
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Jakob Mass

Automatic Mobile Device Pairing via
Integrated Microphones

Bachelor’s Thesis (6 ECTS)

Supervisors: Satish Narayana Srirama, PhD

Huber Flores, MSc

Tartu 2014



Automatic Mobile Device Pairing via Integrated

Microphones

Abstract:

This thesis proposes a method for using integrated mobile device sensor data to
gain information about users’ social context. In-device microphones are utilized
to determine which users are co-located (for example, participating in a business
meeting). This is achieved by clustering the sensor data at a remote server which
also notifies the co-located devices of each others’ existance and provides instruc-
tions on how to communicate with one another using Bluetooth technology. The
work contributes a description of an entire implementation for such a framework.
Test results show an accuracy of 75% in recognizing user co-location.
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Automaatne Mobiilseadmete Ühendumine

Integreeritud Mikrofonide Abil

Lühikokkuvõte:

Käesolev bakalaureusetöö kirjeldab meetodit, kuidas mobiilseadmete sensorite abil
saada informatsiooni kasutajate sotsiaalse konteksti kohta. Seadmete mikrofone
kasutades tehakse kindlaks, millised kasutajad paiknevad samas asukohas. Selle
saavutamiseks viiakse sensorandmete peal läbi klasteranalüüs välisel serveril. Lisaks
analüüsile annab server ka koos asuvatele seadmetele teada üksteise olemaso-
lust ning varustab neid juhistega, kuidas teineteisega Bluetooth-i abil ühenduda.
Käesolev töö pakub sellise platvormi teostuse kirjeldust. Testitulemused näitavad,
et pakutaval lahendusel on koos asumise kindlaks tegemisel 75% täpsus.

Võtmesõnad:

Automaatne ühendumine, Android, Bluetooth, Klasteranalüüs, Heli analüüs, Mobiili-
ja pilvearvutus
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1 Introduction

Today, smartphones and other mobile technologies are impacting people’s daily
lives in a significant way. A growing number of persons are constantly connected
to the internet and have access to a plethora of different services and software.
These circumstances allow for the emergence of collaborative environments, which
allow users to access, create and share information with little effort.

Yet today’s most widely used mechanisms for close proximity inter-device com-
munication establishment are often complex. They require a number of actions:
to ensure security, users are prompted to enter PIN-codes, even though they might
not realize the need for this. Most applications also require that users scan for
a list of devices and then handpick each peer that communications are to be es-
tablished with. These are steps which a person must go through before they can
actually reach their goal – to exchange specific data with others.

Consequently, mobile users often prefer either traditional ways to share infor-
mation, such as e-mail or turn to other popular applications which also support
content sharing – for example social platforms such as WhatsApp, Line or Face-
book Messenger.

These applications provide users with important social context, many of them
provide the option of creating custom groups out of persons, thus enabling to
share content with a specific group whenever necessary. However, these groups
need to be formed manually, and any changes one wishes to make have to be
stated in an explicit manner. In addition, the file transfers might rely on third
party servers, which could bottleneck data transfer speeds. A new field called
Mobile Social Network in Proximity (MSNP) [1] opposes itself to centralized social
network services such as Facebook. MSNP aims to provide mobile users with the
capability of forming proximity-based social networks on-the-go.

On the other hand, cloud computing is providing an ubiquitous communication
platform, enabling augmentation of smartphone capabilities. Cloud computing
allows to tap into several mobile devices to extract data from them with the intent
of deriving conclusions from the collected information.

This creates the opportunity of providing each device with knowledge they
could not have discovered on their own. Modern smartphones are equipped with a
number of different sensors, such as an accelerometer, digital compass, gyroscope,
GPS, microphone and a camera. All of these provide different ways to sense the
device’s and the user’s surroundings.

Given this context, to tackle the challenge of setting up peer-to-peer connec-
tions, we have designed a framework that would provide a novel approach to share
content to other mobile users close by. The framework allows a group of people, for
example – attendants of a meeting or a class – to interact and share information
with each other. The users are however relieved from the burden of setting up the
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connections. The framework provides automatic setup for inter-device communi-
cations, with no input from the user.

To achieve this, a cloud service keeps track of a set of clients. Once the service
determines that a set of devices are likely to be in the same context (ie. partic-
ipating in the same meeting), it will provide instructions to them about how to
pair up with one another.

To be able to classify whether or not some devices are in the same meeting,
real-time audio data from each client is used. Each client is running a service
which periodically utilizes the integrated microphone of the device to create a
sequence of amplitude levels. Each sequence is of a predetermined length. This
sequence is immediately transferred to the cloud service, where synchronously
recorded sequences from different devices will be analyzed.

1.1 Benefits

Using audio data for presence detection provides some unique benefits when com-
pared to other methods such as GPS. Acoustic information respects sound barriers
such as walls. This is close to the way humans perceive things such as privacy and
the notion of attending the same gathering [2]. Continuous audio analysis also
means that participation detection is dynamic. For example, if somebody leaves
a meeting early, their device stops being listed as a participant for the people still
attending the meeting.

1.2 Outline

• Section 2 covers the state of the art, providing a technological background
relevant to this thesis. Mobile technologies, audio signals, clustering and
computer supported collaborative work are characterized.

• Section 3 presents my approach to the problem, describing the software
solution. The approach is looked at from the client’s perspective and the
server’s perspective. Clustering is explained, alongside audio analysis and
data preprocessing.

• Section 4 presents the effectiveness of the system, a series of tests are doc-
umented.

• Section 5 looks at related works and similar solutions in the domain of
mobile sensing applications, automatic wireless mobile connectivity.

• Section 6 summarizes the work done and also describes possible future
developments.
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2 State of the Art

2.1 Sensing on Mobile Phones

Today’s smart-phones offer a wide array of integrated sensors - like an accelerome-
ter, a digital compass, gyroscope, GPS, microphone and camera. They enable the
emergence of new applications across domains starting from healthcare, environ-
mental networking, transportation to social networks and safety. Unlike before,
the commodity smartphone of today provides an open and programmable envi-
ronment, meaning that developers can easily create software and provide useful
services using integrated sensor data [3]. Noteworthy smart-phone sensors are the
microphone and the camera. Audio and video data are a rich source for deriving
context or classifying activities of an individual’s life.

One way to divide mobile phone sensing systems is following the involvement
of the user. Should the user actively choose what, when and where to sample?
Or should data sampling be automated, not requiring the user to provide input?
Lane et. al. [3] label the first method participatory sensing and the second method
opportunistic sensing. Opportunistic sensing lessens the burden of the user when
using a sensing system.

2.1.1 Communication and Collaboration on Smart-Phones

As humans are highly social beings, technologies which help share ideas, transfer
messages and other information with friends, business partners and family are
continually challenged to evolve and offer new, improved ways to communicate.

Thanks to the immense popularity of smart-phones, researchers have recently
started looking for ways to provide novel data transmission and interaction meth-
ods between people, using integrated sensors to augment traditional practices [3].

Currently, most platforms expect users to provide context manually, for in-
stance: to share documents with the participants of a given ongoing business
meeting, the user must first select which persons actually are attending the meet-
ing.

2.2 Mobile CSCW

Computer Supported Cooperative Work (CSCW) is a field of Human Computer
Interaction that looks into the phenomenon of using computer technology to assist
group interaction and collaboration. As mobile phones have become ubiquitous,
the branch of Mobile CSCW has also surfaced.

Although the definitions of CSCW and its primary goals are slightly varying [4],
the core ideas are supporting group work and designing computer-based technolo-
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gies. Groupware, a term coined in the 1980s by Peter and Trudy Johnson-Lenz was
adopted by the CSCW community to label computer applications which support
collaboration.

D. Johnson [4] examined a number of larger groupware applications, such as
Office Groove, BSCW, Apache Wave and also looked at more general frameworks
intended to be used for rapid development of groupware.

Some do have support for mobile users, yet mostly this has been a feature that
has been added later on during the platform’s lifetime, and was not a priority
during development of the core application. While there are many technologies
offering mobile cooperation support, there are no distinct, recognized tools which
would support rapid engineering of mobile groupware.

Herskovic et al. [5] have proposed a set of requirements for mobile collaboration
software. They are:

• Users Interaction Flexibility, meaning support for recurrent changes in
group size and structure. One example of achieving this is automatic user
detection, which involves automatic gathering and handling of information
related to collaborator availability. An alternative is User connection / dis-
connection, meaning that users manually choose their level of involvement
by switching to online use on-demand.

• Users Interaction Protection. The work done by each user must be
protected against unauthorized and unintended access. Privacy measures
are also necessary, users should be able to decide which data to share and to
whom.

• Communication, users should be able to relay messages to one another.
The system should provide means for synchronous/asynchronous communi-
cation. Typically there is also a local shared workspace. New members of a
group need to be able to receive previously created shared data.

• Heterogeneity and interoperability. Collaboration should support de-
vices of different classes, manufacturers and different hardware specifications.
The system should be able to handle data and services designed by different
providers.

• Autonomous Interaction-Support Services . Networking issues should
be invisible to the user. If a wireless network connection is not available,
alternative means should exist which would restore the collaboration ability.
Service and device discovery should be automated.

• Users Awareness. The system should provide both information about
online awareness, for example: lists of connected users, current activity, as
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well as offline awareness: last modification to a document, text authorship,
etc.

• Data Consistency and Availability. The system must ensure data con-
sistency when events such as disconnection occur. If an user shares data with
another user, the data should be available to both parties after sharing has
finished if one of them is no longer reachable. In addition, caching of data
and data synchronization, conflict resolution methods for data inconsisten-
cies should be considered.

2.3 Mobile Wireless Communication

Wireless communication is a fundamental part of smartphones. Thanks to the
mobility that wireless communication technologies offer, users can dynamically
join or leave a given network. Wireless networks are simple to set up.

There are however some disadvantages: reliability is lower because of the risk
of radio interference, power consumption is higher when compared to wired con-
nections and security is also a concern, because the transfer medium is more ex-
posed when compared to traditional wired connections [6]. Bluetooth is a wire-
less telecommunication technology, which is supported by most modern Android
smartphones. It was created for low-power devices to communicate over short
distances. [7].

2.3.1 Bluetooth in Android

To use Bluetooth programmatically, the Android API provides RFCOMM (Radio
frequency communication) sockets. RFCOMM is the most common socket type
for Bluetooth [8]. To create a connection between two devices, one side must
take the role of a server and create a listening socket - a BluetoothServerSocket
object. The other side, the client, needs to create a BluetoothSocket. The Blue-
toothServerSocket listens for connections and once a client connects successfully, it
returns a BluetoothSocket. The BluetoothServerSocket can listen for connections
in two ways: using insecure RFCOMM socket or secure RFCOMM socket. The
insecure method requires no user input (such as PIN entry) to create the actual
connection, however, it can be vulnerable to Man In The Middle attacks [9].

After a connection is established, IO streams can be used to transmit data, via
usual Java conventions - by calling getInputStream() and getOutputStream().

2.4 Clustering

Clustering is the process of dividing a set of data into clusters, using some measure
of similarity to decide which data points should belong to the same cluster. In [10],
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the following methods are mentioned as the five main types of clustering methods:
partitioning, hierarchical, density-based, grid-based and model-based clustering .

Partitioning algorithms partition a database D of n objects into k clusters,
where k is an input parameter. This means that we need to know the number of
existing clusters in advance. In addition, the partitioning approach regards the
clusters as voronoi cells of a voronoi diagram, meaning that cluster shapes are
restricted to being convex.

Hierarchical methods use trees to determine clusters, either building clusters
from leafs by merging them up to some point or by moving top-down along the
tree, splitting the data. This is especially useful for summarizing or visualizing
data [11].

Grid-based methods divide the data space into a grid of cells. Clustering op-
erations are then done directly on this grid, allowing for fast processing times.

Model-based form mathematical models to describe each cluster and try to fit
the data to given models. These methods have the potential of considering noise
and outliers in the data.

2.4.1 Density Based Clustering

In density-based clustering methods, the concept of density is used to form clusters.
Clusters are created from regions in the dataset, in which data points are spaced

more densely. Clusters are separated from each other by regions where the density
is lesser.

The main idea is to start growing a given cluster until the density in the
region passes some given threshold. The advantages of density-based clustering
methods are the ability to form arbitrarily shaped clusters and to disregard noise
and outliers. A typical density based algorithms is DBSCAN.

2.4.2 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [12] is a
clustering algorithm which requires only 2 input parameters. It can detect the
number of clusters automatically.

As explained in [13], DBSCAN uses the following concept for clusters: ”a
cluster is defined as containing at least a minimum number of points , every pair
of points of which either lies within a user-specified distance (ε) of each other or
is connected by a series of points in the cluster that each lie within a distance of ε
of the next point in the chain.”

The algorithm can use any distance function for two points, meaning that for
some given application, a fitting distance measure can be used [12].
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2.5 Time Series

Time series is a category of data, a single time series is made up of a sequence of
values, the values usually depict sequential measurements over time, often recorded
at equal intervals. Time-series are popular in applications such as stock market
analysis, economic and sales forecasting, observation of natural phenomena, etc.
[10]

2.6 Distance Measures

As mentioned above, clustering algorithms require a distance measure to do clas-
sification. A well-known distance measure is the Euclidean distance. The Eu-
clidean distance between two points is defined as the square root of the sum of
the squares of the differences between the corresponding coordinates of the points.
In two-dimensional Euclidean geometry, the Euclidean distance d between points
a = (ax, ay) and b = (bx, by) is defined as d(a, b) =

√
(ax − bx)2 + (ay − by)2.

For time series, Euclidean distance is defined as the sum of the squared dis-
tances from each nth point in one time series to the nth point in the other. How-
ever, the Euclidean distance is only fitting for time series which are perfectly
aligned. The distance measure fails to recognize two highly similar time series if
one is slightly shifted along the time axis.

2.6.1 Dynamic Time Warping

Dynamic time warping (DTW) is a distance measure which was proposed to tackle
the shortcoming mentioned in 2.6. DTW is able to take into account global and
local shifts in time.

For two time series, X and Y ,

X = x1, x2, . . . , xn

Y = y1, y2, . . . , ym

an n-by-m cost matrix is constructed, where the (ith, jth) element of the matrix
contains the distance between two points xi and yj. Most often, the Euclidean
distance is used. Next, an optimal alignment between X and Y is found (an
alignment which would have minimal overall cost according to the cost matrix).

However, the space of possible alignments between X and Y is large, thus
DTW has a time and space complexity of O(N2). A modification of DTW, called
FastDTW, was created to improve upon the complexity of DTW. Using a multi-
level approach, which initially finds optimal alignments between time series at a
coarser level and then refines the resolution, a linear time and space complexity
was achieved [14].
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This makes FastDTW a fitting time series distance measure for situations where
the processing time is limited.

2.7 Machine Learning Libraries

Several machine learning libraries which include different clustering algorithms
and distance measures exist. For example, a well-known machine learning soft-
ware library is Weka [15]. Weka puts emphasis on user-friendliness and providing
interactive use with the user, including graphical user interfaces, enabling users to
try out algorithms quickly. On the other hand, Java-ML is a library which focuses
on providing developers with the opportunity to use machine learning in their own
software. Thus, Java-ML provides simple, basic and easy to understand interfaces
which developers can integrate into their code. Java-ML also involves a number
of similarity measures, among them FastDTW. [16]

2.8 Audio Signal Analysis

Audio representations are most often categorized into two: a) time domain char-
acterizations, which use a time-amplitude representation or b) frequency domain
characterizations, which use frequency-magnitude representation. Next, a brief
overview of features which can be extracted from these two domains is presented.

Figure 1: A time-amplitude representation of an audio signal

• Features in the time domain. In time-amplitude representation, a signal
is depicted as amplitude varying in time. A typical audio signal in this
domain is shown in Figure 1.

In the time domain, features such as average energy, which indicates loudness
of the signal; volume distribution, which is the variation of a signal’s energy
level; and silence ratio, which describes how big a part of the signal is silent,
can be extracted.

• Features in the frequency domain. Using the Fourier Transform, a
frequency domain representation can be derived from a time domain repre-
sentation. In the frequency domain, common features used are: bandwidth,
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which describes the range of frequencies present in a signal; energy distri-
bution, which specifies which frequencies are more present in a given signal;
harmonicity, a feature that is often of high value in music. Pitch is the fourth
frequency domain feature, which is a much more subjective feature than the
ones described before. Pitch ties audio signals with the musical notion of
tones.

[17]

2.9 Literature Overview

Implementing the client-side mostly follows the official documents and API Guides
of the Android Developer portal [18]. Some work on using the integrated micro-
phone has been done following the book Professional Android Sensor Program-
ming [19].

The book Algorithms for Sound and Music Computing [20] provides some in-
formation on the characteristics of human speech and techniques for extracting
features from audio.
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3 Approach

The platform is built following a client-server model. Each client is expected to
create a time series of audio amplitude data, and transmit it to the server. Along-
side the time series, other details such as the device’s Bluetooth MAC-address are
provided. Continuously, the client records and transmits these sequences through-
out the application’s lifetime. In addition, all clients begin and end the capture of
audio in synchronization, meaning that the time series recordings are started and
stopped on every device at the same time.

When the server receives a set of client data, all recorded at some specific time,
it runs a clustering algorithm on the time series in order to group them based on
audio similarity. Then, the server provides each member of a specific group with
the information needed to create a Bluetooth network with other members in that
same group.

After receiving this information, the clients in each group create wireless con-
nections with other members of the same group, with no input from the user
needed. Once the wireless network has been established in the group, users can
share files and text messages with other users within the group.

3.1 Technologies and Methods Used

The client-side for this platform has been implemented as an Android application.
For communication with the server, the internet connection provided by the An-
droid platform is used. This connection might be based on Wi-Fi or a GSM data
transmission protocol, either way, the connection type here is no concern to the
client application and is handled by the operating system.

In addition, an in-device microphone is utilized by the application. Micro-
phones are present in practically every newer Android phone, some of which might
even have more than one microphone. Wireless inter-device connections are estab-
lished using Bluetooth. Messages to the server are sent as HTTP requests.

The server-side is implemented using Java Servlets technology, the server it-
self is run by the open-source Apache Tomcat version 7 web server. The data
analysis on the server uses the Java-ML machine learning library, which includes
an improved version of the Dynamic Time Warping distance measure algorithm -
FastDTW [14].

3.2 The Client

3.2.1 Client Application Startup and Initialization

This section describes the platfrom from the client’s point of view.
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As the client application is started, the software first runs a few checks to
determine whether the device is configured properly for running this application.
This includes determining whether an internet connection is available and whether
the Bluetooth radio is enabled.

After this, the difference between the device’s internal clock and a remote
Network Time Protocol (NTP) time server clock is estimated. The same NTP
server is used by every client in the platform. This allows different devices to
reference a common time and use it to start recordings in unison. The difference
between the device’s local time and the server’s time is stored and the NTP time
server is not used during the rest of the client software’s lifetime. A screenshot of
the application during this state is shown in Appendix B, figure 7a.

At this point, the application can enter it’s main state: producing sequences
of audio data and transmitting them to the platform’s cloud service.

3.2.2 Sequence Production and Transmission

The client periodically transmits data to a server for processing. This data is
formatted as a JSON string, in which the following is included:

• the client device’s Bluetooth MAC address;

• a user-created string depicting the user’s (nick)name;

• a time series of successively recorded amplitude values;

• a timestamp depicting the time at which the recording of the time series
began

The creation of the amplitude time series is explained in more detail in the
next section. Once the time series creation is complete, each JSON object is
transmitted immediately to the server using a HTTP POST request.

3.2.3 Using Integrated Microphones

A time series is created from samples gathered from the physical device’s mi-
crophone. The Android platform allows to utilize the microphone via the Medi-
aRecorder API. MediaRecorder allows specifying the audio encoder, output format
and audio source used (often, phones have two microphones- one in the front, used
for calls, and one in the back, for video capture).

The work behind the creation of a single sequence is as follows. The getMaxAm-
plitude() method of MediaRecorder returns the maximum amplitude heard since
the last call to the method. This method is periodically called in a finite loop. A
set interval determines the time between method calls, the method return values

15



are stored into an array during this loop. The resulting array contains numeric
data about the amplitudes heard during the loop, no information about audio
frequencies is stored.

The process of recording is reflected to the user in the form of a progressbar,
which can be seen at the top of figures in7, Appendix B.

My approach uses the following constants when creating the audio time series.
The number of samples gathered per series is 50. The sampling interval is 140
ms. Thus, one sequence represents a 50 ∗ 140ms = 7000ms time period. These
numbers are reasonable, as in normal human speech, acoustic transformations
(syllable changes, letter expressions) happen within 100-200 ms [20] and sentences
in speech generally last a few seconds.

3.2.4 Handling Server Instructions

The client receives a response for each POST request it sent to the server. The
server determines which group of devices the client who sent the request belongs
to, if any. The response, also a JSON object, contains nicknames of other devices
belonging to the same group and a MAC address of the device to connect to
as a client. A flag which tells the device whether it should listen for incoming
connections is also included. An example JSON object is provided in figure 2.

{"listento" : true,

"connectto" : "CC:FA:00:16:2B:9A",

"group" : ["Luthien","Beren"] }

Figure 2: An example of an instructions JSON object

The Bluetooth network is further detailed in section 3.2.5. As each response
contains a list of devices, the client can keep the list of group members up-to-date,
and display this information to the user dynamically. If an user leaves the group,
his device will stop appearing in the member lists of others still in the group.

3.2.5 Bluetooth Network

The traditional Bluetooth network model, the so-called piconet supports only up
to 8 devices. Due to the complexity of creating an efficient network out of multiple
piconets, a linked list-based structure was chosen, as it has virtually no size limi-
tations and is very easy to implement. A tradeoff, however, is reduced efficiency
in data routing.

As explained in 2.3.1, there are two roles devices can take when creating Blue-
tooth connections. Each device connects to 0-1 other devices and acts as a server
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for up to 1 device. Any client that isn’t first or last in the linked list network will
act both as a client and a server.

For example, consider figure 3 where we have a network of 3 devices. Devices
which have an arrowhead entering them are listening for connections. Nodes from
which arrows start are acting as clients, connecting to a provided address. In this
figure only device B is acting the two roles (server and client) at once. Because

A B C

Figure 3: A 3-node example of the wireless network structure

of the client-server model used for creating a Bluetooth connection between two
devices, in order for one device to share data to multiple devices, a session with
each device must be created separately.

When programmatically creating Bluetooth sockets, the methods createInse-
cureRfcommSocketToServiceRecord(UUID uuid), listenUsingInsecureRfcommSock-
etToServiceRecord(String mac, UUID uuid) take an argument Universally unique
identifier (UUID).

In this approach, each client creates an UUID using their own Bluetooth MAC-
address and a string which is common to the entire platform. This means that if
some device D has created a listening RFCOMM socket with an UUID generated
using it’s own MAC-address, then another device E will be able to reconstruct the
same UUID and use it to connect to device D, because E has been provided the
MAC-address of D.

Because these UUIDs must match in order for the connection to be accepted,
a level of security is provided.

3.2.6 File Sharing

Once a Bluetooth network has been established, group members may share files
within the group. The client supports sending files to all network participators or
a single, specific recipient.

To allow a file to reach the intended destination(s), a custom class (BTMessage)
is used which contains fields that help transmit the file across the network. The
fields of the class are as follows:

1. The initial sender of the file

2. The intended destination of the file

3. The MAC address of the last transmitter
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4. A byte array of the actual contents of the file

In the general scenario, the initial sender will create a BTMessage object and
send it to all of its open BluetoothSockets (see 2.3.1). As the BTMessage is received
by the immediate neighbours in the network, a given receiver will first check if it
was the intended recipient for this BTMessage. If so, then the byte array inside
BTMessage will be constructed into an actual file and saved onto the device’s
internal storage. A request is then made to view the file using Android Intents [21].

The file is not stored if the current device is not the recipient. In this case (or
if the recipient is the entire group), the next step is to rebroadcast the message.

To do this, the client goes through all of its open BluetoothSockets and passes
on the BTMessage to any socket which doesn’t correspond to the MAC in the third
field of the BTMessage (as listed above). This ensures that we won’t retransmit
the BTMessage to a client that already sent us the message.

3.3 The Server

3.3.1 Initialization

As the server is started, first some global objects are created, which will be acces-
sible to different threads. The first object is a queue for incoming data (henceforth
called the data queue). As clients post audio sequences to the server, the se-
quences are stored in this queue to be accessed later.

The second object is a hash map (hash table), which is used to store instruc-
tions relevant to individual clients (hereafter referenced to as the instructions
map). The keys in the hash map are MAC-addresses of the clients. The values
corresponding to the keys are JSON objects which contain Bluetooth connectivity
instructions and information relevant to the group the client has been clustered
into.

Before the servlets which handle HTTP requests are enabled, the server is also
synchronized to an NTP time server clock. This same time server is used by the
all the clients as well, meaning that each party in the system has a reference to a
common clock.

A new thread, called the WorkThread is also executed. The WorkThread is
responsible for periodically creating another type of thread - ClustererThread -
and running instances of this thread. The ClustererThread is described in section
3.4.

3.3.2 Request Handling

As mentioned earlier in 3.1, the server is implemented as an Apache Tomcat web
server with Java Servlets. The following process takes care of handling POST-
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requests which the clients send.
As some given request is received, the JSON object described inside the request

body is added to the data queue. Secondly, the instructions map is accessed using
the Bluetooth MAC-address of the request author as the key, determining whether
there are any instructions currently corresponding to it. If instructions matching
this key are found, they are added to the response of the POST request. Otherwise,
the response will contain no instructions.

This concludes the process of receiving POST requests and responding to them.

3.4 Clustering

The WorkThread schedules the creation and execution of ClustererThread in-
stances. A new ClustererThread is executed every m time units, the thread’s
execution is always started n time units after the clients start recording audio.
This is illustrated in figure 4, as the cluster() method is periodically called.
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Figure 4: A timeline of interactions between the client and server

Two things must be ensured when choosing when to call the clustering method
(parameter n). First, only data from one recording session must be clustered.
Second, the clustering must finished by the time the client makes the next POST
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request and expects a response containing the results of the clustering. For the
example in figure 4,this can be ensured by requiring that:{

t0 + n > t0 + r + d1, where d1 is the POST request network delay
t0 + n + d2 < t0 + m + r, where d2 is the POST response network delay

More generally, we require that{
n > r + d1, where d1 is the POST request network delay
n + d2 < m + r, where d2 is the POST response network delay

The following actions are done by the the ClustererThread. The server’s data
queue is emptied, the audio time series are preprocessed and a dataset object is
formed out of all the data. Preprocessing is documented in detail in section 3.5.
The dataset is then given as input to the clustering algorithm itself.

3.4.1 DBSCAN in Java-ML

The clustering algorithm, DBSCAN, is provided by the Java-ML library. DBSCAN
is a fitting choice for the purpose of clustering audio amplitude data with the intent
of forming social groups on-the-go, as it can determine the number of groups
automatically and allows to use a distance measure which is fitting for audio data.

The Java-ML implementation of DBSCAN uses 3 parameters: a distance mea-
sure, the minimum no. of points from which a cluster can be formed; and the
ε-value. The meaning of the parameters has been explained in 2.4.2, 2.6. In my
approach, DBSCAN is configured to run with the following parameter values:

1. FastDTW is given as the distance measure to use.

As described in 2.6.1, Dynamic Time Warping (DTW) offers the ability
of measuring the similarity of signals which might be misaligned. Because
perfect time synchronization is an extremely challenging task, we expect
that the recordings done by different clients are slightly shifted on the time
axis. FastDTW is an optimization of DTW that is included in the Java-ML
library.

2. The minimum points for a single cluster is 2.

We wish to support work groups of sizes 2 persons and up, thus the choice
for this parameter’s value is clear.

3. The ε-value is set to 15.5.

In the course of the practical work in my approach, I came to fix ε at this
value, as it showed the best results in comparison to other values during
initial tests. A more detailed methodology of determining an appropriate
ε-value is described in [12], section 4.2.
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When the clustering algorithm finishes its work, it returns a collection of
datasets each representing a group of clients that are in proximity.

3.5 Preprocessing

Before clustering data, it is desirable to process the dataset in such a way that the
features on which the distance measures are based on are better distinguished.

With time-domain audio data, one of the fundamental steps is feature scaling:
ensuring that the values of each time series are of the same magnitude. A simple
example illustrating this is the case where two microphones are recording audio
which comes from the same source, however one device is significantly closer to the
audio source than the other. This results in the two recordings having different
average energy (amplitude) levels, even though the shape of the time-amplitude
curves would look similar. In figure 5, this is the case when comparing the 2nd and
4th rows of the 1st column. The signals have a similar pattern, yet the magnitude
differs greatly.

Figure 5: Left column: original data, center column: mean-normalization, right
column: max-normalization

3.5.1 Mean Normalization and Alternatives

In my approach, I overcome the above-mentioned magnitude differences by taking
the mean of a given amplitude series and dividing each value in the series with
that mean value.
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Alternative methods were also tried. One simple approach would be to rescale
the values using the maximum value of the series, giving a range of values within
[0 · · · 1]. Initial tests however showed a higher error rate compared to using the
mean. Using the mean gives more weight to peaks in the signal if the rest of the
signal is not very noisy.

Emphasizing peaks is beneficial, as peaks (high amplitude sounds) are more
likely to be heard on all devices at the same time.

3.5.2 Signal Smoothing

In addition to feature scaling, signal smoothing was also tried. Using a window
function (the Hamming function) and Short-Time Average Energy analysis, the
data was smoothed. This approach is discussed in detail in the book Algorithms
for Sound and Music Computing [20]. Figure 6 shows a smoothed set of signals
and the original audio. Tests showed no benefits compared to using mean scaling
alone.

Figure 6: Left column: original data, right column: Smoothed signal
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3.6 Creating Pairing Instructions

Each time a clustering finishes, the resulting clusters are processed to generate
pairing instructions for the client devices. These instructions must support the
forming of the Bluetooth network described in 3.2.5.

This is done by iterating through each device in each cluster, and comparing
a given device against other devices in the same cluster. The aim is to detect if a
given device was in that cluster during the previous clustering. If so, this means
that the algorithm already generated instructions earlier and doesn’t need to create
new ones. If, however, the algorithm determines that a device is appearing in it’s
cluster for the first time, it then creates a new set of instructions for it. The
contents of the instructions are brought out in figure 2.

The algorithm can determine if a device was previously in a given cluster or
not by keeping a state of the links in the network in memory. If a device has 0
links to other devices in the same cluster according to that state, we can conclude
that this device is appearing in the cluster for the first time.

If a device doesn’t appear in any cluster for two concurrent clusterings, it’s links
are removed from the stored state of links. This allows for clients to dynamically
leave the network without isolating other clients.

23



4 Results

To measure the effectiveness of this approach, the following tests were conceived.
The tests were done using Android devices of different types, namely several

smartphones of different manufacturers and one tablet device. The exact device
models have been brought out in table 1 .

Device Amount

LG Nexus 5 5

Sony Ericsson Xperia Acro S 1

Samsung Galaxy S2 1

Asus Eee Pad TF101 1

Table 1: Devices used for testing

The test scenario constituted of splitting devices into two groups and position-
ing both groups in separate rooms. Each room had an audio source of a person
reading a book. In both rooms, the devices were positioned close to the audio
source (1-2 meters). The client application was started on all the phones and more
than 60 iterations of clustering live audio time series were then run concurrently.

4.1 Measures Used

To measure the precision of the approach the following method is used. Per a
clustering instance, for every device which is placed in the wrong cluster or not
placed in a cluster at all, 1 is added to the clustering error rate. Then, we
get the error rate per device by dividing the clustering error rate by the total
number of devices clustered. For example, if we had devices A,B,C in room 1 and
devices D,E, F in room 2; and the system creates the following clusters: [A,C,D]
and [E,F ], then the error rate per device would be 0.33.

In table 2, the average error rate per device is shown for each test round.

4.2 Conducting the Tests

4.2.1 Round One

In the first round, five devices were used, thus creating groups of 2 and 3. One
room had an actual human reading a book out loud, in the other room a speaker
was playing back an audiobook. 65 clusterings were run, the average error rate per
device was 0.178. A noteworthy phenomena in the first round, however, was the
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fact that when looking at instances where just one device was missing or misplaced,
in 8 cases out of these 9, the device causing the error was the Samsung Galaxy S2.

In the first round, out of 65 clusterings, 43 had no mistakes, meaning 66.15%
of the clusterings were entirely accurate.

4.2.2 Round Two

In the second round, the Samsung Galaxy S2 was removed and 3 additional LG
Nexus 5 -s were added. This time, a live person was reading a book in both rooms.

Out of 70 clusterings, 53 had no mistakes, thus 75.71% of the clusterings were
entirely accurate.

However, 11 of the erroneous results were from clustering instances where the
clustering failed to work at all, that is, all devices were put in a single cluster.
When discarding these instances where the clustering failed entirely, the accuracy
is considerably higher, 89.8%.

Detailed data of the 70 clustering instances from round two have been brought
out in Appendix C.

Test round Average error rate per device

1 0.178

2 0.104

Table 2: Test results from different rounds of testing
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5 Related Works

The potential of using microphones in mobile applications has been explored less
than other sensors such as GPS receivers, cameras or gyroscopes.

Several works exist which aim to derive context of a single client via sensors.
This works by gathering sensor data from the client, and then running that data
through a classifier, which usually runs on a server.

Hewlett-Packard Labs presented an implementation which handled the same
goal that this work is about. Their project uses silence signatures to match similar
audio signals. To create these silence signatures, the audio signal is quantized into
silence and non-silence through the use of an adaptive silence threshold [2].

Spartacus [22] uses an acoustic technique based on the Doppler effect to en-
able users to accurately initiate an interaction with a particular target device in
their proximity through a pointing gesture. The application runs continuously in
the background, removing need for manual user pre-configuration for interactions.
Within a 3 meter distance, Spartacus achieves 90% device selection accuracy on
average. Their solution also uses Android and passive, periodic audio sensing.

However, in their work, the communication itself is initiated by the user. After
the software detects which device the user wishes to connect to, the connection is
established automatically.

5.1 SurroundSense

SurroundSense [23], for example, uses the microphone in conjunction with other
sensors to form ambience fingerprints which describe the location or context the
user is in. The client-side of the SurroundSense framework records sensed values
from sensors, pre-processes them at the client-side and then sends the preprocessed
data to a server.

The server side segregates the different types of data and deals with each one
according to a module assigned to it. For example, the server might perform color
clustering on image data. After the server has processed the different types of
sensor data, an ”ambience fingerprint” is formed, which is then forwarded to a
matching module, which matches it to already known fingerprints for localization.
The authors note that audio information provides benefits such as recognizing
walls, which, in addition to working as sound barriers, are something that humans
often associate with barriers of context.

5.2 Mobile Sensing

[24] The CenceMe application is a system which uses various sensors of the Nokia
N95 phone to detect activities and context of users (e.g. walking, having a conver-

26



sation, sitting in a vehicle). Because analyzing continuous streams of sensor data
can be computationally expensive, their solution ”splits” some of this work. Some
classification is done by the client, some by the server. More complex classifica-
tions, such as ones that involve sensor data from multiple clients, are done on the
back-end server. This so-called split-level design offers benefits such as allowing
users to create custom markers for activities or contexts that their phone has clas-
sified only locally. This allows for users to create classified states beyond the ones
that the framework initially proposes. In addition, because some classification is
done in-phone, the data being sent to the server is more light-weight.
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6 Conclusions & Future Research Directions

This work presented an approach for using mobile device microphones and cluster
analysis to create a collaborative work network on-the-go. The goal was to create
a dynamic Bluetooth network of persons in close proximity without requiring the
users to setup the connection.

A complete implementation for this approach was described, involving an An-
droid client application equipped with file sharing capabilities and a Java Servlets-
based web server. The server-side of the implementation uses Dynamic Time
Warping and Density-Based Spatial Clustering For Applications with Noise to an-
alyze audio data. The presented implementation automatically creates Bluetooth
connections between devices in proximity without additional steps required from
the user other than initiating the client application.

To support this implementation, a number of similar and related works were
researched, involving sensor usage and mobile wireless connectivity. Different cat-
egories of clustering algorithms were examined and density-based clustering was
chosen as a fitting method for the given goal.

The accuracy of the clustering, which is the key factor in this approach, was
tested. When grouping up devices based on microphone data, test results showed
an accuracy of up to 75.71% and in certain cases up to 89.8%.

6.1 Future Developments

To improve this approach, I propose several possible future developments. Firstly,
a survey of audio preprocessing methods could be carried out to acquire better
knowledge about methods used to extract more features out of audio data. The
preprocessing in this thesis’ approach is relatively light.

Secondly, the Bluetooth network structure used in this approach is rather lim-
ited. The current structure requires a message to traverse to all nodes in the
network in the worst case, meaning long delays. Furthermore, the current struc-
ture potentially isolates some nodes for a time when one member of the network
leaves. Use a different structure for the bluetooth network, as the current linked
list one forces a message to hop through each device in the worst case.

Thirdly, it would be desirable to receive instructions from the server as soon
as they are created, instead of receiving them when making future requests.
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Automaatne mobiilseadmete ühendumine integreeritud

mikrofonide abil

Bakalaureusetöö (6 EAP)

Jakob Mass

Resümee

Enamus tänapäevaseid nutiseadmed omavad mitmeid integreeritud sensoreid nagu
kaamera, mikrofon, GPS, liikumissensorid jt. Tegemist on mitmekülgsete and-
meallikatega, milledelt pärineva info rakendamist on võimalik võimendada pil-
veteenustega. Viimastel on suutlikkus koguda infot korraga eri seadmetelt ja viia
läbi andmeanalüüsi suuremal skaalal kui üksikseadmed seda suudaks.

Teiseks on enamus nutiseadmed varustatud ka tehnoloogiatega, mis võimaldavad
otsest seadmetevahelist andmesidet (Bluetooth, Wi-Fi Direct). Paraku nõuab
nende kasutamine mõningaid eeltegevusi kasutajalt.

Kõigepealt tuleb otsida lähedalasuvaid seadmeid ning seejärel valida välja seade,
millele andmeid saata. Lisaks peavad nii saatja kui vastuvõtja enne ühenduse
loomist kinnitama, et nad on nõus ühenduse loomisega. See kõik mõjub kasutajale
koormavalt ning tihti pöördutakse vahendite poole, millega ollakse juba harjunud
nagu seda on näiteks e-mail või Facebook.

Käesolev töö uurib võimalust lahendada ülalkirjeldatud probleem nutisead-
metes olemasolevate mikrofonide ning välise serveri abil. Selleks on loodud An-
droid -rakendus, mis kogub pidevalt andmeid seadme mikrofonist ning edastab neid
serverile. Serveris aga võrreldakse kõigi andmeid saatnud seadmete helisignaale
ning otsustakse, millised neist on sarnased. Sarnased signaalid grupeeritakse ka-
sutades klasteranalüüsi. Helisignaalide sarnasust võimaldab mõõta algoritm Dy-
namic Time Warping. Klasteranalüüsiks kasutatakse algoritmi DBSCAN.

Kui seadmed on grupeeritud, saadab server igale seadmele infot temaga samas
grupis olevate seadmete kohta. Seda teavet kasutades loovad seadmed omavahelise
Bluetooth-võrgustiku, sealjuures ei nõuta kasutajalt lisategevusi.

Kui Bluetooth-võrgustik on loodud, võimaldab rakendus jagada võrgustiku sees
faile ning saata tekstisõnumeid. Võimalik on jagada infot nii kogu võrgustikule
korraga kui ka üksikutele liikmetele.
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Appendices

A Github Repositories

The source code of the approach proposed in this thesis is available on GitHub.

• The server-side https://github.com/jaks6/PairerPrototypeServer

• The client-side https://github.com/jaks6/PairerPrototype

B Client Application Screenshots

(a) (b) (c)

Figure 7: Various states of the client application.

C Test Round Two Data

This table shows 70 instances of clusterings run in testing round 2. The highlighted
row shows the actual device groupings, rest of the rows show clustered results.
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# Cluster1 Cluster 2 Cluster 3 Errors

1 Nexus13;Nexus11;Nexus17 Nexus19;Nexus14;Asus;Xperia 0

2 Nexus11;Nexus17;Nexus13 Nexus14;Asus;Xperia;Nexus19 0

3 Nexus19;Xperia;Nexus14 Nexus11;Nexus13;Nexus17 1

4 Xperia;Asus;Nexus14;Nexus19 Nexus17;Nexus11;Nexus13 0

5 Nexus17;Nexus13;Nexus11 Nexus14;Nexus19;Asus;Xperia 0

6 Xperia;Asus Nexus19;Nexus14 Nexus17;Nexus11;Nexus13 2

7 All devices 4

8 Nexus13;Nexus17;Nexus11 Nexus19;Asus;Nexus14;Xperia 0

9 Nexus19;Asus;Nexus14 Nexus11;Nexus13;Nexus17 1

10 All devices 4

11 Nexus19;Xperia;Nexus14 Nexus17;Nexus11;Nexus13 1

12 Xperia;Nexus14;Nexus19;Asus Nexus17;Nexus11;Nexus13 0

13 Xperia;Nexus14;Asus;Nexus19 Nexus17;Nexus11;Nexus13 0

14 Nexus17;Nexus13;Nexus11 Xperia;Asus;Nexus14;Nexus19 0

15 Xperia;Nexus19;Asus;Nexus14 Nexus13;Nexus11;Nexus17 0

16 All devices 4

17 Nexus14;Xperia;Asus;Nexus19 Nexus17;Nexus13;Nexus11 0

18 Nexus19;Asus;Xperia;Nexus14 Nexus11;Nexus17;Nexus13 0

19 All devices 4

20 Nexus17;Nexus13;Nexus11 Asus;Nexus14;Xperia;Nexus19 0

21 Nexus14;Xperia;Nexus19;Asus Nexus13;Nexus17;Nexus11 0

22 Nexus13;Nexus11;Nexus17 Xperia;Nexus19;Asus;Nexus14 0

23 Xperia;Nexus14;Asus;Nexus19 Nexus17;Nexus13;Nexus11 0

24 All devices 4

25 Nexus17;Nexus11;Nexus13 Nexus19;Asus;Nexus14;Xperia 0

26 Nexus19;Xperia;Asus;Nexus14 Nexus13;Nexus17;Nexus11 0

27 Nexus13;Nexus17;Nexus11 Nexus19;Xperia;Nexus14;Asus 0

28 Nexus13;Nexus11;Nexus17 Xperia;Nexus19;Asus;Nexus14 0

29 All devices 4

30 Xperia;Nexus19;Nexus14;Asus Nexus11;Nexus13;Nexus17 0

31 Nexus19;Nexus14;Xperia;Asus Nexus11;Nexus17;Nexus13 0

32 Nexus17;Nexus11;Nexus13 Nexus19;Nexus14;Asus 1

33 Asus;Nexus19;Nexus14;Xperia Nexus17;Nexus13;Nexus11 0

34 All devices 4

35 Nexus19;Xperia;Asus;Nexus14 Nexus13;Nexus17;Nexus11 0

36 All devices 4

37 Nexus11;Nexus13;Nexus17 Xperia;Nexus19;Nexus14;Asus 0
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# Cluster1 Cluster 2 Cluster 3 Errors
38 Nexus11;Nexus13;Nexus17 Xperia;Nexus19;Asus;Nexus14 0

39 Xperia;Asus;Nexus14;Nexus19 Nexus13;Nexus11;Nexus17 0

40 Xperia;Nexus14;Asus;Nexus19 Nexus17;Nexus11;Nexus13 0

41 Nexus19;Xperia;Nexus14;Asus Nexus13;Nexus17;Nexus11 0

42 Nexus17;Nexus13;Nexus11 Xperia;Nexus14;Nexus19;Asus 0

43 Nexus14;Nexus19;Asus;Xperia Nexus13;Nexus11;Nexus17 0

44 Nexus11;Nexus17;Nexus13 Nexus19;Xperia;Asus;Nexus14 0

45 Nexus19;Xperia;Nexus14;Asus Nexus11;Nexus17;Nexus13 0

46 Nexus13;Nexus17;Nexus11 Xperia;Nexus14;Nexus19;Asus 0

47 Xperia;Nexus19;Nexus14;Asus Nexus13;Nexus17;Nexus11 0

48 Nexus11;Nexus13;Nexus17 Xperia;Asus;Nexus19;Nexus14 0

49 Nexus14;Xperia;Asus;Nexus19 Nexus13;Nexus11;Nexus17 0

50 Nexus11;Nexus17;Nexus13 Nexus19;Xperia;Asus;Nexus14 0

51 Nexus13;Nexus11;Nexus17 Nexus14;Nexus19;Xperia;Asus 0

52 Nexus13;Nexus11;Nexus17 Asus;Nexus19;Nexus14;Xperia 0

53 All devices 4

54 Asus;Nexus14;Nexus19;Xperia Nexus13;Nexus17;Nexus11 0

55 Nexus11;Nexus17;Nexus13 Xperia;Nexus14;Nexus19 1

56 Nexus14;Asus;Nexus19;Xperia Nexus13;Nexus17;Nexus11 0

57 Nexus11;Nexus13;Nexus17 Nexus19;Asus;Xperia;Nexus14 0

58 Nexus19;Xperia;Asus;Nexus14 Nexus13;Nexus11;Nexus17 0

59 Xperia;Asus;Nexus19;Nexus14 Nexus13;Nexus11;Nexus17 0

60 Nexus17;Nexus13;Nexus11 Asus;Xperia;Nexus19;Nexus14 0

61 All devices 4

62 Nexus19;Nexus14;Xperia;Asus Nexus13;Nexus11;Nexus17 0

63 Nexus19;Nexus14;Xperia;Asus Nexus11;Nexus13;Nexus17 0

64 Nexus19;Xperia;Asus;Nexus14 Nexus11;Nexus17;Nexus13 0

65 Asus;Nexus19;Xperia;Nexus14 Nexus17;Nexus13;Nexus11 0

66 Nexus19;Nexus14;Asus;Xperia Nexus13;Nexus11;Nexus17 0

67 Nexus11;Nexus17;Nexus13 Asus;Nexus14;Nexus19;Xperia 0

68 Nexus11;Nexus13;Nexus17 Nexus19;Asus;Nexus14;Xperia 0

69 All devices 4

70 Nexus17;Nexus13;Nexus11 Nexus19;Xperia;Nexus14;Asus 0
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