
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Mart Simisker

Study of Optimal Linear Batch Codes

Bachelor's Thesis (9 ECTS)

Supervisor: Vitaly Skachek, PhD

Tartu 2017

Study of Optimal Linear Batch Codes

Abstract:

Linear batch codes can be used for load balancing in distributed storage sys-
tems. In order to obtain e�cient performance, it is important to have codes with
optimized parameters, which is a complicated mathematical problem.

Speci�cally, in this thesis, algorithms and software for searching for linear batch
codes are presented. Two upper bounds for systematic linear batch codes are
derived. The shortest lengths of systematic linear batch codes, which have been
found with the help of the software, are compared to known upper and lower
bounds.

Keywords: Coding theory, linear batch codes, bounds on the code parameters,
distributed data storage

CERCS: P175 Informatics, systems theory

Optimaalsete lineaarsete partiikoodide uuring

Lühikokkuvõte:

Lineaarseid partiikoode saab kasutada koormuse ühtlustamiseks hajusandmetal-
letussüsteemides. Selleks et tagada efektiivne sooritusvõime on tarvis optimeeritud
parameetritega koode. Selliste koodide leidmine on aga keerukas matemaatiline
probleem.

Selles töös esitatakse algoritme ja tarkvara, mille abil on võimalik uurida li-
neaarseid partiikoode. Tuletatakse kaks uut ülemtõket lineaarsetele partiikoodi-
dele. Lõpuks võrreldakse tarkvara abil leitud lühimaid süstemaatiliste lineaarsete
partiikoodide pikkuseid seni teadaolevate tõketega.

Võtmesõnad:Kodeerimisteooria, lineaarsed partiikoodid, tõkked koodi parameet-
ritele, hajus andmetalletus.

CERCS: P175 Informaatika, süsteemiteooria

2

Contents

1 Introduction 4

1.1 General background . 4
1.2 De�nitions . 5
1.3 Examples . 7
1.4 Known results . 9

2 Software 11

2.1 Introduction . 11
2.2 Algorithms . 11

2.2.1 Request �ll algorithm . 11
2.2.2 Code testing algorithm . 14
2.2.3 Checking if a code with given parameters exists 15

2.3 Instructions for use . 17
2.4 Possible improvements . 17

3 Constructions 19

3.1 Upper bound for systematic linear batch code with k = 2, r = 2
and any t . 19

3.2 Upper bound for systematic linear batch code with k = 3, r = 2
and any t . 20

4 Experimental results 22

4.1 Tables for batch codes . 22
4.2 Comparison of PIR and batch codes 25

5 Conclusions 26

3

1 Introduction

1.1 General background

In a large data storage system, where the data is distributed between multiple
servers, there are multiple concurrent requests. To ensure e�cient service, load
balancing is required. For this purpose, batch codes were proposed by Ishai et al.
in [1].

Batch codes help to design a system, that ensures that any t requests can be
made at the same time, and the system will know how to handle the requests in
parallel, without overloading some of the servers.

A special case of batch codes are linear batch codes. In that case, the coding is
a linear mapping function. A common way of de�ning linear batch codes is with
the help of a generator matrix. The generator matrix is a k × n matrix, where k
is the number of information symbols and n is the number of coded symbols that
are stored.

Linear batch codes were studied in [2]. Additional bounds were obtained in [3]
and [4]. In [5], the authors study a special case of batch codes called "binary switch
codes." A related family of codes called locally repairable codes is considered in [6].

Another related code family is codes for private information retrieval (PIR).
These codes can be used in the distributed databases, where the user wants to
keep the requested symbols secret from the server [7].

The following questions arise in this context:

1. What is the smallest amount of servers for handling t requests at the same
time?

2. What is the best method for forming reconstruction sets?

3. How to generate good batch codes?

4

The aim of the thesis is to study constructions of batch codes. In Chapter 1, the
de�nitions and notation are presented. Chapter 2 presents algorithms, which are
used for checking whether a batch code with given parameters exists. Chapter 3
discusses two upper bounds. Chapter 4 covers results of experimental search for
e�cient linear batch codes.

The software described in Chapter 2 can be used for searching for generator
matrices of batch codes, but it is not limited only to batch codes. It can also be
used for PIR codes. By using this software, in Chapter 4 minimum lengths of
possible batch codes are presented.

1.2 De�nitions

We use N for a set of natural numbers. In this work, gi denotes the i-th column
of a matrix G. Moreover, [m] denotes a set {1, 2, ...,m}. A vector ei denotes
a column vector, that contains a single '1' in the i-th row and contains zeros
elsewhere. This section begins with the de�nition of code.

De�nition 1. [8] Let Σ be a �nite alphabet. Let x = (x1, x2, ..., xk) ∈ Σk

be an information vector. A code is a set of coded vectors (codewords) {y =
(y1, y2, ..., yn) = C(x) : x ∈ Σk} ⊆ Σn , where C : Σk → Σn is a bijection for some
n ∈ N.

The speci�c codes proposed for load balancing in information retrieval are called
batch codes and are de�ned as follows based on [8]:

De�nition 2. An (k, n, t, r)Σ batch code C over a �nite alphabet Σ is de�ned by
an encoding mapping C : Σk → Σn and a decoding mapping D : Σn × [k]t → Σt,
such that:

1. for any x ∈ Σk and i1, i2, ...it ∈ [k], D(C(x), i1, i2, ...it) = (xi1 , xi2 , ..., xit).

2. each xij , 1 ≤ j ≤ t, can be reconstructed from a set of at most r symbols of
C(x), where these sets are disjoint for xij , xil , j 6= l.

In this thesis, we focus on linear batch codes, which are de�ned as follows:

De�nition 3. [2] We say that an (k, n, t, r)q batch code is linear over a �nite
�eld Fq, if every symbol in the codeword is a linear combination over Fq of the
original symbols from the information vector.

De�nition 4. A generator matrix is a k × n matrix, where k is equal to the
number of information symbols and n is the number of coded symbols, such that
C(x) = xG.

5

In this paper, the binary �eld F2 is used instead of Σ.

De�nition 5. [9, p. 6] Hamming distance between two vectors is the number of
coordinates on which these two vectors di�er. The minimum distance of a code is
the minimum Hamming distance between any two di�erent codewords in the code.

De�nition 6. [9, p. 6] Let Fn be a set of vectors of length n over a �nite �eld F.
The Hamming weight of e ∈ Fn is the number of nonzero entries in e.

De�nition 7. A linear batch code is called systematic if the generator matrix
contains a k × k identity matrix as a sub-matrix.

The request can be viewed as a vector (xi1 , xi2 , ..., xit) ∈ (F2)t. Here t denotes
the size of the request.

De�nition 8. Recovery is the process of reconstructing original information sym-
bols from a codeword.

The following theorem, describes the requirements for retrieving t symbols from
a codeword of a linear batch code.

Theorem 1. [2] Let C be an (n, k, t, r)q batch code. It is possible to retrieve
xi1 , xi2 , ..., xit simultaneously if and only if there exist t non-intersecting sets T1, T2, ..., Tt
of size at most r each containing indices of columns in G, and for Tl there exists a
linear combination of columns of G indexed by that set, which equals to the column
vector eTil , for all l ∈ [t].

Private information retrieval codes [7] di�er from batch codes as following: a
PIR code with the parameters (k, n, t, r) allows the retrieval of t identical symbols.
In other words, all symbols in a request are the same original symbol. A batch
code allows for the retrieval of any sequence of original symbols. Therefore it can
be seen, that any linear batch code is, in particular, a PIR code.

To describe the algorithms in Chapter 2, the following de�nition is required.

De�nition 9. Multicombination is a set where each element can occur multiple
number of times.

6

1.3 Examples

Example 1. Consider a code C de�ned by a generator matrix G.

G =


1 0 0 0 1 0 1 0
0 1 0 0 1 0 0 1
0 0 1 0 0 1 1 0
0 0 0 1 0 1 0 1

 (1)

Here, the codeword y can be obtained by multiplying the information vector
x by the generator matrix. Let the information vector be x = (1, 0, 1, 1) ∈ (F2)t.
We have that y = (1, 0, 1, 1, 1, 0, 0, 1) = xG. The symbols in the codeword can be
written also as y1 = x1, y2 = x2, y3 = x3, y4 = x4, y5 = x1 + x2, y6 = x3 + x4,
y7 = x1 + x3, y8 = x2 + x4.

This code can support any request of size t = 3 with r = 2. For example,
given the request (x2, x2, x2) the information symbols can be retrieved using ele-
ments (y2), (y1, y5), (y7, y4), namely, x2 = y2, x2 = y1 + y5, x2 = y4 + y7. Since
similar recovery equations can be written down for any request (xi1 , xi2 , xi3), the
corresponding code is a (4, 8, 3, 2)2 systematic linear batch code.

Example 2. Consider a code C, which is de�ned by a generator matrix G.

G =


1 0 0 0 0 1 0 1 1 0
0 1 0 0 0 1 0 1 0 1
0 0 1 0 0 1 1 0 1 0
0 0 0 1 0 0 1 1 0 1
0 0 0 0 1 0 1 0 1 1

 (2)

Here, the codeword y can be found by multiplying the information vector x by
the generator matrix. Let the information vector be x = (1, 0, 1, 1, 0) ∈ (F2)t. We
have that y = (1, 0, 1, 1, 0, 0, 0, 0, 0, 1) = xG. The symbols in the codeword can be
written also as y1 = x1, y2 = x2, y3 = x3, y4 = x4, y5 = x5, y6 = x1 + x2 + x3,
y7 = x3 + x4 + x5, y8 = x1 + x2 + x4, y9 = x1 + x3 + x5 and y10 = x2 + x4 + x5.

Some recovery sets for each symbol are:

• for x1, T1 = y1, T2 = y6 + y2 + y3, T3 = y8 + y2 + y4 and T4 = y9 + y3 + y5.

• for x2, T5 = y2, T6 = y6 + y1 + y3, T7 = y8 + y1 + y4 and T8 = y10 + y4 + y5.

• for x3, T9 = y3, T10 = y6 + y1 + y2, T11 = y7 + y4 + y5 and T12 = y9 + y1 + y5.

• for x4, T13 = y4, T14 = y7 +y3 +y5, T15 = y8 +y1 +y2 and T16 = y10 +y2 +y5.

• for x5, T17 = y5, T18 = y7 + y3 + y4, T19 = y9 + y1 + y3, T20 = y10 + y2 + y4,
T21 = y8 + y10 + y1, T22 = y9 + y6 + y2.

7

This code can support any request of size t = 4 with r = 3. For example, if the
request is (x3, x5, x5, x5), the information symbols can be retrieved using recovery
sets T9, T17, T21, T22. The used columns are y3; y5; y8, y10, y1; y2, y6, y9.

This is a (5, 10, 4, 3)2 systematic linear batch code. It is shown in Section 4 that
if r = 2, then there is no linear batch code with parameters (5, 10, 4, 2)2.

Example 3. During execution of the algorithm in Chapter 2, some interesting
examples of linear batch codes were found. For example, the matrix G1 is a
generator matrix of a (6, 10, 3, 4)2 systematic linear batch code.

G1 =


1 0 0 0 0 0 1 1 0 1
0 1 0 0 0 0 1 0 1 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 1 1

 (3)

The matrix G2 is the generator matrix of a (4, 11, 5, 3)2 systematic linear batch
code. For parameters k = 4, t = 5 and r = 2, the shortest known length of a linear
batch code is n = 12, as shown in Chapter 4, Table 1.

G2 =


1 0 0 0 1 0 0 1 1 1 1
0 1 0 0 1 1 1 1 1 0 1
0 0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 0 1 0 1 1 1

 (4)

The matrix G3 is the generator matrix of a (5, 13, 5, 3)2 systematic linear batch
code.

G3 =


1 0 0 0 0 0 1 1 0 0 1 1 1
0 1 0 0 0 1 1 0 1 1 1 1 1
0 0 1 0 0 1 0 1 1 0 1 0 1
0 0 0 1 0 0 1 0 0 1 0 1 1
0 0 0 0 1 0 0 1 1 1 1 1 1

 (5)

8

1.4 Known results

There have been several upper and lower bounds on the code parameters pre-
sented in the literature. Speci�cally, we �x k, r and t and estimate the smallest
value of n such that there exists an (k, n, t, r) linear batch code.

In [6], Theorem 2, the following lower bound on the length n of the code is
obtained:

n ≥ dmin(C) + k +

⌈
(t− 1)(k − 1) + 1

(t− 1)(r − 1) + 1

⌉
− 2 (6)

In [3], the following upper bounds were shown:

if t = 2 and r ≥ 2, n ≤
⌈
k

r

⌉
+ k (7)

if t ≥ 2 and r = 2, n ≤ k +

⌈
(t− 1)

k

r

⌉
(8)

In Table 2 of the same paper, the following special cases of equations (7) and (8)
were shown.

if t = 2 and r = 2, n ≤ k +

⌈
k

2

⌉
(9)

if t = 3, r = 2 and k > 2, n ≤ 2k (10)

if t = 4, r = 2 and k > 2, n ≤ k +

⌈
3k

2

⌉
(11)

if t = 2 and r ≥ 3, n ≤ k +

⌈
k

r

⌉
(12)

In [4], the following upper bound was derived.

ζ = max
{
k
r
, r
}

s = k mod r

τ = min
{
r − s,

⌊
k
r

⌋}
η = min

{
r − 1,

⌊
k
r

⌋}
γ = min

{
r,
⌊
k
r

⌋}

if t = 3 and r ≥ 3, n ≤

{
(r + 1)k

r
+ ζ if r|k

(r + 1)
⌊
k
r

⌋
+ 2s+ 1 +

⌈
(k−s)−τ−ηs

γ

⌉
if ¬r|k

(13)

9

In Chapter 4, the upper and lower bounds are compared to the values calculated
by the algorithms described in Chapter 2.

10

2 Software

2.1 Introduction

In this chapter, the software for e�cient searching for optimal batch codes is
described. The chapter also contains information about the algorithms proposed
to solve this task.

The program was implemented using C++ 11 with memory e�ciency in mind.
The MinGW g++ compiler was used to ensure cross-platform usability. A copy
of the code is accessible on GitHub [10].

2.2 Algorithms

2.2.1 Request �ll algorithm

The algorithm receives a request of size t and returns a vector of the same size
containing values of the requested symbols. The recovery process has access to
code parameters, the codeword and the generator matrix used in the generation of
this code. In the implementation, the accessible variables are class variables and
the algorithm is a class function.

According to Theorem 1, in order to recover t symbols of information, t non-
intersecting sets of column indices are required. The construction of recovery sets
and recovery of symbols can be solved recursively or with a cycle. Algorithm 1
generates the required sets using recursion and is presented in this section. An
alternative algorithm for the same task, which uses while cycle, is presented in
Appendix.

The process of �lling in the request uses recursion with a step representing
consecutive processing of the requested symbol indices. In the implementation
of the algorithm, the whole algorithm works on the same arrays with memory
e�ciency in mind.

1. At any given step of recursion, subsets of indices of increasing size are gen-
erated. The subsets contain the generator matrix column indices. The size
of the subsets grows from 1 to r.

11

Algorithm 1: Answering a request

Input: typenumeric step, typearray usedColumns, typearray answer
Result: typearray answer, typeboolean completed

1 foreach column in generatorMatrix do

2 if not (column used) and (column weight == 1) and (column answers
requested symbol) then

3 setColumnAsUsed ;
4 addToAnswer ;
5 completed = Answering a request (increase step, usedColumns,

answer);
6 if completed then

7 return (answer, completed);
8 else

9 remove column from used ;
10 revert changes to answer ;

11 else

12 continue;

13 foreach combinationsize from 2 to r do

14 combination[combinationsize]
15 while hasNextCombination(combination) do
16 if ColumnsInCombinationUnused and

combinationAnswersRequestedSymbol then
17 setcolumnIdsInCombinationAsUsed ;
18 addToAnswer ;
19 completed = Answering a request (increase step, usedColumns,

answer);
20 if completed then

21 return (answer, true);
22 else

23 remove columnIdsInCombination from used ;
24 revert changes to answer ;

25 else

26 continue;

27 return (answer, false);

2. Every subset is tested to determine, whether it is a recovery set for the symbol
in question. The number of times a column in this subset is previously used,

12

is also checked at this step. The algorithm allows for a column to be used
a prede�ned number of times. For example, in linear batch codes under
consideration every symbol in codeword is allowed to be read only once.

3. If Step 2 is successful, the recursion continues until the last symbol is re-
trieved.

(a) If the �nal symbol is recovered, the vector containing the values of
requested symbols is returned.

(b) If the last tested subset at the current level of recursion fails to recover
the symbol in question, recursion returns a fail message, and the cycle
in the previous level continues.

The following functions are used. The overview of these functions is given as
follows.

• setColumnAsUsed - the column index in question is marked as a used column
to prevent reading a symbol in the codeword more times than it is allowed.

• addToAnswer - a given column or columns are used to calculate the value of
the requested symbol, which is then added to the answer variable.

• Answering a request - a recursive call to the same function.

• revert changes to answer - the values written to the answer variable at this
step of recursion are reverted.

• hasNextCombination - a function, which takes a variable containing some
combination, and tries to write the next combination in the given variable.
Returns TRUE or FALSE value depending on whether the writing is suc-
cessful.

• ColumnsInCombinationUnused - a function which checks that column indices
in a combination are unused.

• combinationAnswersRequestedSybmols - a function, which checks if a set of
column indices can be used to recover the requested symbol.

• setColumnIdsInCombinationAsUsed - similar to setColumnsAsUsed. Has
multiple column indices to be marked.

• remove columIdsInCombination from used - similar to remove column from
used. Reverts the changes made to the variable containing information about
the used symbols.

13

2.2.2 Code testing algorithm

The code testing algorithm, which appears as Algorithm 2, uses a generator
matrix and a code generated using that matrix. The function checks every possible
request of size t for that code and decides if the generator matrix can be used to
generate a code or not.

All possible requests contain all possible multicombinations of indices of infor-
mation symbols and their permutations. If a request can be satis�ed, then another
request containing the same symbols in another order is also satis�ed. Therefore
the permutations of the requested symbols can be ignored.

Algorithm 2: Testing if a matrix is batch code

Input: typearrayofnumeric request
Result: typeboolean isBatchCode

1 generatesACodeFromGivenGeneratorMatrix;
2 typearray combination[request_size t]
3 while hasNextMultiCombination(combination) do
4 answer = answerRequest(combination)
5 if failed to answer or wrong answer then
6 return false;
7 else

8 continue;

9 return true;

1. All possible requests of size t are generated up to their permutations.

2. For every request, answer the request function is run.

3. The output of the function "Answer the request" is checked. If the request
was satis�ed, the cycle continues. If it fails, the cycle breaks.

(a) If the �nal request has been checked and found satis�able, it has been
proven that the generator matrix belongs to a code with given param-
eters.

(b) If at any iteration of the cycle a request fails, it proves that the generator
matrix does not belong to a code with given parameters.

14

The following functions are used. The overview of these functions is given as
follows.

• generatesACodeFromGivenGeneratorMatrix - a function which �nds a code-
word for some random information vector.

• hasNextMultiCombination - given a variable containing some combination,
makes changes to the variable to �nd the next multicombination (see De�-
nition 9).

• answerRequest - calls a function, which answers the request, for example
Answer a Request (see Algorithm 1).

2.2.3 Checking if a code with given parameters exists

To prove that a code with given parameters exists, at least one example of
such code is required. To prove the opposite, all possible codes must be checked,
and every check must fail. The checking process can be reduced to the space of
all possible generator matrices which can not be constructed by permuting the
columns of another matrix in the set.

First, all possible columns are �xed. Then the following algorithm, called Algo-
rithm 3, is carried out.

1. All possible multicombinations of size n, where n is the length of the code-
word, are generated from the indices of all possible columns. Every such
vector containing indices of columns represents a possible generator matrix.

2. For every possible generator matrix, the following checks are carried out:

(a) The Hamming weight of each row of the matrix must be at least t, the
size of the request.

(b) The indices of columns are checked against previously generated and
tested matrices to make sure that this is not a permutation of a previ-
ously checked matrix.

3. If the previous step succeeded, all possible requests shall be tested against a
code constructed using this possible generator matrix.

(a) If the testing step succeeded, the generator matrix is saved and it is
proven that there exists a code for given parameters.

(b) If the testing step failed, another generator matrix will have to be tested.
The algorithm continues.

15

Algorithm 3: Generating a generator matrix for batch code

Input: k, n, t, r, systematic
Result: Generator matrices for batch codes or special message that no such

code exists for given parameters

1 �xAllPossibleColumns ;
2 typearray combination[code Size n];
3 if systematic then
4 set �rst k columns
5 else

6 continue;

7 while hasNextMultiCombination(combination) do
8 if contains at least t ones in every row then

9 answer = testIfIsBatchCode(combination);
10 if is batch code then
11 save generator matrix ;
12 else

13 continue;

14 else

15 continue;

4. If the �nal subset has been tested and failed, then it is proved that no code
exists for given parameters.

The following functions are used. The overview of these functions is given as
follows.

• �xAllPossibleColumns - enumerates all possible columns.

• set �rst k columns - sets the �rst k columns of the generator matrix to k×k
identity matrix.

• hasNextMultiCombination - given a variable containing some combination,
makes changes to the variable to �nd the next multicombination (see De�-
nition 9).

• contains at lest t ones in every row - checks that the generator matrix con-
tains t ones at every row.

• testIfIsBatchCode - runs all tests on the found generator matrix and code
parameters, as it is shown in Algorithm 2.

16

• save generator matrix - saves the found matrix.

In this implementation of the algorithm, the program is not terminated upon
�nding one generator matrix, but it continues until it �nds all possible generator
matrices up to permutations of columns.

2.3 Instructions for use

The implementation of these algorithms has been done using object-oriented
language C++, thus the classes have been used. Answering a request is imple-
mented in the Codesys class, running all tests is implemeted in the Tester class
and �nally, checking if a code with given parameters exists is implemented in the
CodeFinder class.

An implementation of the algorithm is provided in a �le called program.cpp. It
receives parameters in the given order

1. Program method :

• 0 - for �nding batch codes.

• 1 - for �nding batch codes with �xed columns in the generator matrix.

• 2 - for �nding PIR codes

2. k - the number of symbols in the information vector.

3. n - the length of the codeword.

4. t - the size of the request.

5. r - the maximal size of the recovery set.

6. is systematic - 1 or 0.

7. s - the number of times a symbol in the codeword can be read.

2.4 Possible improvements

It is possible to run some parts of algorithms in parallel using multi threading
in order to reduce the total running time of the algorithm. This could cause issues
with multiple threads accessing the same generator matrix at the same time.

It would also be possible to implement the algorithms in the GPU (graphical
processing unit).

17

Currently, the program is built with memory e�ciency in mind. If the user
were to have su�cient memory, the algorithm could be optimized using techniques
from dynamic programming. Then, running multiple requests could be optimized
to generate all recovery sets for every information symbol �rst, and to combine
them together later.

18

3 Constructions

A variety of bounds on the code parameters appear in the literature. In this
chapter, we assume that r and t are �xed, and k is an arbitrary parameter. Two
upper bounds are constructed for linear batch codes with information vector of
size 2 and 3 for requests of any size. These upper bounds are obtained by using a
concatenation of generator matrices.

The construction uses some ideas from [5].

3.1 Upper bound for systematic linear batch code with k = 2,

r = 2 and any t

From [1], the shortest length linear batch code for k = 2, r = 2, t = 2 is n = 3.
The generator matrix has the following form:

G =

(
1 0 1
0 1 1

)
To �ll a request of any size t, there are two possibilities: t mod 2 = 0 and t

mod 2 = 1.
First, if t mod 2 = 0, then a generator matrix M for a linear batch code

(2, n, t, 2)2 can be constructed by appending t
2
copies of the matrix G:

M =
(
G | G | ... | G

)
Then the request can be divided into pairs of symbols, and any two symbols can
be retrieved using one sub-matrix G in M .

If t mod 2 = 1, then the generator matrix M can be constructed as follows:

M =
(
G |...| G | g1 | g2

)
where there are

⌊
t
2

⌋
instances of G and two additional columns, g1 and g2.

When dividing the request into pairs of symbols, the t−1 symbols can be retrieved
from the sub-matrices G in M . To recover the last symbol, two columns g1 and
g2 must be used.

19

If t is divisible by 2, then for every group of three columns, any 2 requested
symbols can be recovered. Therefore, the maximum value of n is given by equa-
tion (14).

n =
3

2
t (14)

If the request size t is not divisible by two, then the number of columns to
retrieve the �rst t− 1 symbols, can be found using equation (14). To retrieve the
last symbol, two additional columns are necessary. Therefore, the required number
of columns is given in equation (15).

n =
3(t− 1)

2
+ 2 (15)

Equation (15) can be simpli�ed as shown in equation (16).

n =
3(t− 1)

2
+ 2 =

3t− 3 + 4

2
=

3t+ 1

2
(16)

Therefore, we obtained the following upper bound shown in equation (17).

n =

⌈
3

2
t

⌉
=

{
3
2
t if t is even

3t+1
2

if t is odd
(17)

3.2 Upper bound for systematic linear batch code with k = 3,

r = 2 and any t

In [5], a special case of linear batch codes was constructed, when

n = 2k − 1 (18)

t = 2k−1 (19)

r = 2, for any value of k. These codes can be used as building blocks in a more
general construction, where the value of t varies.

For k = 3, the corresponding parameters are n = 7 and t = 4 (from equations
(18) and (19)). That means, with 7 columns, any request of size 4 can be satis�ed.

Let us take the binary 3× 7 matrix G as follows:

G =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


20

It was shown in [5] that this matrix corresponds to a batch code with n = 7,
k = 3, t = 4, r = 2. Next we use G to construct more general batch codes for
k = 3 and any t.

If t mod 4 = 0, we use groups of 7 di�erent columns to satisfy any request
of size 4. Then, a generator matrix M for a linear batch code (3, n, t, 2)2 can be
constructed by appending t

4
copies of the matrix G:

M =
(
G | G | ... | G

)
If t mod 4 = 1, then the generator matrix M1 can be constructed as follows:

M1 =
(
M | g1 | g2 | g3

)
where there are

⌊
t
4

⌋
instances of G denoted asM and three additional columns,

g1, g2 and g3. When dividing the request into groups of symbols by 4, the t − 1
symbols can be retrieved from the sub-matrices G in M , the last symbol from g1,
g2 or g3.

If t mod 4 = 2, then the generator matrix M2 can be constructed as follows:

M2 =
(
M1 | g4 | g5

)
As it is shown above, for t mod 4 = 1, t symbols can be retrieved from the

generator matrix of form M1. If t mod 4 = 2, then t− 1 symbols can be retrieved
using M1. For the last symbol, columns g4 and g5 are needed. If xit−1 = xit ,
then xit can be recovered using one of the other ei columns and one of the added
columns g4 or g5 based on which column returns a column equal to eit .

If t mod 4 = 3, t − 1 symbols can be requested using a generator matrix
described in the previous step. The generator matrix M3 can be constructed by
constructing a generator matrix M2 and adding column g6.

M3 =
(
M2 | g6

)
From these 4 types of generator matrices, 4 upper bounds can be derived. For

a request of size t, n can be found with equation (20).

n =


7
4
t if t mod 4 = 0

7(t−1)
4

+ 3 if t mod 4 = 1
7(t−2)

4
+ 5 if t mod 4 = 2

7(t−3)
4

+ 6 if t mod 4 = 3

(20)

These 4 cases can be used to calculate the minimum value of n for any t.

21

4 Experimental results

With the help of the program described in Chapter 2, the following tables were
�lled in. All the tested codes are over F2.

4.1 Tables for batch codes

k = 2 k = 3 k = 4 k = 5 k = 6
t = 2 (3, 3, 3) (5, 5, 5) (6, 6, 6) (8, 8, 8) (9, 9, 9)
t = 3 (4, 5, 5) (6, 6, 6) (8, 8 8) (9, 10, 10) (11, >10, 12)
t = 4 (5, 6, 6) (7, 7, 8) (9, 10, 10) (11, >11, 13) (12, ... , 15)
t = 5 (6, 8, ...) (8, 10, ...) (10, 12, ...) (12, >12, ...) (14, ... , ...)
t = 6 (7, 9, ...) (9, 12, ...) (11, >12, ...) (13, ... , ...) (15, ... , ...)
t = 7 (8, 11, ...) (10, 13, ...) (12, ≤ 14, ...) (14, ... , ...) (16, ... , ...)
t = 8 (9, 12, ...) (11, 14, ...) (13, ≤ 15, ...) (15, ... , ...) (17, ... , ...)
t = 9 (10, 14, ...) (12, >15, ...) (14, ... , ...) (16, ... , ...) (18 ... , ...)
t = 10 (11, 15, ...) (13, ... , ...) (15, ... , ...) (17, ... , ...) (19, ... , ...)
t = 11 (12, 17, ...) (14, ... , ...) (16, ... , ...) (18, ... , ...) (20, ... , ...)
t = 12 (13, 18, ...) (15, ... , ...) (17, ... , ...) (19, ... , ...) (21, ... , ...)

Table 1: Lower bound, calculated optimal length of systematic linear batch code and upper
bound for various value of k and t where r = 2

Tables 1 and 3 - 5 present triples of numbers (a, b, c). These numbers represent
shortest lengths n of a systematic linear batch codes with given parameters k, t
and r. Here, a is a lower bound, b is an actual value and c is an upper bound.
The notation ... means, that the value is unknown. The notation > means that
the value is larger than the one that appears in the table.

The lower bound was calculated using equation (6). The actual value was com-
puted using a program described in Chapter 2.

In Table 1, r is 2. In the t = 2 row, the real value, lower and upper bounds are
equal. Upper bound was found with equation (9). In the t = 3 row, the upper
bound was found with equation (10) except for column k = 2, where the upper
bound was found with equation (17). In the t = 4 row, the upper bound was found
with equation (11) except for column k = 2, where the upper bound was found
with equation (17).

22

k = 2 k = 3
t = 2 (3, 3) (5, 5)
t = 3 (5, 5) (6, 6)
t = 4 (6, 6) (7, 7)
t = 5 (8, 8) (10, 10)
t = 6 (9, 9) (12, 12)
t = 7 (11, 11) (13, 13)
t = 8 (12, 12) (14, 14)
t = 9 (14, 14) (>15, 17)
t = 10 (15, 15) (... , 19)
t = 11 (17, 17) (... , 20)
t = 12 (18, 18) (... , 21)

Table 2: Calculated optimal length of systematic linear batch code and upper bound for t with
equation (17) for k = 2 and equation (20) for k = 3 when r = 2

k = 3 k = 4 k = 5 k = 6
t = 2 (4, 4, 4) (6, 6, 6) (7, 7, 7) (8, 8, 8)
t = 3 (5, 6, 7) (7, 8, 8) (8, 9, 9) (10, 10, 11)
t = 4 (6, 7, ...) (8, 9, ...) (9, 10, ...) (11, >11, ...)
t = 5 (7, 10, ...) (9, 11, ...) (10, 13, ...) (12, ... , ...)
t = 6 (8, 11, ...) (10, 12, ...) (11, >13, ...) (13, ... , ...)
t = 7 (9, 13, ...) (11, 14, ...) (12, ... , ...) (14, ... , ...)
t = 8 (10, 14, ...) (12, 15, ...) (13, ... , ...) (15, ... , ...)

Table 3: Lower bound, calculated optimal length of systematic linear batch code, upper bound
for various value of k and t where r = 3

Table 2 displays the values calculated with the program compared to the upper
bounds proposed in this paper.

In Table 3, r is 3. In the row t = 2, the upper and lower bounds are equal to the
real value found by the program. The upper bound was found with equation (12).
In the row t = 3, the upper bound found with equation (13).

In Table 4, r is 4. In row t = 2, the value calculated with the program matches
both the upper and lower bounds. The upper bound was calculated with equa-
tion (12). In the row t = 3 the upper bound was calculated with equation (13).

23

k = 4 k = 5 k = 6
t = 2 (5, 5, 5) (7, 7, 7) (8, 8, 8)
t = 3 (6, 8, 9) (8, 9, 10) (9, 10, 11)
t = 4 (7, 9, ...) (9, 10, ...) (10, ... , ...)
t = 5 (8, 11, ...) (10, 13, ...) (11, ... , ...)
t = 6 (9, 12, ...) (11, ... , ...) (12, ... , ...)
t = 7 (10, 14, ...) (12, ... , ...) (13, ... , ...)
t = 8 (11, 15, ...) (13, ... , ...) (14, ... , ...)

Table 4: Lower bound, calculated optimal length of systematic linear batch code, upper bound
for various value of k and t where r = 4

k = 2 k = 3 k = 4 k = 5 k = 6
t = 2 (3) (5, 4) (6, 6, 5) (8, 7, 7) (9, 8, 8)
t = 3 (5) (6, 6) (8, 8, 8) (10, 9, 9) (>10, 10, 10)
t = 4 (6) (7, 7) (10, 9, 9) (>11, 10, 10) (... , >11)
t = 5 (8) (10, 10) (12, 11, 11) (>12, 13, 13) (...)
t = 6 (9) (12, 11) (>12, 12, 12) (... , >13) (...)
t = 7 (11) (13, 13) (≤ 14, 14, 14) (...) (...)
t = 8 (12) (14, 14) (≤ 15, 15, 15) (...) (...)

Table 5: Comparison of calculated optimal length of systematic linear batch codes for various
values of k and t. The �rst value in each entry is the minimum length n for r = 2, and the
subsequent values represent minimum length n for r = 3, r = 4, etc. The maximum value of r
under consideration is r = k.

24

Table 5 contains entries from previous tables. In any cell, the �rst value is the
optimal length n of a linear batch code with given parameters and r = 2. The
subsequent values represent minimum length n for r = 3, r = 4, etc. It should be
noted that only cases where r ≤ k are of interest. If r > k then not all r symbols
are necessary for recovery. We observe that increasing values of r yield shorter
codes for �xed values of k and t.

4.2 Comparison of PIR and batch codes

The question arises, whether for the same parameters PIR codes are shorter
that batch codes. The experiment tested PIR codes, where the request size was
taken as in the shortest known batch codes, reduced by one. The following values
were tested:

• r = 2, k = 3 and k = 4, t ∈ [5, 8]

• r = 3, k = 3 and k = 4, t ∈ [5, 8]; k = 5 and t = 5

• r = 4, k = 4, t ∈ [5, 6]

From the experimentations, no PIR codes with shorter length than linear sys-
tematic batch codes with the same parameters were found.

25

5 Conclusions

In this thesis, algorithms and software for �nding generator matrices of linear
batch codes, running tests and answering requests are presented. The algorithms
were modi�ed and improved during the process of this work.

To optimize the parameters of linear batch codes, equations (17) and (20) for
upper bounds on systematic linear batch codes are proposed. The �rst one follows
from [1]. The second bound builds upon the equations in [5]. As it was mentioned,
similar tight upper bounds for linear batch codes can be obtained by calculating
optimal values of n for the �rst requests up to size t.

Finally, the optimal lengths of linear batch codes found with the software are
compared to lower and upper bounds from [6], [3] and [4].

There are some questions that are left open.

1. In this thesis, the optimal values of n were calculated for relatively small
codes. However, the search space is large, therefore it would be interesting
to compute values of n for larger parameters. This could be possible with
improvements to the algorithm or by using parallelization and high perfor-
mance computers.

2. Currently, the bounds are not tight. It would be interesting to further tighten
the bounds. Also, it would be interesting to compare bounds for di�erent
variations of batch codes. For example, one could consider generalizations of
a batch code which allows sampling every coded symbol a constant number
of times, and derive bonds on its parameters.

26

References

[1] Ishai Y, Kushilevitz E, Ostrovsky R, Sahai A. Batch codes and their applica-
tions. In: Proceedings of the thirty-sixth annual ACM symposium on Theory
of computing. ACM; 2004. p. 262�271.

[2] Lipmaa H, Skachek V. Linear batch codes. In: Coding Theory and Applica-
tions. Springer; 2015. p. 245�253.

[3] Thomas EK, Skachek V. Explicit Constructions and Bounds for Batch Codes
with Restricted Size of Reconstruction Sets; 2017. http://arxiv.org/abs/
1701.07579v1/.

[4] Zhang H, Skachek V. Bounds for batch codes with restricted query size. In:
Information Theory (ISIT), 2016 IEEE International Symposium on. IEEE;
2016. p. 1192�1196.

[5] Wang Z, Kiah HM, Cassuto Y. Optimal binary switch codes with small query
size. In: Information Theory (ISIT), 2015 IEEE International Symposium on.
IEEE; 2015. p. 636�640.

[6] Rawat AS, Papailiopoulos DS, Dimakis AG, Vishwanath S. Locality and
availability in distributed storage. IEEE Transactions on Information Theory.
2016;62(8):4481�4493.

[7] Fazeli A, Vardy A, Yaakobi E. PIR with low storage overhead: coding instead
of replication; 2015. arXiv preprint arXiv:1505.06241.

[8] Skachek V. Batch and PIR Codes and Their Connections to Locally-
Repairable Codes; 2016. arXiv preprint arXiv:1611.09914.

[9] Roth R. Introduction to coding theory. Cambridge University Press; 2006.

[10] Simisker M. Linear Batch Code Finder; 2017. https://github.com/

Martsim/Linear-Batch-Code-Finder.

27

http://arxiv.org/abs/1701.07579v1/
http://arxiv.org/abs/1701.07579v1/
https://github.com/Martsim/Linear-Batch-Code-Finder
https://github.com/Martsim/Linear-Batch-Code-Finder

Appendix A: Alternative algorithm for �lling a re-

quest

To generate reconstruction sets with while loop, variables for the list of recovery
sets, a list of recovery set sizes, a working set on which possible recovery sets are
generated, a list containing used column indices and a list containing the answer
are required.

The algorithm continues until an answer is returned or all possible cases have
been tested.

The following functions are used. The overview of these functions is given as
follows.

• unused(column/columns) - a function, which returns the truth value, whether
the columns have not been marked as used.

• answersSymbolAt(columns, symbol) - function for determining whether the
given columns will sum up to answer the requested symbol. If true, writes
the answer of requested symbol to the correct position of answer variable.

• setColumnsToUsed - the column indices in question are marked as a used
column to prevent reading one symbol in the codeword more times than
allowed.

• generateNextCombination - a function, which takes a variable containing
some combination, and tries to write the next combination in the given
variable. Returns TRUE or FALSE value depending on the success of the
process.

• setTheFirstCombination(variable) - sets the variable to contain the �rst pos-
sible combination.

At any iteration the following operations are performed:

1. Generate a new combination of column indices from the generator matrix
with length equal to the size of the currently generated recovery set, starting
with the sets of size one and �nishing with the sets of size r.

2. Check that the set contains unused column indices and that it allows to
recover the requested symbol.

28

Algorithm 4: Answering a request

Input: typearrayofnumeric request
Result: typearray answer, typeboolean completed

1 typearray usedColumns
2 typelistofarrays recoverySets
3 typelistofnumeric setSizes
4 typearray answer
5 typenumeric position
6 while position ≥ 0 do

7 if unused(recoverySets[position]) and answersSymbolAt(
recoverySets[position], request[position]) then

8 if position == requestLength then

9 return (answer, true);
10 else

11 setColumnsToUsed ;
12 position++;
13 setSizes [position] = 1;

14 else

15 typeboolean breaked = false;
16 while generateNextCombination(recoverySets[position],

setSizes[position]) do
17 if unused(recoverySets[position]) then
18 breaked = true;
19 break ;

20 else

21 continue;

22 if not breaked then

23 if setSizes[position] <r then
24 setSizes [position]++;
25 setTheFirstCombination(recoverySets [position]);

26 else

27 position�;

28 else

29 continue;

30 return (answer, false);

29

(a) If the set meets these requirements, increase the variable that points to
the set that is being constructed.

(b) If the set does not meet the requirements, try another set until all com-
binations have been tested. If no tested set allows for symbol recovery,
increase the set size by one and repeat the procedure. If the set size
is r, decrease the pointer and continue to the previous level.

3. If the position variable points to the last index of the request and the gen-
erated set allows for the recovery of the requested symbol, return the values
of the requested symbols.

4. If the last combination of maximum size set at the �rst pointer level has
reached the end without satisfying all the requests, the algorithm outputs a
failure message.

When the function execution is �nished, the requested symbols are either re-
covered or it is veri�ed, that such a sequence of symbol can not be retrieved from
a code constructed with the given generator matrix. The cyclic algorithm gives
more control to the programmer, as it is possible to save the state of the program
and continue from the previous state.

30

Non-exclusive licence to reproduce thesis and make thesis public

I, Mart Simisker (date of birth: 15th of August 1995),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Study of Optimal Linear Batch Codes

supervised by Vitaly Skachek

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 11.05.2017

31

	Introduction
	General background
	Definitions
	Examples
	Known results

	Software
	Introduction
	Algorithms
	Request fill algorithm
	Code testing algorithm
	Checking if a code with given parameters exists

	Instructions for use
	Possible improvements

	Constructions
	Upper bound for systematic linear batch code with k = 2, r = 2 and any t
	Upper bound for systematic linear batch code with k = 3, r = 2 and any t

	Experimental results
	Tables for batch codes
	Comparison of PIR and batch codes

	Conclusions

