the 
nature of the mission and the environment. Gaining as 
much knowledge as possible about the surrounding is not 
necessary beneficial if the mission time is limited.  

The performance of the conservative exploration 
strategy undoubtedly depends on the environment where 
the robot is operating and on the mission assigned. We 
therefore are careful with generalizing these results too 
much. Certainly, there exist environments and assignments 
where the greedy exploration strategy would be more 
efficient. More experiments in different environments (e.g. 
cluttered, free space, corridor-environments, multiple 
rooms, etc.) and different path planning methods are 
required to validate the presented approach. 

We conclude that mission-oriented exploration 
heuristics could be considered in mobile robot 
applications that are time-critical, where the robot is 
operation in a large unknown environment and when this 
environment is dangerous. We also suggest that this or 
similar heuristics can be applied for other learning 
problems in mobile robotics. 
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APPENDIX E 

Detailed Description of the Test Environments 
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Introduction 
This Appendix describes in detail all test environments used in Appendices A, 
B, C, and D. There are 7 different environments. In Appendix A is used 
environment 5; in Appendix B is used environments 1, 2, and 3; in Appendix C 
is used environments 1, 2, 3, 4, 5, and 6; in Appendix D is used environment 7.  

 
Common in Environments 1 - 6 
The size of the environment is 1860×1390 mm. Example of the real 
environment is represented in Figure 1. It is divided into 20×15 cells indexed 
with numbers 1-300 (started from upper-left cell and propagated from left to 
right) for the placement of obstacles. Shapes and amount of the obstacles are 
represented in Table 1. 

 

 
Figure 1. Example of the real environment 

 

Table 1. Shapes and amount of obstacles 
 I-shapes L-shapes C-shapes Rect. 1 Rect. 2 Rect. 3 Rect. 4   
Amount 2 2 1 1 1 10 8 
Size 
(mm) 

320×40 120×320 
& 
160×280 

160×240×160 140×385 100×105 80×80 40×40 

 
All locations of the obstacles and orientations (N, W, S, E) of the 

unsymmetrical obstacles (I-shapes, L-shapes, C-Shapes, rec. 1, and rect. 2) on a 
placement grid are generated using a random number function.  
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Obstacles of type I-shapes, L-shapes, C-Shapes, rec. 1, and rect. 2 are set 
down on the placement grid if randomly chosen cell and necessary adjacent 
cells are free, otherwise next cell is randomly chosen.  

Obstacles of type Rect. 3 are set down on the placement grid if randomly 
chosen cell is free, otherwise new cell is randomly chosen.  

Obstacles of type Rect. 4 are set down on the placement grid only if 
randomly chosen cell is free. 
 

Randomly generated poses of the obstacles in the environments 1-4, 5, and 6 
are represented in Table 2, Table 3, and Table 4 respectively. 

Table 2. Poses of the obstacles in environments 1 – 4 
Type Cell Index (and Orientation) 
Unsym. 83-1; 233-4; 152-3; 170-1; 25-4; 18-1; 109-2 
Rect. 3 75; 229; 213; 117; 166; 267;  28;   4; 209;  43; 196; 241; 104; 247; 168; 146; 199; 189; 200; 126 
Rect. 4 62;  81;  85;  91; 115; 136; 271; 278; 45; 274; 126;  77; 185;  36;  80;   2 

Table 3. Poses of the obstacles in environments 5 
Type Cell Index (and Orientation) 
Unsym. 83-1; 233-4; 152-3; 170-1; 25-4; 18-1; 109-2 
Rect. 3 154; 73; 107; 77; 257; 199; 134; 266; 143; 188; 275; 291; 3 
Rect. 4   1. 287;197;274;211;71;191;230;275;223;78;238;71;104;145 

  2. 253;120;134;234;9;3;288;225;299;90;36;111;79;234 
  3. 206;291;154;1;237;110;66;71;295;81;174;107;221;143 
  4. 31;210;296;253;228;59;266;183;49;152;142;30;180;156 
  5. 97;93;113;282;281;127;113;77;282;246;68;261;240;160 
  6. 290;207;62;233;197;283;224;149;245;146;21;158;28;133 
  7. 52;108;22;107;289;20;194;229;232;121;244;102;286;185 
  8. 116;153;74;4;123;215;6;239;238;63;39;58;4;163 
  9. 131;137;87;201;227;207;52;243;90;34;278;285;100;221 
10. 175;68;50;4;53;287;45;138;277;190;249;250;262;197 
11. 274;255;260;13;63;296;73;285;60;124;54;84;113;170 
12. 28;34;12;125;293;88;206;277;34;276;190;230;19;14 
13. 20;251;89;105;48;157;132;19;117;106;146;283;227;2 
14. 272;173;4;63;19;230;180;173;244;98;123;274;222;7 
15. 27;299;270;291;283;125;146;77;63;131;94;29;229;138 
16. 173;67;291;33;210;274;246;144;233;100;297;158;134;156 
17. 4;62;189;236;60;108;15;245;138;251;270;76;208;291 
18. 184;11;269;256;32;79;197;154;129;274;53;140;62;43 
19. 143;214;228;141;285;207;118;191;278;68;197;124;117;5 
20. 10;36;153;195;295;55;40;223;209;135;276;48;154;181 
21. 77;276;107;128;183;225;50;54;137;269;200;275;152;36 
22. 116;298;88;159;120;164;255;53;182;73;181;300;2;21 
23. 41;48;264;126;2;73;80;99;63;123;186;18;166;6 
24. 35;259;140;218;134;57;152;184;167;37;54;116;58;101 
25. 65;42;214;96;293;231;2;59;46;149;1;268;118;183 
26. 178;279;13;273;134;189;182;264;173;15;46;46;26;106 
27. 76;86;297;292;199;104;161;90;114;121;268;56;63;119 
28. 199;23;164;131;29;2;151;22;116;80;5;173;11;6 
29. 39;209;180;193;28;10;231;27;125;135;67;6;172;192 
30. 20;12;140;96;114;221;102;36;200;278;90;203;211;221 
31. 18;290;189;286;37;134;224;91;5;282;252;3;219;282 
32. 165;119;20;60;180;244;300;88;94;192;219;18;114;216 
33. 172;159;56;273;116;108;206;36;180;76;60;166;184;145 
34. 11;142;190;290;100;74;193;293;24;292;199;1;197;138 
35. 283;240;251;249;75;35;198;167;276;65;18;55;240;192 
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36. 202;156;228;86;218;189;284;99;122;89;113;1;191;118 
37. 28;238;189;231;150;14;52;32;11;168;296;108;263;46 
38. 45;65;225;231;271;71;184;40;243;7;80;147;193;55 
39. 185;145;278;104;212;198;148;18;58;199;15;240;127;196 
40. 16;270;224;285;263;210;79;142;198;191;182;288;216;186 
41. 291;169;286;133;298;231;41;157;210;77;160;216;31;200 
42. 201;172;202;251;232;203;90;162;208;158;277;69;224;170 
43. 138;261;125;232;65;96;79;157;128;111;298;2;17;269 
44. 19;13;176;69;227;147;251;64;31;25;178;2;176;295 
45. 31;55;298;232;51;33;118;79;284;57;163;232;30;286 
46. 222;89;161;164;130;72;86;206;170;8;225;161;7;129 
47. 288;179;21;231;286;37;81;276;7;27;203;77;265;77 
48. 237;135;150;102;49;89;204;249;8;124;36;156;269;19 
49. 7;66;163;276;5;213;59;299;123;151;141;169;173;113 
50. 246;102;159;79;10;217;113;152;173;94;244;7;75;174 

Table 4. Poses of the obstacles in environments 6 
Type Cell Index (and Orientation) 
Unsym. 83-1; 233-4; 152-3; 170-1; 25-4; 18-1; 109-2 
Rect. 3   1. 236;254;77;14;270;243;13;244;97;103;82;121;292;57;109;9;104;31;160;155 

  2. 236;254;77;122;270;262;13;146;97;103;82;121;292;141;109;89;104;4;160;155 
  3. 236;134;77;122;270;262;43;146;97;103;82;59;292;141;109;89;196;4;160;155 
  4. 236;134;77;122;270;91;43;146;97;103;82;59;292;141;109;45;196;4;160;155 
  5. 236;60;228;122;270;91;240;146;239;103;82;141;281;141;109;45;164;4;299;155 
  6. 236;60;228;122;77;91;240;146;239;103;82;141;281;141;130;45;164;4;299;155 
  7. 236;60;228;122;86;91;240;182;196;18;82;141;281;141;258;45;164;36;168;160 
  8. 236;60;206;20;86;91;240;182;196;18;82;141;98;271;258;45;164;36;168;160 
  9. 139;60;9;67;86;91;240;182;196;179;213;141;209;113;258;45;164;36;168;69 
10. 139;60;9;155;24;91;240;182;196;179;213;141;209;9;206;45;164;36;168;69 
11. 194;60;9;288;66;261;202;55;196;179;129;141;209;257;72;145;296;82;168;69 
12. 194;60;134;288;249;261;202;240;196;246;129;141;279;257;184;145;296;82;168;296 
13. 194;60;134;28;249;179;202;240;196;224;129;141;279;190;184;299;296;82;168;185 
14. 194;60;5;28;207;179;202;240;196;224;129;141;196;190;76;299;296;82;168;185 
15. 194;60;5;28;167;216;202;240;196;224;129;141;196;190;116;37;296;82;168;185 
16. 75;178;200;28;167;216;202;240;196;224;134;52;294;190;116;37;296;82;168;185 
17. 75;178;200;28;167;216;202;240;196;224;134;52;294;190;116;37;296;82;168;185 
18. 75;176;200;28;229;216;202;62;196;224;134;270;294;190;118;37;296;177;168;185 
19. 75;176;27;75;259;216;202;62;196;224;134;270;114;135;47;37;296;177;168;185 
20. 116;176;27;75;259;216;202;62;196;224;126;270;114;135;47;37;296;177;168;185 
21. 116;176;27;75;259;216;202;283;196;224;126;270;114;135;47;37;296;198;168;185 
22. 116;176;27;75;259;127;202;283;196;224;126;270;114;135;47;21;296;198;168;185 
23. 241;170;27;75;118;76;103;283;272;224;254;73;114;135;267;292;96;198;268;185 
24. 241;170;206;75;118;76;103;93;180;224;254;73;204;135;267;292;96;36;80;185 
25. 241;170;206;75;118;76;103;184;180;13;254;73;204;135;267;292;96;10;80;236 
26. 191;170;56;75;118;76;99;117;180;13;7;73;103;135;267;292;107;60;80;236 
27. 191;170;33;75;118;76;99;117;180;13;7;73;166;135;267;292;107;60;80;236 
28. 57;170;33;75;118;76;99;117;180;13;291;73;166;135;267;292;107;60;80;236 
29. 57;120;33;75;118;76;15;197;180;274;291;156;166;135;267;292;127;1;80;123 
30. 57;120;252;75;118;76;15;197;180;274;291;156;186;135;267;292;127;1;80;123 
31. 131;120;252;75;118;76;15;197;180;168;178;156;186;135;267;292;127;1;80;276 
32. 131;120;252;279;293;76;15;197;180;168;178;156;186;70;174;292;127;1;80;276 
33. 131;32;252;279;293;76;15;197;180;168;178;237;186;70;174;292;127;1;80;276 
34. 147;32;252;279;293;76;15;197;180;168;168;237;186;70;174;292;127;1;80;276 
35. 147;32;252;279;74;76;298;197;129;168;168;237;186;70;88;292;79;1;238;276 
36. 147;32;252;279;74;76;298;197;129;168;168;237;186;70;88;292;79;1;238;276 
37. 147;32;252;279;74;76;298;197;129;168;168;237;186;70;88;292;79;1;238;276 
38. 146;208;252;279;32;226;298;197;129;168;50;79;186;70;45;1;79;1;238;276 
39. 146;208;252;279;32;226;99;197;129;71;50;79;186;70;45;1;259;1;238;50 
40. 261;53;252;279;32;226;99;197;248;71;172;125;186;70;45;1;259;1;260;50 
41. 50;53;252;279;32;226;99;197;248;71;215;125;186;70;45;1;259;1;260;50 
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42. 50;53;95;279;32;226;99;197;248;71;215;125;242;70;45;1;259;1;260;50 
43. 50;53;95;279;32;226;99;197;243;71;215;125;242;70;45;1;259;1;85;50 
44. 50;14;95;279;32;226;115;197;243;71;215;253;242;70;45;1;253;1;85;50 
45. 50;207;228;12;32;226;115;197;243;235;215;251;106;54;45;1;253;1;85;23 
46. 50;207;228;117;32;226;146;100;243;235;215;251;106;21;45;1;271;209;85;23 
47. 50;207;44;117;32;226;240;100;243;235;215;251;93;21;45;1;185;209;85;23 
48. 137;207;44;117;18;226;240;100;243;199;15;251;93;21;174;1;185;209;85;257 
49. 137;207;44;117;159;226;240;154;243;110;15;251;93;21;245;1;185;159;85;210 
50. 109;207;235;117;159;226;240;158;243;110;45;251;121;21;245;1;185;39;85;210 

Rect. 4   1. 5;43;50;73;167;187;256;295;114;263;60;16;83;53;235;243; 
  2. 15;16;51;60;115;148;183;194;12;178;277;68;57;30;206;250; 
  3. 12;49;50;93;129;207;269;270;47;173;271;233;257;265;268;191; 
  4. 9;141;142;156;215;245;279;280;97;15;250;175;177;267;30;13; 
  5. 3;44;79;146;172;241;289;292;262;104;109;53;239;7;234;85; 
  6. 19;69;100;112;177;187;214;258;280;47;200;64;5;42;201;108; 
  7. 10;21;83;87;124;226;249;288;168;205;243;74;287;295;172;27; 
  8. 9;33;37;80;249;252;291;297;187;111;134;185;66;300;93;232; 
  9. 80;90;131;163;233;240;254;300;160;22;10;227;103;76;132;12; 
10. 33;155;193;204;208;217;241;276;274;264;70;89;47;118;255;103; 
11. 52;72;81;162;183;199;210;259;127;7;205;255;219;281;89;220; 
12. 42;57;88;108;127;151;184;228;252;218;285;253;59;40;290;135; 
13. 1;62;79;107;123;268;289;298;105;57;96;128;18;12;112;54; 
14. 102;109;122;146;192;214;272;283;237;143;32;249;243;2;255;92; 
15. 34;145;150;201;219;222;235;284;149;296;217;186;196;218;22;117; 
16. 64;151;162;163;188;212;230;249;233;178;169;60;184;289;103;285; 
17. 27;54;59;85;102;125;164;190;298;42;93;26;103;219;138;90; 
18. 53;62;73;92;117;175;275;296;227;232;249;199;259;16;86;188; 
19. 5;11;24;40;65;182;280;283;287;144;197;120;168;199;202;239; 
20. 76;83;114;143;162;183;189;231;171;111;175;244;219;233;220;19; 
21. 1;99;136;146;164;200;229;294;215;249;110;105;51;219;61;10; 
22. 53;59;100;120;223;234;274;279;43;10;280;2;27;210;199;145; 
23. 1;35;80;99;115;173;239;283;65;113;15;188;215;163;158;272; 
24. 116;136;218;260;267;282;291;298;169;154;56;100;127;248;204;75; 
25. 96;112;171;188;193;214;228;261;292;51;273;62;141;53;130;184; 
26. 43;135;142;158;196;210;266;267;279;250;100;118;167;216;184;247; 
27. 106;146;168;193;199;252;277;295;210;176;51;27;227;204;140;55; 
28. 92;93;169;190;201;227;230;240;38;249;67;112;41;137;72;211; 
29. 21;44;100;129;180;217;220;284;248;112;288;46;111;41;115;223; 
30. 3;127;165;209;244;281;295;299;182;46;296;289;71;157;37;43; 
31. 49;65;66;90;105;107;125;213;291;109;220;91;129;252;285;5; 
32. 29;116;129;157;185;218;271;285;73;63;222;240;204;43;107;183; 
33. 18;41;58;68;159;241;242;260;240;233;75;171;269;33;62;218; 
34. 46;74;118;168;203;239;251;283;146;270;134;212;145;3;137;64; 
35. 10;46;58;98;157;206;256;281;284;40;283;290;175;234;19;205; 
36. 56;91;123;158;206;269;288;292;207;213;150;159;282;153;215;120; 
37. 4;50;67;81;141;187;212;229;215;224;39;120;189;68;73;243; 
38. 58;109;123;128;158;194;214;225;248;247;164;238;229;16;20;165; 
39. 42;92;100;123;142;162;164;168;246;30;267;184;47;70;206;121; 
40. 94;122;184;201;209;246;274;285;81;26;147;50;120;121;12;235; 
41. 47;64;70;73;92;102;190;290;156;224;267;136;130;57;62;208; 
42. 67;76;159;177;197;285;287;299;215;298;114;81;194;217;284;210; 
43. 10;15;123;130;189;233;244;283;84;99;289;215;96;154;73;29; 
44. 27;37;64;87;139;141;185;261;107;194;217;253;158;249;294;6; 
45. 11;58;99;106;128;139;256;294;38;31;116;44;33;288;204;262; 
46. 58;115;134;162;203;242;249;297;57;292;151;76;53;132;81;176; 
47. 35;42;99;123;149;241;266;300;16;291;260;273;249;76;148;143; 
48. 62;76;132;142;170;207;242;274;48;211;113;291;265;71;94;104; 
49. 1;14;133;218;234;252;260;275;157;222;208;43;256;37;91;110; 
50. 43;130;216;246;247;260;284;285;108;171;76;110;69;90;148;141; 
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Environment 1 - static, known 
All obstacles are static and known a priori (shown in Figure 2).  
 

 
Figure 2. A priori map 

 
Environment 2 - static, large obstacles known 
All obstacles are static. Only large obstacles of type I-shapes, L-shapes, 
C-Shapes, rec. 1, and rect. 2 are known a priori (shown in Figure 3).  
 

 
Figure 3. A priori map 
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Environment 3 - static, small obstacles known 
All obstacles are static. Only small obstacles of type Rect. 3 and Rect. 4 are 
known a priori (shown in Figure 4).  
 

 
Figure 4. A priori map 

 
Environment 4 - static, unknown 
All obstacles are static and unknown a priori (shown in Figure 5). 
 

 
Figure 5. A priori map 
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Environment 5 - slightly dynamic, unknown 
All obstacles are unknown a priori (shown in Figure 6). Only small obstacles of 
type Rect. 4 are dynamic i.e. after every traversal they are randomly replaced. 
 

 
Figure 6. A priori map 

 
Environment 6 - moderately dynamic, unknown 
All obstacles are unknown a priori (shown in Figure 7). Small obstacles of type 
Rect. 3 and Rect. 4 are dynamic i.e. after every traversal they are randomly 
replaced with probability 0.2 and 1 respectively. Additionally to obstacle 
placement rules, the obstacle of type Rect. 3 is not put down on the grid if 
randomly chosen cell is already occupied. 

 
Figure 7. A priori map 
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Environment 7 
The size of the environment is 2320×1710 mm. Real environment is represented 
in Figure 8. The environment is static and unknown a priori (shown in 
Figure 9). 
 

 
Figure 8. Real environment 

 

 
Figure 9. A priori map 
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APPENDIX F 

Pseudo Code of the Learning Method 
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Introduction 
This Appendix describes learning method used in appendices A, B, and C. The 
method is represented as pseudo code. The main function is ExecutePlan(). 
This function gets a predefined plan (goal points) and executes it. 

 
Pseudo Code of the Learning Method 
 
// Grid cell size (mm)
double GRID_SIZE = 29.2

// Similarity measure
double SIMILARITY_CONST = 2 * GRID_SIZE

// Main function
void ExecutePlan(Plan plan)
{

while(plan.IsTaskLeft()) {
DecisionMaker(plan);

}
}

// Plan to the next goal point
void DecisionMaker(Plan plan)
{

Cell start_cell;
Cell goal_cell;
GlobalMap map;

start_cell = plan.GetNextStartCell();
goal_cell = plan.GetNextGoalCell();

// Check for the old solution
Case old_case = FindBestSimilarCase(Case(start_cell, goal_cell));
if (AcceptOldSolution(old_case)) { // chose old solution

map.path = old_case.path;
} else { //chose new solution

map.path = GenerateSuboptimalPath(start_cell, goal_cell);
}

// Traverse to the next goal point using the path “map.path”
map.ReactivePlanner();
// The robot is arrived to the goal point

double cost = CalcCost(map.replannings);
Case new_case = Case(start_cell, goal_cell, map.relaxed_path, cost);
AddToBase(new_case);

}
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// Accept or do not accept old solution
bool AcceptOldSolution(Case old_case)
{

if (old_case == NULL)
return FALSE;

if (random() < old_case.cost)
return TRUE;

else
return FALSE;

}

// Find the best similar stored case (path) from the robot’s base.
Case FindBestSimilarCase(Case current_case)
{

Case best_similar_case = NULL;
// check all stored cases in the base
for (int i = 0; i < base.cases(); i++) {

if (Max(Distance(current_case.start_cell, base[i].start_cell),
Distance(curren_case.gaol_cell, base[i].goal_cell)) <
SIMILARITY_CONST) {

if (best_similar_case == NULL) {
best_similar_case = base[i];

} else {
if (best_similar_case.cost > base[i].cost) {

best_similar_case = base[i];
}

}
}

}
return most_similar_case;

}

// Calculate cost to the traversed path
double CalcCost(int replannings)
{

int max_replannings = 30;
if (replannings < 5)

return 1.0;
if (replannings > max_replannings)

return 0;
else

return 1 - replannings / max_replannings;
}

// Store new case (path)
void AddToBase(Case new_case)
{

Case most_similar_case = FindMostSimilarCase(new_case.path);
if (most_similar_case != NULL) {

if (new_case.cost < most_similar_case.cost) {
base.DeleteAndAddCase(new_case);

} else {
most_similar_case.sum_cost += cost;
most_similar_case.visits++;
most_similar_case.cost = most_similar_case->sum_cost /

most_similar_case->visits;
}

} else {
base.AddCase(new_case);

}
}
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// Find most similar case (path)
Case FindMostSimilarCase(GlobalPath new_path)
{

Case most_similar_case = NULL;
double min_distance = MAX_NUMBER;

// check all stored cases in the base
for (int i = 0; i < base.cases(); i++) {

distance = FindSimilarity(new_path, base[i].path);
if (distance < min_distance) {

min_distance = distance;
most_similar_case = base[i];

}
}

return most_similar_case;
}

// Find the similarity of the paths
double FindSimilarity(GlobalPath path1, GlobalPath path2)
{

return MaxDistanceBetweenPaths(path1, path2);
}
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APPENDIX G 

CD - Website of the Experimental Data 



 
 

 117

Introduction 
This Appendix is a website on the CD (also, available online at 
http://math.ut.ee/~kristo/phd) added to this thesis. On the website are available 
descriptions of the test environments, all experimental results (including the 
thumbnails of the traversed paths), and the program code. Open the file 
index.html on the CD for looking the website. 
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