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1. INTRODUCTION 

1.1. Topographic data 
Topographic data, presented in the topographic map, provide detailed and accu-
rate information about anthropogenic and natural features on the ground such as 
buildings, roads, railways, power transmission lines, contours, elevations, 
rivers, lakes and geographical names. As highly accurate topographic mapping 
is costly (Monmonier, 1996), the maps are compiled mainly by national map-
ping agencies (NMA), like the Estonian Land Board, Lantmäteriet (the Swedish 
mapping, cadastral and land registration authority), IGN (National Institute of 
Geographic and Forest Information in France) or Ordnance Survey in Great 
Britain. The most common scale of collected topographic data is 1:10 000 
(Eurogeographics Expert Group on Quality, 2005).  

Jakobsson (2006) pointed out that topographic data can be considered as a 
resource, commodity, asset, and infrastructure. In our days, topographic infor-
mation is captured in vector data sets which provide a reference framework for 
other spatial datasets (Jakobsson and Giversen 2007) and is the basis for spatial 
data infrastructure (Rhind, 1992). Topographic data can be generalised in order 
to produce maps in smaller scales. Also, the use of topographical data saves a 
lot of resources for many users. Among the main users of the topographic data 
are governmental agencies, municipalities, first responders, and utility and 
transportation service providers (Jakobsson, 2003). The use of topographic data 
has so far been inhibited by data availability. By today several national mapping 
agencies, like the Dutch Cadastre, Land Registry and Mapping Agency (Bakker 
et al., 2013), the National Land Survey of Finland (2018), the Norwegian 
Mapping Authority (Kartverket, 2017), and the Estonian Land Board (Estonian 
Land Board, 2018) have made their topographic datasets available to the public 
to be used freely. The value of topographic information is heavily dependent on 
its usage (Jakobsson, 2006). The wide user-community for topographic data and 
the increasing adoption of GIS, requires interoperability across geographic 
scales and sets high expectations for data quality and also for ongoing data qua-
lity management. 

The real world is in constant change. One of the characteristics of the geo-
graphic information is that it loses value over time (Jakobsson, 2006). There-
fore, in order to have valuable and high-quality topographical data, the update 
of geographical data is essential. There are two options for updating, which 
differ from each other by scope and updating frequency. Firstly, data are up-
dated by feature classes for the whole database and each feature class has their 
own update frequency (Estonian Land Board, 2006; Eurogeographics Expert 
Group on Quality, 2005). The maintenance is mainly performed through data 
exchange between topographical databases and other registers. Secondly, data 
are updated by new mapping where all feature classes are updated simulta-
neously on the same mapping area. The update frequency is usually longer than 
the first one and it is more costly. Therefore, new technologies, like LiDAR 
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(Nakajima, 2016) or spaceborne synthetic aperture radar (Tamm et al., 2016) 
for updating are investigated. In our days, the potential of volunteers for the 
update of governmental geospatial data has been widely explored (Johnson, 
2017; Touya et al., 2017). Beside legal restrictions (Saunders et al., 2012) a 
question about VGI quality is discussed (Dorn et al., 2015; Fonte et al., 2017; 
Senaratne et al., 2017). Nowadays when many volunteers are mapping the 
world and the use of VGI is increasing, the quality of VGI data has become an 
important subject of discussions (Antoniou and Skopeliti, 2015; Senaratne et 
al., 2017). 

 
 

1.2. Uncertainty and quality of spatial data  
Spatial data quality has been the subject of discussions for almost 40 years (De-
villers, R. and Jeansoulin, 2006; Goodchild and Gopal, 1989; Guptill et al., 
1995; Shi et al., 2002, 2016; Veregin, 1999). Researchers have conducted seve-
ral academic studies on error or uncertainty modelling (Collins and Smith, 
1994; Fisher, 1999; Hunter and Beard, 1992) and on how to communicate data 
quality information (Devillers, R. and Beard, 2006; Goodchild and Clark, 2002; 
MacEachren, 1992). Hunter et al. (2009) and Devillers et al. (Devillers, R. et 
al., 2010) outlined several achievements but also failures on the field of spatial 
data quality during last decades. One of the achievements that has significantly 
influenced the production of contemporary spatial data is an agreement in inter-
national standards for spatial data quality (Kresse et al., 2011): ISO 19113 
(International Organization for Standardization, 2002) that determines the ele-
ments of quality, ISO 19114 (International Organization for Standardization, 
2003) that describes the quality assessment procedure, and ISO/TS 19138 
(International Organization for Standardization, 2006) that defines the quality 
measures. In 2013 a new data quality standard ISO 19157 (International Orga-
nization for Standardization, 2013) was published that updated and combined 
all these three standards (Jakobsson et al., 2013; Leibovici et al., 2013). The 
new standard clarifies the scope of data quality, defines the elements and the 
measures of quality, describes quality assessment procedures, provides guide-
lines for reporting the results of the quality evaluation, and introduces the con-
cept of metaquality. The use of ISO19100 quality standards has been investi-
gated by Eurogeographics (Eurogeographics Quality Knowledge Exchange Net-
work, 2013, 2018). The results showed that the organisations that have mem-
bers in the Quality Knowledge Exchange Network (Q-KEN) of Eurogeo-
graphics and those involved in INSPIRE are the users of the ISO 19100 quality 
standards or other spatial quality standards.  

In ISO 19157 the quality is described by 21 quality elements belonging into 
six categories: completeness, thematic accuracy, logical consistency, temporal 
quality, positional accuracy, and usability. World-wide quality management 
study of 79 national mapping agencies demonstrated that 43 % of the respon-
dents use subjective (without clear rules) evaluation or do not use any methods 
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to evaluate positional accuracy, 48 % use subjective evaluation or do not 

evaluate thematic accuracy, and 56 % of the respondents use subjective evalua-

tion or do not evaluate completeness (Östman, 1997). In European national 

mapping agencies, positional accuracy was used by 71%, completeness by 63 % 

and thematic accuracy by 46% of respondents (Jakobsson and Vauglin, 2001). 

In the current study, commission, omission and classification correctness of 

topographical Estonian Basic Map (EBM) were explored (Publication II and III; 

in colour on Figure 1). Omission represents a case in which a landscape feature 

that must be mapped is missing, whereas commission represents a case in which 

a feature exists on the map, but not in the landscape. Classification correctness 

means conformance of map features to entities in the landscape. 

However, according to the standard, the list of quality elements is expand-

able. Based on the value-analysis theory, Talhofer et al. (2012) suggested new 

quality elements as database content, database technical quality, database time-

liness, area importance, and user friendliness. The latter is intended to consider 

data quality from the user’s perspective. Fonte et al. (2017) proposed additional 

quality indicators for volunteered geographic information (VGI).  

Figure 1. Overview of the ISO 19157:2013 data quality elements (according to Inter-

national Organization for Standardization, 2013). The focus of the present study is high-

lighted (Publication III). 

 



10 

Data quality is a concept related to uncertainty (Fisher et al., 2006; Shi et al., 
2002; Zhang and Goodchild, 2002), which is endemic in all geospatial data 
(Goodchild, 2009) and should not be forgotten while producing or using spatial 
data (Fisher, 1999). For a data producer, it is important to determine the sources 
of uncertainty, find the methods to measure them and minimize them by using 
quality management (Jakobsson et al., 2016). The source of uncertainty is 
depending on whether the feature class to be described is well or poorly defined 
(Fisher et al., 2006; Longley, P. A. et al., 2005). If the feature class is well-
defined, clearly separable from other geographical objects, the uncertainty is 
caused by errors (Fisher et al., 2006). There are several reasons why errors 
emerge which is reflected by the huge amount of error classifications (Devillers, 
R. and Jeansoulin, 2006; Fisher, 1999). The errors may also be distinguished 
from each other based on whether they are: 1) objective and caused by the mea-
surement accuracy of the instruments; 2) subjective and caused by the human 
error; 3) temporal and caused by the actual changes happening over time.  

For the poorly-defined feature class, the spatial extent of the geographical 
object is not clearly recognizable or the feature class identifiers are confusing, 
so the same phenomenon can be assigned to different classes. Usually they 
mean natural phenomena like a shoreline, forest, mountain, but also some 
anthropogenic phenomena like ruins and relict foundation. The uncertainty of 
the poorly-defined feature class is caused by vagueness or ambiguity (Fisher et 
al., 2006). In case the definitions are given to such phenomena, they are ill-
defined and do not allow to specify the phenomenon. This is the case of vague-
ness. Ambiguity arises when one object could be placed into two or more diffe-
rent classes because of disagreements about the definition or because of using 
different classification procedures. Users may have a problem when the defi-
nition used does not meet the definition expected by a user. Comber et al. 
(2005) have analysed and graphically presented different definitions of a forest 
applicable in the world. Moreover, there are at least two definitions of a forest 
used in Estonia. On topographic maps, a forest has to have a tree height over 4 
metres (Estonian Land Board, 2002). Whereas, in the Forest Register, a mini-
mum tree height is 1.3 m (Forest Act, 2006). These definitions resulted in sub-
stantially different areas of forest to be mapped. Therefore, specifications must 
be determined prior mapping and made clear to map- and data-producers. 

Hunter et al. (2009) and Devillers et al. (2010) indicate that nowadays one of 
the problems is that data quality is analysed and presented at a generic global 
level rather than at a more detailed levels of granularity. Based on the work of 
several authors, Devillers and Beard (Devillers, R. and Beard, 2006) introduced 
the hierarchical model of levels of detail which consists of four levels – global 
dataset, feature class, feature instance and geometric primitive. Sadiq et al 
(2006) brought out spatial variation in data quality due to different data cap-
turing techniques, compilation, analysis, and representation. In the current study 
the list of granularity levels was extended by the characteristics of field workers 
who inevitably interpret the nature subjectively to some extent (Cherrill, 2016; 
Cherrill and McClean, 1999; Stevens et al., 2004). 
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Studies on VGI quality (Girres and Touya, 2010; Haklay, 2010; Dorn et al., 
2015) have revealed that the spatial data quality differs by landscapes. To 
explore the relation between landscapes and spatial data quality landscape indi-
cators are used (van Oort et al., 2004). In order to describe and analyse the 
heterogeneity of landscape, hundreds of landscape indicators have been pro-
posed by various researchers within the past 30 years (Uuemaa et al., 2013; 
Dramstad, 2009). Landscape indicators are calculated by using either vector or 
raster data sources (Publication I). The raster format is more widely used be-
cause of the availability of satellite imagery and the ease of conducting complex 
spatial computations. Nevertheless, the resolution of raster image is often too 
coarse to depict the small-scale landscape features like ditches, narrow roads or 
trees (Jaeger, 2007). Less attention has been on the use of more detailed topo-
graphical vector data where small-scale landscape features are mapped as point 
elements or lines. For large areas, size of vector data is smaller than size of 
raster data. Therefore, vector format is more suitable for analysing big terri-
tories in detail. For calculating landscape indicators, the integration of these fea-
tures and land use/cover (LULC) polygons is needed. For that purpose, buffe-
ring of the linear and point features is most commonly used. Linear features are 
buffered for the average width of the corresponding feature, with a minimum 
buffer width of 2 m (Herzog et al., 2001; Lausch and Herzog, 2002), or for 
constant width (Wade et al., 2003) and in some studies the buffer width has not 
been mentioned (Moser et al., 2002). None of the referred studies provides any 
reasoning why certain buffer widths were used. Moreover, there are not many 
papers addressing the impact of integrating point and line features into the 
polygon layer on the values of landscape indicators (Höbinger et al., 2012; 
McGarigal et al., 2009; Hou and Walz, 2013). 

 
 

1.3. The aim of the thesis 
The aim of this thesis is to investigate the thematic accuracy and completeness 
of topographic maps using empirical field inspection in topographic mapping. 

To achieve this aim, the following tasks were set: 
1. to create a seamless spatial error database from the data collected by Esto-

nian Land Board’s field inspectors in order to analyse the errors; 
2. to find the most comprehensive method for integrating points and lines into 

LULC polygons in order to analyse landscape heterogeneity; 
3. to analyse spatial data quality for the EBM at two levels: in general, where 

all errors are analysed together; and in detail, where the same errors are ana-
lysed according to the field worker in order to determine the most error-
prone feature classes and the reasons of those errors;  

4. to determine whether and how misclassification, commission and omission 
errors differed among field workers and whether any differences were in-
fluenced by landscape heterogeneity and characteristics of field workers. 
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2. DATA 

For the current research, the topographical data of the Estonian Basic Map was 
used. EBM in scale 1:10 000 is a national topographic vector database. The aim 
of the database is to serve as the basis for national thematic maps and registers 
containing spatial information (Riigi Maa-amet, 1991). EBM includes infor-
mation about infrastructure (e.g., roads, electric power lines), settlements, 
hydrography, and land use (Estonian Land Board, 2016).  

In the current study we used EBM data (produced in years 2003–2006) and 
EBM quality control results (produced in year 2003–2006). 

 
 

2.1. Development of the EBM 
The project for the production of EBM was completed in 1991, shortly after re-
gaining the independence (Riigi Maa-amet, 1991). The project was mainly com-
piled by Lembit Tamme, Heiki Potter (Estonian Land Board), and Jüri Jago-
mägi (University of Tartu). The EBM project identified a map projection and 
coordinate system, format and tiling of the map sheets, mapping technology, 
time schedule, and budget. As a result, a national Lambert-Est projection based 
on GRS80 was chosen. Map sheets in paper format 50x50 cm are covering  
25 km2 in the real world. The cost of one map sheet was set at 31 484 Estonian 
kroons (approximately 2020 €) (Riigi Maa-amet, 1991). Eventually the actual 
cost exceeded the estimated budget many times.  

According to the project, the whole Estonia was divided into 17 mapping 
objects and was planned to be mapped by year 2005. However, the actual area 
of the mapping objects and the mapping time were different from the planned 
one right from the start of the works (Figure 2). The pace of mapping was very 
slow in the first years, so the work of the Vastseliina mapping object planned 
for 1992 was not started until 1995. In reality, the EBM was completed for the 
most part of Estonia in 2003. However, the map of the North-Eastern and 
South-Eastern border regions was completed only in 2007. 
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(a) 

  
 

(b) 

 
Figure 2. The objects of the Estonian Basic Map: (a) planned mapping objects and (b) 
real mapping objects, manually completed objects shown by a pattern and digitally 
completed objects by colours.  
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To cover the country's territory with a seamless and high-quality large-scale 
topographic map, clear mapping specifications are required. Basic mapping 
work was started without official guidelines. The documentation required for 
mapping was developed in parallel with the mapping work. In 1994 the Land 
Board ordered the preparation of the guidelines for the EBM and in 1995 by 
chapters from various institutions – from the state owned mapping company 
Estonian Map Centre, from first private mapping company Regio, and from the 
Estonian Language Institute which is the national Research and Development 
institution. However, a uniform manual was not combined from these chapters. 
The chapters were written based on the main requirements for the national basic 
map developed in 1994 (Riigi Maa-amet, 1994), which, among other things, 
stated the transfer of the technology of the basic mapping to the full digital 
technology. In 1994, “Setting up a digital database for the basic map and data 
exchange” (Aunap et al., 1994), was published, which stated the use and data 
exchange of digital spatial data, pricing policy and terms of sale. A separate 
chapter discusses the development of spatial data infrastructure. Unfortunately, 
this document did not find a direct implementation. The terms of reference, 
which was later developed into the specifications being actually used, was 
“Mapping Guide 1:10 000” (Eesti Kaardikeskus, 1994). This was a classic map 
specification, listing the phenomena to be mapped, their given definitions and 
map symbols. The authors of the specification state that they have taken the 
lead in topographic maps of Finland, Sweden, Denmark, the Netherlands, the 
USA, and Canada. The symbology of the EBM is new and developed 
specifically for that map. Additionally, the general part describes the precision 
requirements for objects that are included in the photo plan. In 1995, the 
Estonian Language Institute completed the principles for developing the 
database of place names of the basic map (Aunap et al., 1995). The document 
addressed the collection, storage, and mapping of place names. The creation of 
a separate register of place names was provided. 

In 1999 and 2000 major changes took place in the mapping guidelines. In 
1999 for the first time the guide provided a data model for the digital basic map 
and in 2000, mapping quality requirements, which were compliant with the 
standard 19113 developed by ISO, but formally not yet approved (International 
Organization for Standardization, 2002). The guide also outlined the quality 
elements to be assessed: location accuracy, semantic accuracy, completeness, 
attribute accuracy, and topology, the compatibility of the edges of adjacent map 
sheets. Each element had their defined quality values, which they had to meet. 
In 2002, “Requirements for editing the printed map of the Estonian Basic Map 
1:20 000” were formulated. The project of EBM was completed in 2007. The 
timeline of the development of EBM is shown on Figure 3. 
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Figure 3. Timeline of the development of the Estonian Basic Map (EBM). 

 

 

2.2. Production of EBM 

Due to the poor quality of the Soviet maps (Mardiste, 2009), the EBM was 

created from scratch by means of stereo‐photogrammetry (Li et al., 2012) sup-

ported by extensive field work (Publication III). The basic production scheme 

for EBM consists of five steps: aerial photographing, photogrammetry works, 

field work, map drawing and map printing. From 1992 to1996 the mapping was 

carried out manually, and since 1996 digitally (Figure 4).  

Figure 4. Production scheme for the Estonian Basic Map (adapted from Estonian Land 

Board). The focus of this dissertation is on the centre text box, dash-outlined (Publi-

cation II). 
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In the beginning there was a dilemma what is more efficient – whether 1) to 
make a stereophotogrammetric measurement based on aerial photos, and then 
check the measured information with the field work; or 2) to carry out field 
work first, and then transfer the data collected in the field work to a stereo-
photogrammetric digital map. The first digital maps were made in 1996 on 
single sheets (Figure 2), where both technologies were tested, and it was found 
that the first method leads to a higher quality result. 

The quality of the EBM was significantly influenced by the time of taking 
aerial photos and the age of the photos at the time of mapping. In Estonia, the 
perfect time for taking aerial photos for topographic mapping is early spring 
when the snow has already melted and trees have no leaves yet, as the photos 
provide the possibility to see narrow line features inside the forest as well as the 
farm buildings hidden under the trees in the yard. The Estonian Land Board did 
not have technical resources for aerial photography until 2006, so flights were 
outsourced from Finnish, Swedish and Danish companies who were only able to 
take pictures in late spring or early summer when the tree crowns were sprung. 
The legibility of such photos in forest areas is poor and increases the volume of 
the field work mapping. Aerial photos were funded until 2006 by external aid 
funds, which meant that more photos were taken than mapping was performed, 
and by the time of mapping, some of the aerial photos were already outdated. 
On average, mapping was carried out using 2–3 year old photos but sometimes 
photos were up to 5 years old (Maa-amet, 2013). 

The EBM data used in this study has been produced according to the pro-
duction scheme shown in Figure 4. The stereophotogrammetric map was printed 
on a transparent film that was placed in alignment with the orthophotos for the 
field work. The task of the field worker was to check the mapping of the entire 
area, add missing objects to the stereoplots and remove the excess objects, and 
add objects that cannot be distinguished from the stereos. For example, it was 
necessary to determine the widths of forest roads, types of buildings, and to 
distinguish the types of land parcels that seem similar on aerial photos (for 
example, grasslands and fields), etc. The stereoplot enhanced with field works 
was scanned and its corrections and supplements were digitised. As a result, 
there were 129 different feature classes defined and symbolised on the DGN 
format EBM vector database, which consists of points, lines, polygons and 
texts.  

Until 1999, the EBM was produced by the Estonian Map Centre for the 
Estonian Land Board. Since 1999 the producers of EBM have been chosen 
through public procurement procedures (Mõisja, 2003). Separate procurements 
were carried out for each stage of the production process, as shown in Figure 4 
with grey squares. In addition to the above-mentioned Estonian Map Centre, 
also private companies such as EOMap and Regio performed fieldwork map-
ping of the EBM. 
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2.3. Field work 
From 1996 to 2006 121 different field workers in total were involved in the field 
work mapping of the EBM, 13 of which have mapped half of Estonia (Kaldma, 
2005). One to four or six field workers could map one map sheet (5×5 km), so 
the smallest area that one mapper executed on the map sheet was either 1/4 or 
1/6 (6.25 or 4.17 km2 respectively). Depending on the heterogeneity of the land-
scape, it took 4–15 working days for one field worker to map their area. 

This thesis examined the field workers whose minimum mapped area is 1/4 
of the map sheet (6.25 km2) and who participated in mapping works from 2003 
to 2006. There were 21 such field workers altogether (Table 1), 67% of them 
were male and 33% female. Ten of the field workers had carried out 67% of all 
field work (Publication II). The mapping experience of field workers ranged 
from 2 to 11 years. One third of the field workers had 5 or fewer years of expe-
rience, and two thirds had more than 5 years of experience (Publication III). 

 
 

Table 1. Field workers’ gender, years of experience in field mapping, and the number 
of inspected sites in different landscapes and in total (adapted from Publication III). 

 

Field 
worker 

ID 
Gender Years of 

experience

Number of inspected sites in  
built-up-  
diverse 

landscape 

open- 
simple 

landscape 

closed- 
complex 

landscape 
total 

1 M 6 0 1 2 3 
2 F 6 2 4 2 8 
3 M 5 0 1 0 1 
4 M 2 0 5 1 6 
5 M 4 0 2 2 4 
6 M 7 6 2 3 11 
7 M 7 0 4 1 5 
8 F 11 0 4 2 6 
9 M 7 0 4 6 10 

10 M 7 4 2 3 9 
11 M 5 0 1 2 3 
12 M 5 0 0 2 2 
13 M 6 0 4 4 8 
14 M 7 1 0 2 3 
15 F 7 1 0 0 1 
16 F 8 1 1 1 3 
17 M 3 0 0 1 1 
18 F 8 2 2 2 6 
19 M 5 0 0 1 1 
20 F 8 0 0 1 1 
21 M 7 0 0 1 1 
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2.4. Quality control of EBM data 

Until 1999, the Estonian Land Board did not systematically monitor the quality 

of the EBM, as mapping was solely carried out by the Estonian Map Centre. 

The main competence of topographical mapping was also concentrated in this 

organisation. In 1999, when mapping companies were selected through public 

procurement, the Estonian Land Board also developed a preliminary quality 

control methodology. The methodology was developed by the author of this 

thesis who was EBM project manager at that time. This was supplemented over 

several years and the final version, which is also the basis for this study, was 

completed with measurable quality requirements in 2003. Mainly direct internal 

evaluation methods were used (International Organization for Standardization, 

2013). The quality evaluation procedure was divided into two parts: 1) field 

inspection where thematic accuracy and completeness were evaluated and 2) 

indoor inspection where logical consistency by full automatic inspection and 

edge matching by visual inspection were evaluated (Figure 5). 

Figure 5. Quality evaluation process of digital EBM sheets. The scope of the current 

study is shown by coloured boxes.  
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Field inspectors evaluated thematic accuracy, omission, and commission which 
are quality elements defined in ISO 19157 (International Organization for Stan-
dardization, 2013). Additionally, the field inspectors observed (by eye, without 
the direct measurement) the “wrong size” and “wrong place” as indicators of 
positional inaccuracy. The wrong place was recorded in cases the mapped 
object was clearly in a wrong place or in a wrong position, for example, a house 
was turned in comparison to another house. The wrong size was evaluated as 
nonconformity in cases, where buildings or small line objects had incorrect size 
on the map, for example, a culvert was of incorrect length or the shape of a 
house was different from the actual one. All errors were recorded as Boolean 
values (Publication II).  

Field inspection was carried out in the samples. Inspected map sheets were 
selected so that the work of as many different field workers as possible would 
be inspected. During the field inspection, the correspondence of mapping to the 
map specification was checked. Field inspector walked through and recorded all 
nonconformities occurred along the linear route in the selected map sheet 
(Publication II). The inspected site was considered a buffer of 50 m (forests, 
bushes, and yards) or 100 m (all the rest land cover types) to both sides of the 
route (Figure 6). Routes were 11 to 15 km long. In order to show the location 
and extension, all the errors found and inspection route as well were shown on 
the map by filed inspector. Quality evaluation results were documented in a 
detailed quality report. Based on the evaluation results, the conformity assess-
ment of quality was performed. In case the field inspection showed the mapping 
work to be below the quality threshold, the field worker had to correct the 
nonconformities in all mapped areas, not only in the sample areas. 

 

 

 

Figure 6. Sample section of a field inspection, at two scales. On the left, an overview of 
the field inspection route is marked with a red line and the inspected area with colour 
fills: yellow and light blue polygons are the landscapes with an open view; green and 
grey polygons are the landscapes with a closed view. On the right, in detail, mapped and 
reported discrepancies are numbered in dark blue: 36, 37 refer to point features; 38, 39 
to line features; 33, 34, 35 to polygon features (Publication II). 
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Similarly to field work, the field inspection is subjective and therefore uncertain 
as well. Firstly, there where cases where the landscape had changed in a period 
between the submitted field work and field inspection, the most typical example 
is forest logging. Therefore, the minimisation of the time difference between the 
mapping and field inspection is important as was also demonstrated in Finland 
by Jakobsson and Marttinen (2003). In Estonia the time difference between the 
field work and field inspection was approximately two months. Nonconformi-
ties occurred because the time difference were mapped by field inspectors, but 
not considered as mapping errors. Secondly, field workers were given the 
opportunity to rebut a quality report, where appropriate. In the event of doubt, 
the decision was made in favour of the field worker (Publication II). 

In the first year the field inspection was purchased. Since 2001, the quality 
control of the field works and the digital mapping was performed by the staff of 
the Estonian Land Board. From 2003 to 2006, the field inspection was carried 
out by six employees of the Estonian Land Board Cartography Bureau. In order 
to harmonise feature classification, a joint 2-day seminar for all field workers 
and field inspectors was held in each spring before the mapping season 
(Publication III). 

Altogether, 1 455 km of field inspection was performed along 93 routes. The 
total area of sites was 159 km2. The indicators characterizing the data of the 
current study are summarized in Table 2. 

 
 

Table 2. Summary of the characteristics of the field inspection 
 

Characteristic Value 
Quality control period 2003–2006 
Number of field inspectors 6 
Number of inspected field workers 21 
Field workers’ gender 6 female, 15 male 
Field workers’ years of experience 2–11 years 
Number of inspected sites 93 
Total length of inspection routes 
Length of inspection routes 

1 455 km 
11–15 km 

Total area of inspected sites 159 km2 
Minimum area mapped by one field worker ¼ of map sheet 
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3. METHODS 

Current work can be divided into two large parts: 1) the pre-processing of data 
and 2) the error analysis. In the pre-processing part the landscape indicators 
were calculated, and the landscapes were classified by using the k-means 
clustering during the preparation of the data. Then, a database of errors was 
created based on field inspection quality reports. Analyses were made with 
regard to 1) the structure of errors; 2) the specific feature classes involved; 3) 
error differences among field workers by gender, years of experience and 
mapped landscape type.  
 
 

3.1. Pre-processing of data 

3.1.1. Calculation of landscape indicators and  
landscape clustering 

Although seamless, very detailed, and accurate, large-scale topographical data 
in vector has full coverage of many countries, these data are not widely used in 
landscape research. In topographical vector data, land use/land cover (LULC) is 
presented as polygons, small size landscape elements like trees, heap of stones, 
ditches, and roads are presented as points and lines. Landscape indicators can be 
calculated only for polygons. However, points and lines represent important 
landscape elements and could be incorporated into the calculation of landscape 
indicators. Although the use and misuse of landscape indicators has been widely 
studied over the last 30 years, there has been almost no attention on incorpo-
rating small-scale landscape elements presented as points and lines into land-
scape analysis by using vector data. In order to find most comprehensive 
method for integrating points and lines of EBM into LULC polygons of EBM 
for landscape studies, the influence of different integrating methods on the 
values of landscape indicators were analysed (Publication I).  

There are not many tools that use vector data as an input for calculating 
landscape metrics: 1) V-Late (Tiede, 2016) and 2) Patch Analyst. For this re-
search, Patch Analyst 5.1 (Rempel et al., 2012) was chosen, as with large 
numbers of polygons, the core metrics calculations work better (Zaragozí et al., 
2012). In order to automate calculation, ArcGIS Model Builder was used 
(ESRI, 2016). All 14 indicators available on Patch Analyst were calculated 
(Table 3).  

For the integration of point and line features into the LULC polygons, the 
buffers for points and lines with different widths from 20 cm up to 3.5 m as well 
as the average width of the phenomenon in reality were generated. Obtained 
buffers for the point elements and lines were integrated into polygon layers 
using two different methods: a) buffers overlap the polygons; b) buffers were 
cut out from the polygons. Altogether combining these different geometry types 
(points, lines, polygons), buffer widths (0.2 m, 0.5 m, 1.5 m, 2.5 m, 3.5 m, 



22 

average width of the phenomenon in reality), integration methods (cut out and 
overlapping) (Figure 7), and the polygon layer as a comparison layer, gave 37 
datasets (Figure 8) for 35 study areas representing all different landscape types 
in Estonia (Publication I). Finally, landscape level landscape indicators were 
calculated for all datasets. For comparing the values of landscape indicators 
calculated from different datasets, Mann-Whitney U test were used. The level of 
significance of a p=0.05 was accepted in all cases.  

 

 
 
Figure 7. Conceptual workflow of integrating point elements and lines into the polygon 
layer (Publication I). 
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Figure 8. Conceptual scheme of the 3 input layers (P – point, L – line and POLY – 

polygon layers), 12 intermediate layers (buffers with 0.2, 0.5, 1.5, 2.5, 3.5 meters and  

D – different width) and 36 output layers (buffers integrated by O – overlapping or C – 

cutting-out from the polygon layer) (Publication I, supplementary materials).  

 

 

The study revealed that integrating small-scale landscape elements into land 

use/cover layers by using buffers gives more realistic results if the buffer size is 

in compliance with the size of the phenomena in reality. Also, integration 

method does not affect the values of landscape indicators. Therefore, for points 

and lines of every field inspection site buffers with an average width in 

compliance with the size of the phenomena in reality were generated for the 

following study. The obtained buffers were integrated into the polygon layers 

by overlapping (Publication I). 

For the error analysis, in addition to the indicators available in Patch Ana-

lyst, the patch density, patch richness density, the proportion of open areas (e.g., 

field, grassland), closed areas (e.g., forest, bush, orchard), and built-up areas 

(e.g., yards with buildings) were calculated (Table 3, marked grey).  
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Table 3. Landscape indicators used in the study. Indicators calculated in addition for the 
second part of the study are marked grey. For a more detailed description, see Rempel et 
al. (2012) (adapted from Publication III). 

 

Landscape indicator 
type Landscape indicator 

Diversity metrics SDI: Shannon’s diversity index 
SEI: Shannon’s evenness index  
 

Shape metrics AWMSI: area-weighted mean shape index 
MSI: mean shape index 
MPAR: mean perimeter–area ratio 
MPFD: mean patch fractal dimension 
AWMPFD: area-weighted mean patch fractal dimension 
 

Edge metrics TE: total edge 
ED: edge density 
MPE: mean patch edge 
 

Patch density and size 
metrics 

MPS: mean patch size 
NumP: number of patches 
MedPS: median patch size 
PSCoV: patch size coefficient of variance 
PSSD: patch size standard deviation 

  PD: patch density 
PRD: patch richness density 
 

Land use composition OV: proportion of land use creating open viewsheds in the 
landscape of the site 

 CV: proportion of land use creating closed viewsheds in the 
landscape of the site 

 BU: proportion of built-up areas in the landscape of the site 
 
 

Landscape indicators have different units and scales and many of them are very 
strongly correlated. For analyses, all landscape indicators by standardisation to 
obtain normal distribution with μ = 0 and σ = 1 were rescaled. Factor analysis 
by the varimax rotation for the elimination of correlated landscape indicators 
was used. As a result, four factors were determined: diversity, patch size distri-
bution, closure, patch complexity. First two factors together explained 62, 9% 
of the total variation in the landscape indicators, and the first four factors ex-
plained 82.3% of the variation (Publication III).  

In order to see if there were differences in error rates within landscape types, 
similar landscapes among the field inspection sites were found by using k-
means clustering (Bishop, 1995) which is based on the factor scores for the 
landscape indicators and additionally on the value of the proportion of built-up 
areas in the landscape of the site. Cluster analyses revealed three clusters: built-
up-diverse, open-simple and complex-closed (Publication III) (Figure 9).  
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Figure 9. The plot of the mean values of landscape factors and built-up area for the 
three landscape clusters (types) and example maps for those landscape clusters: (1) an 
example of a built-up–diverse landscape, (2) an example of an open–simple landscape, 
and (3) an example of a closed–complex landscape (Publication III). 

 
 

3.1.2. Creation of an error database 

A spatial database of mapping errors (hereafter error database) was created from 
the errors recorded in quality reports and accepted by field workers from years 
2003-2006. For all errors, the type was determined according to the ISO 19157 
(International Organization for Standardization, 2013) quality elements. The 
error database consists of 5100 errors found in 93 inspected sites.  

While creating the error database, it appeared that different field inspectors 
have recorded error types differently. Classifying the type of error by its 
completeness or thematic correctness is subjective, as also mentioned by ISO 
9157 (International Organization for Standardization, 2013). For example, if a 
ditch is mapped as a path it can be treated as a classification error (misclassified 
linear feature) or a completeness error (ditch omitted, path committed). Error 
recording becomes even more complicated in case the correct mapping requires 
a change of a geometry type – like a grove (point-feature) turns into a forest 
(areal-feature). Such error can be recorded in three ways: 1) misclassification 
(forest instead of grove); 2) commission (grove) and omission (forest); 3) com-
mission (grove) and misclassification (forest instead of field). 
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To be systematic and consistent in methodology, all errors in the error data-
base were transferred into a common classification system applying the fol-
lowing rules (Figure 10) (Publication II). 
 Point features could have all error types (Figure 10, errors 2, 3, and 7). 
 Line features could have all error types. Where line lengths were either 

shorter or longer than they should have been, the error was noted as either 
omission or commission, respectively, not as a wrong size (Figure 10, error 
4). In addition, where nearby parallel line features had swapped places with 
each other (Figure 10, error 6), a classification error was noted, not a wrong 
placement. 

 Polygon features that participated in a full tessellation (no holes or overlap) 
could only be misclassified. However, small polygon features (Figure 10, 
error 5) that were recognized as point features during the field inspection 
could have all error types, as could short linear features (culverts, bridges). 

 Finally, when the geometry type changed from the point to the polygon or 
from the line to the polygon (Figure 10, error 1), the point or line was 
recorded as an error of commission and polygon as a misclassification, not 
an omission. 

 

 
 

Figure 10. Examples of discrepancies in an erroneous map (left) and the corrected map 
after the field inspection (right). The erroneous “grove” (numbered 1) can be considered 
in three ways: a simple misclassification (forest instead of grove); a paired commission 
(grove) and omission (forest); or a commission (grove) and misclassification (forest 
instead of field) (Publication II). 
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3.2. Error analyses 

3.2.1. Quality measure calculations 

To analyse errors, quality measures were calculated. ISO19157 (International 
Organization for Standardization, 2013) provides a list of data quality measures 
in order to provide quality results in a comparable way. In the current research, 
error count, error sum and error rate were calculated for all quality elements. 
Error count indicates the total number of errors and shows the frequency of 
errors. Error sum characterises the magnitude of the errors and is calculated 
separately for each geometry type: the total length of incorrect line items, the 
total area of incorrect polygon items, and the total number of incorrect point 
items. Error rate is expressed as the total number, the length or area of erro-
neous items in a geometrical type (e.g., lines) divided by the total number, 
length or area of items in that geometrical type and multiplied by 100.  

In order to aggregate quality results a weighted average for the error rate was 
calculated for each three geometrical types for every quality element and 
summarised these values across all types to obtain a single combined error rate 
(Equations 1–3) The weights equalled the proportion of the total number point, 
line and polygon features in the total number of features (based on the total 
number from the assessments by the expert quality controllers). 

 

MWA = 0.22 Mpoly + 0.48 Mline + 0.30 Mpoint (1)

CWA = (0.48 Cline + 0.30 Cpoint) / (0.48 + 0.30) (2)

OWA = (0.48 Oline+ 0.30 Opoint) / (0.48 + 0.30) (3)
 

where M, C, and O are the rates of misclassification, commission, and omission 
errors, respectively; WA indicates the weighted average, and “poly”, “line”, and 
“point” subscripts represent the corresponding geometrical types (Publication 
III). 
 

3.2.2. Statistical analyses 

In statistical analyses the structure of errors was analysed firstly in general, by 
considering the whole set of errors and secondly in detail, by each field worker 
to determine the similarities and differences between the analyses results (Pub-
lication II). The structure of errors was analysed with regard to the type of error, 
the geometry of the error, the most erroneous feature classes and the most 
misclassified feature classes. Next, the most misclassified feature classes were 
determined (Table 4) by using scatterplots which are not common in the quality 
analysis. The feature classes that appeared in the upper left quarter on the 
scattered plots were considered critically. These graphs were drawn separately 
for each geometry type (Publication II).  
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Across field workers, the distribution of errors is described by the coefficient 
of variation. An error matrix (Congalton and Green, 1993; Foody, G. M., 2002) 
(in the literature also called the confusion, contingency, validation or feature 
misclassification matrix) was used to study the misclassifications in the whole 
database. The matrix was generated separately for each geometry type by using 
the quality measure of error sum. 

 
 

Table 4. Data quality measures used in different analysis. 
 

Analysis Measure Definition 
Type of errors 
(misclassification, omission, 
commission) 

error count number of incorrect items 

Geometry of errors (point, line, 
polygon) 

error count  

Feature classes of errors error sum total number of incorrect point 
items, length of incorrect line 
items, or area of incorrect polygons 

Most misclassified feature 
class 

error sum  

Differences in errors among 
filed worker by gender and 
years of experience 

error rate total number, length or area of 
erroneous items in a geometrical 
type (e.g., lines) divided by the 
total number, length or area of 
items in that geometrical type and 
multiplied by 100 

Differences in errors among 
filed worker by landscape types

error rate  

 
 
To detect the differences in errors among the field workers by gender, years of 
experience and landscape types (Figure 9) we used box-plots and the Mann-
Whitney U test. All analyses were performed in the Statistica 12 software 
(StataCorp LP, 2011) (Publication III). 
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4. RESULTS 

The structure of errors and errors by the feature class were investigated at two 
levels: firstly, in general, where all data of the error database was included in 
the analysis and secondly, in detail by each field worker to determine the simi-
larities and differences between the analysis results. In order to explore reasons 
for the occurrence of errors, gender, years of experience and landscape type 
among field workers were examined. 
 
 

4.1. The structure of errors 
Error types are distinguished according to the following quality elements: omis-
sion, commission, misclassification, wrong size and displacement. In general, 
nearly half (48%) of the errors were omission and nearly one third (33%) were 
misclassification (Figure 11a, column Total). Predominant error among field 
workers was also omission. However, a slight variation among field workers 
occurred in a type of errors. 

The analysis of the error by the geometry type revealed in general that errors 
of line features and errors of point features had a similar share - 46% lines, 40% 
points (Figure 11b, column Total). Although the main geometry type of errors 
was a line, field workers 8 and 19 made more errors in point features. The share 
of errors of polygon features was 14%. The share of features by the geometry 
type on the field inspection sites was more nearly uniform: 47% lines, 30% 
points, and 23% polygons. 

By the field workers, much larger variability in a share of the geometry type 
appeared. In conclusion, when considering the geometry type and error type 
together, three equal groups of field workers can be distinguished (Publication 
II): (1) six field workers with omissions comprising over 50% of all errors both 
in line and point features; (2) another six field workers with omissions ex-
ceeding 50% only for point features; and (3) the final six having omission 
exceeding 50% only for lines. By contrast, only one field worker consistently 
misclassified features of all geometries. 

The Kruskal-Wallis H test showed a statistically significant difference 
between the error rates in different landscapes. Error rates and variation of error 
rates of misclassification, commission, and omission were the lowest in the 
built-up–diverse landscapes (Figure 12) and the highest on the in closed–
complex landscapes, which also had the highest variation. While the mis-
classification error varied the most across landscapes, with the highest values in 
closed–complex landscapes and the lowest values in built-up–diverse area, the 
commission had the lowest error rate across all landscapes. The statistically 
significant difference for commission error rates occurred only between the 
built-up–diverse and open–simple landscapes. 
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(a) 
 

 
 
 
(b) 
 

 
 

Figure 11. The variability of errors (a) by type and (b) by geometry among field 
workers. The ordinate (the X-axis) ranks field workers by their decreasing share of 
errors overall (red stripe), measured by the Y-axis on the right. The Y-axis on the left 
shows the distribution of errors by the type or by the geometry for each field worker 
(Publication II). 
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Figure 12. Box plots for the rates of misclassification, commission, and omission errors 
in the different landscapes defined in Table 4. For a given error type, based on the 
Kruskal-Wallis multiple comparison of mean ranks for all groups: 1 – statistically signi-
ficant difference from built-up–diverse, 2 – statistically significant difference from 
open–simple, 3 – statistically significant difference from closed–complex (Publication 
III). 

 
 

4.2. Errors by the feature classes 
There were no errors recorded for 20 feature classes out of 104. These were 
features that were clearly recognizable in stereo images (lake, railway, radio-
tower, high voltage power-line etc.), or that were corroborated by other reliable 
databases (1. and 2. class roads etc.), or that appeared infrequently in nature 
(ruins of windmill, light tower etc.) that field workers cannot be mistaken in 
their nature (Publication II).  

In general, five point, three line, and two polygon feature classes are high-
lighted in the critical quadrant of the scatter plots (Figure13). Heap of stones 
and culverts were mainly missing from the maps, while the highest share of 
commissions occurred for scattered trees. The analysis of the error matrix of the 
point features indicated that two feature class pairs, deciduous grove vs. deci-
duous tree and dwelling house vs. subsidiary building, were the most mixed up. 
If the two building type were equally confused, then deciduous groves might be 
mapped as deciduous trees but not contrariwise. The most misclassified line 
features were two groups of feature classes, of which the path caused 40% of all 
misclassifications and the ditch caused 32% (Figure 14). Paths and forest 
cutlines were classified in a higher road class in 25% of the cases. Also, in 20% 
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of cases, the width class of ditches was overestimated. Among polygon features, 
43% of all misclassifications involved the three most common classes: arable 
field, grassland, and open space. Most commonly an arable field was mapped as 
grassland and forest as a young forest, the latter was also used for forest cutlines 
(Publication II).  

 

 

Figure 13. Quartile-quartile plots of errors in the three feature geometries against their 
summary measures, with individual feature classes labelled. The feature classes having 
relatively few errors appear close to the horizontal axis. The feature classes placed 
clearly above the diagonal (upper left quadrant) may be considered more problematic: 
the frequency of this particular feature class in the landscape is relatively low, but the 
number of errors is high compared to other feature classes (Publication II). 

 
 

 
 

Figure 14. Selections from confusion matrices for the most misclassified feature 
classes, by geometry. The horizontal axis shows features presented on the map, the 
vertical-axis features occurring in the real world (Publication II). 

 
 

Among filed workers the variability of most misclassified feature classes oc-
curred (Table 5). The path and heap of stones occurred in the critical quadrant 
of scatter plots for at least half of the field workers. By contrast, a narrow ditch 
<2 m wide, which was clearly problematic in general, only caused errors for 
four field workers. Moreover, a forest appeared problematic only for two field 
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workers. Forest vs. grassland and forest vs. open space misclassifications were 
made by field workers number 19 and 14, respectively. Thus, despite that the 
total area of misclassifications was small, which is why it did not appear in the 
general analysis, the classification of forest-grassland-open space was a 
problem for field workers. 

 
 

Table 5. Standard deviation, mean and coefficient of variation of error sums for se-
lected feature classes among field workers. Number in parentheses indicates the number 
of field workers who had these features represented in the critical quadrants of scatter 
plots (adapted from Publication II).  

 

Feature class StDev Mean CV 
POINTS    
heap of stones (9) 7.5 9 0.83 
foundation (8) 3.6 6 0.66 
scattered trees (7) 6.9 8 0.83 
grove (7) 5.1 7 0.73 
culvert (7) 10.5 12 0.90 
LINES    
path (14) 958 1334 0.72 
forest cutline (7) 1112 1432 0.78 
ditch <2m (4) 1542 1295 1.19 
POLYGONS     
open space (8) 26745 26043 1.03 
grassland (6) 51582 29796 1.73 
forest (6) 12730.2 14669 0.87 

 
 

There was a statistically significant difference of misclassification, omission, 
and commission error rates in different landscape types by the Kruskal-Wallis H 
test.  
 
 
4.3. Error differences among field workers by gender, years 

of experience and the mapped landscape type 
The field workers’ gender, years of experience and mapped landscape type were 
explored to elucidate their influence on the errors. In order to analyse diffe-
rences across field workers, an error rate was used. The analyses reviled that 
female field workers had slightly lower error rates than men (Publication III). 
This difference was not statistically significant according to the Mann-Whitney 
U test (Figure 15a).  
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Figure 15b indicates an overall decreasing trend in error rates with increasing 
years of experience. There was only one field worker with two years of expe-
rience, and he had one of the lowest error rates. Workers with three to four 
years of experience had significantly higher error rates, but the error rate 
decreased thereafter. However, according to the Spearman rank-order correla-
tion, there was a statistically not significant negative relationship (σ = –0.38; 
p=0.09) between the years of experience and the misclassification, omission, 
and, commission error rates (Publication III). 

As shown in Table 1, the number of sites mapped by a given field worker 
was unevenly distributed. Six field workers had inspected only 1 site, but 9 field 
workers had inspected at least 5 sites. Seven field workers had inspected sites in 
the built-up–diverse landscapes, 14 field workers had inspected sites in the 
open-simple landscapes, and 19 field workers in the closed-complex landscapes. 
The error rates were relatively low for all field workers in the built-up–diverse 
landscapes. However, there were nine field workers out of 13 who made the 
least mistakes in open-simple landscapes.  

There were five field workers (2, 6, 10, 16 and 18) who worked in all three 
landscape types (Figure 16). This provides us with a possibility to evaluate the 
effect of the landscape type on mapping quality independently from the field 
workers’ characteristics. All field workers had higher error rates in the closed- 
complex than in the built-up–diverse landscapes. Four out of five had the lowest 
error rates in the built-up–diverse landscapes, and three out of five showed the 
highest error rates in the closed-complex landscapes (Publication III). 

 

 
 

Figure 15. Box plots of the summed values of MCO error rates (all three categories 
combined) by field workers in the three landscape types defined in Figure 9. Field 
workers who mapped all three landscape types are shaded grey (Publication III). 
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5. DISCUSSION 

Error analyses are one of the constituents of data quality management (Jakobs-
son, 2003). The results of error analyses on one hand are important information 
as metadata for data users and on the other hand serve as the basis for the im-
provement of data production (Dassonville et al., 2002; Harding, 2006; 
Jakobsson and Marttinenen, 2003). 
 
 

5.1. Measures of quality elements 
ISO 19157 (International Organization for Standardization, 2013) provides 
numerous measures for each quality element. In the current study, only error 
count, error sum, and error rate were considered (Table 4). For different ana-
lyses various quality measures are suitable. Therefore, unlike the error sum, the 
error count does not depend on the type of geometry and this allows to analyse 
all errors together. Error rate is normalised and useful for a comparative ana-
lysis. 

Moreover, the counts and sums characterise the overall impact of errors 
differently. Error count and error sum may have dissimilar interpretations for 
data providers and data users. For example, the errors in the map consist of 
three (error count) missing paths with a total length (error sum) of 250 m and 
one (error count) superfluous ditch with a length (error sum) of 500 m. For a 
data provider the omission of three paths are more critical as the number of 
errors is bigger, whereas for a data user the commission of a longer ditch may 
have a higher impact, even in case there is just one mistake. Different quality 
measures indicate different feature classes as most erroneous. For example, the 
total area of forest on the test area is 1 km2 and the total area of grasslands  
0.5 km2. From each of those areas 0.1 km2 are misclassified. In this case, error 
rate for forest is 10% and for grassland 20% but error sum would be equal (0.1). 
Therefore, the most erroneous feature class can be different according to diffe-
rent quality measures. 

Hence, in order to explore the most erroneous feature classes the visual in-
spection of graphs (Figure 12, Figure 13; Publication II), makes the analysis 
more comprehensive.  

 
 

5.2. The structure of errors 
The results of two first simple analyses by error type and feature geometry in 
Publication II demonstrated considerable difference between the outcomes of 
general and detailed level analysis by field workers, which confirms the theory 
of Devillers and Beard (2006). Based only on general analysis, one could con-
clude that point and line features are equally problematic, and nonconformities 
are caused mainly by omission and misclassification. Detailed analysis by field 
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workers showed that one field worker mainly omitted point features, while the 
other field worker misclassified lines. However, the analysis by error type and 
feature geometry did not sufficiently explain the variability of errors across the 
sites. Very likely the number of errors in mapping does not depend so much on 
the geometry but rather on the specific feature class or field worker. 

In terms of spatial variation across different landscape types, rates of mis-
classification, omission, and commission errors in built-up–diverse, open–
simple, and closed–complex landscapes differed significantly (Publication III). 
The lowest rates of errors occurred in the built-up–diverse landscapes. Very 
good landmarks, such as buildings, are distinctive features in landscape and 
easily recognizable. Although buildings increase the landscape diversity and 
therefore the potential for making mistakes is higher, they also likely increase 
the attention of the field worker, leading to fewer mistakes. In addition, built-
up–diverse landscapes are well-structured due to the street network. The acces-
sibility and visibility are good which eases mapping.  

The highest rates in error of misclassification, omission, and commission 
were mainly in the forested closed–complex landscape types. This can be easily 
explained by low visibility, complicated penetrability of the landscape, and by 
the outdated aerial photos which were captured in summer instead of early 
spring. The latter fact has a direct influence on stereoplotting, which was one of 
the data sources for the field workers.  

It is more complicated to find an explanation for the high values of the error 
rates in open-simple landscapes where error rates could be expected to be the 
lowest. One possible explanation is that erroneous features of open-simple land-
scapes are mostly placed on their patch edges. However, this would need further 
research.  

 
 

5.3. Errors by the feature classes 
At both, general and field workers level, analyses highlighted several common 
critical feature classes, which can be divided into three groups: (1) features that 
were frequently omitted, e.g. a heap of stones, relict foundation, culvert, path, 
forest cutline; (2) features that tended to be committed in excess, e.g. scattered 
trees; and (3) features that were mostly misclassified, e.g. deciduous grove and 
open space (Publication II).  

The omission of features may result due to  several reasons. Regarding the 
heap of stones and footpath, the reason is clearly an insufficient definition of the 
feature classes involved. Estonia has many heaps of stones of different sizes and 
shapes collected from fields and piled in or along fields, and also numerous 
paths of different widths and qualities, which are not always obvious in the 
forested areas. In these cases, the high number of errors relates to the field 
workers’ inability to decide which class to should be used based on the existing 
definitions, or whether to map the feature at all. For culverts, relict foundations, 
and forest cutlines the problem may also be the visibility on the field and/or 
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cognition on aerial photos as well. Foundations are often overgrown by vege-
tation limiting their detection in landscape. The same is with cutlines which 
may be also obscured by new growth. Similarly to our results, Pätynen et al. 
(1997) and Jakobsson (2002) found in Finland that the biggest concern in 
completeness is related to buildings, streams with current width under 2 m, and 
light-traffic routes. 

In terms of misclassification, the problematic features were buildings and 
agricultural lands. There were many abandoned fields in Estonia in the end of 
1990s (Peterson and Aunap, 1998). Field workers could not decide in which 
feature class they belonged. The most misclassified features were those “neigh-
bouring” each other (like agricultural field–grassland – open space); and those 
rapidly changing in time (forest–forest cutline–young forest). Similar issues are 
well known in habitat mapping (Cherrill and McClean, 1999; Stevens et al., 
2004). The abundant commission of scattered trees in this study is closely 
related to the misclassification of forest too. 

Forest feature class was not problematic in the general level due to the small 
value of erroneous area, although the high coefficient of variation (0.87) for this 
class indicates uniform distribution of errors among the field workers. Forest 
was frequently mixed-up with grassland and open space. It appears that usually 
the problem starts from the forest being primarily mapped with a wrong shape. 
Thus, erroneous areas were mainly located along the forest edge where the 
neighbouring grassland with scattered trees or open space with scattered trees 
made the border of the forest vague.  

In contrast to the forest class, some feature classes that appeared frequently 
misclassified in the general level, had high number of nonconformities pro-
duced by only few field workers. In this study, the feature classes ditch < 2 m 
and grassland were problematic because of the errors made by just two field 
workers, who produced more than half of such errors.  

Feature classes that are more problematic in general level or have more or 
uneven distribution of the errors across field workers should be revised and 
improved in the data capture specification (Harding, 2006). If uneven distri-
butions of error rates occur, additional training for some field workers recom-
mended. 

 
 

5.4. Differences in errors among field workers by gender, 
years of experience and mapped landscape type 

It is often assumed that the data collected following the same procedures have 
similar quality (Frank et al., 2004). It may be true assumption for data acquired 
in remote sensing. However, the current study demonstrates that this assump-
tion does not hold in field mapping. Different field workers may have remark-
able differences in their quality level. The causes may be insufficient mapping 
tutorials or training but might also include in the field workers’ personal 
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characteristics such as gender, years of experience or the ability to interpret 
landscape. 

There are several studies investigating the differences in spatial ability and 
orientation between men and women. Most of the studies found that men have 
better spatial orientation abilities (Coluccia et al., 2007; Coluccia and Louse, 
2004; Lawton, 1994). Although results of the current study showed lower error 
rates for women, the difference with man was not a statistically significant 
(Publication III). The reason may lie in professionality. The participants in pre-
vious studies were mostly volunteers with no previous training or professional 
mapping experience, whereas all the field workers of EBM were trained and 
had 2-11 years of experience in mapping. In addition, several studies pointed 
out that people are navigating better in a safe environment (Lawton, 1994; 
Lawton and Kallai, 2002; Schmitz, 1997). The field workers of EBM could 
choose their preferred landscapes; this means that if a worker did not feel con-
fident or safe in the forested areas, then he or she was assigned to map open and 
built-up areas. It can be seen that women mapped only 23% of the forested 
closed-complex landscapes, whereas the share of the open-simple landscape 
was 45% (Table 1). This indicated the preference of open landscapes by women 
and this may also partially explain why there was no significant difference in 
mapping quality between genders. 

There was a general decreasing trend in the values of error rates with in-
creasing years of experience of field workers (Publication III). However, the 
trend was not statistically significant. Moreover, the field worker with the 
fewest years of experience had one of the lowest error rates, which was an 
unexpected result and it could be hypothesized that the relationship between the 
years of experience and mapping quality may not be linear, rather U-shaped. 
Nevertheless, as there were only few field workers with short experience, this 
hypothesis cannot be confirmed. Similar results, where the years of experience 
were not significantly correlated with classification correctness, were described 
by Hearn et al. (2011) in habitat mapping. 

Within each landscape type, the large variation in error rates occurred, which 
indicates that the individual characteristics of field workers have some effect on 
the mapping quality. The study showed that in the built-up–diverse landscapes, 
the variation of error rates and overall error rates were lower than in the 
closed-complex and open-simple landscapes. This suggests that built-up areas 
were easier to map than natural areas. Girres and Touya (2010), Haklay (2010), 
and Dorn et al. (2015) reached the same conclusion. They found that in VGI the 
mapping quality is higher in urbanized areas. This leads us to a conclusion that 
landscape might affect the mapping quality of both – amateurs and profes-
sionals. 
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6. CONCLUSIONS 

This thesis is based on an empirical database of mapping errors that comprised 
5100 records. Errors were detected for the Estonian Basic Map and found 
during the routine field inspection based on the determined methods. The results 
showed the importance of error analyses on the level of a field worker and by 
landscapes as well, which is rather a new approach, by our knowledge, in 
quality assurance.  

The results of the research led to the following main conclusions.  
 Error analyses by MCO, by geometry type, and by feature classes showed 

differences at the general and field workers’ level which implies to the need 
to explore the individual characteristics of the field workers. 

 Field workers’ years of experience had a decreasing trend of mapping 
quality with the increasing years of experience. The trend was not statis-
tically significant because the field worker with the fewest years of expe-
rience had the lowest error rate, whereas the field workers with average 
experience showed the poorest results in quality, and the field workers with 
the most extensive experience showed an improved mapping quality. 

 Field worker’s gender did not have an influence on the mapping quality. 
There was no statistically significant difference in the results of error ana-
lyses between men and women.  

 The quality of mapping varied among the landscape types. Built-up–diverse 
landscapes showed higher correctness than open-simple and closed-complex 
landscapes. Partially because the number of field workers was limited and 
because these effects are interrelated, it was impossible to clearly differen-
tiate the effect of the individual characteristics of the field workers on the 
mapping quality from the effect of the landscape. 

 To improve the mapping quality, we suggest that the field workers could 
choose their preferred landscape. Moreover, monitoring field work to detect 
errors, so the workers can be trained to avoid such errors in the future, would 
also improve mapping accuracy. 

 The most critical features were the heap of stones, relict foundation, scat-
tered trees, path, forest cutline and grove. To improve the data quality in 
mapping these features, it is necessary to revise their definitions or methods 
of determination in a mapping specification or to consider whether mapping 
these features is absolutely necessary. 
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SUMMARY IN ESTONIAN 

Topograafiliste kaartide temaatiline õigsus ja täielikkus 

Suuremõõtkavalised topograafilised kaardid on tänapäeva ruumiandmete taris-
tute lahutamatuks osaks. Tänu sellele on kaardil kujutatud andmete kasutajas-
kond laialdane alates nii riigi- kui omavalitsusest ja lõpetades hariduse või ette-
võtlusvaldkonnaga. Suur kasutajaskond eeldab andmetelt kõrget kvaliteeti. 
Ruumiandmete kvaliteediga on nii teadlased kui ruumiandmete tootjad tegele-
nud üle 40 aasta. Ühe suurima saavutusena nimetavad mitmed autorid (Devil-
lers, R. et al., 2010; Hunter et al., 2009) ISO 19100 ruumiandmete kvaliteedi 
standardite loomist. Rahvuslike kaardistusagentuuride katusorganisatsiooni Euro-
geographics’i 2018. a uurimus näitab, et INSPIREga ühinenud liikmete seas on 
ruumiandmete kvaliteedi standardite kasutus suurenenud. Samas tuuakse välja 
ka kvaliteedi valdkonna mõned kitsaskohad. Üheks suuremaks puuduseks on 
see, et kvaliteeti käsitletakse kogu ruumiandmekogu ulatuses monotoonsena. 
Kvaliteedinäitajate väärtused arvutatakse välja ning esitatakse kogu andme-
kogule tervikuna. Tegelikult peaks kvaliteeti analüüsima ning väärtuseid esita-
ma suurema detailsusega kas väiksemate territoriaalsete üksuste kohta, nähtus-
kihtide kohta või mõne muu omaduse, näiteks kaardistuse teinud välitöötaja 
järgi moodustatud alamhulga, kohta. Detailsem kvaliteedi analüüs ning saadud 
näitajate esitamine on vajalik nii andmetootjatele kvaliteedi paremaks taga-
miseks kui ka kasutajatele. 

Doktoritöös on kasutatud Eesti põhikaardi 1:10 000 välitööde kontrolli and-
meid aastatest 2003–2006. Töö eesmärgiks on uurida välitöötajate mõju topo-
graafilise kaardistuse kvaliteedile. Põhiliselt on analüüsitud klassifitseerimise 
õigsust ning täielikkust, mida kirjeldati liigsete ja puuduvate objektide näita-
jatega. Välikaardistusel tehtud vigu ja nende struktuuri analüüsiti kahel tasandil: 
1) üldisel tasandil, kus analüüsis osalesid kõik andmebaasis olnud vead korraga; 
2) detailsel tasandil, kus vigu analüüsiti välitöötajate lõikes. Selgitati välja 
vigade struktuur ning kvaliteedilt kriitilisemad nähtused. 

Topograafiliste andmete kvaliteet võib erineda ka ruumiliselt. Selle põhju-
seks võib olla maastiku keerukus, välitöötaja isikuomadused ning võimekus 
maastikku tõlgendada. Käesolevas doktoritöös uuriti kas ja mil määral mõju-
tavad kaardistuse kvaliteeti välitöötaja sugu ja töökogemus ning maastiku 
keerukus. Vektorandmetest maastiku keerukuse indeksite arvutamiseks töötati 
välja metoodika, mille abil väiksed punkt ning joonobjektid lõimiti pindobjekti-
dega ühtseks pinnakatte kihiks.  

Doktoritöö näitas, et üldisel ja detailsel tasandil tehtud kaardistusvigade ana-
lüüsid andsid teatud juhtudel erinevaid tulemusi ning teatud juhtudel sarnaseid 
tulemusi. Vead, mis ilmnesid mõlemal tasandil, olid süsteemsed, teisel juhul 
aga põhjustatud peamiselt üksikutest välitöötajatest. Nähtused, mis olid kriiti-
lisemad mõlema tasandi analüüsides, olid kivihunnik, vundament, harvik, rada, 
siht ja salu. Välitöötaja sugu kaardistuse kvaliteeti ei mõjutanud. Samas väikse 
töökogemusega välitöötajate kaardistuskvaliteet oli kõrgem, kui keskmise töö-
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kogemusega välitöötajatel ning kvaliteet tõusis jällegi väga kogenud töötajatel. 
Analüüsi tulemused näitasid, et hoonestatud-mitmekesises maastikutüübis oli 
välitöötajate lõikes kaardistuse kvaliteet kõrgem, kui avatud-lihtsas või suletud-
keerukas maastikutüübis. Sarnastele tulemustele on jõudnud ka mitmed vaba-
tahtlike kaardistuste (VGI) kvaliteeti uurinud autorid.  

Kaardistuse kvaliteedi tõstmiseks tuleks süsteemsete vigade vältimiseks 
täiendada kaardistusjuhendeid – täpsustada nähtuse definitsiooni või tunnuseid 
või kaaluda, kas antud nähtuse kaardistamine on üldse vajalik. Individuaalsete, 
üksikute välitöötajate põhjustatud vigade vältimiseks on soovitav viia läbi koo-
litusi. Samuti võiks välitöötaja valida endale sobiva maastikutüübi kaardista-
mise, sest uuringud on näidanud, et sobiv maastik tõstab turvalisust ning enese-
kindlust ja seeläbi ka kvaliteeti. 
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