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The impact of external factors on Estonian mobile call activity 

Abstract: 

The aim of this thesis is to show how different external factors affect mobile call activity. Based 

on 628 716 Call Data Records from Estonia, a social network is formed and analysed. Call 

connections between Estonian counties are observed, with emphasis on population and popu-

larity differences and finding the most and least in-area centered counties. Call activity over 

time is analysed and the reasons behind the differences in activity are discussed. In addition, 

the impact of different events on call activity is studied. From natural events, this work focuses 

on weather, full moon and solar eclipse. From non-natural events, the impact of parliamentary 

elections, a major football match and infamous Friday the 13th on call activity is observed. 

Based on the results of this thesis, it can be indicated that human calling activity depends on 

the time period of calling and it also gets impacted by events happening around it. 

Keywords: CDR, mobile interactions, network science, social network analysis, call activity 

CERCS: P170 Computer science, numerical analysis, systems, control 

Väliste tegurite mõju Eesti mobiilkõnede aktiivsusele 

Lühikokkuvõte: 

Käesoleva töö eesmärk on näidata, kuidas erinevad välised tegurid mõjutavad mobiilkõnede 

aktiivsust. Kasutati 628 716 rida kõneandmete kirjeid, et koostada Eestis tehtud kõnede põhjal 

sotsiaalvõrgustik ja selle põhjal analüüs. Vaadeldi, kuidas erinevad kõneühendused maakon-

dade kaupa, uurides ka maakondade rahvaarvu ja populaarsuse vahesid. Näidati, millistes maa-

kondades on kõige rohkem ja millistes kõige vähem maakonnasiseseid kõnesid. Lisaks uuriti, 

kuidas erinevad looduslikud ja mittelooduslikud sündmused kõneaktiivsust mõjutavad. Loo-

duslikest sündmustest uuriti ilma, täiskuud ja päikesevarjutust. Mittelooduslikest sündmustest 

uuriti parlamendivalimisi, vaatlusperioodi suurimat jalgpallimatši ja 13. kuupäeva mõju ree-

dele. Töö tulemuste põhjal on inimeste kõneaktiivsus märgatavalt mõjutatud ajast ning ümb-

ritsevatest sündmustest.  

Võtmesõnad: CDR, mobiilsidevahelised suhted, võrguteooria, sotsiaalvõrgustiku analüüs, 

kõnede aktiivsus 

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine  
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1 Introduction 

Call Data Records (CDR) are information collected by mobile network operators during the 

course of service in order to assemble billing data. CDR usually contain of timestamp, calling 

party and called party in pseudonymised form, call type, duration and coordinates of corre-

sponding parties for localisation [1]. With an estimated of 7.683 billion mobile cellular sub-

scriptions worldwide [2] and more than 1.8 million active SIM cards in Estonia as of 2017 [3], 

CDR provide valuable metadata for behavior analysis through network science. This implies 

that there are much data that can be combined with other datasets to solve problems, including 

the problem of this thesis: observing the impact of external factors on people’s activity.  

CDR are often combined with other datasets for research purposes. For example, one study 

conducted in Norway in 2018 [4] describes how mobile phone data can be used in combination 

with railway infrastructure and train traffic data to analyse the number of train travellers. Using 

mobile phone data can be an alternative way to gather information about the statistics of pas-

sengers. This can be applied to many situations to discover patterns in social behavior as dis-

cussed in this thesis. 

One of the biggest challenges when working with big data such as CDR is finding a balance 

between privacy and utility. The more detailed and identifiable the used dataset is, the more 

opportunities there is to analyse subjects’ behavior on specific characteristics level. However, 

even accumulated data can pose a privacy risk due to the fact that groups are still identifiable 

based on locations, provided that location coordinates are not pseudonymised [1]. 

Pseudonymised data is data where most of the personal attributes are replaced with reference 

numbers. Pseudonymisation is frequently practiced method in data science since it protects 

subjects’ privacy, as the data cannot be attributed to a specific data subject. Although it is 

possible to retrieve personal information from an assigned reference number with additional 

information, technical and organisational measures must be in place in order to ensure that this 

additional information is not accessible to anybody but the data provider [5]. Pseudonymised 

data is still personal data in contrast to anonymised data, which cannot be used to identify 

individuals. Therefore, data protection regulations apply to them [6]. Personal data is any in-

formation or combination of factors that are related to an identifiable person, for instance, 

name, genetic information or location data [5]. In the context of this thesis, names in the used 

dataset are pseudonymised to project privacy of subjects. 
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In addition to having to find a balance between privacy and utility, there are a few other limi-

tations while working with CDR. The location from users is tracked only when the user carries 

and communicates through the phone, which does not guarantee all movement patterns. More-

over, when analysing data from a social network perspective, a few assumptions are usually 

made which are probable but not definite for all users. The most frequent assumption is home 

and work locations based on localization data, which cannot be validated without harming the 

privacy of the subjects [7]. 

The aim of this thesis is to analyse the dataset of real users’ mobile interactions, which were 

recorded over a period of 31 days from March 1st, 2015 until March 31st, 2015 to study how 

different external factors affect call activity. CDR are combined with other data such as weather 

data or Estonian 2015 parliamentary elections statistics in order to find results. In addition, a 

network of the callers is created and activity over Estonian counties and over time is analysed. 

The used dataset contains communication data of 722 724 records and is provided by one of 

the largest mobile operators in Estonia. 

It is to be noted that the author submitted an article based on this thesis work to 2019 

IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 

with the title “Impact of Natural, Sociocultural, Political Events on Mobile Call Data Records 

– A Case Study”. 

The structure of the thesis is following. The second chapter gives an overview of related work 

by describing the usage of CDR in different research fields. The third and fourth chapters de-

scribe the used methodology and dataset, respectively. This is followed by a descriptive anal-

ysis that is divided into network properties, call activity over Estonian counties and call activity 

over time. Next, the effects of external events on call activity are analysed. These events are 

divided into natural events and non-natural events. This is finished with a conclusion and future 

perspectives of this work.  
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2 Related work 

This chapter gives an overview of some of the works that have explored mobile phone data to 

analyse mobile interactions on a longitudinal basis. The aim is to give an overview of different 

fields of application where a similar approach has been used with datasets used and results 

discovered while covering different countries. CDR used in this chapter is an abbreviation for 

Call Data Records, which contain data such as calling parties, positioning timestamp and co-

ordinates. 

2.1 Human Behavior Analysis using CDR 

Since the early 2000s with the massively increasing popularity of mobile phone usage, which 

nowadays plays important role in people’s actions and life, data, social and geographic scien-

tists have seen great potential in analysing the accompanying data. Already in 2003, the com-

pany Positium carried out a Social Positioning Method (SPM) survey [8] in Estonia with 30 

people in order to find movement patterns in central Tallinn with data that was recorded over 

a course of one week. The movement patterns were differentiated in three age groups: up to 35 

years old, 36-60 years old and older than 60 years old. Although no specific analysis based on 

age groups was made and only a few similar surveys were completed by that time, it was noted 

that social positioning would be life-changing in the future by giving us an overview of crisis 

situations and helping to prevent problems related to the movement of people. It is noteworthy 

that the analysts knew the examined people and their characteristics. 

One year later, in 2004, as described in paper [9], a larger case study was held in Milan, Italy 

to discuss the possibility of more widespread usage of Location-Based Services (LBS) in the 

context of urban research. Even though the mobile communications market was booming, cell 

phone data was scarcely used in urban analysis back then. In that study, Global Positioning 

System (GPS) was used to gather location data in aggregated form. The chosen timeframe was 

sixteen days from April 19th to May 4th, which seemed to be enough for finding patterns and 

including some anomalies such as Liberation Day on April 25th and Milan soccer team’s vic-

tory in Italian 2004 League Championship on May 2nd. Both of these events saw more than 

50 000 people gathering in specific sites. In addition to analysing cell phone activity by time 

and density, three-dimensional graphs were made to show the geographical distribution of 

base-stations by time. The assumption was that cell phone station activity was related to the 
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number of people in the neighborhood. The study led to the conclusion that location data anal-

ysis was an underappreciated method in urban research as it gives an opportunity to monitor 

changing urban dynamics and has potential to gather information about the city in many details. 

In [10] is described how between 2004 and 2005 in Cambridge, United Kingdom, a total of 

330 000 hours of behavioral data from 94 subjects was collected and compared with self-report 

rational data. Although the number of subjects was not large, it was stated that the used methods 

could be applied to hundreds of millions of cell phone users. The subjects were students and 

faculty members from a major research institution, who also reported the proximity of friend-

ship with others and satisfaction with their workgroup. The data from mobile phones was gath-

ered with the help of pre-installed software, which helped to send researcher the data and call 

logs. The first part of the analysis was analysing the relationship between self-report and actual 

behavior, where observed proximity between friends and non-friends was estimated by time 

and location and it was correlated with reported data. Multiple Regression Quadratic Assign-

ment Procedure (MRQAP) was used to analyse social network data. The second part of the 

analysis was to investigate the friendship characteristics using MRQAP and factor analysis. 

Repeated proximity and communication on Saturday nights were taken as an indication of 

friendship. In the third part, individual satisfaction of was compared with proximity and com-

munication, with a standard assumption that individuals are more satisfied if they have more 

friends. The study predicted 95% of reciprocated friendships and such a method can predict 

individual-level outcomes. 

In fact, behavioral analysis is a common subject of interest when it comes to working with 

mobile phone data. A paper [7] describes a comprehensive Human Behavior Understanding 

(HBU) research, which was made in 2010 based on one million anonymous mobile phone users 

data in the state of Massachusetts in the United States. The data included around 130 million 

location coordinates, which were used to determine eating, shopping, entertainment and recre-

ational activities. Only weekdays were considered because the weekend pattern was believed 

to be different due to the considerably smaller amount of working people. People were divided 

into four different groups depending on their work cell’s profile. Based on the information, it 

was possible to create an activity distribution map for different timeslots and find daily activity 

patterns. It was discovered that there is strong a correlation in activity patterns among people 

sharing a common work area’s profile. Furthermore, within the groups, the activity patterns 
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similarity is related to the distance between the members. The results of this analysis can be 

used in urban planning. 

Travel behavior research is also a field where mobile phone data is used. One study about travel 

demand estimation as described in paper [11] was made in 2015. That study used data from 

cities from several continents to find road usage patterns and proposed a system, which esti-

mated travel demand with Call Data Records (CDR) in conjunction with open-source geospa-

tial data, records and surveys. The analysed cities were Boston, San Francisco, Lisbon, Porto 

and Rio de Janeiro – a variety of cities from different continents to show the flexibility of the 

system. Among the results was found that most of the cities have a very high correlation in 

Origin-Destination (OD) matrices with the exception of Lisbon, which had the smallest units 

of aggregation. 

2.2 Criminal Investigations 

In addition, there have been attempts to use CDR for criminal investigation. A paper [12] de-

scribes how CDR are a source of data used by investigation agencies to investigate the case 

and proposes a system where CDR are stored in a centralised database for analysis. Cellar 

numbers and their relationships were presented in graphical representation based on graph the-

ory. An example was given where a robbery took place at 11th Cross, Malleswaram, Bangalore 

on 20th November 2015 at 10:30 PM and suspected criminals were shortlisted based on phone 

calls made near the crime location. In that particular case, the calls within 1-hour interval from 

the crime occurrence would be suspicious and easily tracked from the database using a query, 

which includes phone calls only from n of the nearest towers. As a solution for many results, 

the used CDR can be merged with CDR of old cases and associated criminals. As a result, it is 

possible to analyse whether the result has relations with associated criminals. The paper also 

demonstrates that graph visualisation makes it easier to solve such cases. 

A paper [13] proposes another system, presented in 2018 in India, which is able to generate 

reports consisting of maximum call durations and most frequently called users, which can help 

officers in investigation. A Criminal Database is used to extract data, which contains CDR of 

criminals. Additionally, the proposed system will be able to display caller profiles with fre-

quently changing International Mobile Equipment Identity (IMEI) numbers in order to detect 

suspicious activity. In conclusion, although the real-life usage of the system was theoretical at 
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the point of its presentation, it has a potential to save time of investigators by creating automatic 

statistics about suspicious activities. 

2.3 CDR in Health 

Likewise, CDR provide beneficial information for health research as they can track the move-

ment of people and infectious disease transference. To give an illustration, a paper [14] men-

tions a research published in Canada in 2015, which found that it was possible to predict flu 

infection with 30% precision among evaluated 72 people within a period of 17 weeks. How-

ever, a study [15] published in 2019 in the United Kingdom revealed that there is a lack of 

public engagement when it comes to using CDR in healthcare, as only 3% of questioned par-

ticipants were aware of their usage in health research. Before explaining the safeguards of using 

their anonymous CDR, only 62% of people agreed with its usage, which later increased to 80%. 

This led to the conclusion that the conditions of using CDR for research purposes should be 

clearer to the users. The study mentioned that the value of the gained information through CDR 

can be increased further in health research when combining them with other datasets such as 

traffic data and malaria surveys. This applies to all fields of applications where mobile phone 

data is used.  



12 

 

3 Methodology 

This chapter gives an overview of used programs and packages and the reasoning behind their 

usage.  

3.1 Used programs 

RStudio [16], which is an integrated development environment for R programming language, 

was used to process the data in order to gather statistical results for the analysis part. Also, 

network properties were found and plots were made in RStudio. The reason behind the usage 

of RStudio and R language is that they offer powerful functions for data processing, data com-

bining and statistical measures with a variety of visualisation opportunities. Gephi [17] was 

used to visualise the undirected and unweighted graph of callers network due to its powerful 

abilities to process a large number of graph properties. The network graph is displayed in chap-

ter 5.1 (Network properties). 

3.2 Used libraries 

Most of the used functions were from R Base Package [18]. Igraph [19] library was used to 

create a graph object from the edges containing of used Call Data Records’ callers and call 

receivers. Igraph library provided functions that can read and create a simplified graph from a 

.csv file that contain graph edge attributes (nodes). These functions are graph.data.frame() [20] 

and simplify() [21]. In addition, igraph provided methods to calculate network properties. In 

addition, xlsx [22] library was used to create sub-files of the dataset that contained only neces-

sary information for connections maps and elections activity maps. Dplyr [23] library was used 

to filter and arrange the data. Libraries sf [24] and tidyverse [25] were used to combine the 

shapefile of Estonian counties with data, find centroids for connection maps and create call 

connection figures which described call activity over the Estonian counties and during the par-

liamentary elections.  
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4 Dataset description 

This chapter gives an overview of data size, data attributes and data cleaning. 

4.1 Data description  

The data used in the analysis part of this thesis was provided by one of the biggest mobile 

operators in Estonia and includes call records of 10% of caller IDs that made calls in Estonia 

during the period of March 1st, 2015 to March 31st, 2015. In total, the data included records of 

722 724 calls. The dataset has 9 attributes: 

1. pos_usr_id_from – ID of user who made a call; 

2. pos_usr_id_to – ID of user who was called to; 

3. pos_time – timestamp when the positioning was made, describes call start time; 

4. X_from – X-coordinate of caller location; 

5. Y_from – Y-coordinate of caller location; 

6. X_to – X-coordinate of user who was called to; 

7. Y_to – Y-coordinate of user who was called to; 

8. MKOOD_from – code that describes the county where the call started; 

9. MKOOD_to – code that describes the county where the call was received. 

Pos_usr_id_from attribute is used to determine the caller in pseudonymised form. For the 

given period, each caller keeps the same ID, which can be used to determine the network of 

the caller. Pos_usr_id_to is used to find the person who was called to. Pos_time includes the 

timestamp containing of date (year, month and day) and time (hour, minute and second). This 

attribute can be used to group call records by days or narrower time slots. X_from and Y_from 

describe the caller location coordinates while X_to and Y_to describe the call receiver coordi-

nates. MKood_from and MKood_to describe the county names where the call was made and 

where it was received. These codes are derived from positioning coordinates. 

4.2 Data cleaning 

In the described dataset, one ID had a significantly higher amount of received calls than any 

other ID. It received 94 008 calls (13.01% of total calls made), with no outgoing calls. As it 

was suspected to be a service center, it was removed for further analysis. The second most 
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frequent calling point received just 584 calls and was included. After data cleaning, 628 716 

Call Data Records were left, which were used for analysis in chapters 5 (Descriptive analysis) 

and 6 (Effect of events on call activity).  
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5 Descriptive analysis 

This chapter gives an overview of Estonia’s call network and describes call activity over coun-

ties of Estonia. In addition, call activity over time (days and hours) is analysed. 

5.1 Network properties 

To understand the nature of Estonia’s call network, an undirected and unweighted network 

graph 𝐺 = (𝑁, 𝐸) was created, where 𝑁 is the number of callers and 𝐸 is the number of unique 

interactions. In the case of this network, the number of callers is 130 093 and the number of 

interactions is 137 809. For simplicity, all multiple edges and loops were removed. Table 1 

describes the properties of the created graph that represents the network of calls made in Esto-

nia. The average degree of 2.12 (Row 3) means that on average, each person is connected with 

just two persons. Although the number of disconnected components is 10 176 (Row 4), which 

indicates that the network is very disconnected, 73.16% of callers are present in that component 

(Row 5). Edge density of 1.63e-05 (Row 6) describes the ratio of network edges (interactions) 

and possible interactions, meaning that there are 61350 times fewer undirected interactions 

than possible within the network. The diameter of the network is 39 (Row 8), which is the 

longest path of all network shortest paths, with an average path length of 13.37 (Row 9). This 

means that the network is highly spread out.  

Table 1. Properties of used dataset 

Row Attribute Notation Value 

1 Nodes (Callers) 𝑁 130 093 

2 Edges (Interactions) 𝐸 137 809 

3 Average Degree 

 

2.12 

4 Disconnected Components 10 176 

5 Nodes in the Biggest Component 95 182 

6 Edge Density 1.63e-05 

7 Clustering Coefficient 0.036 

8 Diameter    39 

9 Average Path Length 13.37 

10 Communities 10 334 (0.94) 
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Figure 1. Visual representation of Estonia’s calls network as an undirected and unweighted graph. Each commu-

nity is displayed in different tone 

 

Figure 1 visualises Estonia’s calls network with its 10 334 communities (Row 10) as an undi-

rected and unweighted graph. In the case of this network, only 5 out of 10 334 communities 

involve more than 1% of all callers. 

5.2 Call activity description over Estonian counties 

In Estonia, there are 15 counties, with Harju county, which includes capital Tallinn being the 

most populous and Hiiu county being the least populous. The following subchapter analyses 

connection between the counties.  
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Table 2. Abbreviations and populations of the counties 

Abbreviation County Population [26] 

Ha Harju 575 601 

Ta Tartu 151 377 

Id-V Ida-Viru 147 597 

Pä Pärnu 82 349 

Lä-V Lääne-Viru 59 039 

Vi Viljandi 47 010 

Ra Rapla 34 436 

Võ Võru 33 172 

Sa Saare 31 706 

Jõ Jõgeva 30 841 

Jä Järva 30 109 

Va Valga 29 944 

Põ Põlva 27 438 

Lä Lääne 24 070 

Hi Hiiu 8 582 

 

Table 2 gives an overview of abbreviations for each county used on network maps and their 

populations as of January 1st, 2015 in descending order. 

5.2.1 Bidirectional call connections 

Figure 2 shows bidirectional connections between each of the Estonian counties. In-area calls 

are the calls where both nodes are in the same county.  

 

Figure 2. Bidirectional call connections between Estonian counties 
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In 10 out of 14 possible cases (as in-area calls were excluded), Harju county is the most popular 

destination for other counties outside the county’s borders. For Harju county itself, the most 

popular destination is Ida-Viru county. It is notable that both counties have the biggest percent-

age of Russian community in Estonia, which is the likely reason for this bidirectional relation 

between these two areas. In 4 out of 14 possible cases, the second most populous Tartu county 

is the most popular destination outside the area’s border. This is the case for the counties of 

Jõgeva, Valga, Põlva and Võru. All of them are either neighboring areas of Tartu (Jõgeva, 

Valga and Põlva) or having Tartu as the significant nearby center and working area (Võru). 

Hiiu county is the least popular destination for 7 counties (all of them being in the eastern part 

of Estonia) while Põlva county is the least popular destination for 4 counties (all of them being 

in the western part of Estonia). Another county that was the least popular in more than one case 

is Saare county, which received the least amount of calls from the counties of Jõgeva and Põlva. 

The islands of Hiiumaa and Saaremaa (Hiiu county and Saare county) have unique least popu-

lar destinations: Võru county and Jõgeva county correspondingly. Therefore, the islands do not 

follow the trend of other western counties that have Põlva county as the least popular destina-

tion. Although the margins were not big, it is one of the ways to demonstrate how counties' 

communities differ. 

5.2.2 Undirected call volume 

Figure 3 shows the volume between each of the Estonian counties.  

 

Figure 3. Undirected call volume between Estonian counties 
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The top 8 most frequent connections include Harju as one of the nodes. The most frequent 

connection is between Harju and Ida-Viru counties with 7807 calls (8.22% of all calls exclud-

ing in-area calls), likely because of the large Russian community in both of these counties. The 

second most connection frequent was between two most populous counties: Tartu and Harju 

with 7581 calls (7.99% of all calls excluding in-area calls). The least frequent connection with 

just 7 calls (0.007% of all calls excluding in-area calls) was between the least populous Hiiu 

county and Ida-Viru county. As the connections between the counties were bidirectionally sim-

ilar like Figure 2 demonstrates, with some small exceptions such as more calls from Tartu 

county to Harju county than vice versa, despite Harju having 3.81 times bigger population, 

undirected call volume (demonstrated in Figure 3) could be a good measure to analyse network 

between the counties. 

5.2.3 Population and popularity differences 

Figure 4 describes the difference of population rank and the popularity rank in terms of incom-

ing calls for each Estonian county. Table 3 shows the popularity rank and population rank 

differences in alphabetic order of the counties which are displayed in Figure 4. In addition, 

Table 3 shows the average rank of how popular destination the county is over all the counties. 

 

Figure 4. Difference between population rank and popularity rank of each county. The greener the color, the 

more calls it receives compared to its population. The more red the color, the less calls it receives compared to 

its population 
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Table 3. Population rank and popularity rank differences. Average rank shows average popularity as a call desti-

nation over all counties excluding in-area calls 

County Average rank Popularity rank Population rank Difference 

Harju 1.4286 1 1 0 

Hiiu 12.1429 15 15 0 

Ida-Viru 7.7143 7 3 -4 

Jõgeva 8.2857 9 10 1 

Järva 6.9286 6 11 5 

Lääne 9.0714 11 14 3 

Lääne-Viru 6.2143 5 5 0 

Põlva 9.7143 13 13 0 

Pärnu 5.1429 3 4 1 

Rapla 9 10 7 -3 

Saare 10.5 14 9 -5 

Tartu 3.0714 2 2 0 

Valga 8 8 12 4 

Viljandi 5.7143 4 6 2 

Võru 9.3571 12 8 -4 

 

The difference of 0 means that the amount of incoming calls is corresponding to its population. 

Such areas are Harju county, Tartu county, Lääne-Viru county, Põlva county and Hiiu county. 

The counties with a negative difference are Saare county (-5), Ida-Viru county (-4), Võru 

county (-4) and Rapla county (-3). Ida-Viru county has a popularity rank of 7, which is less 

than Järva county’s popularity rank of 6, despite of exceeding Järva's population rank by 8. 

Järva county has also the most positive difference (+5), which means that it receives the most 

calls compared its population. This is a case of a good average rank instead of an anomalously 

high amount of calls to the area. Other areas with a positive difference are Valga county (+4), 

Lääne county (+3), Viljandi county (+2) and Pärnu county (+1) and Jõgeva county (+1). 

Ida-Viru county’s big negative difference comes mostly from the fact that it receives most of 

its calls from neighboring areas (second most popular for Lääne-Viru county and fifth most 

popular for Jõgeva county, excluding in-area calls). Also, it is the most popular calling desti-

nation for Harju county, not counting in-area calls. Other areas do not have Ida-Viru in their 

top 5 most popular calling destinations. Saaremaa’s big negative difference is the opposite case 

of Järva county’s popularity: low popularity’s average rank as only the least populated Hiiumaa 

has a lower average rank. 
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5.2.4 Most and least in-area centered counties 

Table 4 shows the percentages of calls that are made and received in the respective county. 

Figure 5 describes how many calls of each Estonian county stay inside the county boundaries. 

Table 4. Percentage of in-area calls for each Estonian county 

Rank County In-area calls (%)  Rank County In-area calls (%) 

1 Ida-Viru 90.7728 9 Valga 75.9028 

2 Harju 90.1492 10 Lääne 73.1515 

3 Pärnu 81.9078 11 Võru 72.9669 

4 Lääne-Viru 81.8295 12 Järva 71.6937 

5 Saare 81.7023 13 Rapla 69.2658 

6 Tartu 80.4753 14 Põlva 69.0716 

7 Hiiu 79.9483 15 Jõgeva 63.9830 

8 Viljandi 77.0099  

 

 

Figure 5. Percentage of calls that stay inside the county's area 

 

The most in-area centered county is Ida-Viru with over 90.77% of calls staying inside the 

county boundaries. The most likely reason for this is that there is a large amount of Russian 

population who form a large network together. The second most in-area centric county is Harju 

with the indicator of 90.15%. The reason for such a high percentage of Harju county including 
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Tallinn is that it is the biggest center of Estonia and contains most of the points of interest such 

as service centers, institutions and working places which give fewer reasons to make calls out-

side the county. A relatively high percentage of in-area calls (>80%) is also in all other top 5 

most populous counties of Tartu, Pärnu and Lääne-Viru for the similar reason with Harju 

county. The least in-area centered county is Jõgeva county with only 63.98% of calls made 

staying inside the county boundaries. The reason for this is that Jõgeva has frequent connec-

tions with all 5 neighboring areas, especially with Tartu county which is a destination of 

12.32% of calls made from Jõgeva county. For the same reason, a high percentage of calls from 

Põlva county and Rapla county have a destination in other counties. Põlva county has frequent 

connection with neighboring Tartu county (13.85%) due to many services and work locations 

being there for people of Põlva county. Rapla county has the most frequent connection with 

any other area than itself out of all Estonian areas: with Harju county (17.73%). 

5.3 Call activity over time 

This subchapter describes call activity by day and over hours. In regard to hours, weekdays and 

weekend days are also analysed both in merged form and separately. 

5.3.1 Call activity by day 

Figure 6 describes the call activity by days over the period of March 1st, 2015 to March 31st, 

2015.  

 

Figure 6. Call activity by day over the observable period 
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Friday is always the most active day of the week with an average of 24189.25 calls, being 

19.27% above average activity. The reason for this is that for the majority of the people it is 

the end of the working period of Monday to Friday and therefore a favorable day to make 

appointments with people. From Monday to Thursday, there is generally a similar amount of 

calls made each day. Weekend days are always less active than weekdays due to the signifi-

cantly smaller amount of work-related calls. Sunday was the least active day of the week with 

15522.2 calls on average, which is 23.46% below average activity. The reason for this is that 

it has traditionally been a day of rest in most countries, including Estonia. 

5.3.2 Call activity by hour 

Figure 7 describes the average number of calls in a day by hour. For this figure, working days 

and weekend days are merged together in order to visualise average hourly activity over all 

days.  

 

Figure 7. Call activity in a day by hour 

 

Activity between the period of 04:00 and 16:59 is constantly increasing and activity between 

the period of 16:00 and 04:59 is constantly decreasing. The most active hour when taking all 

days into consideration is 16:00 to 16:59, which comes mostly from the period of Monday to 

Friday when work is commonly finished and people are available to call. The least active period 

is between 01:00 and 06:59 when on an average 53.94 calls were made in an hour compared to 

the daily hourly average of 845.05 calls per hour (15.67 times below average). 
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5.3.3 Call activity by hour during weekdays 

Figure 8 describes the average number of calls in an hour when only weekdays (Monday to 

Friday) are considered.  

 

 

Compared to Figure 7 that shows hourly activity over all days, the activity distribution in Figure 

7 is similar due to 22 out of 31 observed days (70.97%) being weekdays. Weekdays are also 

more active than weekend days. The difference that was noticed is that the hour of 16:00 to 

16:59 was even more active compared to other hours and the preceding period from 10:00 was 

more gradual. The activity increasing and decreasing periods were the same with 04:00 to 16:59 

and 16:00 to 03:59 respectively. Another notable difference is fewer calls during the night 

period. While the merged data had 53.94 calls made on average during the period of 01:00 to 

06:59, the average number of calls for the same period was 43.45 (21.53% difference), which 

is 0.20% of all calls during the day. The average number of calls in an hour was 905.69. 

5.3.4 Call activity by hour during weekend days 

Figure 9 describes the number of calls in an hour when only weekend days (Saturday and Sun-

day) are considered. The main differences compared to weekdays’ hourly calls are more calls 

during the night, more even activity distribution between 10:00 and 19:59 and peak time of 

12:00 to 13:59 instead of 16:00 to 17:59. The main reason for the distribution difference is that 

most of the people are available during the whole day and therefore it is possible to make 

appointments with other people earlier. The average number of calls during the period of 01:00 

Figure 8. Call activity in a day by hour when only  

Weekdays are considered 

Figure 9. Call activity in a day by hour when only  

Weekend days are considered 
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to 06:59 was 79.57, which is 0.48% of all calls during the days. This means that nightly activity 

is 2.38 times bigger during the weekend than during the working days. This can be explained 

with the fact that more people are making plans during the night due the next day being free of 

duties. Another difference compared to working days was activity increasing and decreasing 

periods. In contrast to 04:00 to 16:59, activity increasing periods during the weekend are 05:00 

to 13:59 and 23:00 to 00:69. Activity decreasing periods are 00:00 to 05:59 and 13:00 to 23:59. 

The average number of calls in an hour was 696.81. 
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6 Effect of events on call activity 

This chapter describes the impact of different natural events and different non-natural events 

on call activity. 

6.1 Impact of natural events on call activity 

This subchapter describes the impact of natural events such as weather, full moon and solar 

eclipse on call activity. 

6.1.1 Impact of weather on call activity 

Figure 10 shows daily call activity in comparison with the average temperature. The days are 

sorted in the order they appear in week. For average temperature, a table was created that dis-

plays temperature and weather conditions of four Estonian most populous cities (Tallinn, Tartu, 

Narva, Pärnu) at hours 00:00, 06:00, 12:00 and 18:00 over the observable period of March 1st, 

2015 to March 31st, 2015. High-temperature value was used for each of the hours. The source 

of weather data is Time and Date AS in combination with Estonian Weather Service. The av-

erage temperature during the observed period was 4.02 degrees Celsius. 

 

Figure 10. Call activity and temperature comparison 

 

It can be seen from Figure 10 that the coldest day of the month (-1.94 degrees Celsius) was 

also the least active of the month. Although the day was Sunday (14188 calls compared to 
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15523 on average, 8.60% below average), which is the least active day of the week, it was the 

least active out of all Sundays. The preceding Saturday, which was the second coldest day of 

the whole month (-0.5 degrees Celsius), was also the least active Saturday (17198 calls com-

pared to 18225.25 on an average, 5.64% below average) of the month.  

It was also noted that the warmest day of the month (9.06 degrees Celsius) was the most active 

Wednesday of the month (22053 calls compared to 21152.75 on average, 4.36% above aver-

age). In general, the four most active days were also the warmest of that particular day of the 

week and the four least active days were the coldest of that particular day of the week. 

6.1.2 Lunar effect on call activity 

Figure 11 describes the number of calls for the observed period during the nights between 22:00 

and 06:00. The period of 22:00 to 06:00 was chosen because it was the interval when the moon 

was visible and people are generally sleeping.  

 

Figure 11. Lunar effect on call activity. Number of calls during the nights between 22:00 and 06:00 

 

During the month, the full moon occurred in the nights of 5-6 and 6-7 [27]. For the night of 5-

6, the full moon was in a form of Micromoon and also the furthest and smallest of the year 

[28]. The following night of 6-7 was a continuation of the full moon. Although the night of 4-

5 was also considered to have the full moon in some areas of Earth [29], it was not at 100% 

visibility and still growing according to Estonian data. The night of 5-6 when the Micromoon 
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occurred, was between Thursday and Friday and 751 calls were registered. The average number 

of calls between Thursday and Friday night was 729.25, which means a 2.91% increase in 

activity. The following night of 6-7 when full moon also occurred, was the most active night 

of the month with 1146 calls registered in comparison to 1082.75 that was average between the 

nights of Friday and Saturday. This means a 5.84% increase in activity. It is notable that alt-

hough the night of 4-5 had moon still in the growing phase, it was still the most active night of 

month between Wednesday and Thursday with a 5.38% increase in activity. Based on the ac-

tivity displayed in Figure 11, there is a reason to believe that the full moon does make people 

more active during the night. 

6.1.3 Impact of a solar eclipse on call activity 

Figure 12 describes the number of calls during the period of 11:00 to 13:17 for each day, which 

is the time interval when solar eclipse in March 20th [30].  

 

Figure 12. Number of calls in a day between 11:00 and 13:17 

 

The day when the solar eclipse took place in that month was Friday. In Estonia, the solar eclipse 

was partial [30]. The average number of calls for that time interval was 3494 in a day and 4098 

when only Fridays were considered. During the solar eclipse day, there were 4370 calls regis-

tered during the period between 11:00 and 13:17. Therefore, the activity increase during the 

solar eclipse was 6.64% compared to other Fridays. It is also notable that the preceding 4 days 

long period from Monday to Thursday before the solar eclipse was more active than usual. The 
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reason for this is that all four warmest days of the month were during that period: average 

temperature was 8.17 degrees Celsius compared to month’s average of 4.02 degrees Celsius. 

6.2 Impact of non-natural events on call activity 

This subchapter describes the impact of non-natural events such as parliamentary elections, 

football match and infamous Friday the 13th on call activity. 

6.2.1 Impact of parliamentary elections on call activity 

To analyse the effects of parliamentary elections on call activity, two Estonian counties were 

chosen: the county with the lowest and the county with the highest percentage of voters during 

the election day of March 1st, 2015 [31]. Electronic votes, which are a part of elections result 

in Estonia, were excluded due them being cast during the time before the observable period. 

Other votes cast before the elections day were also excluded. In addition, Harju county and 

Tartu county were excluded for accuracy, because they include cities Tallinn and Tartu which 

form a separate voting district. The counties which activity was chosen for analysis are Ida-

Viru county and Hiiu county. After excluding beforehand cast votes and excluded areas, Ida-

Viru county had the biggest percentage of voters (83.27%). Hiiu county had the lowest per-

centage of voters with the same consideration (75.80%). Elections day of March 1st, which was 

Sunday, was compared with other Sunday with the most similar amount of calls (1.83% differ-

ence in activity): March 29th. Network comparison between elections Sunday and typical Sun-

day for Ida-Viru county can be seen in Figure 13. Network comparison for the same difference 

for Hiiu county can be seen in Figure 14. Towns of the counties are also displayed in Figures 

13 and 14. 
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Figure 13. Call activity in Ida-Viru county during the 2015 parliamentary election voting period (Sunday, March 

1 between 9:00 and 20:00) on the left side compared to typical activity in Ida-Viru county (Sunday, March 29 

between 9:00 and 20:00) on the right side 

 

Figure 14. Call activity in Hiiu county during the 2015 parliamentary election voting period (Sunday, March 1 

between 9:00 and 20:00) on the left side compared to typical activity in Hiiu county (Sunday, March 29 between 

9:00 and 20:00) on the right side 

 

In Hiiu county, the activity during the election day was 7.5% higher than during the other 

observed day. For Ida-Viru county, activity during the elections was just 0.9% higher compared 

to the other observed day. In the case of Hiiu county, the calls trajectory is similar in both days, 

with an exception of the Palade parish (population of <30, displayed in blue color in Figure 14) 

receiving more calls as one of the four polling stations of Hiiu county was there [32]. In the 

case of Ida-Viru county, there was bigger call activity around smaller parishes as there are 13 

parishes there with polling station in addition to the main seven towns (shown in Figure 13). 

6.2.2 Football match and call activity 

On March 31st, there was an Estonia-Iceland football match [33] and Figure 15 describes the 

number of calls inside and around the A.Le.Coq arena where the match took place. There were 
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no other matches during the observed period in that location. A.Le.Coq arena is the arena where 

international matches featuring the Estonian national football team are played. The gray bar 

shows the total number of calls for each day. The blue bar shows how many of these calls were 

made when only the period of 17:00 to 22:00 is considered: the period from gates opening until 

75 minutes after the match is finished during the match days. There were 5334 spectators during 

the match. The used dataset included 573 calls from the observed period around the arena giv-

ing an average of 18.48 calls per day. During the match day, there were 34 calls, 1.84 times 

more than the average. For the period of 17:00 to 22:00, the average number calls is 6.65. 

During the match time, there were 19 calls, which is 2.86 times above the average number of 

calls for that period. 42.11% of these calls were made before the match, 31.58% of calls were 

made after the match and the remaining 26.32% of calls were made either during the very 

beginning, very end of the match or during the break.  

 

Figure 15. The number of calls around the main football arena in Estonia during March 2015. Blue color shows 

the number of calls during the typical match related period (17:00 to 22:00) 

 

In conclusion, people were focused on the match and avoided making calls during the match 

time. 
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6.2.3 Impact of Friday the 13th on call activity 

Infamous Friday the 13th is a day that occurs one to three times in a year [34] and is considered 

an unlucky day in many cultures, including the culture of Estonia. One of these Fridays oc-

curred during the observed period. The number of calls made during that day was 24983, which 

was 3.28% above the average of all the Fridays, making it the most active day of March 2015. 

The number of calls made during the observed Fridays is displayed in Figure 16.  

 

Figure 16. Number of calls by day with Fridays highlighted 

 

There were no other notable events during that Friday, including the previously mentioned 

natural and social events. It also was not an effect of good weather that might have caused the 

activity to increase, as it was not the warmest Friday (3.64 degrees Celsius compared to the 

monthly average of 4.02, the warmest Friday was 5.38 degrees Celsius). Therefore, it can be 

assumed that Friday the 13th also affected the calling activity like all the previous events.  
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7 Summary 

7.1 Conclusion 

Call Data Records, which are collected by mobile operators to gather information for billing, 

are valuable data to predict human behavior and investigate social networks of different coun-

tries. Their value comes from the fact that they include IDs of calling parties, location coordi-

nates and timestamp. This information can be combined with many other data such as statistics, 

surveys or even self-reported data in order to solve problems in a variety of fields like behav-

ioral analysis, urban analysis, health or crime.  

The first part of Call Data Records analysis in this thesis was a Descriptive Analysis. Firstly, 

after cleaning the data, 628 716 Call Data Records were used to understand the nature of Esto-

nia’s social network. Secondly, call activity was investigated over Estonian counties to find the 

connections between counties, population and popularity differences and most and least in-area 

centered counties. In the final part of this chapter, calling patterns were investigated by days 

and hours, with hours being investigated also by considering only weekdays and only weekend 

days.  

Descriptive Analysis was followed by analysing the effects of events on call activity. The 

events were split into two categories. The first category was natural events, from which the 

impact of weather, full moon and solar eclipse on call activity were analysed. The second cat-

egory was non-natural events. From non-natural events, it was analysed how parliamentary 

elections, a major football match and infamous Friday the 13th affected people’s activity. In the 

context of the parliamentary elections, call connections were also displayed on a map within 

the counties with proportionately the biggest and smallest amount of votes cast during the of-

ficial elections day.  

The results of this thesis indicate that human calling activity depends on the time period of 

calling and it also gets impacted by events happening around it. Among the results based on 

Estonian counties, it was also discovered that the largest counties are most in-area centered, 

meaning that a large amount of the calls beginning from the county have a destination within 

the same county. 
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7.2 Future perspectives 

It is possible to combine Call Data Records with data of many events that were not covered in 

this thesis. In this thesis, the most notable events of the observed period (March 2015) were 

chosen. One of the possible future perspectives is to repeat the process with a larger amount of 

data covering more months in order to investigate how other events affect call activity. Fur-

thermore, including more Call Data Records can enhance the accuracy of Descriptive Analysis 

results. 

In this thesis, the analysis part was based on Call Data Records that were recorded in Estonia 

and therefore, discovered patterns are based mostly on Estonians behavior. It is possible to 

repeat the process with data from other countries in order to find differences between different 

sociocultural backgrounds.  
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