
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Veiko Kääp

Java Virtual Machine
multi-debugger proxy server

Bachelor’s Thesis (9 ECTS)

Supervisor: Vesal Vojdani, PhD
Supervisor: Märt Bakhoff, MSc

Tartu 2018

Java Virtual Machine
multi-debugger proxy server

Abstract: The Java platform provides not only a highly performant abstract
computing machine, the Java Virtual Machine (JVM), but also contains
sophisticated tools for interfacing with running applications. This functionality is
specified in the Java Platform Debugger Architecture (JPDA). JPDA has a
limitation of not being able to attach multiple debuggers to a single JVM which
makes many debugging workflows and use cases impossible to accomplish. The
purpose of this paper is to get rid of this limitation by creating a proxy server
which would connect to the JVM and then allow multiple debuggers to connect
to it. Such proxy server would allow the JVM to be debugged from multiple
remote computers at the same time.

Keywords: Java Virtual Machine, Debugger

CERCS: P170, Computer science

Java virtuaalmasina mitme siluri puhverserver

Lühikokkuvõte: Java Platvorm ei koosne mitte ainult abstraktsest masinast,
Java virtuaalmasinast (JVM), vaid sisaldab ka nutikaid tööriistu töötavate
rakendustega suhtlemiseks. Seda funktsionaalsust käsitleb Java platvormi siluri
arhitektuur (JPDA). JPDA kasulikkust piirab asjaolu, et ühe JVM-i külge on
korraga võimalik ühendada ülimalt üks silur, mis teeb aga paljud silumise võtted
võimatuks. Selle töö eesmärgiks on luua puhverserver, mis eemaldaks antud
piirangu nii, et puhverserver ühenduks ise virtuaalmasinaga ning lubaks endaga
ühendada mitu silurit. Selline puhverserver võimaldab ühte JVM-i siluda
mitmest eri arvutist korraga.

Võtmesõnad: Java Virtuaalmasin, Silur

CERCS: P170, Arvutiteadus

2

Contents
1 Introduction 4

2 Overview of Debugging 6
2.1 Debugging methods . 6
2.2 Use cases of using multiple debuggers in parallel 7

3 Debugging in the Java Virtual Machine 8
3.1 Java Virtual Machine . 8
3.2 Java Platform Debugger Architecture 9

3.2.1 Java Virtual Machine Tool Interface 10
3.2.2 Java Debug Wire Protocol 10
3.2.3 Java Debug Interface . 10

3.3 Java Debug Wire Protocol Specification 11

4 Multi-debugger connections for JVM 13
4.1 The need for connecting multiple debuggers to JVM 13
4.2 Ways to solve the multi-debugger problem 14

5 Implementation of JDWP proxy server 16
5.1 Connection with the JVM and debuggers 16
5.2 Sending and receiving packets . 17
5.3 Parsing command and reply packets 18
5.4 Avoiding id collision . 20
5.5 Routing and manipulating the packets 21
5.6 Building and running the proxy server 24
5.7 Testing the proxy server . 24
5.8 Known problems and limitations . 26

6 Conclusion 27

Appendices 29
A Source code . 29

3

1 Introduction

The Java platform provides not only a highly performant abstract computing ma-
chine, the Java Virtual Machine (JVM), but also contains sophisticated tools for
interfacing with running applications. This functionality is specified in the Java
Platform Debugger Architecture (JPDA), which is a widely used toolkit for mon-
itoring applications on the JVM.

While the JPDA provides extensive tools for debugging any application running
on the JVM, it has the limitation of only accepting a single connection between the
debugger and the JVM. It is not currently possible to attach multiple debuggers to
a single JVM and that makes many debugging workflows and use cases impossible
to accomplish.

One important use case which is impossible to handle currently using JPDA is
a situation where an application running on a single JVM is built from multiple
modules developed on separate remote machines. When problems occur in the
application, it is necessary to monitor and control the application execution for
all the modules. Due to them being developed on separate machines, however, it
is impossible to attach a debugger to the JVM from each machine at the same
time. The only available workaround is to disconnect the connected debugger
when another one needs to attach.

The purpose of this paper is to overcome this limitation by creating a proxy server
which would connect to the JVM and then allow multiple debuggers to connect to
it. Such proxy server would allow the JVM to be debugged from multiple remote
computers at the same time. It would also enable the use of multiple different
IDEs (Integrated Development Environment) while debugging.

Currently no alternative solution exists to solve this limitation. This is mainly due
to the fact that the creation of such a proxy server is quite complex and requires
special handling for most of the functionality the JPDA platform provides.

The development of the proxy server has two main requirements. First require-
ment is that if only a single debugger is connected to the proxy server, then the
behaviour of the proxy server should be identical to a situation where the debugger
is connected straight to the JVM.

The second requirement involves two or more debuggers being connected to the
server. In such case, the proxy server will route and handle the data with the
intention of creating an impression to every debugger of being connected directly
to the JVM.

The main use cases when multiple debuggers are connected include setting, clear-

4

ing and hitting breakpoints in code, stepping to next lines and also resuming
and suspending threads. These use cases will be covered and tested most exten-
sively.

The following sections will introduce the Java Virtual Machine, the Java Platform
Debugger Architecture and will walk through the creation of the proxy server which
will provide a solution to the limitation of connecting only a single debugger to
the JVM.

5

2 Overview of Debugging

One of the most time-consuming aspects of software development is ensuring the
quality of the written program. That means ensuring that the program operates
correctly with the given input, produces the desired output and doesn’t cause any
unwanted side effects. The development of the software will begin with the descrip-
tion of the problem followed by construction of an algorithm designed to solve that
problem. Then the algorithm is implemented in a programming language.

Usually, the compiler detects basic syntactic and semantic problems in the program
and ensures that the program is at least able to start. However, the compiler won’t
detect if there are any logic problems in the code which can cause the output to be
unexpected or the program to halt execution early with an error message.

That means the developer needs to ensure that the algorithm chosen for the prob-
lem behaves correctly in all corner cases and that the algorithm was properly
translated to the programming language. For this, tests are written which will run
the program or small isolated parts of the program and ensure that the program
terminates correctly and gives the expected output.

2.1 Debugging methods

When any of these tests have an unexpected outcome or a problem occurs in a
production environment, the developer will need to investigate and understand
which part of the program leads to the issue or caused the error. The developer
has multiple options on how to determine the faulty part:

• Read and examine the code in order to find the problematic code.

• Change code in random places that seem connected to the issue and see if
the outcome becomes correct.

• Insert logging statements in the code to print intermediate values, and after
rerunning the program, see if and where the values differ from the expected.

• Use a debugger to interactively control and monitor the program execution.

In most cases, using an interactive debugger is the easiest and most efficient
choice [1]. A debugger is a software that allows the developer to monitor and
control the execution of the program. It gives the developer the functionality to
suspend or resume the execution at any time and to evaluate and inspect the
program state while the program is running.

6

Most debuggers work best when they have access to the source code of the program.
Then the debugger can provide the developer with the functionality to change
variable values in the program and set breakpoints at certain lines in the code.
Breakpoints are markers that tell the debugger when to suspend the execution of
the program and to give the control of the execution to the developer.

The main benefit of using a debugger instead of simply adding logging statements
is the ability to start debugging immediately without the need for knowledge of
where the fault might be. With logging statements, the developer might add them
to one location but then discover that the problem is in another location. Then it
is necessary to stop the program, add new logging to the other location and rerun
the program. With an interactive debugger, it is possible to immediately go to the
other location and start debugging there.

2.2 Use cases of using multiple debuggers in parallel

This thesis focuses on how to use multiple debuggers in parallel on the JVM, but
that kind of functionality can be useful for any programming language. Most mod-
ern software design patterns preach modularity as a simple way how to manage
big software projects. So instead of having one huge project built into an applica-
tion, often an application is built from many smaller projects. Depending on the
IDE a developer is using, its interactive debugger might have a limitation of only
allowing the debugger to use sources from a single active project.

For example, all IDEs available from the software company JetBrains have the
feature of creating a separate window for each project. And its interactive debugger
can only operate on projects in the current window. There are workarounds for
this problem — a developer can import external projects as a submodule to an
existing project window, but that requires time to set up properly.

Another use case is when one project is developed in one IDE and the other
project uses a different IDE. Such a situation might happen due to legacy rea-
sons — project layout and features are bound to a particular IDE — or because
both IDEs have a different feature set which might benefit the projects differently.
The problem is even more severe when the projects are developed on different
machines.

Some debuggers have a completely different use case from other debuggers, which
makes it useful to use them in parallel. For example, one debugger could be for
monitoring the running threads and the other for looking into memory consump-
tion. In such a case there is no workaround for using them at once other than
allowing multiple debuggers to debug an application at the same time.

7

3 Debugging in the Java Virtual Machine

This section serves the following purpose:

• Introduce the Java Virtual Machine.

• Walk through the three layers of Java Platform Debug Architecture.

• Investigate the Java Debug Wire Protocol specification.

3.1 Java Virtual Machine

Java Virtual Machine (JVM) is an abstract computing machine which has an
instruction set and which manipulates various memory areas at run time. It spec-
ifies the class file format which “contains Java Virtual Machine instructions (or
bytecodes) and a symbol table, as well as other ancillary information” [2].

Despite the name of the virtual machine, JVM is not only limited to the Java
language. The fact that the JVM only runs code represented by the class file
format allows the virtual machine to be used by multiple different languages. If
anybody wants to run a specific language on the JVM, all they have to do is create
a compiler which translates that language to a class file.

There are many advantages to using the JVM instead of implementing your own
virtual machine or platform:

Platform independence. The JVM is designed to adhere to the idea of writing
once and running anywhere. All the language developer has to do is to
compile the code to a class file and after that, the program will run in the
same manner on all the platforms which the JVM supports.

Security. The JVM has built-in security features which prevent malicious soft-
ware from compromising the Operating System (OS).

Optimization. The JVM can take unoptimized class files and optimize them to
run faster and consume less memory. That means the language developer
doesn’t need to worry about optimization, but can instead leave that task to
the JVM. This has the effect of making the compiler faster and less complex
while at the same time avoiding bugs in the compiler.

Tooling support. There are many tools written for the JVM consisting of pro-
ductivity tools, profilers, application performance management tools (APMs),
application servers and libraries. Any language targeting the JVM will also
be able to use and take advantage of these tools.

8

Debugging. Any debugger architecture or tool written for the JVM can be used
to debug any JVM language.

For the present thesis, the last item is the most important — the problem being
solved exists in the JVM and so affects all the JVM languages. The solution
provided in this thesis will solve the problem for the JVM, so it’s not only limited
to the Java language but for any language targeting the JVM (e.g., Groovy, Kotlin,
Scala).

3.2 Java Platform Debugger Architecture

“Java Platform Debugger Architecture (JPDA) is a multi-tiered debugging archi-
tecture that allows tools developers to easily create debugger applications which
run portably across platforms, virtual machine (VM) implementations and JDK
versions.” [3]

Its three layers are Java Virtual Machine Tool Interface (JVM TI), Java Debug
Wire Protocol (JDWP) and Java Debug Interface (JDI). A developer who intends
to use JPDA can hook into JPDA on any of these layers [3].

Running application

JVM Tooling Interface

JDWP native agent

Java Virtual Machine

Java Debug Interface

Debugger application

Debugger

JDWP

Figure 1: Graphical representation of the Java Platform Debugger Architecture.

Since JDI is the highest level and provides the best ease of use, then Oracle encour-
ages developers to use that for simple Java language based debuggers [3]. While it
is also possible to use the low level functionality provided by JDWP or JVM TI,
they tend to require a lot more development hours depending on the task.

9

3.2.1 Java Virtual Machine Tool Interface

JVM TI is a native interface implemented by the Virtual Machine which serves as
the back-end for JDWP. It is responsible for the services a VM must provide for
debugging. That includes different requests for information about the JVM, but
also actions the JVM should take and notifications sent to the debugger [4].

JVM TI is the lowest level layer in the JPDA. It provides the most direct access
to the JVM, but that comes at the cost of portability — due to being a native
interface, it requires to be built separately for each platform.

It also requires the developer to have access to the JVM startup arguments in
order to attach the agent. It isn’t possible to attach the agent remotely or after
the JVM startup.

3.2.2 Java Debug Wire Protocol

Java Debug Wire Protocol (JDWP) is responsible for the format of information
and transfer of requests between the JVM and the debugger. JDPW only specifies
the format and layout of the protocol, but it does not set any restrictions to
transport mechanism [5].

The main benefit of the JDWP layer is that the debugged program and debugger
can run on different platforms and JVMs. It also creates the possibility of imple-
menting the debugger in a language other than Java by creating a new front-end
for JDWP.

3.2.3 Java Debug Interface

Java Debug Interface (JDI) is a Java interface which defines information and re-
quests at a user code level. It serves as the front-end to JDWP. This interface is
the most common way to debug a JVM and most of the Integrated Development
Environments (IDEs) also use it for implementing their graphical user interface
for the debugger.

Its biggest disadvantage is that the interface is available only for JVM languages.
If a developer wished to create a debugger for the JVM in some other language,
then it would be necessary to implement a new debug interface using the JDWP
in that particular language. For that reason, JDI might be considered the least
important layer of the JPDA since it is the easiest to exchange it for another
interface and in many cases, it is even mandatory to do just that.

10

3.3 Java Debug Wire Protocol Specification

The JDWP startup consists of connection establishment and the following hand-
shake between the virtual machine (VM) and the debugger. Handshake consists of
debugger sending 14 bytes of ASCII characters of the string “JDWP-Handshake”
to the VM and the VM replying with the same 14 bytes [6].

JDWP is packet based and is not stateful. In JDWP there exist two types of
packets: command packets and reply packets. The JDWP is asynchronous so it is
possible to send multiple command packets before a reply is received for the first
command.

Both the target VM and the debugger can send command packets. For the de-
bugger, they’re used to “request information from the target VM, or to control
program execution.” The target VM sends them to “notify the debugger of some
event in the target VM such as a breakpoint or exception.” [6]

A reply packet is sent as a response to the command packet and provides infor-
mation whether the command was a success or failure. The reply packet can also
return a value or data requested by the command packet. In the current version
of the protocol, events that are sent from the target VM do not require a response
or a reply packet from the debugger.[6]

Headers of command and reply packets are equal in size and always 11 bytes. The
layout of the command packet is the following:

• Header
– length (4 bytes)
– id (4 bytes)
– flags (1 byte)
– command set (1 byte)
– command (1 byte)

• Data (variable size)

The layout of the reply packet is the following:

• Header
– length (4 bytes)
– id (4 bytes)
– flags (1 byte)
– error code (2 byte)

• Data (variable size)

The length field in the packet represents the size of the entire packet in bytes.

11

Since the header size is always 11 bytes, then no packet can have a size less than
11 bytes. A packet which contains no data has a size of 11 bytes. The id field of
the packet is used to “uniquely identify each packet command/reply pair.” [6] It is
required for the reply packet to have the same id as the command packet to which
it replies. Furthermore, the values of the id field must be unique for all command
packets sent from a single source. The flags field is currently only used to mark
whether a packet is a reply packet or a command packet.

The command set field in command packets is used for grouping commands. Com-
mand sets with a value from 0 to 63 are used for command packets sent to the
target VM and command sets with a value from 64 to 127 is used for command
packets sent to the debugger. Rest of the possible values from 128 to 255 are left
for vendor-defined commands and extensions. [6] The command field combined
with the command set field is used to identify how the command packet should
be handled. Reply packets don’t need command set and command fields since
they are paired with a command packet which already contains this information.
Error code field is only present in reply packets and it is used to show whether
the command packet was processed successfully or an error has occurred during
its processing.

The data field is unique for each specific command and it also differs between
the command and reply packet pairs, so a command packet can have a different
data field value from its reply. The data field of a packet is usually abstracted
to a group of multiple subfields that define the packet data. The subfields are
encoded in big-endian (Java) format. For the abstracted subfields, the protocol
uses some of Java primitive types like byte, boolean, int, long, but it also de-
fines some custom types. Most of these custom types can have a variable size in
bytes depending on the JVM. In order to find the size of these types, the pro-
tocol has an idSizes command which replies to the debugger with the sizes of
different types. [6] All the types used in the data field are listed in the follow-
ing Oracle documentation: https://docs.oracle.com/javase/10/docs/specs/
jdwp/jdwp-spec.html#detailed-command-information

12

https://docs.oracle.com/javase/10/docs/specs/jdwp/jdwp-spec.html#detailed-command-information
https://docs.oracle.com/javase/10/docs/specs/jdwp/jdwp-spec.html#detailed-command-information

4 Multi-debugger connections for JVM

This section will first describe why connecting multiple debuggers to a single JVM
is a needed feature for the Java Platform and how the JPDA is limited without it.
Then it will discuss how to approach solving this limitation and which approach
is the best solution.

4.1 The need for connecting multiple debuggers to JVM

This section will describe the need for a proxy server for JDWP. More general use
cases for using multiple debuggers in parallel were described in Section 2.2, but
this section will focus in more detail on specific use cases unique for JPDA.

The JVM has support for tools called Java agents which use application program-
ming interfaces (APIs) provided by the JVM to instrument programs running on
the JVM. These APIs give JVM tool creators extensive functionality for creating
simple to use agents which can be used for solving many problems. Agents can
be used for monitoring performance, exceptions, logging or even to add previously
unavailable features to the JVM, like reloading code at runtime.

However, since the instrumentation APIs provide so many possibilities, it is also
quite easy to misuse the functionality and create hard to understand cases where
the program doesn’t function as expected. For such cases, interactively debugging
the agent and the program running at the same time is one of the few possible
ways to locate the cause of the problem. It does not, however, make much sense
to have the running application and the agent in the same IDE workspace since
their functionality and purpose are completely different. In such case, being able
to write both projects in different workspaces but to debug both of them at the
same time is crucially important.

Similarly, any application framework which allows the creation of plugins can
benefit from being able to attach multiple debuggers. For example, most IDEs
are designed so that all the supported languages and special features are not part
of the core code base, but instead available as plugins. Such approach has many
benefits including making the main code base smaller and easier to maintain. It
also creates a clear separation between what the IDE should do and what each
plugin does and makes it easier to later add new functionality by implementing a
new plugin. Since separation is so important in such cases, then it makes sense to
develop all plugins in separate workspaces. There again debugging them at once
makes sense since at runtime the IDE with all the plugins functions as a single
application creating a need for attaching multiple debuggers to the JVM.

13

4.2 Ways to solve the multi-debugger problem

Since there is no support from the JVM to connect multiple debuggers simul-
taneously, then writing a custom solution is required. JPDA is multi-tiered, as
described in Section 3.2, so this thesis will consider all three layers of the archi-
tecture when solving the problem. For each layer, there is a different approach on
how to solve the limitation.

Starting with the JVM TI, at first, this might seem like the most promising layer
for allowing multiple debuggers since it is in this layer where the connection with
the debugger is done. Working in this layer, however, would mean creating a
new native agent which would duplicate all the debugging functionality of the
built-in JDWP back-end agent, but at the same time add the support for multiple
debuggers. Simply taking the existing native agent and modifying it isn’t an
option, since this agent might differ between different JVM vendors and might
change with each JVM release. Also, since it’s a native agent, then it would need
to be built for each supported platform making its distribution and usage more
difficult.

Another possibility is to use JDI, but that currently only supports being the front-
end of JDWP and so acts as the debugger. That means all of its logic is written
for connecting and communicating with the JVM, but it has no code for being the
back-end for another debugger. Also, since it’s meant to be the most accessible
layer of JPDA, then it hides quite a lot of the connection details and packets to
make the usage simpler. While it is possible to access and use the implementation
code which is aware of all these details, it’s made a lot more difficult and in
some cases even impossible by the introduction of the Module system in Java 9.
Since the solution should be backwards compatible with newer Java versions, then
supporting the Module system is important and its limitations must be taken into
account.

The last layer to look at for the solution is the transport protocol JDWP which
is used for communication between the front-end and back-end of the JPDA. This
layer doesn’t have any code to reuse since it’s simply a description of how the other
layers of JPDA should communicate, but it is the simplest place where to solve the
problem for numerous reasons. First of all, a solution in transport layer wouldn’t
set any restrictions on how the front-end and back-end of the debugger platform
are implemented. The other layers can remain completely oblivious to the fact
that there is something going on between them. This would solve the problem of
having to support multiple JVM vendors and platforms or letting a developer use
a front end other than JDI. Secondly, JDWP is backwards compatible, so that the
solution created will keep working even with newer versions of JVM.

14

The idea is to create a proxy server for the JDWP which would connect to the JVM
as a debugger and then let multiple debuggers connect to it. It would exchange
packets with the JVM and debuggers and would pass them on and manipulate
them as needed in order to maintain all the features of the debuggers as specified
by the JPDA. What makes this solution simpler from the other two mentioned
above is the fact that most packets don’t require any special handling and can
be passed directly from the sender to the receiver. With other layers, it is still
required to implement the handling of such packets, but with JDWP proxy server
it is possible to simply pass these packets on to where they were sent with no extra
logic needed. Thanks to that, most of the development time for the proxy server
can be focused on the packets and actions which do need special behaviour.

Running application

JVM Tooling Interface

JDWP native agent

Java Virtual Machine

Proxy Server

Java Debug Interface

Debugger application

Debugger 1

Java Debug Interface

Debugger application

Debugger 2

JDWP

JDWP

JDWP

Figure 2: Graphical representation of the Java Platform Debugger Architecture
with JDWP proxy server.

Figure 2 illustrates how the JPDA should function with a JDWP proxy server in
use. The proxy server will intercept the connection between the JVM and the
debuggers and start passing and modifying sent packets. In the following section,
we’ll walk through the implementing, running and testing of the JDWP proxy
server.

15

5 Implementation of JDWP proxy server

This section will describe in detail how the JDWP proxy server was implemented,
what problems were encountered and if it solved the limitation worded in the pre-
vious section. It will also discuss the ways the program is tested and what features
it’s still lacking. The following subsections will describe the implementation in
the order in which they were written, starting from establishing a connection and
ending with testing.

The proxy server was written in Java 8. Java was used because it is a JVM
language and so can be used on any machine where debugging Java can be used.
Version 8 was used because that’s the latest publicly available Java version with
long-term support. The integration tests also use Kotlin since it allows one to
write shorter, more concise and easy to read tests.

5.1 Connection with the JVM and debuggers

The connection between the proxy server and the JVM and between the proxy
server and debuggers is similar, but not identical. JPDA specifies that after a
connection is established between JVM and a debugger, the debugger sends a
handshake consisting of ASCII string “JDWP-Handshake” to the JVM and the
JVM sends back the same string. After the connection is established and the
handshake is finished, then JVM stops allowing new connections to that socket
until the debugger is disconnected.

The proxy server behaves in a similar fashion, first connecting to the JVM and
sending to it the handshake bytes and waiting for the bytes to be sent back. Then
it starts to wait for connections from debuggers and will reply to their handshakes
once they establish a connection. The proxy server will connect only to a single
JVM, but it will allow an unlimited number of debuggers to establish a connection
with itself.

Even though JDWP doesn’t specify over which communication channel the connec-
tion should be made, the most often used way is to use TCP/IP based transport.
In such a case the JVM is made to listen for connections from a debugger on a
specific port specified in JVM startup arguments. In its current state, the proxy
server only supports TCP/IP based transport. Because the JVM has already spec-
ified a port on which to connect to the debugger, then in case the proxy server is
running on the same machine, then it can’t use the same port and must instead
start listening for debugger connections on a different port.

16

Debugger 1 Debugger 2 Proxy server JVM

t t t t

Handshake on port 5005
Reply on port 5005

Handshake on port 6006
Reply on port 6006

Handshake on port 6006
Reply on port 6006

Figure 3: Illustration of handshakes between JVM, debuggers and the proxy
server.

Figure 3 illustrates how the connection works on different ports for the debuggers
and the JVM. In that figure the JVM is using port 5005 for listening to debugger
connections, but the proxy server exposes port 6006 for other debuggers to connect
to. The debuggers themselves have to connect to the proxy port since the JVM
port won’t accept any more connections due to the proxy server already being
connected to it. The graphic shows clearly how for the JVM, the proxy server starts
the handshake, but for the debuggers, it simply replies to the handshake.

5.2 Sending and receiving packets

For handling the packets read from the JVM and the debuggers and the packets
written to them, it was decided to use non-blocking IO with message passing.
A single thread is handling all the reads and writes regardless of the number of
debuggers connected. That thread waits until any stream from debugger or JVM
is ready for writing or reading and then checks whether that stream has something
to read from or write to. If there is something to be read from the stream, then
the packet bytes are read and then the packet is added to a read queue. For
writing to the streams, there is a write queue for each stream and if there is
anything in that queue, then it is written to the stream. These queues are used
for avoiding concurrency problems with other threads. Other threads don’t have
a direct access to the streams, but must instead get all the read packets from the
read queue and if they wish to write something to a stream, then they’ll add it to
the write queue.

17

JVM Debuggers

Read queue IO Thread Write queues

Parsing ID mapping Routing

Incoming/outgoing packets

Push

Pop Push

Pop

JDWP proxy server

Figure 4: Graphical representation of the JDWP proxy server logic.

Figure 4 shows how using the separate thread and queues for transport keeps the
reads and writes separate from rest of the proxy server logic and guarantees that
only one packet is read from or written to a stream at a time.

5.3 Parsing command and reply packets

Since the packets received from the JVM or debuggers are just sequences of bytes,
then it is necessary to parse them before they can be processed further. The header
of a packet is quite easy to parse since it’s always 11 bytes and can only be either
a reply or a command packet. The data bytes of a packet, however, are different
for each command and reply packet.

First, it is important to understand what are the values of the command set and
command fields of the packet. For a command packet, the fields are available in
the packet header. Reply packet doesn’t contain these fields, but based on the
packet id it’s possible to find the command packet and use its command set field
and the command field. Due to this, the command packet field values must be
stored until a reply has been received.

Using the command set and command field values, it is possible to identify the
correct command and the field types contained in its data part. Each command
requires writing a custom parser for it to understand the specific command data
format.

18

� �
@AutoValue
public abstract class BreakPointEvent extends VirtualMachineEvent {
public abstract int getRequestId();
public abstract ThreadId getThread();
public abstract Location getLocation();

public EventKind getEventKind() {
return EventKind.BREAKPOINT;

}

public static BreakPointEvent create(int requestId, ThreadId thread, Location location) {
return new AutoValue_BreakPointEvent(requestId, thread, location);

}

public static BreakPointEvent read(DataReader reader) {
return create(

reader.readInt(),
ThreadId.read(reader),
Location.read(reader)

);
}

public void write(DataWriter writer) {
writer.writeType(getEventKind());
writer.writeInt(getRequestId());
writer.writeType(getThread());
writer.writeType(getLocation());

}
}� �
Listing 1: Breakpoint event representation as a class with read and write methods
for reading and writing the bytes for the packet data field.

The code listing 1 shows how the bytes are parsed for reading for a breakpoint event
in the method read and how the parsed data is processed back into bytes in method
write. Helper classes DataReader and DataWriter are used to make parsing and
writing simpler and less error-prone. The meaning of fields for parsing is taken
from Oracle documentation on JDWP: https://docs.oracle.com/javase/10/
docs/specs/jdwp/jdwp-protocol.html

One detail that makes parsing the data field more difficult is the fact that the
subfields used in the data field can have variable size depending on the JVM. For
example, a ThreadId type of field might take 8 bytes on one JVM, but 5 bytes on
another. It is only specified in the JDWP specification that the upper limit for
such types is 8 bytes. So in order to find the correct size of these types, the proxy
server will catch the IdSizes reply packet and read the lengths of the subfields

19

https://docs.oracle.com/javase/10/docs/specs/jdwp/jdwp-protocol.html
https://docs.oracle.com/javase/10/docs/specs/jdwp/jdwp-protocol.html

from there.

5.4 Avoiding id collision

As described in section 3.3, all command packets coming from a single source must
have a unique id. This can cause problems for the proxy server since multiple
debuggers can send packets with identical ids and the JVM requires each id to be
unique. That means the ids must be changed for the incoming packets in order to
ensure their uniqueness. Another reason to do that is that it might be necessary
for the proxy server to artificially create new packets to be sent to the JVM or
debuggers and for these packets, also unique ids are needed. If the id generation
is left to the debuggers and the JVM, then the created packet id might conflict
with the original received packets.

The logic for changing the ids of debugger command packets is that a new unique
id is generated and the original id is changed to the generated one. Then the old id
and the generated id are cached as a pair so if later a reply packet is received then it
can be mapped back to the original id which the debugger expects to receive. The
generated ids are global for all the debuggers, so the possible number of id values
for a single debugger is twice smaller when two debuggers are connected. When
more debuggers are connected, then the possible number of values will decrease
even further.
Debugger 1 Debugger 2 Proxy server JVM

t t t t

Command packet(id=1)
Change id: 1 → 2

Command packet(id=2)
Reply packet(id=2)

Change id: 2 → 1
Reply packet(id=1)

Command packet(id=1)
Change id: 1 → 3

Command packet(id=3)
Reply packet(id=3)

Change id: 3 → 1
Reply packet(id=1)

Figure 5: Illustration of the proxy server changing packet ids for debuggers.

20

As can be seen from figure 5, both debuggers send out a command packet with an
identical id and later receive a reply with the same id, but the JVM will receive
two different ids and regard them as completely different packets.� �
public Packet visit(CommandPacket packet) {
// Generate new id to ensure every packet reaching vm has a unique id
// This also makes it easy to later connect reply and command packets and avoid collision
int newId = getNewId(packet.getId());
return new CommandPacket(
newId,
packet.getCommandSetId(),
packet.getCommandId(),
packet.getData(),
packet.getSource()

);
}

public Packet visit(ReplyPacket packet) {
// Restore original id
int originalId = getOriginalId(packet.getId());
return new ReplyPacket(
originalId,
packet.getErrorCode(),
packet.getData(),
packet.getSource()

);
}� �
Listing 2: Visitor methods for processing the ids of received and written debugger
packets.

The visit methods from the code listing 2 are responsible for creating a changed id
for received command packet and restoring the original id of the reply packet.

5.5 Routing and manipulating the packets

Most of the commands sent by the debuggers are mostly stateless and don’t ma-
nipulate or change the state of the JVM. Such commands usually ask for some
information and receive it in the reply without the JVM having to alter its be-
haviour. No special handling of such commands is needed apart from changing
the packet id due to reasons discussed in section 5.4.

There are however commands which either control the execution of the program
in JVM or request for notifications about certain events in the future. Some of the
most widely used commands which alter the execution of the debugged program

21

are resume and suspend commands. These tell the JVM to suspend or resume
all execution in a single thread or for all threads. The proxy server must have
special logic to handle these commands since sending these commands directly to
the JVM can cause unpredictable behaviour.

For example, if two debuggers send a suspend command to the proxy server, then
the proxy server needs to remember that both debuggers want the JVM to be
suspended, but won’t suspend the JVM twice. When one of these debuggers later
sends a resume command to the proxy server, then it won’t be sent on to the
JVM because the other debugger still needs the JVM to stay suspended. The
resume command is only sent on when both debuggers have sent it. Otherwise,
the second debugger would think the JVM is still suspended, but actually, it has
been resumed by the first one.

Debugger 1 Debugger 2 Proxy server JVM

t t t t

Suspend command
Suspend command

Suspend reply
Suspend reply

Suspend command
JVM already suspendedSuspend reply

Resume command Don’t resume because
of debugger 2Resume reply

Resume command
Resume command

Resume reply
Resume reply

Figure 6: Illustration of proxy server routing suspend and resume commands.

As can be seen in figure 6, the first suspend command is forwarded to the JVM,
but the second one is not. With resume command it’s the opposite: the first
resume command is not forwarded, but the second one is. It is also important to
mention that even though the command is not always forwarded to the JVM, the
proxy server still has to reply to the debugger since each command packet sent
from a debugger expects to receive a reply packet from the JVM.

Similar problems arise with events and event requests. A debugger can send event
requests to the JVM which will specify for which kind of events the debugger
wishes to get notifications. Later when these events occur then the JVM will

22

send event command packets to the debugger informing what event happened and
other details about the event. These events can be about classes loaded or threads
started or certain code being invoked in the application.

Events and event requests are tricky for the proxy server to route because each
debugger can ask for different kind of events, but the JVM later sends the events
that happened at the same time, together. Event requests can also differ on what
to do with the event when it occurs. One debugger can specify that the whole
JVM should suspend when a breakpoint is hit, but other debugger says it should
just suspend a single thread.

Due to these difficulties, each event request is parsed by the proxy server and
cached to later know which debugger requested which events. When JVM sends
events to the proxy server, then these events are split accordingly and each debug-
ger receives only the events it requested.� �
private void sendEventsToSource(PacketSource source, CompositeEventCommand command) {
List<VirtualMachineEvent> events = command.getEvents().stream()

.filter(event −> isEventRequestedBySource(source, event))

.collect(Collectors.toList());
if (events.isEmpty()) {
return;

}

proxyCommandStream.write(
source,
CompositeEventCommand.create(
proxyCommandStream.getVmSource().createNewOutputId(),
command.getSuspendPolicy(),
events, vmInformation

)
);

}

private boolean isEventRequestedBySource(PacketSource source, VirtualMachineEvent event){
if (event instanceof VmStartEvent || event instanceof VmDeathEvent) {
return true;

}
else {
RequestIdentifier identifier = new RequestIdentifier(
event.getEventKind(), event.getRequestId()

);
List<PacketSource> sources = eventRequestIdSourceMap.get(identifier);
return sources.contains(source);

}
}� �
Listing 3: Methods for sending only the requested events to a debugger.

23

In the code listing 3, the CompositeEventCommand object has been parsed from
a command packet received from the JVM. The command is then split into a
separate command for each debugger with only the events which it has requested.
The JVM start and death events are always sent to each debugger as according to
the JDWP specification [6].

5.6 Building and running the proxy server

The proxy server is built using the Maven build tool which needs to be installed
in order to build the application. Java 8 is also required for building and running
the proxy server. Maven handles the compilation and the dependencies of the
project and runs all the tests when building the application. In order to build the
proxy server, navigate to application source root and invoke command mvn clean
package.

After that, to run it, navigate to directory server-logic/target and invoke the
command java -jar server-logic-0.1-SNAPSHOT.jar jvm.host=<hostname>
jvm.port=<port> proxy.port=<port>. If the jvm.host argument is not speci-
fied, then it defaults to address "127.0.0.1".

5.7 Testing the proxy server

For testing the proxy server, both unit and integration tests were used. The unit
tests were written in Java, but for the integration tests, a simple test framework
was written in Kotlin and Java. The test framework will start a simple application
in a forked JVM which has debugging enabled. It will also start the proxy server
which is attached to the JVM and starts one or two debuggers which connect to
the proxy server. After that, the test framework will allow the developer to add
breakpoints, run code when breakpoints are hit and suspend/resume the JVM
through both debuggers. The test written using this framework can assert that
the proxy server will behave correctly when manipulating the execution of the
JVM with two concurrent debuggers.� �
val testClass = SimpleBreakpointClass::class.java
val firstLocation = BreakpointUtil.findBreakLocation(testClass, 0)
val secondLocation = BreakpointUtil.findBreakLocation(testClass, 1)

@Test fun ‘test single breakpoint with 2 debuggers‘() =
runTest(testClass) { jvm, firstDebugger, secondDebugger −>

val firstBreak = firstDebugger.breakAt(firstLocation) {
jvm.outputDeque.assertAddedOutput("Before breakpoints")

24

} thenResume {}

val secondBreak = secondDebugger.breakAt(firstLocation) {
firstBreak.joinAndTest(4, TimeUnit.SECONDS)
assertTrue(jvm.outputDeque.isEmpty())

} thenResume {}

firstDebugger.allBreakpointSet()
secondBreak.joinAndTest()
jvm.waitForExit()
jvm.outputDeque.assertAddedOutput("After breakpoint 0", "After breakpoint 1")

}� �
Listing 4: Example of an integration test adding breakpoints and asserting JVM
output.� �
public class SimpleBreakpointClass {
public static void main(String[] args) {
System.out.println("Before breakpoints");
BreakpointUtil.mark(0);
System.out.println("After breakpoint 0");
BreakpointUtil.mark(1);
System.out.println("After breakpoint 1");

}
}� �
Listing 5: Test class being executed on the forked JVM.

The code listing 4 shows how the breakpoints are set and output asserted using the
test framework and the listing 5 shows the class that is executed by the JVM.

Below, in listing 6, is an example of a unit test from the proxy server.� �
public class FieldAccessEventTest extends EventTestBase {
@Test
public void testReadAndWriteEqualsOriginalEvent() throws ReflectiveOperationException {
assertWrittenEventEqualsReadEvent(EventKind.FIELD_ACCESS, FieldAccessEvent.

create(
randomInt(),
randomThreadId(),
randomLocation(),
randomByte(),
randomReferenceTypeId(),
randomFieldId(),
randomTaggedObjectId()

));
}
protected <T extends VirtualMachineEvent> void assertWrittenEventEqualsReadEvent(

EventKind expectedEventKind, T originalEvent) throws ReflectiveOperationException {

25

ByteBuffer buffer = ByteBuffer.allocate(4096);

writeEvent(buffer, originalEvent);
EventKind readEventKind = EventKind.read(createReader(buffer));
T readEvent = readEvent(buffer, (Class<T>) originalEvent.getClass());

assertEquals(expectedEventKind, readEventKind);
assertEquals(originalEvent, readEvent);

}
}� �
Listing 6: A unit test testing whether reading and writing a data field of a
particular JVM event returns identical bytes to the original event.

The test coverage of the proxy server per lines of code is 72%.

5.8 Known problems and limitations

The implemented proxy server solves most of the use cases for using multiple
debuggers concurrently described in section 4.1. There are however small problems
and corner cases where it might not function as expected. Not all implemented
use cases are covered by the tests yet so these use cases cannot be guaranteed to
work. What also needs to be improved is how to handle debuggers connecting
and disconnecting while the JVM is suspended or when some packets from the
disconnected debugger are still being processed.

The JPDA also has very many different events and filters for the event requests.
All of these different events should be tested to make sure there is no undefined
behaviour caused by the proxy server.

The data given to the JVM with event requests specifies a suspend policy for the
triggered event. It specifies whether the JVM should suspend only the thread in
which the event occurred or all threads. It is possible also to suspend no threads
and to just notify the debugger that the event occurred. The proxy server currently
doesn’t support the case where one debugger creates events with global suspend
policy and another creates events with single thread suspend policy.

26

6 Conclusion

This thesis introduced different ways of debugging programs and described how
debugging works for the Java Platform. It then detailed why using multiple de-
buggers concurrently is a needed feature and what is impossible to accomplish
without it. Multiple choices were proposed how to fix the problem and why most
possibilities were lacking.

In the last section, the implementation of Java Debug Wire Protocol (JDWP)
proxy server was described. It brought out how to build and run the proxy server,
how it was tested and why and how it really works.

As described in section 5.8, the proxy server has its share of limitations which
can be improved upon in the future. One of the most important aspects is to
increase test coverage by creating more integration tests for testing wider set of
use cases. Also, error management can be improved to make sure the proxy server
behaves predictively if one debugger or the JVM were to suddenly disconnect or
start sending corrupted packets.

The most important lacking feature for the proxy server functionality is the failure
to specially handle breakpoints with a single thread suspend policy. Currently, the
proxy server assumes breakpoints are created which suspend all the JVM threads,
but it is also possible to create breakpoints and other event requests which suspend
only the thread where the event occurred. Such use cases work in some cases, but
are currently mostly untested and might cause weird behaviour.

27

References

[1] Tomáš Martinec. Evaluation of Usefulness of Debugging Tools. Master’s thesis,
Charles University in Prague, Prague, 2015.

[2] Java Virtual Machine introduction. https://docs.oracle.com/javase/
specs/jvms/se10/html/jvms-1.html#jvms-1.2.

[3] Java Platform Debugger Architecture specification. https://docs.oracle.
com/javase/10/docs/specs/jpda/architecture.html.

[4] Debugger interface: Java Virtual Machine Tooling Interface. https://docs.
oracle.com/javase/10/docs/specs/jpda/architecture.html#jvmti.

[5] Debugger interface: Java Debug Wire Protocol. https://docs.oracle.com/
javase/10/docs/specs/jpda/architecture.html#jdwp.

[6] Java Debug Wire Protocol Specification. https://docs.oracle.com/javase/
10/docs/specs/jdwp/jdwp-spec.html.

28

https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-1.html#jvms-1.2
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-1.html#jvms-1.2
https://docs.oracle.com/javase/10/docs/specs/jpda/architecture.html
https://docs.oracle.com/javase/10/docs/specs/jpda/architecture.html
https://docs.oracle.com/javase/10/docs/specs/jpda/architecture.html#jvmti
https://docs.oracle.com/javase/10/docs/specs/jpda/architecture.html#jvmti
https://docs.oracle.com/javase/10/docs/specs/jpda/architecture.html#jdwp
https://docs.oracle.com/javase/10/docs/specs/jpda/architecture.html#jdwp
https://docs.oracle.com/javase/10/docs/specs/jdwp/jdwp-spec.html
https://docs.oracle.com/javase/10/docs/specs/jdwp/jdwp-spec.html

Appendices

A Source code

The source code for the proxy server is available on GitHub at the following link:
https://github.com/veikokaap/jvm-multi-debugger-proxy. The instructions
for building and running the proxy server are in section 5.6.

29

https://github.com/veikokaap/jvm-multi-debugger-proxy

Non-exclusive licence to reproduce thesis and make thesis public

I, Veiko Kääp (date of birth: 4th of January 1996),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Java Virtual Machine
multi-debugger proxy server

supervised by Vesal Vojdani and Märt Bakhoff

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, May 14, 2018

30

	Introduction
	Overview of Debugging
	Debugging methods
	Use cases of using multiple debuggers in parallel

	Debugging in the Java Virtual Machine
	Java Virtual Machine
	Java Platform Debugger Architecture
	Java Virtual Machine Tool Interface
	Java Debug Wire Protocol
	Java Debug Interface

	Java Debug Wire Protocol Specification

	Multi-debugger connections for JVM
	The need for connecting multiple debuggers to JVM
	Ways to solve the multi-debugger problem

	Implementation of JDWP proxy server
	Connection with the JVM and debuggers
	Sending and receiving packets
	Parsing command and reply packets
	Avoiding id collision
	Routing and manipulating the packets
	Building and running the proxy server
	Testing the proxy server
	Known problems and limitations

	Conclusion
	Appendices
	Source code

