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Improving object detection in adverse weather conditions for Auve
Tech’s autonomous vehicle

Abstract:

As autonomous vehicles are becoming more prominent in our lives we want their
computing systems to be able to recognize objects with the best accuracy possible, re-
gardless of the weather conditions. In order to achieve better accuracy with machine
learning based visual object detection we compare 2 approaches: training an object
detection neural network with synthetic rain added images and removing rain from im-
ages using a different state-of-the-art neural network before feeding them to an object
detection neural network trained with non-rainy images.

In this work, first, we generate custom datasets for training and evaluation as no
dataset fulfilling the requirements of this project is publicly available. After that, using
various combinations of these datasets for training and evaluation, we arrive at our main
findings: We show that while using a specialized neural network for removing adverse
weather effects from images results in visually more distinguishable objects in these
images, an object detection network doesn’t perform better in this scenario than if it’s
trained with labeled images with adverse weather effects on them. We perform the main
experiments with synthetic rain, and then confirm our findings with images taken in real-
life rainy situations. The outcome of this research will be used in the computer vision
pipeline of Auve Tech autonomous vehicles.
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Objektide tuvastamise parandamine ebasoodsates ilmastikutingimus-
tes Auve Techi autonoomse soiduki jaoks

Lithikokkuvote: Autonoomsed sdidukid muutuvad itha suuremaks osaks meie elust.
Selle tottu tahame, et nende siisteemid oleks voimelised tundma &ra asju voimalikult tép-
selt sOltumata ilmast. Saavutamaks tdpseimat tulemust masindppel pohineval visuaalse-
te objektide tuvastamisel vordleme me kahte lihenemist: Objektituvastamise treenimist
nirvivorkude abil, piltidega millele on eelnevalt toodeldud siinteetiline vihm ja vihma
eemaldamist piltidelt, kasutades uusimaid néarvivorke enne pildi lisamist objektituvasta-
mise nirvivorku, mis on treenitud vihmavabade piltidega.

Selles to0s genereerime esmalt piltide andmebaasid treenimiseks ja hindamiseks,
sest lihtegi vajadusi rahuldavat andmebaasi pole avalikult saadaval. Peale seda kasuta-
me erinevaid kombinatsioone nendest andmebaasidest. Kuigi me néditame, et kasutades
spetsiaalseid ndrvivorke ebasoodsate ilmastiku efektide eemaldamiseks piltidelt saame
tulemuseks visuaalselt rohkem eristatavad objektid neil piltidel siis sellisel viisil objekti-
tuvastus ei anna paremaid tulemusi kui vihmase ilmaga piltidega treenitud vork. Me tee-
me peamiseid eksperimente siinteetilise vihmaga ja siis kinnitame oma leide pariselust
voetud vihmaste olukordade piltidega. Antud uurimuse tulemust kasutatakse Auve Tec-
hi autonoomsete sdidukite jaoks.

Votmesonad:
Objekti tuvastus, YOLO, vihma-eemaldus, autonoomne litkumine, ebasoodsad ilmasti-
kuolud

CERCS:
T111 Pilditehnika
P176 Tehisintellekt
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1 Introduction

Autonomous vehicles are rapidly shaping up to become an important part of our lives.
The main aim of such vehicles is to improve vehicle navigation, save traveling time
and reduce road fatalities. The latest is the most important as crash injuries are now
estimated to be the 8th leading cause of death globally for all age groups and the leading
cause of death for children and young people between 5 to 29 years of age [1]. Other
benefits of such systems include significantly reducing human labor involved in the
transport of humans and goods.

One startup working on self-driving technology is Auve Tech, which is developing
an autonomous transportation system based on the concept of a shuttle bus. This vehicle
is aimed at enhancing last-mile transportation by offering alternative means of transport
in closed areas and mixed traffic environments and is powered both by electricity and
hydrogen.

In order to facilitate this transportation system, we, at the software team of Auve
Tech, have been implementing state-of-the-art software solutions to various challenges
faced by today’s autonomous systems. One of such challenges is object detection and
classification, which is necessary for the shuttle to comprehend the traffic around and
react to it accordingly. Recent advancements in the development of the deep learning
class of machine learning algorithms combined with increased computational resources
available for edge devices and the availability of huge image/video based datasets of
target object classes have enabled relatively fast and accurate detection and classification
of these objects.

Considering these, at Auve Tech, we utilize state-of-the-art neural networks for cre-
ating a computer vision-based object detection and classification pipeline. While Auve
Tech’s shuttle buses are already deployed around the world and serving travelers au-
tonomously, we keep improving the safety and the abilities of its autonomous system.

1.1 Motivation

While most of the available state-of-the-art solutions for computer vision-based object
detection and classification are generally fast and powerful, they lose precision when
faced with adverse effects of the weather as they are not trained to deal with such condi-
tions. This is an expected default behavior as the objects in the view of the camera are
distorted from the perspective of the camera and may be occluded by the rain, snow, or
other similar occlusions. This makes the off-the-shelf trained object detection models
insufficient for application and requires special treatment for detecting objects in these
adverse conditions.

An apparent solution would be training the network with a big amount of data in
these domains, as deep neural networks are, as pointed out earlier, data-hungry and
may require enormous amounts of data to train. However, very few such datasets exist



and the lack of datasets captured in diverse domains like rain, snow, and other weather
conditions represents one of the most challenging aspects of achieving a viable level of
training for autonomous vehicles.

1.2 Objectives

In the scope of this work, we create a computer vision based object detection and classi-
fication pipeline for Auve Tech shuttles that will perform better in adverse weather con-
ditions than currently available solutions. Specifically, We will prepare a custom data
set consisting of images from Argoverse data set [2] with varying levels of synthetic rain
added. Further, We will review and choose a state-of-the-art deraining solution. Then,
we will evaluate and compare various recent computer vision based object detection
and classification implementations. Thus, We will introduce the best pipeline in terms
of accuracy considering the real-world computing resources available on the shuttles of
Auve Tech.

We will be comparing two different pipelines to verify our hypothesis of object de-
tection in images with adverse weather conditions. Figure 1 shows these two pipelines,
where the only difference between the two pipelines is the direct utilization of rainy
images for classifying images in the first pipeline. Whereas, the second pipeline first
restores rainy images, so that the effect of rain is mitigated and then a neural network
will be trained for object detection using the resultant images.

Object detection NN
Camera driver —D{ Preprocessing }—b trained with rainy » Sensor fusion
images

, " Object detection NN
Camera driver Preprocessing Ai";g:t:ésimr frained with non-rainy Sensor fusion
images

Figure 1. Two pipelines we are comparing our hypothesis with.
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2 Background

2.1 Auve Tech

Auve Tech [3] is a technology startup that specializes in the development and manu-
facturing of autonomous transportation systems. It started as a spin-off of a research
and development project from IseAuto research group of Tallin University of Technol-
ogy. The company has already been providing commuters with autonomous rides in 4
different countries, and its engineers are working hard on scaling up the technology fur-
ther. In addition to its operations, the project has also been a subject of many research
papers [4-9] and theses [10-18].

Figure 2. Auve Tech’s shuttle bus powered by hydrogen

Auve Tech is focused on providing smart and sustainable last-mile transportation
to its commuters. Therefore, in 2021, it introduced a low-temperature cell-powered
autonomous shuttle bus, which allowed the vehicle to produce energy from hydrogen
right inside the shuttle. The development of this shuttle bus technology was conducted
in collaboration with researchers from University of Tartu [19]. Figure 2 shows the
trademark shuttle bus vehicle designed by Auve Tech for its commuters.

One of the primary goals of the company is to continuously increase the scope of
the conditions this shuttle bus is able to withstand and safely navigate autonomously.



Reducing the effects of adverse weather conditions on the sensor suite is one of the
ways to reach that goal. The same is the purpose of this research work, so it is aligned
with the primary goals of the company.

2.1.1 Hardware setup

The sensor setup for the shuttle bus is shown in Figure 3, with some of the sensors
related to object detection clearly marked. Some of them are describe below:

* 3 x Long range Lidar sensors for wide range pointcloud data collection.

* 4 x FLIR Blackfly S cameras with fisheye lenses, 1 per each side of the vehicle
capturing images at the resolution of 1616x1240 and up to 30 FPS

¢ Inertial Measurement Unit

* Global Navigation Satellite Systems (GNSS) receiver and antenna

Figure 3. Sensors on Auve Tech shuttle relevant to object recognition: Camera positions
are marked with a red circle, lidar positions are marked with green circles [3]

We are not able to share the exact computational setup of the vehicle as the informa-
tion is restricted, but the main computer’s performance is in par with a high-end desktop
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PC with the main GPU for inferencing being on the level of a desktop Nvidia RTX 2070
card.

2.2 Autoware

Software enabling autonomous driving capabilities of Auve Tech’s shuttle buses use a
heavily modified version of Autoware [20] as its base, which is an open-source software
stack providing functionalities required for autonomous driving in a modular architec-
ture. Autoware itself is built upon Robot Operating System (ROS) [21], which is an
open-source meta-operating system for robots. ROS provides the services one would ex-
pect from an operating system, including hardware abstraction, low-level device control,
implementation of commonly used functionality, message-passing between processes
and package management.

ROS also provides tools and libraries for obtaining, building, writing and running
code across multiple computers. The ROS runtime graph is a peer-to-peer network of
processes (called ROS nodes) that are loosely coupled using the ROS communication
infrastructure. ROS implements several different styles of communication, including
synchronous communication over services, asynchronous streaming of data over topics,
and storage of data on a Parameter Server [22].

Autoware provides a helping set of self-driving modules composed of sensing, com-
puting, and actuation capabilities. Capabilities, although rough around the edges and not
totally complete, include Localization, Mapping, Object Detection & Tracking, Traffic
Light Recognition, Mission & Motion Planning, Trajectory Generation, Lane Detection
& Selection, Vehicle Control, Sensor Fusion etc. High level module architecture of the
design implemented with Autoware is shown in Figure 4.

The part of the stack we’re dealing with in this work is related to the object recogni-
tion pipeline, shown in Figure 5. More specifically, we’re looking into the image based
object detection part of object detection pipeline. The detected objects from this stage
of the pipeline is then fused with detection results based on data from lidar sensors’
pointcould data. This fused object data then passes through shape estimation and moves
on to Multi Object Tracking algorithms in order to analyze the objects’ speed and ac-
celeration, as well as giving them unique identification numbers. As we by this point
know the type of the object (Whether it’s a car, a pedestrian or some other object) and
its speed, by adding the knowledge we know about the current location and the struc-
ture of the road, we can make assumptions about the future behavior of the fellow road
participants.

It can be seen that many steps in the pipeline depend on the initial step of object
detection. Hence, in order to facilitate high accuracy in the later parts of the pipeline,
it’s imperative to get as high quality of the initial detection results as possible.
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Figure 4. High level architecture of Autoware [23]

2.3 Visual object detection and classification

As visualized in Figure 5, detections and classifications from camera images in the ini-
tial detection phase inform the later stages of sensing pipeline of the autonomy system
and therefore it’s crucial to get detections as accurate as possible in order to ensure our
Multi Object Tracking and Map based Prediction algorithms don’t get fed confusing in-
formation and make wrong decisions. Nowadays, across many companies and research
institutions this complex task is reserved for deep learning based neural networks as
they have shown good results in detection of objects like pedestrians, vehicles, traffic
lights and traffic signs [24-29]. These networks are usually trained with a large amount
of data and predict location of certain objects in the given image.

One branch of such neural networks like R-CNN [24] suggested a two-stage ap-
proach: The first stage is for determining Regions Of Interest, areas in the image that
are likely to hold objects of interest; The second stage is where class probabilities are
determined for the corresponding Regions of Interest. This branch gets later extended
with Fast R-CNN [25], which is 9 times faster and manages to achieve significantly bet-
ter precision score compared to R-CNN. A year later in 2016, after it was recognized
that this multiple stage detection added computational cost, Ren et al. proposed Faster
R-CNN [30], which tries to alleviate the performance cost by introducing Region Pro-
posal Network(RPN) that shares full-image convolutional features with the detection
network. Architecture of Faster-CNN is illustrated in Figure 6

A different approach, however, started to give great results around the same time as
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Figure 5. Architecture of the object recognition pipeline. Each purple rectangles rep-
resents a ROS node, and the arrows represent the publisher/subscriber relationship be-
tween them, and the accompanying text represents the relevant topic name for the com-
munication [23]

Bounding box
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CNN Feature
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Figure 6. Architecture of Faster R-CNN [31]

Fast R-CNN was presented. Redmon et al. proposed YOLO [29], which took a one
stage approach to object detection and managed to reduce computational complexity
enough to make decent object detection feasible in real-time. Comparison of real-time
performance of R-CNN derivatives and YOLO are mentioned in Table 1.
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2.3.1 YOLO (You Only Look Once)

As this work heavily relies on descendants of YOLO [29], it makes sense to look into the
original paper and some of the state of the art methods inspired by it that have become
go-to solutions for real-time object detection ever since.

In 2015, Redmon et al. changed the way, the image-based object detection is
achieved, with the paper "You Only Look Once: Unified, Real-Time Object Detec-
tion" [29]. For the first time, object identification has been framed by them as a re-
gression task to detect spatially separated bounding boxes and their associated class
probabilities, instead of using classifiers for detection. For this puropse, separate neural
networks was used to predict the bounding boxes and class probabilities from a single
image. The class probabilities are only predicted for a bounding box if an object of
interest is actually detected inside the bounding box.

As a very fast, customizable and generalizable solution, this method has inspired
many descendants that are being used by many real-time state of the art solutions, in-
cluding in autonomous driving pipelines. As many new flavors of YOLO are released
every year and we are focused on state of the art, for this work we mainly focus on
recent releases.

Figure 7. Example from the original paper [29].
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2.3.2 YOLOv1

In the original YOLO, a feature extraction module comprised 24 convolution layers.
After this, 2 fully-connected (FC) layers are used for object classificaiont as well as
detecting bounding boxes (as regression coordinates of bounding boxes). A 7x7x30
tensor is produced as an output of the network. Figure 8 shows the archictecture block
diagram for the original YOLO model.

e

=g

Exp ol
T N2
g
i

v. Layer av. La: Canv. Layer: Conv. Layers  Conw. Layers  Conv. Leyers  Conn. Layer
%6442 332192 1x1x128 Iaxasel,  IxIxSiZ 1., 3xixioz4
ol laysr  Maxpeal Lay 3x3x256 Ix3x512 3x3x1024 3x3x1024
75252 7x252 1x1x256 1x1x512 3x3x1024
3x3a512 3x3x1024 3x3x1024-52
axpe axpal

Figure 8. Architecture of the original YOLO [29].

Table 1. YOLO real-time performance in comparison with R-CNN derivatives based on
training with PASCAL VOC dataset [29]

Network mAP | FPS
R-CNN [24] 535 | 6
Fast R-CNN [25] 70 0.5
Faster R-CNN VGG-16 [30] | 73.7 | 7
Faster R-CNN ZF [30] 62.1 | 18
YOLO [29] 63.4 | 45
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2.3.3 YOLOv3

"YOLOV3: An Incremental Improvement’ [32] is the last paper from the original re-
searchers of YOLO, Redmon et al. The third version has seen big improvements com-
pared to the original in terms of speed, precision and the specificity of classes. YOLOv3
now uses Darknet-53, a 53 convolutional layer feature extractor as its backbone, which
is also made by the YOLO creators Joseph Redmon and Ali Farhadi. Figure 9 shows
the archictecture block diagram for the original YOLO model. YOLO-v3 demonstrated
much superior performance compared to its competitors at the time of its development in
terms of mean Average Precision (mAP). Figure 10 shows the comparison of YOLOV3
with a couple of other model RetinaNet-50 and RetinaNet-101 [26].

T T v
1 \
| | . :
: Convolutional 1x1 Up Sampling Convolutional Set Convid i=1 Concatenate Resicual ! | [('om'elurjumal 1=1 |
i = J
| il x i
: i | Convolutional J-i] 21
L . N

1 4 1 ]
| [ Predict one [ Predict wo | | Predict three | ! | e 2!
1 1| | Convolutional 1+1 | B (!
i ) i i f e Bl
1 ; ! | | Convolutional 3=3 ] w !
| 1" T =
| xX : |+ X :
i Convalutional 141 | :
1 <8 s 1
: f ' ! |
| 8 L 1 I
1 4 —

| | Convolution: !
! g, (A ([T g | || [l i ! gl
| | — t
| | i _,| Convolutional 33| £ ||
A 4 ] |
| L - 1|
L = !

Figure 9. Architecture of YOLOV3 [32].
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* YOLOv3
—@)- RetinaNet-50
RetinaNet-101

Method mAP-50 time
[B] SSD321 454 61
[C] DSSD321 46.1 85
[D] R-FCN 519 85
[E] SSD513 504 125
[F] DSSD513 533 156
[G] FPN FRCN 59.1 172
RetinaNet-50-500  50.9 73
E RetinaNet-101-500 53.1 90
RetinaNet-101-800 57.5 198
YOLOv3-320 515 22
48 YOLOv3-416 55.3 29
YOLOv3-608 57.9 51
1 1 1 1
50 100 150 200 250

inference time (ms)

Figure 10. YOLOV3 performance [32].

2.34 YOLOvS

While not by original YOLO researchers and not accompanying a paper, YOLOVS5 [33]
is a highly popular YOLO descendant that was originally released in 2020. YOLOVS5
has gathered a big community of contributors around it, which is why its new versions
keep getting released with better performance and new integrations. The first large
contribution of YOLOVS was that it translated a very efficient Darknet framework to the
corresponding implmentation in the PyTorch framework. C is the primary programming
language used in this Darknet framework, which provides fine-grained control over the
network’s activities. It may be a benefit to research to have control over lower level
languages, but it can also slow down the research process since one must develop custom
gradient computations for each new addition.

YOLOVS also implements data augmentation processes that happen before training
in order to improve the Average Precision considerably. One of these methods is called
the mosaic data augmentation, which was a creative way to combine multiple (actually
4) training images stacked on top or side of each other. Due to this, the model was
able to learn identifying the objects at normal as well as smaller scales. This had added
benefit of reducing the training time as the requirement of large mini-batch sizes was
now alleviated.

We feel confident choosing YOLOVS5 for the object detection and classification part
of our pipeline as it offers one of the best trade-off levels between accuracy and speed
available, and is also similar in use to YOLOV2 [34], the solution chosen for this project

17
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Figure 11. YOLOVS5 performance [33].

during a previous research [17]. Figure 11 shows the comparison of YOLOvVS with a
few variants of YOLO-v3 and EfficientNet [35] in terms of mAP on the popular COCO
data set [36].

2.4 Deraining, Desnowing and Defogging

In order to assist vehicles in safely navigating through traffic, advanced autonomous
systems depend on visual data to identify and localise various objects, including peo-
ple, traffic signs, and other vehicles, for the purpose of providing assistance. However,
in challenging weather scenarios such as rain, snow or fog, the performance of object
detection methods suffer significantly [31]. One of the ways we can combat this situa-
tion is using state of the art neural networks to derain (remove the effect of rain from
images), desnow and/or defog the image before feeding it to an object detection and
classification algorithm like YOLOVS.

While discussing rain, snow or fog in the context of autonomous driving, the dif-
ferences between them for vision algorithms must be understood: The vast majority of
traditional algorithms that are used in outdoor vision systems begin with the presump-
tion that the picture intensities are proportional to the brightness of the scene. Never-
theless, dynamic weather circumstances such as rain or snow create dramatic intensity
variations in images, which proves that this assumption is incorrect. [37]. Raindrops on
glass surfaces in front of the camera also cause extra disturbance because they cause
blurry edges behind themselves and cause the refraction of light [38].

Potential approaches to solve this problem vary and there are some techniques re-
viewed is some review studies. For example, Mazin Hnewa and Hayder Radha [31]
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reviewed and tested some approaches of deraining. But, in the current work, we will re-
view some of the latest research work that utilizes the vision transformers; a method
that’s recently gaining attraction in computer vision applications for its outstanding
results. Figure 13 shows the Transweather model architecture, and Figure 12 demon-
strates an example image-pair showing the images before and after the application of
Transweather. It can be seen that the output image after the application of Transweather
is restored successfully and the effects of rain pixels are largely removed.

2.4.1 Transweather

- MW-“”"“\ i-'
\:-r E

Figure 12. Example input and output from Transweather [39]

Transweather [39] is an effective solution based on the idea of transformer for the re-
moval of any unfavourable weather conditions. It makes use of a single encoder-decoder
network for the restoration process, and it makes use of learnable weather type queries
inside the decoder. These queries allow it to learn the kind of weather deterioration that
occurred, and then it utilises this knowledge for the weather removal process.

Transformer Encoder Transformer Decoder
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_ Block ~0
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Figure 13. Transweather architecture [39].
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3 Datasets

Dataset used for training and validating the neural network is one of the most important
parts of visual object detection and classification solution. We are, however, quite lim-
ited in datasets we are able to use for autonomous driving in adverse weather conditions.
The go-to datasets popular among Computer Vision researchers for training Neural Net-
works like COCO [36], KITTI [40], Argoverse [2] or CityScapes [41] have no labels
regarding the weather conditions in the pictures. There’s only BDD100K dataset [42]
that we have managed to find that fulfills the requirements for such work. Even then, as
pointed out in [31], the quality is of labeling and diversity in the dataset is sub-optimal.
Another approach to demonstrate the impact of rain on object detection methods is to
render synthetic rain on top of images taken in clear weather conditions.

3.1 Argoverse

Argoverse 1.1 is a self-driving dataset collected by Argo Al in order to assist autonomous
driving research. It contains data from 2 lidar sensors, 7 ring cameras and 2 front-facing
stereo cameras as illustrated in Figure 14.

2x LiDAR }—.&

2x forward stereo cameras —ODQW u_—< Tx ring cameras
L e,

Figure 14. Argoverse data collection vehicle [2].
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For this work we take output from one of the front facing ring cameras, which in-
cludes 39384 labeled images in the training and 15062 labeled images in the validation
subset of the dataset.

3.1.1 Augmentations on Argoverse dataset

We added 3 different levels of synthetic rain to our subset of Argoverse dataset before
using it for training and validation of the Neural Network. For this purpose, we using the
image augmentation library imgaug [43]. The following proportions were implemented
for augmentation: 40% Light rain, 40% Medium rain and 20% Heavy rain. Figure 15
shows the examples of these different levels of rain occlusion on a sample image. It can
be observed from the figure that the image becomes more challenging with each level
of rain added.

Figure 15. From top to bottom: Light, Medium and Heavy synthetic rain
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3.2 BDDI100K

BDD100K [42] (Berkeley DeepDrive) is a very large and diverse open driving video and
photo dataset for computer vision research. Dataset consists of 100,000 videos, hence
the 100K in the name. Each video is about 40 seconds long, 720p, and 30 fps. The
videos also come with GPS/IMU information recorded by cell-phones to show rough
driving trajectories. The videos were collected from diverse locations in the United
States, and the locations are marked in Figure 16.
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Figure 16. Geographical distribution of data sources from BDD100K. Each dot repre-
sents the starting location of every video clip [42]

The subset of BDD100K we’ll be using are the annotated images that are a part of
the dataset: A keyframe at the 10th second from each video is selected and sampled,
with annotations provided for these samples. They are labeled at several levels: im-
age tagging, road object bounding boxes, drivable areas, lane markings, and full-frame
instance segmentation. These annotations also include the weather conditions in the
image, which is very important for our work. An overview of the annotations available
is demonstrated in Figure 17.

3.2.1 Limitations with the BDD100K

It’d be great to be able to use BDD100K for training part of our research, as it technically
fits all our requirements and contains real world rain data. However, there is an issue
with the dataset as it’s published: As mentioned in [31], weather condition labels on
BDDI0OOK are not all accurate. Some of the images marked as rainy only has wet
asphalt, some others are taken plainly in clear weather although marked rainy. If we sort
through all the images marked to be rainy, we find only 1596 images. For this reason,
we’ll be using this subset of BDD100K only as a dataset to validate our strategies.
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Figure 17. Overview of annotations available for key frames of videos from BDD100K
[42]

3.3 Processing of images with Transweather

We used Transweather [39] on our custom version of Argoverse validation dataset with
synthetic rain added, and the results were quite good (see Figure 18). Figure shows
different amounts of rain added synthetically to an image and the corresponding output
image, in each case, after applying the Transweather model. The ground truth image is
also given in the bottom row for fair comparison.

We also obtained quantitative performance measures for the results produced by
the Transweather model. For this purpose, we utilized Peak Signal to Noise Ratio
(PSNR) and Structural Similarity Index Metric (SSIM), which are standard measures
of image quality based on comparison between a pair of images (the ground truth and
the query/resultant image). We got PSNR of 29.36 dB and SSIM of 0.9376 for our
dataset. We get these values in comparison with the ground truth images, and they’re
quite good performance ratios as explained in the Section 4.1.

3.3.1 Performance of Transweather

One key issue we are now able to determine on using Transweather in our pipeline
is the computational complexity this adds. According to the experiments in [39], in-
ference time of Transweather is the shortest compared to alternative methods at 0.14
seconds while delivering images with less noise. Our experiments confirm this also, as
we managed to process 7 frames per second when the computing hardware isn’t loaded
with any other task. While this is the best performing option of this method, usability
of this in real-time while sharing computing resources with other important tasks would
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require a tremendous amount of optimizations.

Figure 18. From top to bottom: Input, Output, Ground Truth

3.4 Datasets defined for use in experiments

We will go over the details of the datasets we used for experiments with the results
mentioned on the Table 2.

34.1 Clean

For Clean dataset, we will use images from Argoverse mentioned in the Section 3.1
without any modifications. The number of instances appearing in the dataset are shown
in Figure 19a.

3.4.2 Synthetic Rain

Synthetic Rain dataset uses the same images as the Clean dataset, with synthetic rain
added on top of them like described in Section 3.1.1 and illustrated in Figure 15.
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Figure 19. Number of class instances in the datasets.

3.4.3 Real Rain

Real Rain is the subset of BDD100K we talk about in the Section 3.2.1. It contains the
images from BDD100K manually selected and confirmed to have real rain drops in the
image. Because of its small size, we use it only for validation and not training. The
number of instances appearing in the dataset are shown in Figure 19b and examples can
be seen in the top row of Figure 20.

3.4.4 Synthetic Derained

Synthetic Derained has the images from the Synthetic Rain dataset that we further mod-
ified by using Transweather [39] to remove the rain streaks from the images. Examples
of the results can be seen in the middle row of Figure 18. This will be used as one of
the validation datasets in our experiments.

3.4.5 Real Derained

Real Derained dataset has the images from our Real Rain dataset that has gone through
deraining with Transweather [39]. Examples can be seen in the bottom row of Figure
20. Also in the same figure, the modifications Transweather makes in the images can be
seen.
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Figure 20. Images from BDD100K based datasets. Top: Real Rain; Bottom: Real
Derained

4 Experiments

In this work, we have designed experiments for determining the best state of the art
pipeline for visual object detection for the Auve Tech’s autonomous shuttle busses. We
have run various experiments wherein different augmentations are applied to different
parts of the pipeline in order to determine the best combination. We have also con-
sidered the accuracy of object detection and its performance implications, as we’ll be
running the pipeline in a real-world environment with limited computational resources,
alongside other resource-intensive software components.
The 2 main experiments for this research are given as following:

* Removing rain from images using a different neural network before feeding them
into the object detection neural network;

* Training an object detection neural network with synthetic rain added images;

The results of these experiments are compared in order to establish our modified
object recognition pipeline for rainy weather conditions. In order to reach that point, we
have to perform a few other interesting experiments for determining the best fitting ar-
chitectures for object-detection/deraining neural networks on different training datasets.
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This is detailed in different sub-sections of this section, but before that we need to define
a few performance metrics used in this work, which are defined in Section 4.1 below.

4.1 Evaluation Methods
4.1.1 Peak Signal to Noise Ratio (PSNR)

The peak signal-to-noise ratio (PSNR) [44] is the ratio of a signal’s greatest strength
to the power of corrupting noise that influences the quality of its representation. The
PSNR value is related to Mean Squared Error, which is computed as follows.

MSE = 3" 5 (o — ) ()

i=1 j=1

Where, x;; and y;; represent the pixels values in 44, row and j, column of the images
x and y, respectively, and m, n represent the number of rows and columns in the images,
respectively.

Based on MSE, the PSNR between 2 images is calculated as given in the following
mathematical expression.

MAX?
MSE

Where, M AX| represents the maximum possible pixel value in the images, and M SFE
represents the mean squared error computed using Equation 2

4.1.2 Structural Similarity Index Measure (SSIM)

The SSIM [44] is a perception-based model that examines the deterioration of an image
as a perceived shift in its structural information. This is calculated between a query
image and a reference image by using the average, variance and covariance values of
pixels of both the images. Mathematically, it is expressed as:

(2papty + 1) (204 + c2)

SSIM =
(13 + pf + c1)(0F + 05 + ¢2)

3)

2 2 . ) . .
Where, 1, and yi; represent the average pixels’ value of images x and y, respectively.
Similarly, 02 and , O'Z represent the images’ variances. Similarly, o, represents the im-
ages co-variance and ¢; and cs represent 2 constants which depend on images dynamic
range.
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4.1.3 Mean Average Precision (mAP)

The mean average precision (mAP) measure is used in object detection tasks to measure
how well a model is performing object detection for all the classes of interest. This
measure is related to the concepts of Intersection over Union (IoU), which measures
the amount of intersection of a predicted bounding box with that of the ground truth.
Based on the IoU threshold, different true positives (TP) and false positives (FP) can be
generated. So, varying the IoU (between 0-1) can lead to a set of values, which can be
used to calculate different precision/recall values for a classification model. These pre-
cision/recall values can then be used to draw a curve, the area under which measures the
Average Precision (AP) of the classification model. Whereas, mean Average Precision
(mAP) is the average of the AP measures over all classes of interest. Thus, the mAP
measure can be expressed mathematically as follows.

n

1
AP = —
nAP =13 (4R @
k=1
Here, AP, is the average precision of k;;, class computed using the method described
above, and n is the number of classes of interest.

4.1.4 Confusion matrix

Confusion Matrix is an NxN square matrix used to calculate different classification
measures, where N-1 is the number of classes. For the instances below, we are showing
confusion matrices for 4 classes that we are evaluating our networks on. The values
you see in the cross areas show the normalized number of predicted values crossing
Ground Trues values. False Negative instances where objects are not recognized are
represented on the bottom row, and the instances of False Positives where objects are
predicted where it doesn’t exist are shown on the right column.

4.1.5 Precision/Recall curve

Precision-Recall is a valuable measure of prediction success when the class instances are
imbalanced. In information retrieval, precision is a measure of result relevancy, while
recall is a measure of how many genuinely relevant results are returned. The precision-
recall curve shows the tradeoff between precision and recall for different thresholds. A
high area under the curve represents both high recall and high precision, where high pre-
cision relates to a low false-positive rate, and high recall relates to a low false-negative
rate. High scores for both show that the classifier has both a high precision and high
recall values.
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4.2 Clean trained YOLOVYVS evaluated on Clean

The first step is to evaluate the YOLOv5m 6.1 with original Argoverse dataset’s valida-
tion set. The mAP for all classes at IoU=0.50 is 0.581. The confusion matrix and the
Precision/Recall curve are shown in Figure 21 and 22, respectively.
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Figure 21. Confusion matrix
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Figure 22. Precision/Recall curve
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4.3 Clean trained YOLOVS evaluated on Synthetic Rain

Then we ran the same test using our custom Argoverse validation dataset with added
synthetic rain. The mAP for all classes at IToU=0.50 is 0.510, as expected lower than
reference images. The confusion matrix and the Precision/Recall curve are shown in
Figure 23 and 24, respectively.
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Figure 23. Confusion matrix
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Figure 24. Precision/Recall curve
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4.4 Clean trained YOLOVS evaluated on Synthetic Derained

For the next step we use state of the art deraining solution before feeding the image to
YOLOVS for object recognition. The mAP for all classes at IToU=0.50 is 0.519, which
is an inbetween the mean average precision value between the reference images and im-
ages the ones with added synthetic rain. The confusion matrix and the Precision/Recall
curve are shown in Figure 25 and 26, respectively.
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Figure 25. Confusion matrix
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Figure 26. Precision/Recall curve
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4.5 Synthetic trained YOLOVS evaluated on Synthetic Rain

This is where the main comparison point of the research is. While the tests before
were done with YOLOVS trained with non-rainy images, here we test a YOLOVS that’s
trained with the training set of our custom synthetic rain added Argoverse dataset. mAP
for all classes at [oU=0.50 is 0.555, which happens to be better performing than feeding
images through a deraining network before feeding it to YOLOvVS. The confusion matrix
and the Precision/Recall curve are shown in Figure 27 and 28, respectively.
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4.6 Synthetic Rain trained YOLOYVS evaluated on Clean

If we’re to use rainy trained YOLOvVS, we might have to use it for non-rainy weather
also. That’s what we test next. mAP for all classes at [oU=0.50 is 0.566. The confusion
matrix and the Precision/Recall curve are shown in Figure 29 and 30, respectively.
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Figure 29. Confusion matrix
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4.7 Evaluations with real rain
4.7.1 Clean trained YOLOVS5 evaluated on Real Rain

After the main evaluations are done, we also want to evaluate with Real Rain and Real
Derained datasets, in order to confirm our findings can be useful for real rainy images
also. First evaluation we do is for creating a new baseline for the next evaluations,
as domain differences exist between Argoverse and BDD100K. mAP for all classes at
IoU=0.501s 0.339.

4.7.2 Synthetic Rain trained YOLOVS evaluated on Real Rain

With this test we can see that our network trained with occlusions related to rain streaks
doesn’t perform better with BDD100K’s images with mainly rain drops on them. mAP
for all classes at IToU=0.50is 0.311.

4.7.3 Clean trained YOLOVS5 evaluated on Derained Real

For this final evaluation, we test to see if Transweather improves the precision we get
with images including real rain drops and find out that it isn’t the case. mAP for all
classes at [oU=0.50 is 0.327.

4.8 Findings

First we evaluated the default setup to use as a baseline, i.e. YOLOVS trained on the
unmodified Argoverse dataset’s training subset, and evaluated on the same dataset’s
validation subset. The resulting mAP score at 0.5 IoU threshold was the highest (0.581)
as expected. This is because this is the most optimal setup with no occlusions added
whatsoever. This is represented at the 1st row of Table 2.

Then, we evaluated the same network, with the same unmodified training data, but
with evaluation set containing the added synthetic rain. This causes the mAP perfor-
mance at 0.5 IoU to drop 0.071 points to 0.510. This reduced mAP score is also ex-
pected, as the model was trained with the training data free from rain-occlusions. So,
the network performance degrades when actually tested on images in the validation
dataset, which have such occlusions present in them. The result of this experiment is
listed in the 2nd row of Table 2.

The third evaluation in the Table 2 represents one of the two pipelines we’re com-
paring in this work: The training data hasn’t changed, but for validation data we take
the modified Argoverse validation dataset and we run it through the deraining network
Transweather [39] to remove the rain from the images before the process of object de-
tection and classification. The mAP score has slightly increased up to 0.519, because of
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the deraining process, which improved the images quality by removing the rain effect.
But, it’s not close to the base-line performance of the 1st experiment.

The fourth evaluation represents the second pipeline we’re considering in the scope
of this work: We use Argoverse dataset’s training subset augmented with rain for the
training of the neural network. In this way, we obtain a network that is already aware
of the rainy weather conditions. Therefore, we get decent mAP at 0.555, because the
network is trained on the same kind of occlusion that appears on the evaluation data.
This method also has the benefit of being less resource intensive as it requires running
only one neural network, without needing a deraining neural network. The result of this
experiment is listed in the 4th row of Table 2.

The fifth evaluation conducted in this work is performed to test whether we lose
precision when using a synthetic rainy trained neural network on non-rainy data, as we
might expect in real-life situations. The resulting mAP (0.566) shows a minor loss in
precision over the base-line mAP.

Real Rain evaluations The next 3 evaluations are conducted for gaining insight on
feasibility of the methods on data with real rain in it. The first limitation we face on
this one is that the dataset is small in size with only 1596 images, so we’ll be using
these only as evaluation datasets with training done only with either Clean or Synthetic
Rain datasets. Another limitation we face is in regards to domain differences between
the Argoverse and BDD100K datasets: They use different kinds of cameras, produce
images in different resolutions and the images in Real Rain has various degrees of rain
drops on them instead of rain streaks that are present in Synthetic Rain dataset.

We conduct the 6th evaluation on the Table 2 in order to establish a new baseline
because of the domain differences. The mAP at 0.339 is lower than evaluations done
with the datasets of the same domain as the training dataset, as expected.

The evaluation N¢7 is conducted to determine if our Synthetic Rain trained network
performs better than Clean trained one on images with real rain. It performs worse
and this is rather expected, as there’s a considerable difference between the rain streaks
Synthetic Rain is trained with and the rain drops that exist in Real Rain dataset.

The final and 8th evaluation is comparable to the 6th evaluation, except the eval-
uation data has gone through Transweather for removing rain drops from the images.
While visually the images after this process do look less rainy in comparison, surpris-
ingly the precision of the network actually drops after deraining.
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Table 2. The evaluation results

Ne | YOLOVS training data | Evaluation data | mAP@0.5
1 Clean Clean 0.581
2 Clean Synthetic Rain 0.510
3 Clean Synthetic Derained 0.519
4 Synthetic Rain Synthetic Rain 0.555
5 Synthetic Rain Clean 0.566
6 Clean Real Rain 0.339
7 Synthetic Rain Real Rain 0.311
8 Clean Derained Real 0.327

5 Conclusion

This research provides a useful study for improving object detection in adverse weather
conditions for Auve Tech’s autonomous vehicle (a shuttle bus). For this purpose, we
have used the YOLOvVS model as an object detection model along with a few other
tweaks in different experiments with the Argoverse dataset. The images in the Argo-
verse dataset were augmented with synthetic rain at different levels. Then, different
experiments were performed, which included training with the rainy dataset as well as
removing the rain effect from images before actually feeding them to the network for
inferencing. Table 2 shows that the YOLOVS network trained with rainy images per-
formed best, in terms of the mAP value (0.555), when compared to the baseline value
(i.e. the mAP value when Synthetic Derained is used for evaluation: 0.519). It also
performed comparable to the baseline mAP value (0.566), when it was used to test on
validation data with no rain. This indicates that the model can be reliably used in real-
world situations involving both adverse and normal weather conditions. With the last 3
experiments done we can also see that while deraining provided by Transweather [39]
results in more legible images visually, it doesn’t improve the object detection perfor-
mance, actually resulting in slightly lower mAP (down to 0.327 from 0.339 as the base-
line value).

Considering the data above and the fact that Transweather would need further opti-
mizations in order to be a viable option to be used in real-time as discussed in Section
3.3.1, we are confident in suggesting Auve Tech an object detection pipeline that in-
cludes training YOLOVS5 with labeled data in adverse weather conditions.
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6 Future work

Firstly, we believe that this work should be revisited in the future when more performant
neural networks for removing adverse weather artifacts from images are available as
collecting and labeling a large dataset in all kinds of adverse weather conditions is no
simple undertaking and might not be viable for Auve Tech.

Recently, Generative Adversarial Networks (GANs) have been achieving very promis-
ing performance results in the area of image translation and while they don’t exist in a
suitable form for Auve Tech’s pipeline yet, developments might prove useful in the fu-
ture as they have the potential to solve the issues we are facing with domain differences.

Looking at the confusion matrices from our experiments, we can see that Back-
ground False Positives and False Negatives are quite high. Future work should focus on
improving this aspect of the network by including more images without objects in them
in order to improve this.
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Appendix

I. Glossary

Artificial Neural Network: A biologically inspired computational model used for
complex function approximation tasks.

Convolutional Neural Network: A variation of conventional Artificial Neural Net-
work mainly used for working with image data as convolutional layers help reduce
parameters of the network.

Object detection: A computer vision task for detecting (localizing) objects of
interest in an image.

Autonomous Vehicles: A driverless car, which is able to navigate without human
intervention.

Shuttle: a vehicle used to transport passengers between 2 (or more) frequent
places.

Computer vision pipeline: A set of computer vision based methods applied in se-
quential steps, in which the subsequent step is dependent on the previous step(s).

Synthetic dataset: A dataset that is artificially generated using computational (or
other artificial) methods.

Restoration: The process of restoring images to their original form improve its
quality.

Smart transportation: The use of modern technology for building an integrated
transportation system.

autonomous transportation: The use of modern technology for building an intelli-
gent transportation system.

LIDAR: Stands for Light Detection and Ranging; a remote-sensing method for
measuring distances in the form of point-cloud data.

Pointcloud data: A set of points in 3D space for representing a 3D object or world.

GPU: Stands for Graphical Processing Unit; a processor dedicated to intensive
computations in particular.

Robot Operating System: An open-source meta-operating system for robots.
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Bounding box: A set of 4-values representing the x-y coordinates of extremes of
a rectangle around an object of interest.

Object tracking: The process of detecting an object and then following it by cap-
turing its location at any moment in time.

Multi object tracking: Tracking multiple objects simultaneously using computer
vision based methods.

Sensor fusion: Fusing the data of multiple sensors to produce a more higher di-
mensional representation.

Region Proposal Network: A specialized network for generating proposals (po-
tential ROIs) for objects of interest.

Region of Interest: The area in image where an object of interest might be located.

YOLO: Stands for “You only look once’; A breakthrough computer vision single-
stage object detection model for real-time object detection.

R-CNN, Fast R-CNN, Faster R-CNN: Different variations of 2-stage object de-
tection CNN models.

Intersection over Union: The ratio of area of overlap with the combined area
(union) of 2 bounding boxes.

YOLOV3, YOLOVS: More accurate and efficient variations of the original YOLO
model by the same author.

DarkNet: An efficient open-source Convolutional Neural Network written in C
language.

Deraining: The process of removing rain pixels from an image.
Desnowing: The process of removing snow pixels from an image.
Defogging: The process of removing fog pixels from an image.
Transweather: An efficient network for deraining.

Confusion matrix: An NxN square matrix used to calculate different classification
measures, where N-1 is the number of classes.

precision: The ratio of correct positive prediction to total positives.

recall: The ratio positives correctly identified as positives.
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* Training dataset: The set of examples set out for training a machine learning
model.

* Validation dataset: The set of unseen examples set out for validating an already
trained machine learning model

* Argoverse: A dataset designed for support the autonomous vehicles research.
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