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INTRODUCTION 

 
In the struggle for survival, the fittest win out at the expense of their rivals  

because they succeed in adapting themselves best to their environment.  
Charles Darwin 

 
Bacteria, free living single cellular organisms, are tightly exposed to their en-
vironment. Both biotic and abiotic forces shape their fate. During the time of 
plentiful, many bacterial species are able to grow astonishingly fast. This itself, 
however, leads to a rapid and inevitable change – the bacteria exhaust the 
growth supporting potential of the environment.  

In changing environments, in order to adjust and to survive, several mecha-
nisms are in place. One of the most widespread bacterial strategies against per-
turbations and survival during harsh times is a mechanism called the stringent 
response. In case of a bacterial infection, not surprisingly, the host is hostile. As 
expected, the stringent response is important for pathogenic bacteria both to 
establish an infection and to endure. Therefore, the stringent response is not 
only of great intellectual interest of a few, instead, it affects the general public, 
in health and in sickness. That is not to say, in life and death. 

In the following pages, I will describe the life-style of bacteria in growth and 
survival with an emphasis on the role of the stringent response. No attempt was 
made to be exhaustive – way more is known about the subjects that could 
contain in the thesis – I will portray just inasmuch as is necessary to support the 
inquiries taken and follow the results obtained. As it is often the case in studies 
of bacterial physiology, although contemporary science is advancing into new 
bacterial species at ever increasing pace, the treatise will be heavily biased to-
wards Escherichia coli. It becomes also obvious very quickly – out of all the 
major biological processes, the author is most familiar with the translation. 
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1. OVERVIEW OF LITERATURE 

1.1. Growth 
This treatise is much about bacterial cell physiology in batch culture. It is non-
sense to talk about cell physiology without specifying the strain and the growth 
conditions – the nutritional, chemical, and physical environment. The resulting 
growth of bacterial culture can be described by extensive or intensive properties 
(Fig. 1). Extensive properties include the amounts of different components of 
the culture – protein, DNA, RNA etc. Intensive properties describe the distri-
bution of the extensive properties i.e. distribution of cells in terms of total 
protein, DNA, RNA content. Other most common intensive properties are cell 
size and age. During unrestricted growth, extensive parameters increase by the 
same factor over the time, this condition was aptly termed ‘balanced growth’ by 
Campbell (Campbell, 1957). It should be perhaps emphasized that studies of 
balanced growth cultures describe an average cell, yet individual cells can be 
very different. During steady state, however, the intensive parameters are in-
variant. Thus, steady state is the most strict term and implies both exponential 
and balanced growth. The sloppiest one of the three terms – in addition to 
balanced and steady state growth – is exponential growth, it implies, if any-
thing, that cells were growing experimentally unperturbed. All that said, it is 
hard to find the homogeneous, unaltered environment necessary for steady, 
balanced or exponential growth of bacterial population in their natural environ-
ment. 

Cell growth comprises of increase in cell mass followed by cell division. 
One of the most remarkable and well known features of bacteria is the speed at 
which they – though, of course, not all of the species – are able to grow and 
divide, in favorable environments. Laboratory E. coli can form two new 
daughter cells astonishingly fast, in 20 minutes. As pointed out by Postgate 
(Postgate, 1994), if it were sustainable for long periods of time, E. coli culture 
would equal the mass of earth in mere three days. Instead, cells eventually run 
out of nutrients – more generally speaking, change their growth environment – 
and slow down the growth. Now we encounter the next key feature of bacterial 
cells, their endurance to withstand stasis, long periods in harsh environments of 
little or no growth. Not only do they survive the specific starvation which they 
encounter, but develop resistance to other stresses, as if adhering to the 
Nietzche’s “That which does not kill us makes us stronger”. An important aim 
as well as a direct measure of survival is the ability to resume growth when 
conditions become favorable. 
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Figure 1. The unrestricted growth of bacterial cultures can be described by exten-
sive or intensive properties. Let us suppose that we are interested in the amount of 
DNA in the culture, which is our extensive property of interest. Let it also hold true that 
cells have been growing some time in the medium and when we finally start our experi-
ment (T0), one third of the cells have either one, two, or four chromosomes. For the sake 
of the brevity, therefore, the cells shown on figure describe the exact distribution of the 
chromosomes among cell population. The very distribution of chromosomes is our 
intensive property of interest. Then, one culture doubling time later (T0+τ), we observe 
that the number of cells has faithfully increased twice. If the amount of chromosomes, 
however, has increased by anything else than factor of two, the growth is unperturbed at 
most. If the number of chromosomes has, indeed, increased by factor of two, but the 
distribution of chromosomes has changed, the cells are in balanced growth. Only if the 
number of chromosomes has increased twice and the distribution of the chromosomes 
between the cells stays unaltered, the culture is growing in steady state. 
 

 
Next couple of chapters will briefly visit the key features of bacterial cell 
growth and stasis survival of non-sporulating bacteria. 

 
 

1.1.1. Balanced growth and its rate 

When bacteria have adjusted to the growth environment, after some cell divi-
sions, they achieve a balanced growth i.e. all cell constituents begin to increase 
by the same proportion over the same interval of time. This situation can be 
approximated for some time in laboratory. 

In batch culture, unchanged environment is often an assumption which can be 
checked empirically by following the increase in cell mass – exponential increase 
of cell mass by at least factor of 10 is a good starting point. Obviously, not all 
changes in cell physiology can be detected this way. Because of the often im-
perceptible changes, it is safe to assume that all the properties of the cells remain 
the same only if the density of the culture is sufficiently low, a long before the 
growth is slowing down. Usually less than 108 cells per milliliter is safe. 
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Although balanced growth does not occur for long periods in natural en-
vironments, it is desirable to achieve it in laboratory conditions for one reason: 
it is highly reproducible. First, one can sample the culture at any time point 
during the balanced growth and the sample content is identical. Second, if you 
know the growth rate, a single measurement of DNA, mRNA, ribosome content 
and so on, will tell you the absolute rate of synthesis (e.g. femtograms/ bacte-
rium/minute). Third, given its highly reproducible nature, it is the only way to 
directly compare the results from different laboratories (Neidhardt, 2006). 

In balanced growth culture, bacteria divide asynchronously. Even if starting 
from a single cell and sustaining the environment unchanged, small deviations 
in division time (coefficient of variation around 20% (Schaechter et al., 1962)) 
will inevitably result in an asynchronous culture. Measurements at the level of 
cell culture, therefore, represent an average over all cells. This average does not 
necessarily describe even the majority of the cells, in fact, if the property in 
question has a binomial distribution, average does not describe almost any cell 
in the population. Fortunately, given the cumulative action of components of 
complex systems – to which biological ones belong, even if dissected to the 
level of single molecules – the rising distribution of a feature can often be 
approximated by a normal distribution. Note that chemical processes, to which 
biological ones rely on, are multiplicative and therefore a log transformation is 
often necessary to this approximation of a normal distribution (Galton, 1879; 
McAlister, 1879).  

Bacterial cells divide by a binary fission, an auto-catalytic first-order re-
action for which the rate constant can be derived from a simple exponential 
equation. Therefore, we can calculate the number of cells (or, in fact, any exten-
sive property of cell culture by): 

 
Nt = Nt02

n                                                                  (1) 
 
Where Nt is the number of cells at a timepoint of interest (at time t), Nt is the 
number of cells at some previous timepoint and n is the number of doublings 
the culture has gone through, during the time interval (Δt = t – t0). Next, n can 
be substituted by a time it takes to double, a doubling time, τ (n=Δt/τ), or better 
yet, with a reciprocal of doubling time, growth rate μ (n=μΔt). After taking log2 
and rearranging the equation, we arrive at: 
 

t
NN tt




 022 loglog

                                                               (2) 

 
It is simple and straightforward, however, some care should be taken to dis-
tinguish μ and τ  from μe and τe , the latter two can be derived by starting from: 
 

n
tt eN=N
0

              (3) 
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or from: 
 

Nμ=
dt
dN

e               (4) 

 
after rearranging and integrating (from t0 to t), in μe.  

Since μe is solved on base of e, it tells us instantaneous growth rate, i.e. how 
many times per hour does the culture increase e-fold (2.718-fold, unit: h-1). 
Conventional µ – which can be denoted as µ2 to distinguish it from µe and can 
be derived from the latter by simple division (µ2=µe/ln2) – is more intuitive to 
biologists, because it tells how many doublings are the cells going through per 
hour (unit: doublings×h-1). Both growth rate notations are in use and almost 
never specified. Hereafter, μ refers to conventional growth rate i.e. expresses 
doublings per unit of time. 

 
 

1.1.2. Exponential phase 

As we saw in last chapter, growth rate constant (µ), the only parameter to solve 
for quantitative description of balanced bacterial growth, is located in exponent 
of equation for binary fission (Nt = Nt02

Δt). Bacteria of unrestricted balanced 
growth, i.e. cells grow at maximum growth rate achievable in particular me-
dium, are therefore told to be in exponential growth phase, sometimes the word 
logarithmic is used instead (Fig. 2). Note that for practical purposes, however, it 
is mostly impossible to tell a difference between exponential and linear growth 
during one division cycle – the difference is just too subtle. Only after a couple 
of divisions, the pattern emerges. 

Given the condition of balanced growth, the macromolecular composition of 
exponentially growing bacterial cells, on average, has a universal correlation 
with growth rate. Faster growing cells have more RNA, protein, DNA, and the 
cells are larger (Schaechter et al., 1958). In this relationship, with a growth rate 
as independent variable, the most rapid change is for RNA, followed by cell 
mass and protein abundance and the slowest increase is for DNA content. It 
follows that faster growing cells have a higher RNA-per-protein ratio, an im-
portant hint for the reasons of some of the observed phenomena. Indeed, faster 
growing cells are enriched in RNA because the intracellular content is shifted in 
favor of more ribosomes per cell. As a result, the RNA-to-protein ratio increases 
because ribosomes are composed of more RNA than protein (~65% RNA and 
~35% protein; in contrast, average E. coli cell at 40 minute doubling time, 21% 
of RNA and 55% of protein (Neidhardt & Umbarger, 1996)). The most common 
and long withstanding explanation for the positive correlation between the 
ribosome content and growth rate is that the speed of protein chain elongation 
by ribosome is kept maximal whenever possible (close to 22 amino acids/per 
second (Dennis & Bremer, 1974; Dennis & Nomura, 1974; Young & Bremer, 
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1976)) and thus, instead of making the ribosomes work considerably faster or 
slower, the cells adjust the amount of ribosomes. We will return to this question 
in chapter 1.2.2. 

 
 

 
 
Figure 2. Bacteria of unrestricted balanced growth are growing exponentially. (A) 
When inoculated into a new medium, as described in chapter 1.1.3.3., cells often do not 
start to grow right away (first hour, doubling time, τ, is infinitely long), but when they 
finally do, the growth – followed here by measuring the culture turbidity at 600 nm – is 
exponential as is evident from the straight line in logarithmic scale (τ=20 min). Rapid 
exponential growth, however, changes the composition of medium, upon which cells 
can assume some different growth rate (τ=40 min) before they stop growing altogether 
(τ=∞). (B) Exactly the same growth curve as in (A), except plotted in linear scale. 
Importantly, most of the information contained in (A) is lost and, instead, experi-
mentalist might be led to believe there is about two hour growth lag followed by 
exponential growth with a doubling time of 40 minutes. 
 
 
In rich nutritious environment with less of an anabolic burden, E. coli cells can 
divide very rapidly – two new daughter cells are formed in 20 minutes. Yet the 
chromosome replication (called C period) itself takes about 40 minutes and cell 
division process (called D period) takes about 20 minutes in rapidly growing  
E. coli cells (Bipatnath et al., 1998; Cooper & Helmstetter, 1968). In order to 
have cell division in every 20 minutes, therefore, cells start a new round of 
DNA replication before the previous round has been finished (Helmstetter & 
Cooper, 1968). This explains why there is more DNA in faster growing cells. It 
also implies that when E. coli is grown in rich medium (i.e. LB), for the 
chromosome region around the origin of replication the gene copy number, in 
some of the cells, is as high as 16 (Akerlund et al., 1995; Hill et al., 2012; 
Nielsen et al., 2007). Finally, because the DNA replication is generally initiated 
when cells have acquired certain mass (Bipatnath et al., 1998; Cooper, 1997; 
Donachie, 1968; Hill et al., 2012; Wold et al., 1994), cells with multiple rounds 
of replication must be larger. So, E. coli cells at 2.5 doublings/h are six times 
larger than when growing at 0.6 doublings/h (Schaechter et al., 1958). 
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1.1.3. Stationary phase 

1.1.3.1. Transition 

During transition to stationary phase, the growth of bacteria becomes un-
balanced. Some process – say, protein synthesis – becomes suboptimal, limiting, 
and slows down well before the others. This results in three things worth men-
tioning. First, the composition of the culture is changing and, therefore, 
sampling timepoints are not equal any more. Second, the culture composition 
depends on the particular circumstances of growth stop – i.e. starvation for 
carbon, or that for a nitrogen, accumulation of waste products and so on – each 
of which  results in different culture composition and bacterial physiology 
(Peterson et al., 2005). Variable combinations of circumstances can act simulta-
neously, further complicating the state of affairs. Finally, the cell-to-cell variabi-
lity increases considerably, initially it is phenotypic, but eventually genetic 
heterogeneity will emerge, too (Finkel & Kolter, 1999). 

If cells grow in a defined minimal medium, the run-out of a single essential 
component results in abrupt cessation of growth. In complex media, often of 
undefined composition, growth stop is usually more gradual as cells exhaust 
several components one after another (Sezonov et al., 2007), also the pH might 
become unfavorable (Wilson et al., 2003), upon which cells adjust and continue 
growing at slower rate, possibly in several subsequent steps, before final stop. 
In modern microbiologist’s favorite medium, Lysogeny broth (LB), balanced 
growth can be disturbed already at OD600 0.3 (Fig. 2A), most probably when 
cells run out of residual glucose (LB is not supplemented with glucose, it origi-
nates, in variable amounts, from the yeast cell extract). Thus some experimen-
talist prolong the first, hopefully balanced growth phase by supplementing 
glucose to the LB. 

Regardless the reasons for stasis, there are still some overarching principles 
common to cells entering the stationary phase: (i) the number of chromosomes 
approaches an integer; (ii) cells get smaller in size; (iii) active ribosomes are 
converted into inactive ribosome dimers. If the exponential phase environment 
supports fast enough growth to have several copies of chromosome (see chapter 
1.1.2), then, during transition to stationary, new rounds of DNA synthesis are 
not initiated yet the elongation continues to termination. During that time, cells 
do not grow much – it is, after-all, during conditions that do not allow growth of 
cell mass – but do still divide, therefore, cells get smaller in size, this process is 
called reductive cell division (Lange & Hengge-Aronis, 1991a; Nyström et al., 
1996). Besides reducing the number of chromosomes and increasing the number 
of cells, it improves surface-to-volume ratio – all of which might improve survi-
val. Resulting stationary phase cells can still contain several copies of chromo-
some, in case of rich complex medium up to 8 chromosomes, with 2 and 4 
being the most common (Akerlund et al., 1995; Boye & Løbner-Olesen, 1991).  

Excess protein synthesis is curtailed by converting ribosomes into trans-
lationally inactive 100S dimers, owing to the concerted action of ribosome 
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modulation factor RMF (Wada et al., 1990) and hibernation promoting factor 
HPF (Ueta et al., 2005). 100S dimers seem to function as a inactive storage 
form of ribosomes (Wada, 1998; Wada et al., 1990, 1995; Yamagishi et al., 
1993), energetically expensive molecular machinery, to be rapidly utilized 
whenever the conditions permit a rapid growth again (Aiso et al., 2005; Yama-
gishi et al., 1993). The importance of 100S ribosomes is further emphasized by 
the fact that during prolonged starvation, 100S ribosome dissociation is cor-
related with the lost viability of the cells (Wada, 1998). In addition to ribosome 
storage in 100S, rRNA becomes less stable as rRNA degradation is activated 
(Gausing, 1977; Hsu et al., 1994; Maiväli et al., 2013). 

Much of the transition of cells into and survival throughout the stationary 
phase depends on the rpoS which encodes a master regulator, stationary phase 
and starvation specific sigma factor σS (Loewen & Hengge-Aronis, 1994). 
Sigma factors bind the core RNA polymerase to program the pattern of pro-
moter recognition and thus direct the transcription at genome-wide scale (Öster-
berg et al., 2011). σS  is close relative to the exponential growth phase sigma 
factor σ70 and, accordingly, the two factors recognize similar, but not identical 
promoters (Typas et al., 2007). Directly and indirectly, RpoS activates about 
10% of E. coli genes (Weber et al., 2005). For example, the cells produced 
during reductive cell division (see above) are often coccoid in shape, which 
depends on BolA morphogene upregulated by RpoS, during entry into stationary 
phase (Lange & Hengge-Aronis, 1991a). 

 
 

1.1.3.2. Duration 

Besides numerous morphological changes – to name some: cells are smaller in 
size, the cell wall is more highly cross-linked, cytoplasm is condensed, and 
periplasmic space is increased (Huisman et al., 1996) – stationary phase cells 
are remarkably resistant against different stress factors, such as high salt (Jen-
kins et al., 1990), heat shock and hydrogen peroxide (Jenkins et al., 1988; 
Lange & Hengge-Aronis, 1991b; McCann et al., 1991). The feature is called 
cross protection. Development of the resistance depends on protein synthesis 
during first couple of hours of starvation (Jenkins et al., 1988) and requires 
RpoS (Hengge-Aronis, 1993). Accordingly, rpoS mutants have decreased 
viability in stationary phase (Boaretti et al., 2003; Lange & Hengge-Aronis, 
1991b). The σS transcription factor is therefore the master regulator of an im-
portant stasis survival regulon which comprises of diverse set of proteins 
involved in central metabolism, stress response, cell morphology, mutation rates 
and virulence (Schellhorn, 2014). In addition, several global regulators, sigma 
factors (σ70, σFliE, σE and σ54), flagellar master regulator FlhDC and small alar-
mones cAMP, (p)ppGpp, and c-di-GMP work in concert (Hengge, 2011).  

A common theme in stationary phase survival is that cells fight with the 
accumulation of oxidative damage. Accordingly, omitting oxygen protects E. 
coli cells from losing viability during starvation (Dukan & Nystrom, 1998) and 
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rpoS mutants display elevated levels of oxidative damage (Dukan & Nystrom, 
1998; Dukan & Nyström, 1999). Interestingly, some proteins are more suscep-
tible than others (Dukan & Nystrom, 1998) and translational accuracy of the 
ribosome has been proposed to be responsible for some of the effects (Balleste-
ros et al., 2001). Oxidative damage appears to be the bacterial counterpart of the 
free radical hypothesis of aging in case of higher organisms, accumulation of 
oxidative damage by reactive oxygen species produced by normal metabolism 
(Finkel & Holbrook, 2000). 

Among oxidative damage, carbonylation is of special interest. Carbonylation 
happens to arginine, lysine, proline and threonine and appears to be irreversible, 
so that the only way to get rid of potentially damaged proteins is via degra-
dation (Nyström, 2005). Furthermore, protein turnover, providing material for 
de novo protein synthesis in growth arrested cells, is suggested to be necessary 
for long term survival and development of general resistance to multiple 
stresses (Matin, 1991; Reeve et al., 1984; Weichart et al., 2003). Regardless of 
removal by degradation, accumulation of carbonylated proteins has been 
described in stationary phase E. coli (Desnues et al., 2003). 

After some time in stationary phase (about 1–2 days in LB, but longer in 
minimal media), during which the number of CFUs stays unaltered, the CFUs 
start to decline few orders of magnitude. This phase is called the death phase. 
Some of the phenomenon can be accounted for conversion of cells into viable 
but nonculturable state (VBNC, see below) – a fraction of the population loses 
the capability to form colonies on agar medium plates yet stays viable, as asses-
sed by membrane potential, membrane integrity, and measures of intracellular 
enzymatic activity. Accordingly, VBNC cells have higher levels of irreversible 
oxidative damage, proteins are more carbonylated (Desnues et al., 2003). 
Nevertheless, in some cells, eventually also in VBNC cells, respirations stops 
and cells lose membrane potential. Again, RpoS is important to enhance the 
growth resumption and prolong the VBNC duration before cell death (Boaretti 
et al., 2003). 

Long-term starvation conditions come with their own set of interesting 
phenomena, too numerous to cover here in detail and will therefore be just 
mentioned. First, the GASP phenotype – as stationary phase cell cultures are 
highly dynamic (Zambrano & Kolter, 1996), populations evolve, some that are 
so adapted to stationary phase that they take over the culture. Furthermore, 
genetic instability is induced by RpoS driven expression of error-prone DNA 
polymerases to increase the chances for useful mutations (Saint-Ruf & Matic, 
2006). Second, there is VBNC mentioned above – cells lose the ability to form 
colonies, but remain viable and potentially able to restart growth (Oliver, 2005). 
Third, Lemonnier and colleagues described stationary phase contact-dependent 
inhibition (SCDI, (Lemonnier et al., 2008), which manifests itself in emerging 
variants that appear to kill or inhibit the growth of parent strain. Although there 
are some similarities with GASP, the authors claim the processes to be functio-
nally and genetically different. 
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1.1.3.3. Exit 

After transfer to a new medium, composition of which is different from pre-
vious, cells do not necessarily start to grow and divide right away at the maxi-
mum speed supported by the new conditions. Instead, there is a certain period of 
delay during which the cells adjust to the new environment (Buchanan, 1918; 
Monod, 1949). This period is also called a lag phase. In comparison with expo-
nential and stationary, way less is known about the lag phase despite its 
perceived importance to infection development and food safety. 

Deceivingly trivial, however, there are several definitions of the lag phase 
(Madar et al., 2013) and even more ways to quantify it (Swinnen et al., 2004). 
There are two main reasons for the multitude of definitions of what exactly 
comprises a lag phase. First, after transition to a new medium, cells initially 
grow bigger and only then, at some point, start to divide. This results in a period 
when turbidity of the culture increases, but the number of cells stays the same. 
Second, cells do not start to grow right away at maximal growth rate, there is an 
acceleration period. Note that before any indication of growth, regardless if 
defined by increase in mass or cell number, once the new substrate becomes 
available, starving cells respond with increased respiration and proteins 
synthesis almost instantaneously (Albertson et al., 1990; Flardh & Kjelleberg, 
1994). This fact makes use of some biochemical or molecular marker to define 
lag phase equally ambiguous. 

The duration of the lag phase depends on the extent of the adjustments 
necessary to start the growth. Length of a lag phase is therefore in positive 
correlation with the length of a stationary phase (Albertson et al., 1990; Amy et 
al., 1983). This substantiates the suggestions that besides induction and/or 
activation of new enzymes at levels appropriate to new condition, some of the 
lag phase might account for repairing of the damage that has accumulated 
during stationary phase (Dukan & Nystrom, 1998; Dukan & Nyström, 1999). 

Two specific and characteristic regulators of growth resumption are certainly 
worthy of note. First, RMF protein, responsible for ribosome dimerization (see 
chapter 1.1.3.1), facilitates faster growth resumption of B. subtilis (Akanuma et 
al., 2016). Second, a small basic DNA-binding protein Fis regulates several pro-
cesses important during growth resumption, viz. initiation of DNA replication 
(Filutowicz et al., 1992), and transcription of rRNA (Nilsson et al., 1990; Ross 
et al., 1990). Further, fis expression – both mRNA and protein – is upregulated 
during growth resumption right before the number of cells starts to increase 
both in Salmonella and in E. coli (Ball et al., 1992; Ninnemann et al., 1992; 
Osuna et al., 1995). Yet the knock-out mutant strains of Salmonella show 
relatively small (about +20 min per otherwise 120 min lag phase) delay in LB, 
absent in glucose minimal medium (Osuna et al., 1995), and in E. coli, too, Fis 
protein appears dispensable for growth resumption (Rolfe et al., 2012). 

Regulation of lag phase correlates with the invasiveness of bacterial cells 
(Bättig et al., 2006; Hathaway et al., 2012) and affects antibiotic treatment of 
bacterial infections (Fridman et al., 2014; Frimodt-Møller et al., 1983). Most 
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bactericidal antimicrobials need some active target and thus are way less effec-
tive on non-growing bacteria, say, those of a lag phase. Indeed, wake-up kine-
tics determine the abundance of persister cells (Balaban et al., 2004; Jõers et al., 
2010; Luidalepp et al., 2011) – phenotypically different subset of parental popu-
lation that is highly tolerant to antibiotic in question – which can result in 
failure of antibiotic treatment (Harms et al., 2016; Lewis, 2007, 2010). Here, a 
cautionary note is appropriate – lag phase is just one facet of the persister 
phenomena, which probably is comprised of multiple heterogeneous states of 
bacterial physiology (Allison et al., 2011b; Kaldalu et al., 2016). We will briefly 
return to the issue of persisters in chapter 1.2.5. 

 
 

1.2. The stringent response 
In rapidly growing bacterial cells, proteins and stable RNA account for three 
fourths of the dry weight of the cell (Neidhardt & Umbarger, 1996) and, accor-
dingly, about 70% of the cellular energy is devoted to translation (Russell & 
Cook, 1995). Thus, growth rate can be approximated by the concentration of 
ribosomes multiplied by the rate of peptide chain elongation (Dennis et al., 
2004). One would expect, therefore, that perturbations in translation machinery 
trigger a response that adjusts cell physiology to new conditions. Further, since 
production of ribosomes is controlled by the synthesis of rRNA (Paul et al., 
2004), one would expect the regulatory mechanism to affect most strongly the 
very process of rRNA transcription. That global response, indeed, is in place. It 
is termed the stringent response, adjustment program that, upon perturbations in 
environment, adjusts the physiology of the cell and results in a new, appropriate 
growth rate – including zero growth rate i.e. growth stop, if appropriate. 

The stringent response is orchestrated by an accumulation of a nucleotide 
alarmones ppGpp and pppGpp, collectively (p)ppGpp. Acute accumulation of 
the alarmones re-allocates cellular resources away from rapid proliferation 
towards stress resistance and survival. The hallmark of the stringent response is, 
upon amino acid starvation, rapid curtailment of stable RNA synthesis (Paul et 
al., 2004) and upregulation of amino acid biosynthesis (Traxler et al., 2008). 
The wild-type strains are termed stringent and mutant strains that fail to do so, 
are called relaxed – the mutant cells continue to synthesize high levels of stable 
RNA when environmental conditions have become unfavorable for rapid 
growth, therefore, for rapid translation (see above). However, (p)ppGpp is a 
global regulator affecting all major synthetic activities of the cell: transcription, 
translation and replication. Moreover, (p)ppGpp exerts its regulatory role during 
unperturbed conditions, too.  

As a result, stringent response has been implicated in virulence (Dalebroux 
et al., 2010) and antibiotic survival (Doherty et al., 2010; Harms et al., 2016). 
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1.2.1. RelA 

In many bacteria, upon sensing of uncharged tRNA in the ribosomal A-site 
(Haseltine & Block, 1973; Pedersen et al., 1973), an adjustment program, 
termed stringent response, is activated (Stent & Brenner, 1961) (Fig. 3). 
Although uncharged tRNA binds the A-site with smaller affinity than charged 
tRNA (Rheinberger et al., 1981; Schilling-Bartetzko et al., 1992), the binding is 
facilitated by a drop in tRNA charging from 80–100% (Dittmar et al., 2005; 
Ezekiel, 1964; Yegian et al., 1966) to 5–40% during amino acid starvation 
(Böck et al., 1966; Dittmar et al., 2005; Ezekiel, 1964; Morris & DeMoss, 
1965; Sørensen, 2001; Yegian et al., 1966). Further, the transient interaction 
with the ribosome, in contrast to more permanent, is optimal for stringent 
response (Wendrich et al., 2002).  

In E. coli, the enzyme responsible for sensing uncharged tRNA in ribosomal 
A-site is RelA (Haseltine & Block, 1973), which, upon activation, catalyzes a 
pyrophosphoryl group transfer from ATP to 3' position of either GTP or GDP 
(Cochran & Byrne, 1974; Haseltine et al., 1972; Haseltine & Block, 1973; Sy & 
Lipmann, 1973) resulting in pppGpp or ppGpp, respectively (Fig. 3). kcat and 
Km of RelA are similar for both GDP and GTP (Cochran & Byrne, 1974; 
Justesen et al., 1986; Pedersen & Kjeldgaard, 1977). Given that the Km is about 
0.3–0.5 mM, i.e. higher than concentration of intracellular GDP and lower than 
GTP (Bochner & Ames, 1982; Buckstein et al., 2008), it follows that pppGpp 
should be the main product. In vivo, during amino acid starvation, it is therefore 
mostly pppGpp that is synthesized (Fiil et al., 1977; Weyer et al., 1976). In most 
laboratory conditions studied, however, the pppGpp is rapidly hydrolyzed to 
ppGpp by an enzyme GppA (Somerville & Ahmed, 1979)(Fig. 4A). The only 
physiological difference know between the guanosine tetra- and pentaphosphate 
is quantitative, not qualitative, viz. ppGpp appears more potent in E. coli 
(Maciag et al., 2010; Mechold et al., 2013; Rymer et al., 2012) (however, see 
also (Steinchen et al., 2015)), therefore the two nucleotides are often considered 
together and collectively called (p)ppGpp.  

Besides cognate uncharged tRNA in the ribosomal A-site, the synthesis acti-
vity of RelA needs, for yet to be determined reasons, ribosomal protein L11 
(Friesen et al., 1974; Parker et al., 1976; Wendrich et al., 2002). Finally, RelA 
synthetase activity is induced by alcohols, both in vivo (Mitchell & Lucas-
Lenard, 1980) and in vitro (Sy et al., 1973) Methanol stimulated activity of 
purified RelA without any ribosomes (Sy et al., 1973) was the early indication 
that it is RelA and not the ribosome itself – for example, upon stimulation by 
RelA – that catalyzes the reaction of (p)ppGpp formation.  
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Figure 3. The defeat of the tRNA aminoacylation to keep up with the demand of 
protein synthesis triggers a regulatory adjustment process in bacteria called the 
stringent response. Amino acid starvation results in accumulation of uncharged tRNA 
which binds to the ribosomal A-site. Such ribosomes, with nonenzymatically bound 
uncharged cognate tRNA in A-site, are recognized by RelA protein. The C-terminal 
regulatory part of RelA binds to the ribosome and wraps around the tRNA establishing 
the tRNA in distorted shape as compared to enzymatically accommodated A-site tRNA, 
whereas the N-terminal part of RelA synthesizes (p)ppGpp from ATP and GTP or GDP. 
It is still open to dispute whether most of the (p)ppGpp synthesis takes part while RelA 
is still bound on the ribosome or off the ribosome. Nonetheless, (p)ppGpp acts as a 
global and pleiotropic regulator which ultimately results in the the restoration of amino-
acylation of tRNAs. Once again charged, cognate tRNAs are  delivered to the ribosome 
the usual enzymatic way by EF-Tu and replace the weakly bound uncharged tRNA in A-
site. Note that it results also concomitant release of the E-site bound tRNA. 
 
 
The structure of RelA bound to the ribosome reveals a highly distorted tRNA 
(Agirrezabala et al., 2013; Arenz et al., 2016; Brown et al., 2016) with the C-
terminal part of RelA buried deep into the ribosome and wrapped around tRNA 
(Fig 3). Since the N-terminal part of RelA has catalytic functions (Schreiber et 
al., 1991; Svitil et al., 1993) and the C-terminal part has regulatory functions 
(Gropp et al., 2001; Schreiber et al., 1991; Svitil et al., 1993; Yang & Ishiguro, 
2001a), it has been proposed that embedding of C-terminus facilitates the active 
conformation of RelA (Arenz et al., 2016). Regardless of embedding, inter-
ference with regulation by tagging the C-terminus might still account for some 
of the controversies in reports. Earlier biochemical studies, with native RelA, 
suggested that RelA stays on the ribosome (Richter, 1976). Then, working in 
vitro with C-terminal histidine tagged RelA, it was suggested that RelA comes 
off from the ribosome upon activation (Wendrich et al., 2002). In addition, it 
was speculated that RelA binds back quickly, “hops” from ribosome to ribo-
some – inferred from the fact that (p)ppGpp synthesis of RelA was six times 
faster when ribosomes were in vast excess (10-fold). The following in vivo 
single-molecule tracking study, using C-terminal fluorescent label, supported 
the view of RelA being active off the ribosome, however, it argued against 
hopping (English et al., 2011). However, next in vivo single molecule study, this 
time comparing couple of fluorescent labels in C-terminus and having longer 
linkers between the label and RelA, suggested that RelA is off the ribosome in 
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unstressed conditions, amino acid starvation induces binding to the ribosome 
and (p)ppGpp is synthesized while RelA is bound to the ribosome (Li et al., 
2016). 

The molecular model of binding and activity, when finally solved, must take 
into account a couple of things. First, there are way more ribosomes than RelA 
molecules in the E. coli cell (one molecule per 200 ribosomes (Pedersen & 
Kjeldgaard, 1977)). Second, it should account for at least some of the 
(p)ppGpp-independent effects of starvation. For example, protein synthesis is 
inhibited already by low level accumulation of uncharged tRNA long before 
RelA is stimulated (Rojiani et al., 1989, 1990). Third, RelA is somehow regu-
lated by oligomerization (Gropp et al., 2001; Yang & Ishiguro, 2001a), possibly 
by forming dimers (Yang & Ishiguro, 2001b), and feedback-stimulated by its 
product (Shyp et al., 2012), although, inhibited at yet higher (p)ppGpp levels 
(Beljantseva et al., 2017a). Finally, it might be crucial to include the role of 
toxin-antitoxin systems in the model (Christensen & Gerdes, 2004; Diderichsen 
et al., 1977; Maisonneuve et al., 2013; Tian et al., 2016). 

When does a bacterial cell have to deal with a lot of uncharged tRNA? In 
laboratory conditions, stringent response is elicited by either (i) reducing the 
availability of amino acids or (ii) reducing the aminoacylation of tRNA. In addi-
tion to uncharged tRNA, cell wall driven regulation of RelA activity has also 
been proposed (Kusser & Ishiguro, 1987). Finally, (p)ppGpp accumulation is 
induced by heat shock (Braedt & Gallant, 1977; Lemaux et al., 1978; Lund & 
Kjeldgaard, 1972), though how exactly and to what extent is RelA activated, is 
yet unclear. In unperturbed conditions and during slow transitions, in fact, 
(p)ppGpp has a role too, probably it is fine tuning the bacterial physiology in 
accordance with growth potential of the environment. Accordingly, in exponen-
tially growing E. coli cells with disruption of the RelA function, (p)ppGpp is 
still present (although at about 3-fold lower levels) (Gallant et al., 1970) – most 
of the (p)ppGpp in unperturbed conditions originates from yet another enzyme, 
SpoT which will be portrayed in the next chapter. 

 
 

1.2.2. SpoT 

Early studies with mostly non functional (p)ppGpp synthetase version of RelA 
(encoded by a relA1, an allele that has an amino terminal IS2 insertion (Metzger 
et al., 1989) and is wide-spread among laboratory strains of E. coli) suggested 
that there must be an alternative, perhaps a weaker, source of (p)ppGpp synthe-
sis activity (Atherly, 1979; Friesen et al., 1978). Indeed, in E. coli and in other 
gamma-proteobacteria, (p)ppGpp can also be synthesized by a homologous 
protein, SpoT (Laffler & Gallant, 1974; Stamminger & Lazzarini, 1974). E. coli 
strains devoid of both RelA and SpoT lack ppGpp altogether, a phenotype de-
signated (p)ppGpp0, which renders cells to severe multiple amino acid auxo-
trophy (Xiao et al., 1991). 
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SpoT synthetase activity is triggered in response to starvations of various 
nature: carbon (Lazzarini et al., 1971), iron (Vinella et al., 2005), fatty-acid 
(Seyfzadeh et al., 1993), and phosphate (Lazzarini et al., 1971; Spira et al., 
1995) (Fig. 4A). In addition, osmotic (Harshman & Yamazaki, 1972) and heat 
shock (Gallant et al., 1977) induce the (p)ppGpp synthesis activity of SpoT. In 
good accordance with the more moderate nature, SpoT is responsible for main-
taining the ppGpp levels during steady-state growth conditions (Murray & 
Bremer, 1996; Ryals et al., 1982). 

Besides weak synthesis activity, SpoT also hydrolyses (p)ppGpp and is 
responsible for the main (p)ppGpp degradation activity in the cell (An et al., 
1979; Heinemeyer et al., 1978; Heinemeyer & Richter, 1978). In wild-type relA 
background, therefore, spoT appears essential (Xiao et al., 1991) – since high 
(p)ppGpp levels stop the cell growth (see chapter 1.2.4), most simple expla-
nation is that one just does not reap relA+ spoT– cells, they do not grow. Experi-
mental validation to that claim, i.e. by spoT knock-down, has not been reported. 
The hydrolysis domain of SpoT consists of conserved His-Asp (HD) residues 
(Aravind & Koonin, 1998) and requires Mn2+ for the activity (Johnson et al., 
1979; Sy, 1977). 

 
 

 
 
Figure 4. (p)ppGpp has a role beyond the amino acid starvation and family of pro-
teins responsible for its metabolism.  (A) In E. coli, in addition to the RelA, there is a 
homologous protein SpoT that is responsible for both (p)ppGpp production (pink) and 
hydrolysis (green). At least for RelA, specificity constants for GTP and GDP are similar, 
yet there is about seven GTP molecules per one GDP in exponentially growing bacterial 
cells, therefore, mostly likely pppGpp is the major product. pppGpp, nonetheless, is 
rapidly turned into ppGpp by GppA. While synthesis activity of RelA is triggered by 
amino acid starvation, SpoT is regulated by various environmental cues, net outcome of 
which is determined by the balance between its hydrolysis and synthesis activities. Note 
that RelA and SpoT are very similar, so that former has also (p)ppGpp hydrolysis 
domain albeit inactive. (B) In contrast to RelA (strong synthetase, thick pink arrow) and 
SpoT (weak synthetase, thin pink arrow; strong hydrolase, thick green arrow) which are 
common only in beta- and gamma-proteobacteria, most of the bacterial species contain 
but one homologous bifunctional protein (with fairly strong activity of (p)ppGpp 
synthesis and hydrolysis). Furthermore, many of the bacteria have accessory small pro-
teins, with only synthetase or hydrolase domain. 
 



23 

Regulation of the SpoT activities is complex and only some of the interaction 
partners of SpoT have been elucidated. A GTPase Obg (also called ObgE, YhbZ 
or CgtA) seems to inhibit the (p)ppGpp synthesis activity of SpoT in rapid 
growth conditions (Jiang et al., 2007; Raskin et al., 2007; Wout et al., 2004). In 
addition, acyl carrier protein (ACP) stimulates SpoT-dependent (p)ppGpp accu-
mulation during fatty acid starvation (Battesti & Bouveret, 2006). 

Regardless of the interaction partners, the balance between (p)ppGpp hydro-
lysis and synthesis activities is the key mechanism for adjustment of (p)ppGpp 
levels by SpoT (Gallant et al., 1972; Murray & Bremer, 1996). For example, 
during carbon source shift-down, both ppGpp synthesis and degradation are 
inhibited, but the degradation is reduced to greater extent giving the net expan-
sion of (p)ppGpp pool (Friesen et al., 1975; Murray & Bremer, 1996). In case of 
single amino acid starvation, both activities are again inhibited, but the synthe-
sis is inhibited more (accumulation of uncharged tRNA inhibits degradation (An 
et al., 1979; Richter, 1980), however, since overall (p)ppGpp levels drop in 
amino acid starved relA mutants (Ryals et al., 1982), it can be deduced that 
synthesis is inhibited to greater extent). In contrast, during multiple amino acid 
starvation, the synthesis is stimulated and degradation inhibited (Murray & 
Bremer, 1996).  

The wide variety of environmental inputs that result in the regulation of 
SpoT has been perplexing. Complicating the studies, extracts of E. coli have no 
SpoT dependent synthetase activity (Heinemeyer & Richter, 1977). In an 
attempt to explain most of the observed phenomena, the following model has 
been proposed (Bremer & Dennis, 2008; Dennis et al., 2004; Ehrenberg & Kur-
land, 1984). SpoT monitors the functioning of the ribosome so that its synthe-
tase activity is stimulated whenever the peptide chain elongation rate is sub-
optimal – due to molecular crowding or decreased charging of several tRNAs 
(see chapter 1.2.4). There is, however, an additional constraint – SpoT synthe-
tase activity is unstable (Murray & Bremer, 1996), it requires protein synthesis 
and thus disappears when protein synthesis stops altogether. The model defini-
tely has its appeal as it is capable to adjust other sensory inputs and interaction 
partners (viz. Obg, ACP, see above), i.e. is open to refinement in details, yet 
explains a wide variety of observations. 
 
 

1.2.3. The rest of the RelA/SpoT family 

Sequence analysis reveals that combination of RelA and SpoT has very limited 
phylogenetic distribution – they are present only in among beta- and gamma-
proteobacteria (Atkinson et al., 2011). In the majority of bacterial species, there 
is but one full-length protein, with both synthetase and hydrolase activity, 
termed Rel, viz. RelBsu or RelMtb for the one of B. subtilis and Mycobacterium 
tuberculosis, respectively (Fig. 4B). In addition, in many species, the (p)ppGpp 
levels are regulated by small alarmone synthetase (SAS), which contain only of 
(p)ppGpp synthetase domain, and small alarmone hydrolases (SAH), which 
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contain only  hydrolase domain (Fig. 4B). Not much is known about bacterial 
SAHs, however, SASs have been studied in B. subtilis (Nanamiya et al., 2008; 
Steinchen et al., 2015), Enterococcus faecalis (Abranches et al., 2009; Beljant-
seva et al., 2017b; Gaca et al., 2015), Streptococcus mutans (Lemos et al., 
2007), and Vibrio cholerae (Das et al., 2009). 

Similarly to RelA, (p)ppGpp synthesis activity of Rel is activated in respon-
se to amino acid starvation in some bacterial species including E. faecalis (Gaca 
et al., 2012), Streptomyces coelicolor (Martínez-Costa et al., 1998; Strauch et 
al., 1991), and Myxococcus xanthus (Harris et al., 1998). In M. tuberculosis, 
RelMtb synthetase is regulated by its product (Syal et al., 2015), activated by un-
charged tRNA in ribosomal A-site (Avarbock et al., 2000), however, in vivo 
experiments with amino acid starvation failed to induce (p)ppGpp accumu-
lation, instead, removal of all nutrients was necessary (Primm et al., 2000). 
Regardless of the reasons for the discrepancy, examples of species that do not 
produce (p)ppGpp upon amino acid starvation are well documented and include 
Rhodobacter sphaeroides (Acosta & Lueking, 1987; Eccleston & Gray, 1973), 
Rhizobium meliloti strain 41 (Belitsky & Kari, 1982), Rhizobium tropici, Azo-
bacter vinelandii, Azomonas agilis (Howorth & England, 1999). Some of the 
species are still stringent, R. meliloti 41 and R. sphaeroides restrict stable RNA 
synthesis upon amino acid starvation, yet do it without the involvement of 
(p)ppGpp (Acosta & Lueking, 1987; Belitsky & Kari, 1982; Eccleston & Gray, 
1973). Furthermore, they do produce (p)ppGpp, R. meliloti 41 in carbon and 
ammonium deprivation (Belitsky & Kari, 1982), and R. sphaerodies, photo-
synthetic bacterium, upon decrease in light intensity (Eccleston & Gray, 1973). 

In Caulobacter crescentus (Chiaverotti et al., 1981) and Helicobacter pylori 
(Scoarughi et al., 1999) the amino acid starvation does not trigger (p)ppGpp 
synthesis nor reduction in stable RNA transcription. Again, however, those 
species are able to synthesize (p)ppGpp. In C. crescentus, (p)ppGpp is accu-
mulating in response to starvation for carbon or nitrogen but not for phosphate 
(Boutte & Crosson, 2011; Chiaverotti et al., 1981; Lesley & Shapiro, 2008; 
Ronneau et al., 2016). Interestingly, although the synthetase activity was indif-
ferent to amino acid starvation, the functioning of ribosomes was still important 
for the control of the activity of RelCc, aligning well with the proposed role of 
SpoT in governance of translational machinery (see chapter 1.2.2). In H. pylori, 
(p)ppGpp accumulates in response to carbon and serum starvation and acid 
stress (Wells & Gaynor, 2006; Zhou et al., 2008). Both bacteria are able to 
restrict stable RNA synthesis when (p)ppGpp is synthesized (Amemiya, 1991; 
Wells & Gaynor, 2006).  

Given the differences in stresses that trigger stringent response in various 
bacteria, be it assessed by stable RNA curtailment on (p)ppGpp accumulation, it 
has been proposed that these follow the adaptations to particular lifestyles of 
each species (Boutte & Crosson, 2013). 
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1.2.4. (p)ppGpp in growth and survival 

Growth rate control is a term used to describe the systematic variation of 
bacterial cell composition at different growth rates, most remarkably described 
by seminal work of Schaechter et al. (Schaechter et al., 1958): given the balan-
ced growth, there is exponentially more RNA, DNA and cell mass per cell at 
higher growth rates (see chapter 1.1.2). This entails that the synthesis rates, per 
cell, are higher (see chapter 1.1.1). The largest difference is for RNA, followed 
by cell mass and DNA. When cells are shifted from low to high growth rate, or 
vice versa, per cell, the RNA and protein production are regulated first, while 
DNA synthesis and the speed of cell division follow later (Brunschede et al., 
1977; Kjeldgaard et al., 1958). 

Growth rate and (p)ppGpp levels are inversely correlated, e.g. slowly growing 
cells have higher (p)ppGpp levels (Ryals et al., 1982). Higher (p)ppGpp levels 
result in lower amounts of stable RNA synthesis and this reduction in trans-
lation apparatus results in slower growth (amount of ribosomes × amino acid 
synthesis rate ~ growth rate; see introduction to chapter 1.2). However as trivial 
as it might seem, there are couple of complications to establish such a simple 
causal relationship. First, transitions, necessary to alter (p)ppGpp levels, will 
have profound secondary effects on cellular metabolism in itself. To that end, 
studies with inducible expression of (p)ppGpp synthesis without any starvation 
(Rodionov & Ishiguro, 1995; Schreiber et al., 1991; Svitil et al., 1993) and 
experiments with ppGpp0 strain are instrumental. Note that the ppGpp0 strains 
are genetically instable, however, expert advice for working with them can be 
found from the literature (Potrykus et al., 2010). Second, regulation at 
transcription level, the hallmark of stringent response, can not act quickly. This 
implies that other processes – toxin-antitoxin systems (Harms et al., 2016), 
trans-translation (Christensen & Gerdes, 2003, 2004; Li et al., 2008), to name a 
few – are integral part of the regulation and will introduce other inputs. Third, 
direct and indirect effects of (p)ppGpp are very likely to act simultaneously. 

Much of the growth rate control by (p)ppGpp can be explained by assuming 
that the translational speed of ribosome, although it can vary two-fold (Bremer 
& Dennis, 1996), is kept close to maximal possible. Therefore, the major mode 
to increase the production of protein at higher growth rates is to increase the 
amount of ribosomes. When the speed of ribosome becomes suboptimal, 
probably detected by SpoT (see chapter 1.2.2), (p)ppGpp starts to curtail the 
amount of stable RNA therefore reducing the abundance of translational machi-
nery (Bremer & Dennis, 2008; Dennis et al., 2004; Ehrenberg & Kurland, 
1984). Some recent analysis has suggested that molecular crowding might be a 
major factor that limits the maximum speed of translation making it to deviate 
from constant speed at all times (Klumpp et al., 2013). 

During severe starvation, when the zero growth rate is appropriate, besides 
the curtailment of activities required for rapid proliferation, (p)ppGpp induces 
the increase in σS levels (Gentry et al., 1993), transcription of the ribosome 
dimerization factors rmf (Izutsu et al., 2001), downregulation of the fis 
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promoter (Ninnemann et al., 1992). Also osmoprotectants and/or storage com-
pounds, such as glycogen and polyphosphate, accumulate (Rao & Kornberg, 
1996; Wei et al., 2000), both being upregulated by (p)ppGpp (Kuroda et al., 
1997; Rao et al., 1998). Polyphosphate, however, has an additional role in acti-
vation of toxin-antitoxin systems (Maisonneuve et al., 2013), which are con-
nected to stringent response very intimately (Harms et al., 2016). All these and 
numerous other factors are important for stasis survival and the outgrowth 
following (see chapter 1). Accordingly, (p)ppGpp has been reported important 
for stasis survival in H. pylori (Mouery et al., 2006), C. crescentus (Lesley & 
Shapiro, 2008), M. tuberculosis (Dahl et al., 2003; Primm et al., 2000), Borrelia 
burgdorferi (Drecktrah et al., 2015), Legionella pneumophila (Trigui et al., 
2014), and Campylobacter jejuni (Gaynor et al., 2005). 
 
 

1.2.5. (p)ppGpp in virulence 

Given the general themes of stringent response – dormancy and endurance – 
and the global nature of the (p)ppGpp elicited changes in bacterial physiology, it 
does not perhaps come as a surprise that the alarmone has implications for viru-
lence. The importance of (p)ppGpp for invasion and survival during infection 
has been indicated for numerous bacterial species. Attenuated infection in mice, 
for stringent response defective strains, has been reported for M. tuberculosis 
(Dahl et al., 2003; Stallings et al., 2009), V. cholerae (Silva & Benitez, 2006), S. 
typhimurium (Webb et al., 1999), Yersinia pestis (Sun et al., 2009), Strepto-
coccus pneumoniae (Hava & Camilli, 2002; Kazmierczak et al., 2009), and 
Brucella sp. (Dozot et al., 2006). 

One of the reoccurring principles – in studies where stringent response is 
implicated in virulence – is that of a dormant, stationary phase like phenotype 
(Boes et al., 2008; Song et al., 2004; Webb et al., 1999). This leads us to one of 
the most controversial and peculiar connection between stringent response and 
virulence – the persister cell. An interested reader should consult numerous 
excellent recent reviews on the topic (Amato et al., 2014; Balaban, 2011; 
Brauner et al., 2016; Cohen et al., 2013; Harms et al., 2016; Kaldalu et al., 
2016; Lewis, 2010; Maisonneuve & Gerdes, 2014), which is way too broad and 
complex to be discussed in its entirety here. Instead, only few carefully selected 
issues pertinent to current study will be discussed next. 

Already at the earliest days of antibiotic usage, Bigger noticed that bacteri-
cidal antibiotics cannot be used for sterilization purposes and called the survi-
vors peristers (Bigger, 1944). Turns out that in growing bacterial population, 
one which is susceptible to certain bactericidal antibiotic, there are always some 
cells that are not killed and resume growth once antibiotic treatment is dis-
continued (Balaban et al., 2004; Jõers et al., 2010; Roostalu et al., 2008). Given 
the fact that persisters form exactly similar, mostly susceptible culture once the 
antibiotic has been removed (Bigger, 1944; Keren et al., 2004a), verifies that 
the cells are not mutants but phenotypic variants, a form of phenotypic hetero-
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geneity. In contrast to resistant bacteria, in the presence of antibiotic, persisters 
are not growing but survive. There is subtle yet important difference between 
non-growing and persister cells. In growth-supporting environment, the per-
sister cells belong to the subpopulation that is non-replicating and can thus 
survive, for example, ampicillin treatment. Importantly, however, not every 
non-growing cell is persister, in fact, only a tiny fraction of these non-growing 
and not killed cells might be able to resume growth and form colonies (less than 
1% in some conditions (Roostalu et al., 2008)) as required by the definition of 
persisters. 

In principle, once the antibiotic treatment is discontinued, persisters can be 
the source of recurrent infection. This has put forth in a lot of studies, theore-
tical and experimental, to elucidate the mechanism, meaning and ways to kill 
persister cell. A large body of work on persister cells, however, has been perfor-
med in laboratory conditions, using batch culture. Yet in infection sites, non-
growing persister cells could be imagined to be cleared off by the host’s im-
mune system. Furthermore, not all antibiotics are bactericidal – some are 
bacteriostatic, but still work, in concert with immune system. Importantly there-
fore, in recent years, there is a slowly accumulating body of evidence that 
persistence phenomenon does indeed have some role in real infection – persister 
level appears to increase during the course of antimicrobial therapy in case of E. 
coli (Schumacher et al., 2015), P. aeruginosa (Mulcahy et al., 2010), M. tuber-
culosis (Torrey et al., 2016), or Candida albicans (Lafleur et al., 2010), a yeast. 

A diverse set of physiological states are probably responsible why some cells 
of certain bacterial species in specific conditions survive particular antibiotic 
treatment (Kaldalu et al., 2016), accordingly, persister cell formation pathways 
are numerous (Hansen et al., 2008; Torrey et al., 2016). Nevertheless, toxin-
antitoxins pairs – capable of interfering with essential cellular processes and 
thereby inhibiting bacterial growth – are likely involved, it is yet another 
question if stringent response happens before, after or throughout the induction 
of toxins (Aizenman et al., 1996; Cheverton et al., 2016; Christensen & Gerdes, 
2004; Germain et al., 2015; Kaspy et al., 2013; Keren et al., 2004b; Maison-
neuve et al., 2013). Finally, (p)ppGpp has been suggested to orchestrate cell 
wall modulation to protect from β-lactam antibiotics (Goodell & Tomasz, 1980; 
Kusser & Ishiguro, 1985; Pisabarro et al., 1990; Rodionov & Ishiguro, 1995; 
Vanderwel & Ishiguro, 1984). 
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AIMS OF THE STUDY 

We set out to study the relationship between the growth state, intracellular 
(p)ppGpp levels and the outcomes of antibiotic treatment. The experimental part 
thus consists of three linked studies with following objectives: 
 
Ref. I To study the relationship between growing, non-growing bacterial 

cells, antibiotic susceptibility and innate immune system. 

Ref. II Since the non-growing state in growth supporting environment was
protective against both antibiotic treatment and action of the immune
system (Ref. I), we set out to elucidate mechanisms controlling the
growth resumption.

Ref. III As the stringent response emerged as a key player in growth resusci-
tation (Ref. II) and given its reported importance to bacterial viru-
lence, we set up a high-throughput search for inhibitors of the 
stringent response. 
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2. RESULTS AND DISCUSSION 

2.1. Relationship between bacterial growth, action  
of antibiotic and innate immunity (I) 

It is known that after antibiotic treatment, urinary tract infections by uropatho-
genic E. coli (UPEC) can reoccur caused by the very same strain (Russo et al., 
1995). The involvement of phenotypic heterogeneity, i.e. persister cell forma-
tion has been suggested as a mechanism behind the survival of bactericidal anti-
biotic treatment and recurrent infection (Harms et al., 2016). In addition to anti-
biotic treatment, however, surviving bacterial cells have to endure the insult of 
immune system. Yet the connection between bacterial physiology and immune 
system remains largely uncharted. We therefore set out to investigate if hetero-
geneity of bacterial culture affects survival of the killing by immune system and 
how does the simultaneous antibiotic treatment affect the eradication of 
bacteria. To that end, we used (i) UPEC strain CFT073 (O6:K2:H1) (Mobley et 
al., 1990; Welch et al., 2002), isolated from a patient with acute pyelonephritis 
i.e. a strain capable of causing bacteremia, and (ii) human serum as a model for 
innate immunity. 

First, bacterial cells were treated with human serum (at 50% final concentra-
tion) and course of the treatment was followed by sampling, plating and 
counting CFUs. A subpopulation of bacterial cells turned out to be tolerant to 
the complement system of human serum (I, Fig. 1). In addition, as we used 
stationary phase cells to start the experiment, it was evident that killing by 
serum coincides with the time of growth resumption (I, Fig. 1) suggesting that 
the lag phase CFT073 cells are refractory to complement killing. However, 
when exponentially growing culture was stopped by addition of chloramphe-
nicol, the cells were still efficiently killed by serum (I, Fig. 6B) warranting the 
caution to be executed when interpreting results merely based on dualistic 
growth no-growth axis – just as growing cells, non-growing cells do not neces-
sarily have to be alike. 

Next, we factored in the antibiotic treatment using bactericidal antibiotics 
from different classes – cell wall targeting ampicillin, the DNA replication in-
hibiting norfloxacin, and the translation inhibiting amikacin. These antibiotics 
are often used to study persisters and persistent infections (Allison et al., 2011a; 
Balaban et al., 2004; Bigger, 1944; Keren et al., 2004b; Moyed & Bertrand, 
1983). None of the antibiotics killed non-growing CFT073 cells even if added at 
several times the MIC (resuscitated in PBS) (I, Fig. 2; SFig 3A and 3B). Adding 
ampicillin to the serum around at its MIC (2 µg/ml) reduced the number of 
surviving cells about an order of magnitude suggesting that some cells, not 
killed by serum, could be killed by ampicillin (I, Fig. 2A). In case of norflo-
xacin, around its MIC (0.125 µg/ml), the number of cells killed by serum alone 
compared to simultaneous treatment with antibiotic were identical (I, Fig. 2B), 
suggesting – but not establishing – a possible overlap between cells killed by 
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norfloxacin and human complement system. Finally, adding amikacin to the 
serum around its MIC (8 µg/ml) and higher, decreased the number of survivors 
by 1–2 orders of magnitude (I, Fig. 2C), suggesting that some cells, not killed 
by serum, could be killed by amikacin. Interestingly, both active and heat-in-
activated serum seemed to promote killing at lower amikacin concentrations 
(sub-MIC, < 8 µg/ml)(I, Fig. 2C). The reasons for that serum-promoted sub-
MIC killing still await discovery. Finally, note that for all the antibiotics at con-
centrations of several times the MIC, it was the antibiotic that determined the 
outcome of the treatment, serum complement system did not add eradication 
efficiency to the antibiotic (I, Fig. 2A-C). 

To interrogate the possible impact of population heterogeneity on serum 
mediated killing, we investigated the effect of growth in further detail. We used 
a previously established IPTG inducible GFP reporter system (Roostalu et al., 
2008) that allowed us to study cell division and growth resumption at the single 
cell level. We found that three classes of bacterial cells could be distinguished. 
Importantly, they all were equally well detected by complement system (based 
on the opsonization) (I Fig.5). Yet only the most rapidly proliferating and the 
dormant cells were protected from the action of serum whereas majority of the 
cells, belonging to the group of intermediate growth rate, were susceptible to 
serum (I, Fig. 3). In case of the simultaneous application of antibiotic treatment 
and serum incubation, only the dormant cells were surviving – the rapidly 
growing cells were efficiently eradicated by the action of antibiotics of different 
classes (I, Fig. 4). Note that norfloxacin and amikacin seemed to inhibit the 
growth resumption (I, Fig. 4A and 4C) and, as CFUs revealed, latter was 
actually pretty effective in killing the dormant cells in growth supporting 
environment (I, Fig. 4B and 4D). In contrast, amikacin was not killing bacterial 
cultures in environments not supporting growth (I, SFig 3A), reminding thus, 
again, that non-growing cells are not necessarily alike. 

In summary, human serum complement mediated killing eradicates most of 
the growing population of UPEC strain CFT073, only the very rapidly growing 
and the dormant cells survive the insult. During simultaneous application of 
serum and various antibiotics from different classes, however, only dormant 
cells survive as antibiotics result in clearance of the rapidly growing cells. The 
reasons why bacterial cells are recognized uniformly by complement yet not 
killed, remains to be elucidated. 

 
 

2.2. The role of stringent response  
in growth resumption (II) 

Adjustments of the length and physiology of the lag phase are involved in anti-
biotic tolerance and persistence (Balaban et al., 2004; Fridman et al., 2014; 
Jõers et al., 2010; Luidalepp et al., 2011). As we had established that killing by 
the complement system correlates with the growth resumption of UPEC, i.e. the 
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lag phase cells were not killed by serum (I, Fig. 1), we next set out to investi-
gate potential genes involved in growth resumption of E. coli. Of several target 
genes initially studied, we eventually focused on the stringent response factor 
RelA. Notably, the very field of stringent response research was once initiated 
by isolation of mutants unable to resume growth after amino acid starvation 
(Alföldi et al., 1963; Diderichsen et al., 1977; Fiil & Friesen, 1968; Raskó & 
Alföldi, 1971). 

We constructed the relA deletion strain of E. coli K-12 lineage (BW25113), 
and tested the ability of the relaxed cells to resume growth after being some 
time in stationary phase. There was no difference between wild-type and ΔrelA 
culture when resuscitated in undefined rich medium (LB) (II, Fig. 1A). The 
relaxed culture, however, showed about four hour growth resumption delay 
when diluted into fresh defined minimal medium (M9 with 0.4% glucose) (II, 
Fig. 1B and Table 1). Since turbidity of the culture (II, Fig. 1) and number of 
CFUs (II, SFig 2) were in good agreement, ΔrelA cells are not losing viability in 
the stationary phase. It is still possible, however, that there is enhanced 
accumulation of damage in ΔrelA cells, therefore it takes more time for the to 
recover. Indeed, increased level of mistranslation has been described in relaxed 
cells (O’Farrell, 1978; Wagner & Kurland, 1980) although the role of (p)ppGpp 
in it seems to be indirect – (p)ppGpp induces translational pausing, this results 
in lower abundance of mRNA due to enhanced decay. Limited protein synthesis, 
in turn, increases the charging of tRNAs, together with lower abundance of 
mRNA, hungry codons are encountered less frequently and, therefore, transla-
tional fidelity increases (Sørensen et al., 1994; Wagner & Kurland, 1980). 

The stringent response is induced during shiftdowns in growth environment 
including transition to stationary phase (Lazzarini et al., 1971). Thus, it is some-
what surprising that the regrowth delay was determined by the regrowth 
medium instead of the medium where ΔrelA cells were growing from expo-
nential into stationary phase (II, Fig. 1C and 1D). Note that this does not rule 
out explanation that inappropriate entry into stationary and/or accumulated 
damage during the phase (see the above paragraph) are the reasons behind the 
observed phenotype. Nonetheless, to begin with, we next focused exclusively 
on growth resumption conditions. 

Primarily, we considered two major differences between the undefined rich 
(LB) and glucose minimal medium: (i) LB contains amino acids and (ii) 
supports faster growth rate. The first aspect seemed relevant given the central 
importance of (p)ppGpp for regulation of amino acid anabolism (Paul et al., 
2005; Tedin & Norel, 2001; Traxler et al., 2008). As for second aspect – given 
that (p)ppGpp levels and growth rate are inversely correlated (Potrykus et al., 
2010; Ryals et al., 1982)and, in exponential phase, (p)ppGpp levels are lower in 
ΔrelA compared to wild-type cells (Gallant et al., 1970), (Potrykus et al., 2010; 
Ryals et al., 1982) relaxed cells might therefore be primed for growth in en-
vironments supporting rapid proliferation, but fail to do so in slower growth 
conditions. Following experiments revealed that a full set of natural amino 
acids, when supplemented to minimal glucose medium, could indeed abolish 
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the growth resumption delay of ΔrelA culture (II, Fig. 2B). In order to examine 
the second aspect, we supplied the amino acids, but decreased the growth rate 
support by changing to poorer carbon source, switched from glucose to glyce-
rol. Again, ΔrelA cells resumed growth equally to wild-type (II, SFig. 3) sug-
gesting that growth speed might be irrelevant and what matters is the lack of or 
presence of amino acids. Thus, we made an effort to find out if ΔrelA cells were 
deprived of some certain single amino acid. To that end, we supplied (II, Fig. 
3D-E) or omitted (II, Fig. 3A-C) just one out of 20 natural amino acids to the 
growth resumption medium However, both approaches were perturbing the 
growth resumption of just the wild-type (II, Fig. 3A and 3D). Notably, most of 
the effects were absent when same conditions were applied to exponential phase 
cells (II, Fig. 4). Overall, we could establish that, among other effects, probably 
the ones caused by aspartate-pyruvate family of amino acids (Aspartate family: 
aspartate, asparagine, methionine, threonine, and lysine; Pyruvate family: 
alanine, valine, leucine, and isoleucine) were most prevalent. Simplest specu-
lation is, since these amino acids are among the most abundant ones in the cell 
(Bogatyreva et al., 2006; Okayasu et al., 1997) (furthermore, as synthesized 
very closely related pathways, collectively very abundant), the cells might 
suffer from the lack these amino acids the first/strongest during starvation. One 
could also argue that those amino acids stand out due to (p)ppGpp involvement 
in regulation of branched-chain amino acid biosynthesis (Tedin & Norel, 2001; 
Traxler et al., 2008). The issue is definitely open to further studies. 

There is an earlier work on Vibrio sp. strain 14 suggesting the role of amino 
acid starvation in growth resumption (Flardh & Kjelleberg, 1994). The authors 
found that during growth resumption, protein synthesis is initiated fast yet 
without much of an amino acid biosynthesis (Flardh & Kjelleberg, 1994). This 
leads into amino acid starvation which triggers stringent response necessary to 
initiate transcription of genes of amino acid biosynthesis. Importantly, control of 
rRNA synthesis is relaxed immediately after reversal of starvation i.e. if upshift 
is coupled to  amino acid deprivation, rRNA synthesis is not curtailed (Jacobson 
& Gillespie, 1968; Nakada & Marquisee, 1965). The reason for this temporary 
relaxed phenotype awaits elucidation, but together with the body work done in 
Gourse’s lab (i.e. (Murray et al., 2003)) a following picture emerges: early in 
growth resumption, initiating nucleotide is the main regulator of rRNA 
transcription, (p)ppGpp becomes important later and reacts to shiftdowns.  

While interrogating the role of amino acids and/or growth rate in growth 
resumption, we made a serendipitous discovery that glycerol itself allowed the 
ΔrelA to resume growth as fast as wild-type (II, Fig. 5B). The reasons for that 
are far from clear, however, some connections between the nature of carbon 
source and stringent response are well known. Most notably, stringent response 
is involved in regulation of glycogen accumulation together with carbon storage 
regulator (csr) network (Edwards et al., 2011; Romeo & Preiss, 1989). When 
growing on glucose, for example, relA gene is required for glycogen accumu-
lation upon amino acid starvation, however, when glycerol is the carbon source, 
high cellular levels of cyclic AMP can replace the requirement for RelA (Leckie 
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et al., 1980; Taguchi et al., 1980). Relatedly, (p)ppGpp regulates negatively 
cAMP response protein (CRP) (Johansson et al., 2000). Moreover, cAMP, 
(p)ppGpp and CRP are all involved in regulation of the branched-chain amino 
acid biosynthesis (Freundlich, 1977). Finally, the activity of SpoT also governs 
the usage of carbon source, monitors the energetic status of the cell (Harshman 
& Yamazaki, 1971; Lazzarini et al., 1971; Murray & Bremer, 1996) and can 
thus be involved in growth resumption phenomena we have observed. 

Finally, we studied the role of the delayed growth resumption of ΔrelA strain 
in susceptibility to bactericidal antibiotic treatment. Indeed, ΔrelA cells were 
better protected from ampicillin treatment during regrowth on glucose (II, Fig. 
5C). Surprisingly,  though the ΔrelA cells resumed growth on glycerol similarly 
to wild-type (II, Fig. 5B), they were still better at surviving ampicillin treatment 
(II, Fig. 5D). This warrants the notion that study of bacterial physiology starts 
from inspection of growth rate, but should not end there (see also chapter 2.1). 
 
 

2.3. A quest for a stringent response inhibitor (III) 
As we saw in chapter 2.1., non-growing cells were protected from both antibio-
tic action and immune system. Importantly, growth resumption correlated with 
the bactericidal action of complement system (I, Fig. 1). Next, we learned that, 
depending on the growth conditions, the growth resumption of bacteria was 
impaired by missing the function of RelA (II, Fig. 1). This could, in fact, mean 
that inhibition of RelA would result in better survival both innate immunity and 
antibiotic treatment. Indeed, ΔrelA cells were better protected against ampicillin 
killing than wild-type (II, Fig. 5C and 5D). Yet there are several lines of 
evidence that stringent response is important to efficient infection (see chapter 
1.2.5). Furthermore, decreasing the levels of (p)ppGpp – e.g. combinatorial 
treatment with subinhibitory levels of chloramphenicol – could render wild-type 
cells as susceptible to cell wall inhibitors as ΔrelA strain (Kusser & Ishiguro, 
1985). Quite some effort is therefore put into search for stringent response 
inhibitors. Regardless if the inhibitors would be of some immediate value to 
medicine, specific inhibitors of stringent response would be powerful tools for 
studies of bacterial physiology. 

Although some nucleotide (Wexselblatt et al., 2012) and peptide (de la 
Fuente-Núñez et al., 2014) based inhibitors are reported, there is more work to 
be done as they either lack the potency (nucleotide Relacin is required at around 
1–5 mM (Gaca et al., 2015; Wexselblatt et al., 2012)) or lack the specificity 
altogether (Andresen et al., 2016). Therefore, we set up a High Throughput 
Screening (HTS) assay for stringent response inhibitors. We decided to over-
come both purified target-based HTS and phenotype-based HTS limitations and 
opt for target-based whole-cell HTS (Farha & Brown, 2015) as described in the 
following. 

We used B. subtilis because intracellular uptake, a major hurdle for drug dis-
covery, is more efficient through Gram-positive than Gram-negative cell 
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envelope (Brown & Wright, 2016; Payne et al., 2007; Tommasi et al., 2015). B. 
subtilis has one long bifunctional RelBsu and two small alarmone synthetases 
RelQ (synonyms: SAS1, YjbM) and RelP (synonyms: SAS2, YwaC) (Atkinson 
et al., 2011; Nanamiya et al., 2008). To reduce the obscuring redundancy in 
sources of (p)ppGpp, we used the strain that lacks both SASs (designated 
ΔSAS). For the strategy of screening, we took advantage of the amino acid 
auxotrophy of B. subtilis that lacks (p)ppGpp altogether – in accordance to 
published report (Kriel et al., 2014), ΔSAS and ppGpp0 strains (ΔrelΔSAS) grow 
efficiently in defined medium (S7) containing all amino acids except lysine (S7-
K) (III, Fig. 1A). In contrast, ΔSAS strain grows equally well yet ppGpp0 strain 
fails to do so when medium lacks valine (S7-V) (III, Fig. 1B). This allowed us 
to opt for two-stage strategy using ΔSAS strain. Initially, we screened in S7-V 
medium, in which case we picked up not only potential RelBsu inhibitors but also 
off-target and general inhibitors of cell growth. Hits from the first stage, were 
then subjected to screening in both S7-V and S7-K media, the chemical com-
pounds inhibiting growth equally well in the two media were considered as off-
target. In other words, only the ones inhibiting the growth in S7-V but not in 
S7-K should be considered as specific inhibitors of RelBsu and subjected to 
further dose-response characterization. 

Out of  17,500 synthetic drug-like low molecular weight compounds, we 
continued with 480 to the second stage. In second stage, twelve compounds 
were identified as general antibacterials since they inhibited B. subtilis ΔSAS 
equally well in both S7-V and S7-K media (III, STable 1). Five compounds, 
however, were slightly inhibitory in S7-V while there was no effect in S7-K, 
suggesting that these could be the specific inhibitors. Importantly, all the five 
shared the same core, 4-(6-(phenoxy)alkyl)-3,5-dimethyl-1H-pyrazole (III, 
Table 1). Unfortunately, both dose-response (III, Fig. 3 and SFig. 5) and in vitro 
reconstituted ppGpp synthesis assay (III, SFig. 6) indicated those five com-
pounds were also general antibacterials.  

In summary, we developed a robust and specific assay for stringent response 
inhibitors which resulted in discovery of some general antibacterials and awaits 
applications to other chemical libraries or natural products (Harvey et al., 
2015). 
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CONCLUSIONS 

 A subpopulation of uropathogenic E. coli cells growing in human serum is 
refractory to killing by complement system 

 Non-growing and rapidly growing UPEC cells, despite being recognized 
by the complement system, are protected from the action of human serum 

 Only non-growing UPEC cells survive simultaneous treatment with serum 
and different classes of antibiotics (ampicillin, norfloxacin, and amikacin) 

 A culture of stringent response deficient E. coli, i.e. relaxed strain, is 
defective in growth resumption rendering cells non-growing for longer 
periods of time in growth supporting environment 

 The growth resumption defect of relaxed strain of E. coli is a function of 
both the amino acid and carbon source composition of the medium 

 In comparison with wild-type, relaxed strain survives ampicillin treatment 
better even if the growth resumption of the two strains is equal 

 A screening system was established for compounds specifically inhibiting 
stringent response, it failed to yield the desired compound but resulted in 
identification of novel class of antibacterials, derivatives of  4-(6-
(phenoxy)alkyl)-3,5-dimethyl-1H-pyrazole 
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SUMMARY IN ESTONIAN 

Poomisvastus bakterite kasvus ja elus püsimises 

Bakterid peavad ellu jäämiseks pidevalt kohanema oma väliskeskkonnaga. So-
bivates tingimustes kasvavad paljud bakteriliigid väga kiiresti. Kiire kasv ise-
enesest viib aga kasvutingimuste muutumiseni. Nüüd kohtame järgmist bakteri-
tele iseloomulikku omadust – jaksu pikka aega elus püsida kasvuks mittesobi-
vates tingimustes. Seejuures säilitavad nad olulise võime kiiresti taas kasvama 
hakata, kui keskkonnatingimused paranevad. Muutuvate keskkonnatingimuste-
ga kohanemiseks on bakteritel evolutsiooni käigus välja kujunenud hulganisti 
mehhanisme. Üks selline, keskne ja pea kõigis bakterites esinev mehhanism on 
poomisvastus. Poomisvastust kutsuvad esile järsud muutused keskkonnas, mis 
nõuavad kasvu aeglustumist, sageli peatub kasv esialgu täielikult, rakk kohaneb 
ja kui võimalik, jätkab kasvamist muutunud tingimustes paraja tempoga. Vä-
hemaks reguleeritakse näiteks valgusünteesi masinavärk ning rohkemaks elus 
püsimise ja autonoomsuse tarbeks oluline  –  hulganisti kahjustuste eest kaitse-
vaid süsteeme ja tarvilikud anaboolsed protsessid. Poomisvastust orkestreerivad 
signaalmolekulid, guanosiin nukleotiidid pppGpp ja ppGpp, koondnimega 
(p)ppGpp. Nende nukleotiidide sünteesi eest vastutavad Escherichia coli-s kaks 
valku, RelA ja SpoT. Viimane neist hoolitseb ka selle eest, et (p)ppGpp-d oleks 
rakus parasjagu, s.t SpoT on kahefunktsionaalne, omab ka (p)ppGpp-d lagunda-
vat aktiivsust. Mitmetes teistes bakterites (näiteks Bacillus subtilis) on poomis-
vastuse tarbeks vaid üks peamine kahefunktsionaalne ensüüm (RelBsu), aga ka 
hiljuti avastatud väikesed valgud, millest on veel vähe teada ja mis omavad kas 
sünteesi või hüdrolüüsi aktiivsust. 

Arvestades poomisvastuse ulatuslikku mõju bakteriraku füsioloogiale, ei tule 
vast üllatusena, et see protsess mõjutab bakterite võimet põhjustada haigust ja 
antibiootikumide võimet infektsiooni ravida. Antibiootikumide kasutamise 
algusaegadest peale pandi tähele, et sugugi mitte kõik bakterirakud ei sure bak-
tereid tapva antibiootikumi toimel, üksikud bakterid jäävad ikka elama. Erine-
valt antibiootikumi resistentsusest ei kasva sellised rakud antibiootikumi juures-
olekul, nad lihtsalt taluvad, elavad üle, ja neid nimetatakse persistoriteks. Ka 
persistorite moodustumises on nähtud poomisvastuse rolli – kui suurem osa 
bakteritest kasvab jõudsalt, lülitub üksikutes siiski millegipärast sisse poomis-
vastus. Oletatakse, et persistorid võivad antibiootikumi kuuri lõppedes põhjus-
tada haiguse taastekkimist. Haigusest jagu saamisel on aga antibiootikumiga 
võrdväärne roll kanda immuunsüsteemil, mis võiks ju jagu saada sellistest 
mittejagunevatest persistoritest. Samas on vähe teada selliste persistor-rakkude 
ja immuunsüsteemi vahelistest seostest, mida asutigi käesolevas töös kõigepealt 
uurima. 

Selgus, et nn kaasasündinud immuunsüsteem inimese vere seerumi komple-
mendi näol ei tapa sugugi kõiki uropatogeense E. coli rakke. Kui nüüd sama-
aegselt seerumile rakendati ka antibiootikumi töötlust, sõltus tulemus konkreet-
sest antibiootikumist. Ampitsilliini (rakukesta sünteesi inhibiitor) või amikat-
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siini (translatsiooni inhibiitor) lisamisel vähenes seerumis ellujäävate bakteri-
rakkude hulk ühe-kahe suurusjärgu võrra, mis lubab oletada, et mõned rakud, 
mida seerum ei hävita, tapeti antibiootikumi poolt. Lisaks võimendas seerum 
amikatsiini toimet subinhibitoorsete kontsentratsioonide puhul. Norfloksatsiini 
(DNA replikatsiooni inhibiitor) lisamine seerumile ei põhjustanud mingit 
muutust ellu jäänud bakterirakkude arvukuses, mistõttu võib spekuleerida, et 
komplement ja norfloksatsiin tapavad ühesuguseid rakke.  

Uurimaks bakteripopulatsiooni võimaliku heterogeensuse mõju komple-
mendi süsteemi vahendatud tapmisele, analüüsiti järgmiseks bakterirakkude 
jagunemist üksikraku tasemel. Katsetulemused näitasid, et kuigi komplement 
tunneb ära kõik bakterirakud, ja suurem osa bakterirakkudest sureb, jäävad ela-
ma keskmisest oluliselt kiiremini kasvavad ja mittekasvavad rakud. Kui nüüd 
samal ajal rakendada antibiootikumi töötlust (ampitsilliini, amikatsiini või 
norfloksatsiiniga), jäävad alles vaid mittekasvavad rakud ning kiiremini kasva-
vad hävitatakse. 

Kuivõrd katsed seerumiga näitasid muuhulgas, et bakterite suremisel on 
positiivne korrelatsioon rakkude seerumis kasvama hakkamisega ja mittejagu-
nevad rakud on kaitstud nii antibiootikumi toime kui komplemendi eest, uuriti 
järgmisena E. coli rakkude kasvama hakkamise regulatsiooni ja poomisvastuse 
rolli selles. Selgus, et rakud, kus puudub peamine poomisvastuse valk RelA 
(edaspidi ΔrelA tüvi), hakkavad soodsate kasvutingimuste saabudes kasvama 
neli tundi hiljem metsiktüüpi rakkudest, kui keskkonnas puuduvad amino-
happed. Lisaks aminohapetele mõjutas kasvama hakkamist ka süsinikuallikas  –  
ΔrelA tüvi toibus metsiktüüpi tüvest hiljem süsinikuallikana glükoosi sisaldaval 
söötmel, ent võrdväärselt glütseroolil kasvades. Selgus, et selline RelA funkt-
siooni puudumine ja toibumisdefekt võib mõjutada antibiootikumi toimet – 
ampitsilliin tappis glükoosil toibuvaid metsik-tüüpi rakke efektiivsemalt kui 
ΔrelA rakke. Mõnevõrra üllatuslikult elasid ΔrelA rakud paremini üle ka ampit-
silliinitöötluse glütseroolil toibudes. Igatahes, teatud tingimuste korral võib 
poomisvastus olla vajalik rakkude kiiresti kasvama hakkamiseks, mis omakorda 
võib mõjutada antibiootikumi toimet neile rakkudele. 

Eelpool nägime, et poomisvastusel on roll bakterirakkude kasvama hakka-
misel ja see mõjutab antibiootikumi toimet neile rakkudele. Tõsi küll, teatud 
üsnagi kitsastes tingimustes oli funktsionaalse poomisvastuse puudumine ampit-
silliini toime üle elamiseks kasulik. Samas on küllaldaselt töid, mis näitavad, et 
poomisvastuse puudumise korral on vähenenud bakterite võime haigust põhjus-
tada. Koos antibiootikumi resistentsuse hirmuäratava levikuga otsitakse see-
pärast ka spetsiifilisi poomisvastuse pärssijaid üsna palavikuliselt. Isegi kui 
neist ei ole peatset ja vahetut kasu meditsiinile, oleksid spetsiifilised inhibiitorid 
oluline töövahend bakteriraku füsioloogia uurimiseks. Sestap soovisime järgmi-
seks leida poomisvastuse inhibiitoreid. 

Neid otsiti keemiliste ühendite raamatukogust (17500 ühendit), kasutades 
testsüsteemina bakterit B. subtilis, sest ainete sisenemine rakku on gram-posi-
tiivsetel bakteritel hõlpsam kui gram-negatiivsetel. Otsingu tulemusel leiti 17 
uut antibakteriaalset ühendit, kahjuks polnud ükski neist piisavalt spetsiifiline 
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poomisvastuse suhtes. Jääb üle vaid loota, et välja töötatud kõrge läbilaske-
võimega poomisvastuse inhibiitorite testsüsteem annab positiivse tulemuse 
mõne teise keemiliselt sünteesitud ja/või loodusest isoleeritud ühendite 
raamatukogu puhul. 
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