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ABBREVIATIONS 

AMR          antimicrobial resistance 

ASE            accelerated solvent extraction 

CIP             ciprofloxacin 

ENR           enrofloxacin 

ESI             electrospray ionization 
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FA             formic acid 
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1. INTRODUCTION 

Sewage sludge is a distasteful but unavoidable semi-solid residue produced during industrial 

or municipal wastewater treatment. It is considered a host to many pharmaceuticals; hence, it 

has drawn an increasing attention in recent years. Although, some of these pharmaceuticals 

especially antibiotics usually exist in sludge at trace concentration levels, but their persistent 

nature has raised concern in the scientific community. This has led to a growing need for 

determining and monitoring their concentrations for a healthier environment. Hence, screening 

of these substances at trace levels have become very essential in order to ameliorate or limit 

their impact and further adopt innovative strategies for their complete elimination if possible. 

However, for their concentration to be determined with good level of certainty there must be 

one or more reliable means of extracting these substances from such a complex matrix.  

Several techniques have been employed in extracting antibiotics including ultrasound-assisted 

extraction (USE), microwave assisted extraction (MAE) and pressurized liquid extraction 

(PLE) also referred to as accelerated solvent extraction (ASE). The efficiency and other 

advantages of one technique over another must therefore be brought into perspective before 

the development of an analytical procedure. Considerations of the matrix effect that comes 

with any extraction technique of choice must also be made to enable the detection of target 

compounds even at very low concentration.  

Achieving trace screening of pharmaceuticals in sewage sludge requires an analytical 

technique that can provide reliable information at that level. It therefore begs for a reliable 

method that could also be employed in subsequent time if required to be done at defined 

intervals. 
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 2. LITERATURE REVIEW 

 2.1 Sewage sludge as waste and useful material 

Sewage sludge as an industrial waste can be considered a repository of pathogens, heavy 

metals and a host of other micro-pollutants and substances that could threaten both human and 

ecological health. Monitoring of sewage sludge has proved the presence of many polar 

anthropogenic pollutants since LC/MS techniques came into routine use (Sena et al., 2010).  

As tonnes of sludge produced has rapidly increased over the years, (Schowanek et al., 2004) 

and (Carbonell et al., 2009) reported that the policy of the European Commission is to 

encourage beneficial use of sewage sludge for agricultural purposes (soil application and land 

filling) provided that its content and quality is compatible with public health and 

environmental requirement because it serves as a sustainable solution to sludge disposal. 

Disposal alternatives often included incineration and dumping at the sea but the latter was 

banned in the United states as at December 1991 and in the European community seven (7) 

years later (Hill et al., 1996; T. Xie & Wang, 2013). Thus, the incentive of using sewage sludge 

for soil-related purposes is great since it could serve to improve soil fertility by adding several 

nutrients and organic materials which helps to recovers soil structure. However, several 

researches have indicated the presence of potentially harmful substances including 

pharmaceuticals, microplastics, detergents, hormone disruptors, pesticides, flame retardants 

contained in treated sewage sludge (Carbonell et al., 2009; Li et al., 2018; Lillenberg et al., 

2009). These constituents make sewage sludge usage a major environmental challenge and 

further underscore the need for a proper analytical evaluation to ensure compliance to existing 

regulations and directives before being put in use. 

Studies (Carballa et al., 2008; Chen et al., 2013) have shown that the polar functional groups 

of pharmaceuticals, including antibiotics could interact with dispersed organic matters leading 

to their high concentration in the sludge. The increase in concentration is a consequence of 

their high removal efficiency by biological waste water treatment plants which brings about 

the sedimentation of these compounds in sludge (Jia et al., 2012). According to a report (Chen 

et al., 2013), the use of highly concentrated pharmaceutical-containing sludge in agriculture 

may contaminate the food chain and water supply. Even very small amount of antibiotics in 

crops and vegetables may generate resistant strains of bacteria in both humans and animals 

(Lillenberg et al., 2009). The presence of pharmaceuticals including antibiotics in sewage 

sludge (Lillenberg et al., 2009) therefore becomes an important issue in Estonia which 

produces a considerable amount on a yearly basis. 
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2.2 A major problem with sludge: antimicrobials and antimicrobial resistance 

Antimicrobials are a group of chemical or physical compounds (agents) that are used to inhibit 

the growth of microorganisms or to kill them permanently. Different groups of antimicrobials 

exist; those that act against viruses (antiviral agents), those that are specific towards fungi 

(antifungal agents) as well as those antimicrobials used against bacteria known as antibiotics.  

Antibiotics being introduced into clinical practice in the 1940s has been rated one of the most 

successful forms of therapies against infectious diseases specifically known for its efficiency 

against pathogenic bacteria (Aminov, 2009). However, the extensive use of antibiotics in 

recent decades has led to the emergence and rapid dissemination of antibiotic-resistant 

pathogens and antibiotic resistance genes (ARGs) in the environment, especially multi-drug-

resistant bacteria, further revealing our lack of knowledge about the ecological and 

evolutionary processes taking place in microbial ecosystems (Aminov, 2009; Xu et al., 2015).  

According to World health organisation, 2018, many infections such as tuberculosis, 

salmonellosis and gonorrhoea are already becoming more difficult to handle as the antibiotics 

used to treat them become less effective due to antibiotic resistance. Hence, antibiotic 

resistance has become a threat to global health. The major mechanism of antibiotic resistance 

has been reported to be as a result of the evolution of resistant strains which provides the 

working material for natural selection of such bacteria due to the emergence of mutations in 

their nucleic acids (Woodford & Ellington, 2007). The surge of new resistances and of multi-

drug resistances therefore begs for a proper elucidation of the factors and hot spots involved 

in its diffusion and development. All the known antibiotic resistance mechanisms, acquired by 

pathogenic and opportunistic bacteria, evolve by means of mutations occurring in pre-existing 

genes of the bacterial DNA that are naturally selected (Gullberg et al., 2011; Q. Zhang et al., 

2011). Mutations within the DNA can be responsible for the decreased affinity of antibiotics 

to their targets. Also, other resistance mechanisms such as efflux pumps are finely regulated 

in their expression and at a basal level confer a naturally reduced susceptibility to the drugs. 

These mutations in the architecture of the bacterial genome regulate such mechanisms 

resulting in their over-expression that leads to a high level of resistance (Lupo et al., 2012). 

A case study is that of the continuous rise in the prevalence of quinolone-resistant isolates 

which can be traced to extensive use and misuse of these antibacterial agents in clinical and 

veterinary medicine (Ruiz, 2003). This resistance is mainly due to the presence of mutations 

in specific sites where quinolones elicits their functions, or the presence of decreased uptake. 

Horizontal transfer of quinolone resistance (Aminov, 2009) would facilitate the rapid 
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dissemination of the quinolone resistance genes, even between animal and human pathogens, 

further compromising the use of these antimicrobial agents (Ruiz, 2003) and also validating 

the concern of the World health organisation. 

2.3 The routes of antibiotics to nature 

Many antibiotics have been reported in the environment especially those belonging to the 

family of fluoroquinolones, tetracyclines and sulfonamides (Jia et al., 2012). Their relatively 

high concentrations in wastewater, surface water, ground water as well as drinking water begs 

the question of their routes to these natural media (Dorival-García et al., 2013; Jia et al., 2012; 

Rossmann et al., 2014). According to (Rossmann et al., 2014), a high dose of administered 

pharmaceuticals especially antibiotics passes the human body (by excretion) unmodified and 

end up in wastewater which is treated in the wastewater treatment plants (WWTPs) but their 

incomplete removal during treatment allows them into the immediate environment. 

These antibiotics may be taken up by plants in the agricultural ecosystem through wastewater 

reuse, causing potential exposure to human and animals which in effect poses health risk to 

both. Most antibiotics in the environment has been reported to be sewage-derived, which are 

partly eliminated in wastewater treatment processes and are therefore present in the effluents 

that finally re-enters the immediate environment (Xu et al., 2015). Therefore, it has become 

more than necessary to elucidate the occurrence and distribution of antibiotics in sludge in 

order to monitor and control the continued spread and proliferation of antibiotic resistance 

genes in the ecosystem. 

2.4 Selected antibiotics for monitoring 

Considering the vast range of pharmaceuticals that are widely present in the natural media, 

special consideration has been given to specific groups due to high dosage administration both 

in human and animals as well as their persistence properties. Examples of those groups include 

the amphenicols (APs), sulfonamides (SAs) and fluoroquinolones (FQs). Specific focus would 

therefore be directed towards these groups with some few examples (Table 1) to elucidate some 

of their characteristic properties. 
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Table 1.  

Chemical structures of selected antibiotics and some of their properties. The pKa values and 

molecular weights are adapted from drugbank.ca as well as from the work of (Kipper et al., 

2011). 

      

Compound structure pKa1 pKa2 

 

 
 

  

   

 -3.4 8.49 

   
   

Florfenicol (358.21 g/mol)   

   

 

 
 

  

   

 1.97 6.61 

   
   

Sulfamethoxazole (253.28 g/mol)   

   

 

 
 

  

   

 2.11 6.17 

   

Sulfadimethoxine (310.33 g/mol)   

 
  

   

 

 
 

  

   

 5.76 8.62 

   
   

Ciprofloxacin (331.34 g/mol) 
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 5.69 6.68 

   
   

Enrofloxacin (359.39 g/mol)   

 
  

   

 

 
 

  

   
   

 5.45 6.2 

   
   
   

Ofloxacin (361.37 g/mol)   

   

 

 
 

  

   
   
   

 5.38 6.16 

   
   

Marbofloxacin (362.36 g/mol)   

 
  

 

 
 

  

   
   

 5.66 8.68 

 
  

   

Norfloxacin (319.33 g/mol)     

 

2.4.1 Amphenicols 

Amphenicol, shortly referred to as phenicol is a wide-spectrum antibiotics drug family that has 

been applied in the treatment of various bacterial infections and have been considered specially 

active against both Gram positive and Gram negative bacteria (X. Xie et al., 2018; S. Zhang 

et al., 2008). It is the antibiotic family to which chloramphenicol, thiamphenicol and 
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florfenicol belongs. Thiamphenicol and florfenicol are two newer, veterinary, synthetic 

analogues that were proposed to replace chloramphenicol which was discovered to be 

associated with several health side effects that led to its ban in both the European Union and 

the United State of America in 1994 (Alechaga et al., 2012). The administration of these 

veterinary drugs in modern livestock farming is usually achieved by adding certain dosage to 

drinking water or as feed additives to serve for both prophylactic and therapeutic essence. 

However, these newer analogues have been reported to have some health hazards; some have 

shown inhibition to the formation of red blood cells, white blood cells and platelets, florfenicol 

have specifically been identified with embryonic toxicity in animal and has therefore received 

some restrictions in clinical applications even in the European Union, China, as well as the 

United States (X. Xie et al., 2018; S. Zhang et al., 2008). Notwithstanding, illegal use of these 

phenicols especially in developing countries still exist which leads to the gradual accumulation 

of these compounds in sewage sludge. Although no trigger values of these drugs have been 

reported in sewage sludge (Lillenberg et al., 2009), the European community have established 

the maximum residue limit (MRL) of florfenicol and its metabolite from 100-2500 ug/kg 

according to the type of food matrix (Alechaga et al., 2012). 

2.4.2 Sulfonamides 

Sulfonamides represent a crucial class of antibiotics whose bacteriostatic actions essentially 

inhibit the biochemical synthesis of folate needed for bacterial metabolism, growth and 

development. They are a group of antimicrobial agent widely used for veterinary applications 

and are very active against gram positive and gram-negative bacteria (Dorival-García et al., 

2013; Pamreddy et al., 2013). Although, sulfonamides were frequently used as human 

antibiotics for the treatment of several kinds of infection, recently higher quantities are being 

used for the treatment and prevention of infectious diseases in different forms of animal 

husbandry especially in ranching practices (García-Galán et al., 2010). These recent practices, 

which is often accompanied by inadequate waste management procedures have been 

associated with grave environmental issues as it constitutes one of the major release sources 

of this group of antibiotics in the environment (García-Galán et al., 2010). Medicated livestock 

excrete waste products that eventually serve as manure for agricultural use and this could in 

turn be a major route by which residual sulfonamides find their way to natural media. Research 

studies of (Haller et al., 2002; Schmitt et al., 2005) have shown that residues of sulfonamides 

found in manure goes up to 12.4 mg/kg in concentration. These antibiotics are weak acids, 

slightly water-soluble and are also polar in nature, as such, they are loosely retained in soil and 
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have the tendency of draining away into both surface and ground water after being released 

into the immediate environment (Batt et al., 2006; Blackwell et al., 2004; García-Galán et al., 

2010; Sacher et al., 2001). 

2.4.3 Fluoroquinolone 

Fluoroquinolones are a large group of antibiotics which includes ciprofloxacin, norfloxacin, 

marbofloxacin, ofloxacin. They are anti-bacterial group which are effective against known 

pathogenic gram-positive and gram-negative bacteria. Generally, they act by interfering with  

the unwinding activity of the bacterial topoisomerase enzyme which eventually inhibits the 

entire deoxyribonucleic acid (DNA) replication process (Ballesteros et al., 2002). 

Fluoroquinolones are synthetic broad-spectrum antibiotics that have been applied in both 

veterinary medicine and human medicine, e.g. to treat infections caused by pseudomonas 

aeruginosa and they are characterized by good tissue penetration and distribution in biological 

fluids with very few side effects (Janusch et al., 2014). Enrofloxacin for example has been 

used in the treatment of respiratory and gastrointestinal tract infections in different species of 

cattle, poultry, horses and pigs. The antibiotic is then metabolized in the liver by de-ethylation 

to ciprofloxacin which is its main metabolite that is solely applied in human medicine (Janusch 

et al., 2014). Fluoroquinolones are being increasingly used in recent time especially as growth 

promoters in animal husbandry. According to (He & Blaney, 2015), Over twenty-five (25) of 

these compounds have been developed for human health purposes and eight (8) for veterinary 

applications. The increased use of these antibiotics has received both public and environmental 

concerns and as such, analytical methods capable of detecting and monitoring trace 

concentrations of fluoroquinolones in environmental samples have become necessary (He & 

Blaney, 2015). In fact, these concerns have necessitated the visit of the European Centre for 

Disease Prevention and Control (ECDC) and the European Commission's Directorate General 

for Health and Food Safety to Estonia from 25 to 29 March 2019 in the wake of having to 

develop strategies for tackling antimicrobial resistance (AMR) from antibiotic consumption 

including fluoroquinolones. Correspondingly, the veterinary competent authorities were also 

concerned about the increasing use of critically important antimicrobials (CIAs) and emerging 

high levels of AMR in the country.  

2.5 Sample Preparation (Pressurized Liquid Extraction) 

Whilst most studies have focus on the determination of antibiotics in aqueous matrices (He & 

Blaney, 2015; Rossmann et al., 2014), a handful have also directed their focus towards 
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biosolids and sewage sludge ((Ezzariai et al., 2018; García-Galán et al., 2010). However, the 

issue of which techniques to employ for the extraction of antibiotics from a solid matrix is a 

key step that must embrace some important factors such as easy operation, yield, extraction 

time, matrix effects etc. Indeed, extraction of these antibiotics has not been without some levels 

of difficulties as there are different adsorption mechanisms such as complexation, hydrophobic 

interactions, hydrogen bonding etc with which they are retained on the solid surface. The 

overall effect of this retention decreases the efficiency of any chosen extraction method 

(Ezzariai et al., 2018). It therefore begs for a more aggressive and efficient technique such as 

the pressurized-liquid extraction (PLE) method which demonstrates higher precision and 

extraction yield, easy operation, reduced extraction time as well as smaller amount of 

extraction solvent than other known extraction methods (such as the ultrasonic-assisted 

extraction) for the determination of antibiotics from a solid phase. Although PLE could be 

associated with huge matrix effects, a clean-up step such as the solid phase extraction (SPE) 

would compensate for this downside.  

2.6 Analysis by liquid chromatography – mass spectrometry (LC-MS) 

Current analytical method employed in the separation and detection of antibiotics and many 

other substances involves coupling gas or liquid chromatography and mass spectrometry. In 

some cases, the tandem mass spectrometry is also used to increase resolution. However, gas 

chromatography (GC) coupled to MS can be difficult to employ, since most antibiotics are 

polar and to a very large extent non-volatile (Peysson & Vulliet, 2013). This leaves LC-MS 

with a clear advantage for the determination of these substances and serves the major reason 

why it has been widely used (Ezzariai et al., 2018; Lillenberg et al., 2009; Pamreddy et al., 

2013). More recently, the use of ultra-high-performance liquid chromatography (UHPLC) 

which offers an improved method efficiency, reduced solvent consumption, higher speed of 

analysis over high-performance liquid chromatography (HPLC) have gained wider application 

in the analysis of pharmaceuticals. Given LC-MS as a method of choice especially with 

electrospray ionization (ESI) as the atmospheric pressure ionization source, careful attention 

must therefore be paid to sample preparation due to ESI-MS susceptibility to matrix effects.  

2.7 Aim of the study 

Consequent upon the several issues associated with increasing level of antibiotics in the 

environment, the necessity for a multiclass method for their determination becomes 

increasingly more evident especially in Estonia where little input has been recorded in this 

light. A specific pressurized-liquid extraction method has been developed for simultaneous 
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determination of fluoroquinolones, sulfonamides and tetracyclines but no work (in the UT 

testing center) has included any amphenicol as well as the fluoroquinolones, marbofloxacin 

and enrofloxacin in sewage sludge from Estonian wastewater treatment plant. The selection of 

these antibiotics (analytes) which includes; florfenicol (FF), sulfamethoxazole (SMX), 

sulfadimethoxine (SDM), ciprofloxacin (CIP), enrofloxacin (ENR), ofloxacin (OFL), 

marbofloxacin (MAR) and norfloxacin (NOR) have been made with regards to their persistent 

nature in residues as well their stability. Consequently, this present work is aimed at 

developing; 

➢ an extraction (PLE) method for fluoroquinolones, sulfonamides and an amphenicol. 

➢ a specific and sensitive LC-MS method for monitoring the concentration of these 

antibiotics in sewage sludge from Estonian wastewater treatment plants. 

 

3. EXPERIMENTAL 

3.1 Chemicals and Materials 

All solvents and chemicals were of analytical grade. Eight antibiotic standards from three 

classes were used- one amphenicol: florfenicol (FF, Sigma-Aldrich); two sulfonamides: 

sulfamethoxazole (SMX, Sigma-Aldrich) and sulfadimethoxine (SDM, Sigma-Aldrich); five 

fluoroquinolones: ciprofloxacin (CIP, Sigma-Aldrich), enrofloxacin (ENR, Dr Ehrenstorfer), 

ofloxacin (OFL, Sigma-Aldrich), norfloxacin (NOR, Sigma-Aldrich) and marbofloxacin 

(MAR, Honeywell).  

Aqueous solutions were made using Milli-Q water purified by Millipore Milli-Q Advantage 

A10.  

LC eluents includes HFIP buffer (Acros Organics), HPLC grade methanol and formic acid 

(Sigma-Aldrich).  

Other chemicals used includes; acetonitrile (CH3CN) phosphoric acid (H3PO4) citric acid 

monohydrate (C6H807·H20), Ammonium acetate (CH3COONH4) and Ammonium hydroxide 

(NH4OH); all are Sigma-Aldrich products except Ammonium hydroxide (Merck). 

All chemical reagents and their important physical properties are presented in Annex1.  

3.2 Preparation of Eluent, Solvent and Calibration solution. 

Mobile phase (channel D of the instrument) used for the analytical method was prepared by 

adding 527 μL of HFIP to Milli-Q water up to 1 L volume. The resulting solution was adjusted 
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to pH 9 with 600 μL of ammonium hydroxide and was thereafter filtered through a 0.45 μm 

PVDF membrane filter (Durapore). 

Formic acid used for the preparation of calibration solutions was made by the dilution of 1 mL 

of the concentrated form to 1 L of milli-Q water to achieve a 0.1% solution. This was then 

filtered through a 0.45 μm PVDF membrane filter (Durapore). 

Stock solutions were made by carefully weighing 10 mg each of the antibiotic standards on a 

5-digits analytical balance to prepare an approximate solution of 1 mg/g using methanol and 

formic acid.  

Calibration solutions between the range of 0.1 – 1000 ng/g were made by first preparing a sub-

stock solution (working standard) of 125 μg/g antibiotic mixture from the stock solution. This 

is then followed by serial dilutions to obtain calibration solutions of different concentrations. 

3.3 Sample Collection and Preparation 

3.3.1 Sample collection 

Anaerobically digested and dewatered sewage sludge samples used for this analysis were 

obtained from Estonian wastewater treatment plants (WWTPs). Samples were collected in 

polypropylene containers and stored in the dark at a temperature of 4 °C.  

3.3.2 Pressurized Liquid Extraction (PLE) 

In order to achieve an exhaustive extraction from the sewage sludge using elevated pressure 

and temperature, PLE was chosen following (Ezzariai et al., 2018; Lillenberg et al., 2009). The 

in-house designed system used for this extraction is represented in Fig. 1. Stainless steel and 

standard HPLC valves were used to construct the system in order to survive high pressures. 

10 g (wet weight) of thoroughly mixed sewage sludge was blended with sand (1:1) in order to 

increase the contact – surface area between the extraction solvent and the sludge particles. The 

rigorously mixed blend of sand and sludge was packed into a paper and loaded into the 

extraction cylinder constructed in the oven chamber. The extraction solvent for the PLE process 

was a mixture (1:1, v/v) of acetonitrile and citric acid monohydrate (which also functions to 

maintain analyte stability) brought to pH 2.5 using 0.35% phosphoric acid. Extraction was 

performed in 5 static cycles each using approximately 20 ml of extraction solvent for 10 min. 

Pressure and temperature were maintained in the range 100-110 bars and 100-110 °C 

respectively with an initial 20 min heat up time to allow temperature to reach the desired range 

for extraction. The system was pressurized using argon gas. The first static cycle was 
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subsequently followed by the other cycles under the same operating conditions and PLE extract 

collected for each parallel extraction is to a total volume of approximately 100 ml. 

 

Fig. 1 PLE system: A, extraction solvent; B, High Performance Liquid Chromatography 

(HPLC) pump; C, switching valve; D1 and D2, static valves; D3, argon valve; E, argon source; 

F, extraction chamber (oven); G, extraction cell; H, cooling coil; I, collection vial for PLE 

extract; J, thermometer. Adapted from (Lillenberg et al., 2009). 

 

3.3.3 Solid Phase Extraction (SPE) 

The clean-up procedure for PLE extract was performed using Oasis HLB extraction cartridges 

and vacuum manifold (Agilent technologies). The extract obtained was first diluted with milli-

Q water until the acetonitrile content is kept at about 10% (100 mL of PLE extract brought to 

500 mL). This step was to ensure that antibiotics of interest do not elute from the HLB cartridge 

when the organic percent in the PLE extract is high. The cartridges were then pre-conditioned 

with 20ml of methanol and subsequently with 10 mL of milli-Q water. During sample loading 

and washing procedures, the flow rate was kept at approximately 6 ml per minute and the 

pressure was maintained in the range 20-30 kPa. After extraction, elution of the analytes from 

the cartridges was performed with 12 mL of methanol and collected in polypropylene vials. A 

gentle stream of nitrogen gas was then used to concentrate the SPE extract (samples were not 

evaporated to complete dryness). The concentrated extract was then reconstituted into a buffer 

solution (ammonium acetate and 0.1% formic acid regulated to pH 2.8) and methanol (1:1 v/v). 
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Processed samples are either directly taking for analysis or stored in polypropylene vials at 

about 6 – 8 °C. 

3.4 LC Method Development 

Separation of analytes in SPE extract was carried out by LC (Agilent series 1290 MCT) 

consisting of a flexible pump, an autosampler and a heated column compartment. 

Autosampler’s temperature was kept at 30 °C. Chromatography of antibiotics proceeded with 

a Waters XBridge reverse phase C18 column (3.0 x 150 mm, 3.5μm) equipped with a guard 

column. The choice of this stationary phase with a multi-layered organic/inorganic hybrid 

particle was made due to its high pH tolerance (pH 1-12) as the mobile phase consists of HFIP 

buffer (solvent D at pH 9) and methanol (solvent B). The use of the regular silica based C18 

column at high pH (above pH 8) would leave the silica support dissolved. Also, analysis of 

analytes with predominant basic properties comes with a careful attention to the pH/pKa 

relationship. This particularly applies to this work (Table 1) as the basic centers of the listed 

analytes will be present in their protonated form when the pH is lower than the pKa. This 

situation implies a poor retention of the analyte but when the pH is greater than their 

corresponding pKa, the analyte’s basic center gets deprotonated and gives a better retention, 

hence, the use of HFIP buffer which provides the basic condition for better separation. The use 

of HFIP has also been reported to improve ESI signal, peak shape as well as better 

chromatographic separation of compounds (Kipper et al., 2011).   

Prior to making the final choice of eluents as well as optimization of other parameters, 

acetonitrile (ACN) was first tested with 0.1 % formic acid. However, most of the FQs peaks 

disappear at high ACN % indicating that these analytes are probably insoluble in the eluent. 

This was then followed by methanol and 0.1 % formic acid but as a basic pH is desired, HFIP 

buffer was later chosen instead of formic acid. The first developed gradient for this mixture and 

the corresponding chromatogram has been shown in table 2.1 and figure 2.1 respectively. In 

order to decrease run time, improve peak separation and capacitor factor as well as allow for 

column equilibration the gradient was improved resulting in Figure 2.2. Gradient elution at a 

flow rate of 0.35 mL/min was performed as presented in table 2.2. Injection volume was 1 μL 

with a post time of 10 minutes to allow for column equilibration. The final LC method 

(developed in collaboration with a colleague under the same project but different aims) used 

for the analysis of eight (8) antibiotics is as shown in Fig.2.2. 
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Table 2.1 Initial LC gradient for the analysis of 8 antibiotics (B, methanol and D, HFIP 

buffer) 

Time 

(min) 
0 5 15 23 26 28 30 40 42 45 

B (%) 6 6 20 20 40 40 100 100 6 6 

D (%) 94 94 80 80 60 60 0 0 94 94 

           

 

 

 

 

 

 

 

 

 

 

 

Fig.2.1 Initial LC method showing MRM chromatogram of eight (8) antibiotics standards 
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Table 2.2 The final LC Gradient for the analysis of 8 antibiotics (B, methanol and D, HFIP 

buffer) 

Time 

(min) 0 5 8 15 18 22 24 30 32 35 

B (%) 3 3 20 20 40 40 100 100 3 3 

D (%) 97 97 80 80 60 60 0 0 97 97 

 

Fig.2.2 The final LC method showing MRM chromatogram of eight (8) antibiotics standards 

 

3.5 ESI-MS/MS 

Quantification of analytes was performed using Agilent 6460 Triple Quadrupole mass 

spectrometer with an electrospray interface (ESI) used in the positive ion mode. Multiple 

reaction monitoring and the following ionisation source parameters were used: gas temperature; 

300 °C, gas flow; L/min, nebulizer gas pressure; 45 psi (310.26 kPa), sheath gas temperature; 

350 °C at a flow rate of 11 L/min, capillary voltage was maintained at 3500 V and the nozzle 

voltage at 500 V. MS/MS scan mode was used to qualify the mass of analytes while the product 

ion mode served to identify and confirm the analytes. Cell accelerator voltage was 4 V. 

Protonated, sodium and ammonium adduct were tested. All antibiotics were further analysed in 

the protonated form except FF which showed a higher intensity in the ammonium adduct form. 

Optimization of necessary parameters was also compared with the result of Agilent Mass 

Hunter optimization software to confirm the collision energies as well as the abundances of 

analytes. Optimised parameters are included in table 3. 

SMX 

SDM 

NOR 

CIP 

MAR 
FF 

OFL 
ENR 
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Table 3. Precursors, recorded transitions and collision energies of eight (8) antibiotics in order 

of retentions times (RT). 

 Compound  
Retention Precursor  Product ion (m/z) Collision Energy (V) 

time (min) ion (m/z) Quantifier Qualifier Quantifier Qualifier 

SMX 4.82 254 108 156 15 15 

SDM 10.36 311 156 108 18 18 

NOR 11.49 320 302 282 18 30 

CIP 12.20 332 314 231 18 35 

MAR 16.79 363 72 345 26 26 

FF 18.57 375 340 241 10 22 

OFL 19.24 362 318 261 18 18 

ENR 22.56 360 316 245 25 25 

 

  



22 
 

4. RESULTS AND DISCUSSION 

4.1 Linearity, Limit of Detection and Quantification 

For linearity and linear range estimation, dilution of the working standard was made in 

approximate concentration range of 0.1 – 500 ng/g for all antibiotics except SDM with a range 

of 5.0 – 100.7 ng/g which was not detected at the lower concentration level. The calibration 

curve showed an excellent linearity in the ranges of concentration studied and the linear 

regression analysis of representative curves resulted in the intercepts and slopes shown in table 

4.  Equations (1) and (2) below were used for the determination of LOD and LOQ respectively 

with the average LOQ of antibiotics found to be 1.2 ng/g except for SDM. 

                                     LOD = 3.3 * 
𝑆

𝑏
                                  (1) 

                                     LOQ = 10 * 
𝑆

𝑏
                                    (2) 

Where b is the slope of the calibration graph and S is the residual standard deviation of points 

around the graph. 

Table 4. Linearity of external calibration graph, LOD and LOQ  

 

 

 

 

Analyte Slope  Intercept 
Regression 

Co-efficient 

Linear 

range 

(ng/g) 

LOD 

(ng/g) 

LOQ 

(ng/g) 

SMX 229.58 -86.27 0.9999 0.5 - 189.4 0.3 0.9 

SDM 141.34 37.18 0.9996 5.0 - 100.7 3.1 9.3 

NOR 652.36 -1919.10 0.9971 0.5 - 214.9 0.2 0.6 

CIP 695.95 -2073.50 0.9944 1.0 - 230.1 0.6 1.8 

MAR 215.82 -276.45 0.9953 1.0 - 101.8 0.2 0.6 

FF 115.01 57.07 1.0000 1.0 - 508.7 0.3 0.9 

OFL 348.52 -2275.10 0.9929 1.0 - 208.2 0.4 1.2 

ENR 98.42 -229.28 0.9925 1.0 - 100.6 0.8 2.4 
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4.2 Method Suitability, Matrix Effect, Process efficiency and Recovery 

In the present study, the extraction of analytes from the complex solid matrix requires a 

technique that can yield maximum amount of target analyte without alteration of these 

compounds in chemical or physical forms. Hence in order to obtain a good ratio between the 

yield from extraction and analyte preservation, PLE was a method of choice. This was also 

made considering the physico-chemical properties of target compounds (Table 1) and 

following the paper, (Lillenberg et al., 2009). The extraction conditions (3.3.2) were chosen to 

enable the breakdown of the strong interaction between sludge organic as well as mineral 

matter and antibiotics of interest at the same time preserving antibiotics of interest. In order to 

eliminate possible interferents, PLE was subsequently followed by SPE as a clean-up step.  

4.2.1 Recovery 

The overall method recoveries were obtained by spiking the PLE extracts using a solution 

containing approximately 500 ng/g (EU directive; EMEA/CVMP/005) of the eight (8) 

antibiotics in triplicate (Ezzariai et al., 2018). The recovery results calculated from equation 

(3) (Taylor, 2005)  are in approximate range 80 – 166 % (except SDM) as presented in table 6 

and the relative standard deviations (RSDs) were in the range 0.7 – 3.1 % at the same spiked 

level. The highest recoveries obtained were those of MAR, NOR and CIP (86 – 166 %). 

Overall, the recoveries obtained is in the required range (80 - 110 %) following AOAC 

guideline except for SDM and CIP.  Similar results were reported for fluoroquinolones using 

the same extraction solvents (Ezzariai et al., 2018; Lillenberg et al., 2009), however the 

recovery rates in this work were significantly higher than that of (Lillenberg et al., 2009). 

Interestingly, the recovery of CIP was seen to be largely higher than 100 % which could be as 

a result of strong adsorption interaction between the analyte and the sludge organic matter 

(Ezzariai et al., 2018; Uslu et al., 2008). This is further strengthened by the report of (Polesel 

et al., 2015) whose findings demonstrated a non-linear relationship of the sorption of CIP onto 

sludge which implies that there is no absorption/adsorption equilibrium of the analyte on the 

sludge matrix. This phenomenon would greatly influence the homogeneity of the sample and 

could therefore lead to an increased recovered CIP amount especially in the presence of strong 

extracting solvent like acetonitrile. It is also important to mention that high spiking 

concentrations have been reported (Ezzariai et al., 2018) to greatly influence CIP recovery 

with lower concentrations having very little or no effect.  

             Recovery =  
𝑃𝑟𝑒  𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛

𝑃𝑜𝑠𝑡 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛 
* 100                                           (3) 



24 
 

           Matrix Effect =  
𝑃𝑜𝑠𝑡  𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛−𝑃𝑢𝑟𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑃𝑢𝑟𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
* 100                (4)                       

             Process Efficiency =  
𝑃𝑟𝑒  𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛

𝑃𝑢𝑟𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
* 100                             (5) 

 

Table 6. Overall method recovery, matrix effect and process efficiency for antibiotics spiked 

at 500 ng/g 

Analyte 
Recovery 

(%) 

Repeatability (RSD, 

%) 

Matrix Effect 

(%) 

Process Efficiency 

(%) 

SMX 80 1.4 -21 63 

SDM 69 1.7 -33 45 

NOR 101 0.8 -23 78 

CIP 166 1.3 -31 114 

MAR 86 1.4 -25 64 

FF 81 0.7 -21 64 

OFL 79 3.1 -35 51 

ENR 82 2.5 -34 54 

 

4.2.2. Matrix Effect (ME) and Process efficiency (PE) 

The post extraction addition method (Taylor, 2005) was used for the assessment of matrix effect 

as shown in equation 4. A calculated value indicating a negative number for matrix effect 

implies the loss of analytical signal usually due to ionization suppression by co-eluting 

substances. Therefore, the ideal situation would give a matrix effect value of 0 %. For the range 

of antibiotics analysed, ME % is negative which means that some signals were supressed in 

mass spectrometry with the values in the range, 21-35 %. This could mean that there were some 

co-extracted organic substances during the PLE process with OFL showing the highest effect. 

Studies (Ezzariai et al., 2018; Pamreddy et al., 2013) have shown that some organics such as 

humic acids can cause significant suppression of antibiotic signals of up to  50 %. Indeed, the 

peak area of most analytes especially SDM, OFL and ENR showed significant signal 

suppression when compared with the pure solution. More so, it has been reported (Ezzariai et 

al., 2018) that ME % is considered significant when the value is higher than 20 %. Therefore, 

the standard addition method was further employed to minimize the observed effects. The 
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external calibration curve prepared in solvent was then compared to the standard addition 

calibration curve according to equation 6 (Ezzariai et al., 2018; Lu et al., 2019) and the result 

obtained is shown in table 7. Comparing the post extraction addition technique to the standard 

addition method, a significant decrease of matrix effect was observed (Fig. 3) thereby bringing 

the effect to acceptable range except for CIP and NOR. Most probably, the use of internal 

standard would greatly compensate for the CIP and NOR values. Additionally, whilst 

considering the possible sources of this matrix effect, the PLE extracts of the last two cycles 

(3.3.2) were then analysed. Interestingly, there was no analyte detected. This implies that the 

last two cycles of the extraction process only contributed to matrix content, however, this should 

be tested and confirmed. 

The process efficiency which takes into account both recovery of analytes from the matrix as 

well as the influence of the matrix on the analyte was calculated using equation 5 (Taylor, 

2005). The results obtained for all analytes were in the range 51.8 – 78.1 % except SMD and 

CIP with PE value of 114 % (Table 6). This high value could be attributed to the over-

abundance of co-extracted organic compounds during sample processing; however, this 

hypothesis must be tested. The low PE values observed for SDM, OFL and ENR could be 

further explained by their limits of quantification (Table 4) which confirms that low PE values 

can have a deleterious impact on a method LOQ (Taylor, 2005). 

 

 ME (%) = (( 
𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑣𝑒

𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑣𝑒
 ) -1)*100                                (6) 
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Table 7. Calculated ME % from the method of standard addition 

 External Calibration Matched Calibration  

Analyte Slope  Slope  ME (%) 

SMX 229.58 189.97 -17 

SDM 141.34 112.69 -20 

NOR 652.36 476.76 -26 

CIP 695.95 495.01 -28 

MAR 215.82 178.24 -17 

FF 115.01 97.95 -14 

OFL 348.52 293.41 -15 

ENR 98.42 82.08 -16 

 

 

 

Fig. 3 Percentage of matrix effect obtained from post extraction addition technique and 

standard addition method. 
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4.3 Precision and Accuracy 

Precision or repeatability shows the closeness of agreement between independent test results 

under a given condition and it expressed as the relative standard deviation of the test result 

according to AOAC guideline. The concentrations of analytes expressed as per dry weight (dw) 

were back calculated considering the dilution factors before converting from wet weight (ww) 

to dry weight (equation 7). The relative standard deviations (RSDs) of analytes (Table 8.1) falls 

between 1.7 – 9.6 % (except FF) which is within acceptable range of target RSDs as the AOAC 

requirement sets a maximum value of 11 %. 

          Concentration_dry =  
𝑊𝑒𝑡 𝑚𝑎𝑠𝑠

 𝐷𝑟𝑦 𝑚𝑎𝑠𝑠
* Concentration_wet                                            (7) 

Also, the calculated RSDs (Table 8.2) of the analytes’ retention times (RTs) shows an excellent 

repeatability as all obtained values; below 1.0 %.  

Quantitatively, the accuracy of the method was determined using the Nordtest approach of 

uncertainty estimation (see equation below). Three replicate samples spiked at the same 

concentration level were analysed and used as there was no certified reference material (CRM). 

The bias estimation was then achieved by the recovery obtained. Within laboratory 

reproducibility of non-spiked samples was taking into account and that of spiked sample was 

converted to standard uncertainty (u) by assuming the rectangular distribution and the 

uncertainty result obtained is as shown in table 8.0.  

 

 Table 8.0 Accuracy expressed as measurement uncertainty 

 

 

 

 

 

 

 
  

 
Analyte Concentration ± U (ng/g) k = 2  

SMX 55 ± 21  

SDM 144 ± 53  

NOR 264 ± 91  

CIP 256 ± 81  

           FF 33 ± 12  

OFL 336 ± 103   

ENR 139 ± 50  
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                Nordtest main equation for accuracy quantification 

                                                 Uc = √𝑢 (𝑅𝑤)2 + 𝑢 (𝑏𝑖𝑎𝑠)2 

 

  

 

 

          
Table 8.2 Repeatability of retention time of 

analytes.           
 

Analyte SMX SDM NOR  CIP MAR FF OFL ENR 
 

Average RT 

(mins) 
4.80 10.31 11.39 11.88 16.50 18.46 18.99 22.37 

 
SD 0.03 0.04 0.03 0.08 0.13 0.13 0.11 0.07 

 
RSD, % 0.6 0.4 0.3 0.6 0.8 0.7 0.6 0.3 

 
          

 

4.4 Selectivity 

Selectivity was evaluated by analysing different blank samples for each set of calibration 

solutions. The objective is to ensure that analytes’ peaks are not due to interfering substances. 

The chromatogram of an extracted representative blank (Fig 4.) indicates the presence of a 

potential interferent of negligible intensity with a retention time (RT) of 11.4 min. However, 

 
 

 
          

 

Table 8.1 Repeatability of test result expressed as relative standard 

deviation       
 

 
Analytes SMX SDM NOR CIP MAR FF OFL ENR 

 

 

Concentration 

(ng/g) 55.4 144.1 264.5 256.2 71.7 33.6 336.1 139.5 
 

 
SD 5.3 5.5 5.8 7.2 4.6 4.5 5.7 5.7 

 

 
RSD, % 9.6 3.8 2.2 2.8 6.4 13.3 1.7 4.1 

 

 
    

  

 

 

 
       

Within-lab reproducibility Uncertainty estimate of 

possible method bias 
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this substance would have zero influence on analytes of interest as none of their RTs overlaps. 

Also, considering the specific m/z of each analyte with a method in Multiple Reaction 

Monitoring (MRM) mode, the tendency of maintaining a highly selective method is assured.  

 

Fig. 4. Representative blank chromatogram. 

 

4.5 Carry over  

Carry over was assessed by analysing the concentration of blank samples which were injected 

after calibration solutions especially those of high concentration. The values of concentrations 

obtained were significantly above LOQ (Table 9.2) except for SMX, MAR and FF which were 

not detected. SDM, CIP and NOR were more retained in the column than ENR and OFL.  

In order to get rid or at least minimize this effect, the column was first washed thoroughly with 

50% HFIP buffer and 50% methanol for 1 hour but there was very little improvement. The 

isocratic program was then changed to 100 % methanol for 2 hours, but it then appears that only 

a basic condition might not elute the retained analytes effectively. Therefore, an isocratic 

elution of methanol and 0.1 % formic acid was employed before it was finally changed to 

gradient program from ratio 90:10 (0.1 % formic acid and methanol). The program (Table 9.1) 

was set for 1 hour (sometimes repeated 3 times) by slowly decreasing the water phase to 10:90. 

An additional step of 50% methanol and 50% HFIP buffer was added to condition the column 

for subsequent analysis. 
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Table 9.1. Gradient for washing program. 

 

 

Table 9.2 Concentration of antibiotics in blank reagent sample before and after washing. 

   
BEFORE WASHING 

   
Analyte SMX SDM NOR CIP MAR FF OFL ENR 

Concentration 

(ng/g) nd 9.9 11.3 6.9 nd nd 6.8 3.7 

 
        

 
  

AFTER WASHING 
   

Analyte SMX SDM NOR CIP MAR FF OFL ENR 

Concentration 

(ng/g) nd nd      nd   nd nd nd Nd nd 

*nd = not detected 

 

4.6 Method Application to Sewage Sludge 

Different batches of sewage sludge samples collected from the wastewater treatment plant 

(WWTP) were analysed. The samples were anaerobically digested and dewatered before being 

processed. The samples which were processed by PLE and subsequently cleaned up by SPE 

were then analysed by the developed method (Fig 2.2). Concentrations of detected analytes (Fig 

5) found are summarised in Table 10 and their chromatograms are shown in Figure 5. The 

results are expressed both as wet and dry weight.  

For the dry weight (dw) estimation, a measured amount of the wet sample is oven-dried at 105 

°C for 24 hours. The resulting matter is then weighed for the estimation of the dry content of 

Time 

(min) 
0 10 20 30 40 45 50 55 60 

0.1% F.A 90 80 70 60 50 40 30 20 10 

Methanol 

(%) 
10 20 30 40 50 60 70 80 90 



31 
 

the sludge sample. In order to convert the wet mass to dry mass, equation 7 was used. An 

extended table for the overall data is given in annex 2. 

The average concentrations found was in the range 55.4 – 336.1 ng/g (dw) for all analytes with 

OFL being the highest (Table 10). It should be noted that all analytes were present in every 

batch of sample except MAR. The concentrations of these analytes (ww) are below the trigger 

level of drug residues in manure which is 100 μg/kg according to EU directive 

EMEA/CVMP/055. These results when compared with the average concentration obtained 

from the studies by (Lillenberg et al., 2009) shows the ww content of NOR and CIP almost 

two bigger than the present result; NOR,109.8 μg/kg, CIP, 110,8 μg/kg. However, the content 

of OFL, SDM and SMX were by far lesser than this present result. Also, the contents of all 

analytes are considerably higher than those obtained from Estonian river water (a research by 

another colleague under the same project). When compared with the content found in dried 

sewage sludge from WWTPs in Spain (Pamreddy et al., 2013) the concentration of SMX (84.4 

ng/g) is significantly higher than that of this work. Another research conducted in Granada 

(Dorival-García et al., 2013) for selected antibiotics including fluoroquinolones ( FQs) 

indicates the following values; CIP, 20 – 95 ng/g, NOR, 25 – 115 ng/g, OFL, 15 -129 ng/g all 

expressed in wet weight. The content of these FQs in the present work falls within the ranges. 

 

                Table 10. Concentration of analytes found in Estonian sewage sludge 

 
                

Analytes SMX SDM NOR CIP MAR FF OFL ENR 

Wet weight 

(ng/g) 
13.2 34.3 62.9 60.9 nd 8 79.9 33.2 

Dry weight (ng/g) 55.4 144.1 264.5 256.2 nd 33.6 336.1 139.5 
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Fig. 5 Chromatograms of detected analytes 

 

  

FF 



34 
 

5. SUMMARY 

In the present study, the aim was  to develop firstly; an extraction (PLE) method for eight (8) 

antibiotics belonging to three different families (fluoroquinolones, sulfonamides and  

amphenicol) and secondly; a specific and sensitive LC-MS method for monitoring the 

concentration of these antibiotics in sewage sludge from Estonian wastewater treatment plants. 

The pressurized liquid extraction method (5 cycles per parallel extraction) used showed a very 

good analyte recovery and can be said to be very efficient especially for the three antibiotics 

that haven’t been investigated in UT Testing centre laboratory, namely Marbofloxacin (MAR), 

Enrofloxacin (ENR) and Florfenicol (FF). The choice of solvent used in the extraction is 

remarkably good as it includes a pharmaceutical excipient (citric acid monohydrate) which 

confers stability to target analytes under exhaustive extraction conditions (high temperature and 

pressure). The recovery rates of analyte, though, considered good, also comes with high matrix 

effect which was greatly minimised by the subsequent clean-up step (SPE). This was further 

improved by the standard addition method. Since, the aim of any analyst would be to approach 

the ideal situation of completely (if possible) eliminating matrix effect in this regard, the use of 

internal standard would help a great deal.  

In the same vein, the analytes in the extracts were chromatographically separated using a C18 

column and a mobile phase consisting of aqueous buffer with 1,1,1,3,3,3-hexafluoro-2-

propanol (pH 9) and methanol. Analysis of samples using a triple quadrupole mass spectrometer 

in MRM mode showed considerable amounts of antibiotics which indicates that Estonian 

sewage sludge has some content of antibiotics, although, at a level below the trigger value for 

manure. It should also be noted that analysis of extract from the last two cycles of the PLE 

showed zero concentration of target analytes, however, this should be further investigated for 

confirmation. If confirmed, it will to a large extent, decrease sample processing time. In order 

to further decrease sample processing time, attempts can also be made to eliminate the clean-

up step (SPE) but this must also include some other considerations to eliminate possible 

interferents. Overall, the developed method showed excellent linearity (≥ 0.998), good 

selectivity, sensitivity, precision and LOQ. Hence, this method can be applied in monitoring 

the concentration of similar antibiotics and can also be tested for other antibiotics of different 

families. 
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Mõnede antimikroobsete ainete määramine reoveesettemudas survestatud 

vedelikekstraktsiooni ja LC-MS/MS meetodil 

Joshua Onyeka Osagu 

Kokkuvõte 

Käesoleva töö eesmärgiks oli survestatud vedelikekstraktsioonil (PLE – pressurized liquid 

extraction) ja vedelikkromatograafia-massispektromeetria (LC-MS) meetodil baseeruva 

selektiivse ja tundliku analüüsimetoodika väljatöötammine kaheksa eri rühma (florokinoloonid, 

sulfoonamiidid, amfenikool) antibiootikumi määramiseks Eesti reoveepuhastite 

reoveesettemudast. Kasutatud PLE (5 tsükliga) metoodika saagis oli kõigi analüütide kohta 

väga hea ja seda võib pidada igati efektiivseks ka nende kolme analüüdi jaoks, mida varem TÜ 

Katsekojas analüüsitud ei ole: marbofloksatsiin, enrofloksatsiin ja florfenikool. 

Ekstraheerimise solvendi üheks komponendiks oli sidrunhape, mida kasutatakse ka ravimite 

lisaainena. Ka sellel võis olla oma roll analüütide stabiilsuse tagamisel, kui ekstrakstsiooni viid 

läbi kõrgel temperatuuril ja rõhul. Kuigi analüütide saagised olid kõrged, tuli maatriksiefektide 

vähendamiseks siiski rakendada ekstraktide täiendavat puhastamist tahke faasi ekstraktsiooni 

(SPE) teel. Olukord paranes veelgi lisamismeetodi kasutamisel. Kui eesmärgiks võtta 

maatriksiefektide täielik arvesse võtmine, siis tuleks kasutusele võtta isotoopmärgistatud 

sisestandard. 

Ekstraktide kromatograafiliseks lahutamiseks kasutati C18 kolonni ja mobiilfaasi, mis koosnes 

metanoolist ja 1,1,1,3,3,3-heksafluoro-2-propanooli sisaldavast puhverlahusest (pH 9). 

Proovide analüüs viidi läbi kolmekordse kvadrupooliga massispektromeetril mitme ülemineku 

jälgimise (MRM) režiimis. Eesti reoveesettemuda sisaldas mitmeid antibiootikume, kuid alla 

sõnnikule kehtestatud piirväärtuse. 

PLE protsessi uurimiseks analüüsiti eraldi ka kahe viimase ekstraheerimise tsükli ekstrakti. 

Nendes antibiootikume ei tuvastatud. See tulemus avab võimaluse, kui täiendavad uuringud 

seda kinnitavad, ektraheerimise etapi oluliseks lühendamiseks. Proovide ettevalmistuse 

täiendavaks kiirendamiseks võib kaaluda ka SPE etapist loobumist, kuid selle käigus ei tohi 

unustada segavate komponentide eraldamise vajadust. 

Kasutatud metoodikat iseloomustab hea lineaarsus (≥ 0.998), selektiivsus, tundlikkus, täpsus ja 

määramispiir. Metoodika on sobiv uuritud ainete analüüsiks ja seda võiks laiendada täiendavate 

analüütide määramiseks. 
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Annex 1.  

                

Reagent/Eluent Producer Purity, % 
Mtw 

[g/mol] 

Density 

[g/cm3] 

Bioling 

point 

[°C] 

Melting 

point 

[°C] 

CAS No 

Florfenicol Sigma-Aldrich 99.0 358.2 1.5 618.0 153.0 
73231-

34-2 

Sulfamethoxazole Sigma-Aldrich 99.0 253.3 1.4 482.0 166-169 732-46-6 

Sulfadimethoxine Sigma-Aldrich 99.0 310.3 1.4 265.5 202-204 122-11-2 

Ciprofloxacin Sigma-Aldrich 99.0 331.3 1.5 581.0 
255- 

257 

85721-

33-1 

Enrofloxacin Dr Ehrenstorfer 99.8 359.4 1.4 560.5 225.0 
93106-

60-6 

Ofloxacin Sigma-Aldrich 99.8 361.4 1.3 571.5 
270 - 

275 

82419-

36-1 

Norfloxacin Sigma-Aldrich 98.0 319.3 1.3 555.8 220.0 
70458-

96-7 

Marbofloxacin Honeywell 99.5 362.4 1.6 571.0 
268- 

269 

115550-

35-1 

Methanol Honeywell  99.9 32.0 0.8 64-65 -98.0 67-56-1 

Formic Acid Sigma-Aldrich 99.9 46.0 1.22 100.8 8.4  

HFIP Acros Organics 99.5 168.0 1.6 59.0 -4.0 920-66-1 

Acetonitrile Honeywell 99.9 41.1 0.8 81.6 -45.7 75-05-8 

Citric acid 

Monohydrate 
Sigma-Aldrich 99.0 210.1 0.8 56.0 -94.0 

5949-29-

1 

Ammonium 

Acetate 
Sigma-Aldrich 100.0 77.1 1.1 138.5 110-112 631-61-8 
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ANNEX 2 

 

 

 

 

 

 

 

  

      SAMPLE EXTRACTION DATA       

Sample 
Sand 

(g) 

Sludge 

(g) 

Mixture 

(g) 

g 

sludge/g 

mixture 

Mass 

of vial 

(g) 

Mass_buffer 

(g) 

Mass_v_buf_ext 

(g) 

Mass_extract 

(g) 

g 

DM/kg 

sludge  

1 10.207 10.125 10.140 5.050 5.1043 0.9504 6.4343 0.3796 223.93 

2 10.085 10.082 10.014 5.006 5.3724 0.9502 6.6753 0.3527 213.93 

3 10.063 10.019 10.162 5.070 5.4740 0.9382 6.8007 0.3885 243.03 

4 10.039 10.036 10.116 5.057 5.3641 0.9507 6.7589 0.4441 214.16 

5 10.087 10.104 10.161 5.085 5.3012 0.9377 6.6050 0.3661 241.23 

6 10.034 10.097 10.091 5.061 5.4010 0.9302 6.8044 0.4732 223.93 

7 10.028 10.043 10.012 5.010 5.2910 0.9199 6.7577 0.5468 189.78 

8 10.035 10.065 10.099 5.057 5.3621 0.9077 6.6890 0.4192 226.93 

9 10.045 10.079 10.050 5.033 5.3380 0.9355 6.5820 0.3085 223.93 

10 10.053 10.059 10.085 5.044 5.3650 0.9234 6.6340 0.3456 187.08 

11 10.081 10.004 10.068 5.015 5.4566 0.9386 6.8940 0.4988 243.76 

12 10.012 10.082 10.052 5.044 5.3245 0.9275 6.6074 0.3554 223.93 

13 10.043 10.029 10.072 5.032 5.0012 0.9372 6.4977 0.5593 230.88 

14 10.032 10.002 10.111 5.048 5.5002 0.9331 6.7794 0.3461 221.93 

15 10.016 10.055 10.098 5.059 5.3455 0.9301 6.7321 0.4565 184.44 
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INFORMATION SHEET 

Simultaneous determination of selected antimicrobial agents in sewage sludge by 

pressurized liquid extraction and LC -MS/MS 

In the present study, an efficient analytical method for the simultaneous determination of an 

amphenicol, sulfonamides (SAs) and fluoroquinolones (FQs) in a sewage sludge matrix was 

developed by high performance liquid chromatography in tandem with mass spectrometry (LC-

MS). The selected antibiotics were extracted from the sewage sludge sample by pressurized 

liquid extraction (PLE) followed by solid phase extraction (SPE) as a clean-up step. Compounds 

separation was achieved using a mobile phase gradient composition of hexafluoro-isopropanol 

buffer and methanol. Recoveries of all eight compounds were in the range from 69% to 166%. 

Limit of quantification ranged from 0.6 ng/g for FQs to 9.3 ng/g for SAs. As most of the 

compounds showed significant matrix effects, the method was validated using the standard 

addition method which reduced this effect very significantly.  

Key words: antibiotic residue analysis, LC-MS, method development, pressurized liquid 

extraction 

CERCS: P300 analytical chemistry 

INFOLEHT 

Mõnede antimikroobsete ainete määramine reoveesettemudas survestatud 

vedelikekstraktsiooni ja LC-MS/MS meetodil 

Käesolevas töös arendati kõrgefektiivse vedelikkromatograafia – massispektromeetrial (LC-

MS) baseeruv metoodika fluorokinoloonide, sulfoonamiidide ja amfenikoolide rühma 

kuuluvate antibiootikumide määramiseks reoveesettemudast. Valitud antibiootikumid 

ekstraheeriti proovi maatriksist kõrgsurve vedelikekstraktsiooni (PLE) teel ja puhastati tahke 

faasi ekstraktsioonil (SPE). Kromatograafiline lahutus saavutati gradientelueerimisel 

heksafluoroisopropanooli baasil puhverlahuse ja metanooliga. Kõigi kaheksa analüüsitud aine 

saagised jäid vahemikku 69%-166%, määramispiirid jäid vahemkku 0,6 kuni 9,3 ng/g. Kuna 

kõigi analüütide korral täheldati olulisi maatriksiefekte, siis valideeriti metoodika kasutades 

lisamismeetodit, mis võimaldas maatriksiefekte oluliselt alandada. 

Märksõnad: antibiootikumijääkide analüüs, LC-MS, metoodika arendus, survestatud 

vedelikekstraktsioon 

CERCS: P300 analüütiline keemia 


