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Abstract  

Objective: Road traffic injuries are the leading cause of death among young people. 

Recognition of the contribution of impulsive behaviour may help novice drivers to behave 

more safely. Previously a brief intervention focusing on impulsive traffic behaviour 

conducted by psychologists in driving schools had been effective (Paaver et al., 2013; Eensoo 

et al., 2018). The aim of this study was an independent re-evaluation of the effect of the 

intervention, as conducted by driving school teachers, and assessment of the potential 

associations with candidate genotypes.  

Methods: Driving school students (mean age 22.5, SD=7.9) were divided into intervention (n 

= 704) and control (n = 737) groups. Driving school teachers were trained to administer the 

intervention which consisted of a lecture and group work (1.5 h in total) on impulsivity. 

Traffic offences and crashes were monitored during three years, using police and traffic 

insurance fund databases. Functional polymorphisms of the dopamine transporter and 

serotonin transporter genes (DAT1 VNTR and 5-HTTLPR) were assessed.  

Results: The intervention significantly lowered general traffic risk and prevalence of traffic 

accidents. DAT1 VNTR 9R carriers, particularly males, had higher general traffic risk in the 

whole sample. Female 5-HTTLPR s' allele carriers of the intervention group had the lowest 

general traffic risk. Intervention was most effective in female DAT1 VNTR 10R/10R 

homozygotes.  

Conclusions: Brief impulsivity-centred intervention appears as a promising strategy for 

preventing risk-taking behaviour in novice drivers and can be fully integrated to driving 

school curriculum.   

Keywords: Impulsive Behavior; Dopamine; Serotonin; Genotype; Humans.  
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Significant outcomes  

• Brief intervention in traffic schools can reduce traffic risks and prevent accidents. 

• DAT1 VNTR and 5-HTTLPR genotypes are associated with traffic behaviour. 

• Efficacy of intervention may vary by genotype. 

Limitations  

• Reliability of stratified analyses would have benefited of larger sample than feasible in 

an intervention study. 

• Questionnaire data were not available for all participants. 

 

Running Head 

Impulsivity and traffic accident prevention 
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Introduction  

Road injuries killed 1.3 million people in 2015, being the tenth leading cause of death in the 

world, and the first for people in ages 15-29 (1). Road traffic collisions, injuries and mortality 

in traffic are strongly related to risk-taking behaviour (2-6). Focusing on information on risk 

and on change of attitudes has been found to produce little behavioural change (7,8). 

Teaching behavioural methods for controlling risky behaviour is a more effective approach to 

the prevention of crashes (9), as is the personal video-based analysis and feedback (10).  

Decision-making in everyday life, including the traffic-related situations, is influenced 

by personality traits, and as to the traffic situations, particular significance can be attributed to 

impulsivity (11-14). We have previously shown that a brief intervention, guided by the 

affective neuroscience concept (15) and focusing on the acknowledgement of personal risks 

of impulsive traffic behaviour, can have a positive effect: The intervention group had only 

half as many speeding violations in the year following the intervention as compared to control 

(16), and the diminishing effect on drunk driving and traffic accidents was present through 

four years following the intervention (17).  

Inter-individual differences in impulsivity and decision-making derive from genetic 

and developmental differences in brain function. The capacity of the brain serotonergic 

system and several gene variants that shape its function are strongly associated with impulse 

control (18-22), and measures of serotonergic activity have indeed been associated with risky 

traffic behaviour (23-25). At all serotonergic synapses the serotonin transporter plays a crucial 

role in the conduct of neurotransmission. The serotonin transporter gene promoter 

polymorphism (5-HTTLPR) (26) that has consequences to development in childhood (27,28) 

is associated with impulsivity (29,30), alcohol use (31-34), intent to drive while intoxicated 

(35) and actual speed limit exceeding and traffic accidents (17). The bulk of evidence 

suggests the 5-HTTLPR to be the “plasticity genotype”, the s-allele carriers being more 
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adaptive to the environment (36). The plasticity genotype concept would suggest that the s-

allele carriers may be violating traffic regulations more often if these are not universally 

respected in the community and enforcement is not rigorous, but less often if the social norms 

strongly adhere with the law or if the regulations are seen personally fitting. 

Besides the serotonergic system, the dopaminergic system has a major role in impulse 

control and risk-taking behaviour (37-41). The dopamine transporter (DAT) plays a critical 

role in terminating dopamine neurotransmission in the central nervous system (42), and the 

nine-repeat-allele (9R) of the DAT gene (SLC6A3) polymorphism (DAT1 VNTR) is linked to 

lesser transporter activity and higher synaptic neurotransmitter levels (43-45). Van de Giessen 

et al. (46) and Faraone et al. (47) have shown that the DAT1 VNTR 9R allele carriers have 

higher striatal DAT availability than do 10-repeat (10R) allele homozygotes and this could be 

associated with increased risk-taking in experimental paradigms (48). This is consistent with 

higher self-reported impulsivity in 9R allele carriers (49). Conclusively, the s-allele carriers of 

the 5-HTTLPR and 9R carriers of the DAT1 VNTR could differ in traffic behaviour, and 

might be differently responsive to interventions aimed at reduction of impulsivity-related 

behaviours.   

 

Aims of the study 

The aim of this study was to re-evaluate the effect of a brief psychological intervention as 

conducted by driving school teachers who received training in applying the brief intervention 

technique previously successfully used by trained psychologists (16,17). We also assessed the 

potential association of the risk candidate genotypes (5- HTTLPR, also examined in the 

previous study, and newly DAT1 VNTR) and their role as moderating factors to the eventual 

intervention effect.  
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Materials and methods 

Participants  

Twenty driving-schools agreed to participate in the study. After the initiation of the study, 

every first group formed of students applying for a passenger car driving license was assigned 

to the intervention condition, and every second group to the control condition. Out of 1746 

subjects asked to participate in the study, in total 1441 (82.5%) (mean age 22.5 ± 7.9 years) 

agreed, and of these 43.3% were males. The intervention group included 321 (44%) males 

and 416 (56%) females, and the control group 303 (43%) males and 401 (57%) females. The 

study was approved by the Research Ethics Committee of the University of Tartu. 

Procedure 

The study was introduced by team members to the participants at the driving schools, 

collected the signed informed consent forms, and the saliva samples. The intervention 

„Reducing Impulsive Action in Traffic“ (16,17) consisted of a lecture (45 min) and group 

work (45 min) as previously described. This intervention was theoretically guided by the 

affective neuroscience concept (15) and aimed at acknowledgement of personal impulsive 

tendencies, so that subjects of intervention could build their own strategies to reduce personal 

risk. Lectures were carried out and the group work conducted by regular teachers of the 

driving schools, who had previously been trained in a tailor-made 2 European Credit Transfer 

and Accumulation System (ECTS) point course at the University of Tartu to carry out the 

intervention. 

Questionnaires 

After recruitment, the participants completed web-based self-report questionnaires. The 

Adaptive and Maladaptive Impulsivity Scale (AMIS), based on the concept of functional and 

dysfunctional impulsivity (50), was used to measure different facets of impulsivity: fast 
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decision-making, thoughtlessness, excitement seeking and disinhibition (51). Each facet was 

measured by 6 items on 5-point Likert scale. Subjects reported their relationship status, 

education and monthly income. The frequency of consuming strong and light alcoholic drinks 

during the previous year on a 6-point scale (none to almost every day) was reported (52). For 

assessing alcohol-related problems, five Diagnostic and Statistical Manual of Mental 

Disorders  

(DSM-IV)diagnostic criteria for alcohol abuse, relating to specific life events (e.g., ‘turned 

aggressive while drunk’, ‘had longer periods of alcohol use’) were used. Subjects were 

categorized dichotomously based on whether they had ever experienced any alcohol-related 

problems or not. 

Genotyping 

Saliva samples (2 ml) were obtained from 1341 subjects (93.1% of total sample) using the 

SalivaGene® Collection module II (STRATEC Molecular GmbH, Berlin, Germany 

MACHEREYNAGEL GmbH & Co. KG, Düren, Germany). DNA was extracted from the 

samples using the NucleoSpin® Blood method (MACHEREY-NAGEL GmbH & Co KG) 

designed for extracting genomic DNA from various body fluids. Genotyping for the triallelic 

classification of the 5-HTTLPR polymorphism was performed according to Anchordoquy et 

al. (53). Genotyping was done in two stages. First all subjects were genotyped for the 5-

HTTLPR VNTR polymorphism, then for single nucleotide polymorphism (SNP) rs25531 

(A/G). The polymorphic region was amplified using the primers 5-HTTLPR-F: 5′-6FAM-

ATG CCA GCA CCT AAC CCC TAA TGT-3′ and 5-HTTLPR-R: 5′-GGA CCG CAA GGT 

GGG CGG GA-3′. Then SNP rs25531 (AG) was determined as described in detail 

elsewhere (54). Triallelic 5-HTTLPR genotypes were categorized into groups according to the 

effectiveness at the transcriptional level as follows: lG/lG, lG/s, and s/s were designated as 

s’/s’; lA/s and lA/lG as l’/s’; and lA/lA as l’/l’. Genotype frequencies were in the Hardy–
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Weinberg equilibrium. As the original experiments have shown that the long allele of the 5-

HTT gene has a more efficient promoter than the short allele, and that the l/s or s/s genotype 

cells (26), do not differ in this regard, we compared the s’ allele carriers (s’/s’ and l’/s’; 

n=895; 66.8%) with the l’/l’ (n=444; 33.2%) homozygotes. This decision was also based on 

our previous study showing differences in traffic behaviour between the l’/l’ homozygotes 

and s’-allele carriers (17). Distribution of the 5-HTTLPR genotype in control group (n=639) 

and intervention group (n=700) by gender is shown in Table 1. Genotype frequencies were 

not statistically significantly different between the groups. 

The DAT1 (SLC6A3) VNTR was genotyped following the analytical method by 

Anchordoquy et al. (53) as described in detail by Maksimov et al. (55). Polymorphic region 

were amplified using the primer rs28363170F: 5′ /56-FAM/TGT GGT GTA GGG AAC GGC 

CTG AG 3′ and rs28363170R: 5′ CTT CCT GGA GGT CAC GGC TCA AGG 3′ for DAT1 

3′UTR VNTR. The VNTR repeat numbers range from 6 to 11, with 9 and 10-repeat alleles 

being the most common. Genotype frequencies were in the Hardy–Weinberg equilibrium. We 

compared the 9-repeat carriers (9R/9R and 9R/10R; n=502; 38.9%) and 10-repeat (10R/10R) 

homozygotes (n=810; 60.4%); subjects who had a rare VNTR genotype (10R/11R, 6R/10R) 

were excluded from the analysis. Distribution of the DAT1 VNTR is shown in Table 1. 

Genotype frequencies were not statistically significantly different between the groups. 
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Table 1. Distribution of the participants by 5-HTTLPR and DAT1 VNTR genotypes, gender and involvement in the intervention. 

                    Males                Females 

 Control Intervention Control Intervention 

  %     (n) %     (n) %     (n) %     (n) 

5-HTTLPR     

     l'/l' 32.6  (89)  33.6 (102) 37.2 (136) 29.5 (117)  

     s’ allele carriers 67.4 (184) 66.4 (202) 62.8 (230) 70.5 (279) 

     Total 100 (273) 100 (304)  100 (366)  100 (396)  

 

DAT1 VNTR 

    

     9R carriers 39.0 (105) 37.2 (112) 41.5 (149) 35.5 (136) 

     10R/10R 61.0 (164) 62.8 (189) 58.5 (210) 64.5 (247) 

     Total 100 (269) 100 (301) 100 (359) 100 (383) 

Triallelic 5-HTTLPR genotypes were obtained for 1339 and DAT1 VNTR for 1341 subjects; 29 subjects who had a rare VNTR genotype 

(10R/11R, 6R/10R) were excluded from the analysis.
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Database search 

Traffic offenses and crashes were monitored in the period of 01.01.2014 - 01.01.2017. 

Information about subjects obtaining the driving licence was derived from the Estonian Road 

Administration. Police and Border Guard Board database was used for collecting information 

about violations in traffic including drunk driving (penalties for drunk driving with an 

estimated blood alcohol level of 0.2‰ or more) and speed limit exceeding. Data on traffic 

accidents were received from the Traffic Insurance Fund database. Accidents in which the 

subject was at fault were classified as active and other accidents as passive. Subjects with 

occurrence of either recorded traffic offence or a collision were classified into the high 

general traffic risk group. From 278 subjects with high general traffic risk (occurrence of 

either a recorded traffic offence or a collision) 23 (8.3%) were also drunk drivers and 179 

(64.4%) subjects with violations. 

 

Statistical analysis 

Data were analysed using IBM SPSS (version 22.0, Chicago, IL) and SAS (version 9.4 SAS 

Inc., Cary, NC) software. By survival analysis (Kaplan-Mayer estimates) probabilities of non-

occurrence of traffic accidents and/or general traffic risk (survival probabilities) were 

compared between control and intervention groups. Cox regression analyses were used to 

investigate the effect of different variables upon the traffic accidents and on general traffic 

risk. By t-tests impulsivity was compared in groups by genotype. Pearson’s Chi-square tests 

were used for comparison of distribution of traffic offences and accidents by participation in 

intervention, gender and/or by genotype.  

Results 

Effect of intervention on traffic behaviour and accidents 
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Control and intervention groups did not differ by gender, age, education, income, or 

impulsivity measures (data not shown). According to the Road Administration database the 

control and intervention groups did not differ significantly in any respect with regard to the 

obtaining of driving license. By the survival analysis, participants of the intervention group 

were significantly less likely in the general traffic risk group (p=0.004 for the log-rank test, 

DF=1, χ2 =8.49) and, specifically, less involved in traffic accidents (p = 0.038 for the log-rank 

test, DF=1, χ2=4.30) compared to controls during the three-year study period (Figure 1).  

 

 

Figure 1. Occurrence of indicators of high general traffic risk (A, occurrence of either 
recorded traffic offence or a collision) and of traffic accidents (B) during the 3-year study 
period. 

 

Table 2 presents the occurrence of traffic accidents and violations by intervention and gender. 

Both male and female intervention groups had significantly lower general traffic risk than 

control group, and intervention reduced the occurrence of both active and passive accidents in 

females.  
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Table 2. Traffic accidents and violations by gender and participation in the intervention. 

 

                   Males                  Females                  Total 

 

Control  

%    (n) 

Intervention 

%    (n)  

Control  

%    (n) 

Intervention 

%    (n)  

Control 

%    (n)  

Intervention 

%    (n)  

Traffic accidents  17.2 (52) 15.3 (49) 9.2 (37) 4.6 (19) 12.6 (89) 9.2 (68) 

    Passive traffic accidents 6.3 (19) 6.5 (21) 3.7 (15) 1.7 (7) 4.8 (34) 3.8 (28) 

    Active traffic accidents 12.5 (38) 10.6 (34) 6.0 (24) 3.4 (14) 8.8 (62) 6.5 (48) 

All violations in traffic 24.4 (74) 19.6 (63) 5.7 (23) 4.6 (19) 13.8 (97) 11.1 (82) 

    Drunk driving 4.0 (12) 3.1 (10) 0.0 (0) 0.2 (1) 1.7 (12) 1.5 (11) 

    Speed limit exceeding 14.2 (43) 10.9 (35) 2.7 (11) 2.4 (10) 7.7 (54) 6.1 (45) 

High general traffic riska 34.3 (104) 27.1 (87) 13.5 (54) 7.9 (33) 22.4 (158) 16.3 (120) 

Bold values represent statistical significance p < 0.05, significant difference compared to respective control group.  

a Occurrence of either a recorded traffic offence or a collision. 
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Predicting traffic accidents and the general traffic risk 

For further regression analyses we selected to two summary measures affected by the 

intervention, traffic accidents and high general traffic risk, as the remaining measures in Table 

2 are contained in one or another. Using Cox regression, traffic accidents and high general 

traffic risk were first independently predicted by selected variables one by one (Table 3). For 

traffic accidents, gender and participation in the intervention were significant predictors. High 

general traffic risk was also predicted by gender and participation in the intervention, but 

additionally by the DAT1 VNTR genotype, alcohol use, occurrence of alcohol-related 

problems, excitement seeking, fast decision-making and educational level. For clarifying how 

these significant predictors together influence the occurrence of traffic accidents and high 

general traffic risk, additional models were composed. If all single statistically significant 

predictors were included in a common model predicting accidents, the effect of the 

intervention remained significant (n=1441; -2 LOG L without covariate = 2225.82; -2 LOG L 

with gender as a covariate = 2190.44). While significant predictors for high general traffic 

risk from univariate analysis were included in the multivariate model, significance of the 

effect of intervention decreased (n=824; -2 LOG L without covariates = 1846.49; -2 LOG L 

with covariates = 1771.32).  
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Table 3. Cox regression models predicting participation in the traffic accident and high general traffic risk. 

 
Univariate analysis Multivariate analysis 

 

Traffic accident  

HR (95% CI) 

General traffic risk 

HR (95% CI) 

Traffic accident 

HR (95% CI) 

General traffic risk 

HR (95% CI) 

1. Gender, male vs. female 2.47 (1.78-3.42) 3.24 (2.51-4.17) 2.47 (1.78-3.43) 2.93 (2.05-4.20) 

2. Intervention, yes vs. no 0.72 (0.52-0.98) 0.70 (0.56-0.89) 0.72 (0.52-0.98) 0.72 (0.52-1.01) 

3. 5-HTTLPR, s' carriers vs. l'/l' 0.97 (0.69-1.37) 0.91 (0.71-1.18) - - 

4. DAT1 VNTR, 9R carriers vs. 

10R/10R  
1.04 (0.72-1.44) 1.28 (1.01-1.64) - 1.36 (0.97-1.89) 

5. Alcohol related problems, yes vs. no 1.47 (0.90-2.39) 1.86 (1.31-2.65) - 1.23 (0.81-1.87) 

6. Frequency of using strong alcoholic 

beverages 
1.14 (0.91-1.43) 1.43 (1.20-1.70) - 1.11 (0.87-1.42) 

7. Frequency of using light alcoholic 

beverages 
1.12 (0.92-1.36) 1.23 (1.06-1.43) - 1.09 (0.90-1.33) 

8. Excitement seeking 1.05 (0.99-1.09) 1.07 (1.04-1.10) - 1.03 (1.00-1.08) 
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9. Fast decision-making 1.02 (0.98-1.06) 1.07 (1.04-1.11) - 1.01 (0.96-1.05) 

10. Thoughtlessness 1.01 (0.97-1.05) 1.02 (0.99-1.05) - - 

11. Disinhibition 0.96 (0.92-1.01) 0.99 (0.95-1.02) - - 

12. Age 1.00 (0.98-1.02) 0.99 (0.98-1.01) - - 

13. Education, high vs. low 0.80 (0.40-1.58) 0.48 (0.25-0.91) - 0.70 (0.35-1.40) 

14. Relationship status, couple vs. 

single 
0.96 (0.63-1.46) 0.80 (0.57-1.11) - - 

15. Income 1.03 (0.91-1.17) 1.01 (0.92-1.12) - - 

Bold values represent statistical significance p < 0.05. HR – hazard ratio with 95 percent confidence intervals (CI). 
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5-HTTLPR genotype, traffic behaviour, and the intervention effect 

5-HTTLPR s’-allele carriers had significantly lower mean score in fast decision making than 

l’/l’ homozygotes (17.6, SD=4.5 vs. 18.1, SD = 4.0; p=0.008). This difference was more 

evident in females (16.8, SD=4.4 vs. 17.8, SD = 3.9; p=0.042). No other significant 

association between aspects of impulsivity and the genotype was found in this sample. 

5-HTTLPR genotype had no significant predicting effect on general traffic risk and 

traffic accidents, neither in the total sample (Table 3) nor if stratified by gender (data not 

shown). However, the lowest proportion of traffic accidents or general traffic risk were 

observed in female s’ allele carriers after intervention: for the general traffic risk (χ2=(3)7.91; 

p=0.048) and for traffic accidents (χ2=(3)8.70; p=0.034) (Table 4). 
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Table 4. Proportion (%) of subjects with traffic offences and accidents in subgroups by, gender, intervention, and 5-HTTLPR.  

  Males Females 

 

       Control Intervention       Control Intervention 

  l'/l' s' carriers l'/l' s' carriers l'/l' s' carriers l'/l' s' carriers 

Traffic accidents  16.9 18.5 11.8 16.8 11.0 9.1 6.8 3.9 

Passive accidents 5.6 7.1 4.9 7.4 4.4 3.9 0.9 2.2 

Active accidents 13.5 12.5 7.8 11.9 7.4 5.7 6.0 2.5 

All violations in traffic 28.1 21.7 19.6 19.8 8.1 4.8 3.4 5.0 

Drunk driving 4.5 3.3 2.9 3.0 0 0 0 0.4 

Speed limit exceeding 15.7 12.5 11.8 10.4 2.2 3.5 3.4 2.2 

High general traffic riska 37.1 33.7 25.5 28.2 15.4 13.5 9.4 7.5 

Bold values represent statistical significance p < 0.05. a Occurrence of either recorded traffic offence or a collision. 
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DAT1 VNTR genotype, traffic behaviour, and the intervention effect 

The DAT1 VNTR genotype was associated with traffic behaviour, but differently in males and 

females: While male 9R allele carriers had more frequently been driving drunk (odds ratio 

(OR) = 2.89; 95% CI = 1.12-7.47), and belonged more frequently to the high general traffic 

risk group (OR = 1.46; 95% CI = 1.02-2.10), in females the genotype was not significantly 

associated with traffic risk behaviour and there was rather a tendency for the 10R 

homozygotes to have higher traffic risk (Figure 2). The intervention effect was independent of 

genotype in males, but in females largely on account of the 10R/10R genotype.  

 

 

Figure 2. Proportion of females with high general traffic risk (A, occurrence of either 
recorded traffic offence or a collision), traffic accidents (B), passive (C), and active traffic 
accidents (D) by participation in intervention and DAT1 VNTR. Number of the cases 
presented below each column. Total number of female 9R carriers in the control group 149 
and in the intervention group 136; total number of female 10R homozygotes in control group 
210 and in the intervention group 247. *p<0.05, **p<0.01, significant difference. 

Discussion  
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We have previously reported that a brief intervention with focus on personal psychological 

risk factors, included in the driving education program but conducted by psychologists, had a 

significant impact on traffic safety one year after the intervention (16), and that this impact 

persisted throughout the following four years (17). The affective neuroscience concept (15) 

leads to the conclusion that much of everyday behaviour, in particular in situations with high 

cognitive demand, is guided by activity in evolutionally old emotive circuits that cannot be 

controlled in real time; nevertheless, cognitive/behavioural strategies can be constructed to 

mitigate their adverse outcomes. The brief intervention in driving schools aimed at enhancing 

awareness of impulsivity and the health risks that impulsive action can bring about, to help 

students to spot and acknowledge impulsive tendencies both in themselves and in others, and 

to guide students to monitor themselves and to encourage them to develop personal strategies 

for mitigation of risks borne by impulsivity in traffic (16). The study reported herein was 

meant to attempt independent replication in a new sample, but with one important difference 

from the previous study: According to the training the trainers dissemination approach, we 

trained the traffic school teachers to deliver the intervention session, because in everyday 

practice this should be much more convenient and less demanding of resources as compared 

to the arrangement of psychologists visiting the traffic schools. During the three-year study 

period a significant impact of intervention on traffic safety was indeed present. Similarly to 

the previous investigation, the intervention had a positive effect on involvement in traffic 

offenses and accidents. At variance from the previous study the effect on traffic offences as 

analysed separately was not statistically significant. It should however be noted that this 

investigation was also conducted in a different overall traffic culture as it had significantly 

improved. This is well illustrated by changes in the most valid and robust measure, annual 

mortality by traffic injuries per one million inhabitants, which in 2007 (while the first 

intervention study started) was 146 but by the 2016 (while the monitoring period of the 
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current intervention study ended) had decreased to 36. Increasing the likelihood of a floor 

effect the improved traffic climate may have increased the demand on statistical power. 

Nevertheless, the aggregate measure of traffic safety was significantly lower in the 

intervention group, suggesting that the training the trainers approach is feasible for the 

delivery of the impulsivity-focused instrument. Further studies should address the feasibility 

of internet-based training instruments as drivers’ education varies in different settings. 

The effect of intervention was not affected by consideration of a number of factors 

known to be associated with risk-taking in traffic. It is known that males take more risks in 

traffic (56), lower education level is associated with higher risk (57) and several studies, 

including our own, have reported higher general risks in association with alcohol-related 

problems (24,58,59). The findings in the present study are thus consistent with earlier 

research. Facets of impulsivity increase the risk in traffic (12,13,25), and the results of the 

present study highlight excitement seeking and fast decision-making. These two impulsivity 

facets were, amongst the studied impulsivity measures, also the most significant predictors of 

general traffic risk in our previous study on a different traffic school sample (16). 

Nevertheless, the association of intervention with reduction of traffic accidents and risk-

taking was largely similar in multivariate analyses and apparently the acknowledgment of 

impulsivity in traffic can be broadly usable strategy. 

It is however plausible that some subjects may be more and some less malleable to the 

intervention, and because our research strategy involves the aspect of precision medicine by 

consideration of common functional gene variants, we included two candidate genes into the 

study. We had previously studied the association of the 5-HTTLPR genotype with traffic 

behaviour and the effect of intervention (17): Previously it had been reported that the 5-

HTTLPR s’ allele carriers consumed more drinks at bars and the s’/s’ homozygotes expressed 
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higher intention to drive a motor vehicle after drinking (35).  Longitudinal population-

representative studies have indeed described earlier and higher alcohol use in 5-HTTLPR s’/s’ 

homozygotes (31,32). In general, lower prevalence of traffic incidents was found in the 5-

HTTLPR s’ allele carriers in our previous study, and the effect of intervention was largely 

observed in l’/l’ homozygotes probably owing to the floor effect in the s’-allele carriers (17). 

In the present study the overall association of 5-HTTLPR with behaviour in traffic was not 

statistically significant. A likely explanation to this discrepancy could again be found in the 

overall improved traffic culture: For example, in the previous study the prevalence of 

speeding offences among females of the control group was 18% in the 5-HTTLPR l’/l’ 

homozygotes vs. 4% in s’-allele carriers, but in the present study, several fold less (Table 4). 

However, consistently with the previous study, the female s’-allele carriers of the intervention 

group were the safest drivers in traffic. This also fits nicely with the notion that the 5-

HTTLPR s’-allele is associated with higher social cohesion, and particularly so in females. 

Among males the proportion of DAT1 VNTR 9R carriers was higher among drunk 

drivers and subjects with high general traffic risk. These results support the significant role of 

dopaminergic system in impulse control and risk-taking behaviour (37-41) and the potentially 

higher risk in DAT1 VNTR 9R allele carriers (45,46,60), including in traffic (61). In females, 

carrier status of the DAT1 VNTR 9R allele had no significant association with traffic 

behaviour at baseline, but prevented the intervention effect to occur. This suggests that under 

different environmental conditions the 9R allele might appear as a risk allele even in females, 

and that other type of interventions may be more adequate for this group. 

 Limitation of the study to be borne in mind is the sample size dictated by the 

feasibility for an intervention study. Especially the genetic analyses should be regarded as 

exploratory for this reason. Also, we used several self-administered questionnaires and the 
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more uncomfortable questions (e.g., alcohol usage) were missed by a number of participants. 

Larger studies should be conducted to allow for more reliable stratified analyses.   

In conclusion, the brief intervention conducted by driving school teachers had a 

significant impact on traffic safety and could be a part of curricula at driving schools. An 

important aspect in planning interventions is to recognize the differences, in part genetic, 

within the target population that suggest the necessity of combining a variety of measures. 
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