

UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science
Software Engineering Curriculum

Jonas Kiiver

NFC Security Solution for Web Applications
Master’s Thesis (30 ECTS)

Supervisor: Professor Eero Vainikko

Tartu 2015

2

NFC Security Solution for Web Applications
Abstract:
This thesis compares existing and possible security solutions for web applications, anal-
yses NFC compatibility for security solutions and proposes a new NFC authentication and
signing solution using Google Cloud Messaging service and NFC Java Card. This new
proposed solution enables authentication and signing via NFC enabled mobile phone and
NFC Java Card without any additional readers or efforts to be made. This smart card solu-
tion can be used within multiple applications and gives the possibility to use same authen-
tication solution within different applications.
Keywords:
NFC, Java Card, Two-Factor Authentication, IsoDep, APDU, EstEID, Signing, Encryp-
tion, Authentication, Security, GCM, BroadcastReceiver, Dual interface card, Android,
RSA, Certificate,

NFC Turvalahendus Veebirakendustele
Lühikokkuvõte:
Töö eesmärgiks on võrrelda erinevaid eksisteerivaid veebirakenduste turvalahendusi,
analüüsida NFC sobivust turvalahenduste loomiseks ning pakkuda välja uus NFC
autentimise ja signeerimise lahendus läbi Google Cloud Messaging teenuse ja NFC Java
Card’i. Autori pakutud lahendus võimaldab kasutajal ennast autentida ja signeerida läbi
NFC mobiiliseadme ja NFC Java Card’i, nõudmata kasutajalt eraldi kaardilugejat. Antud
lahendust on võimalik kasutada kui ühtset kasutajatuvastamise viisi erinevatele
rakendustele, ilma lisaarenduseta.
Võtmesõnad:
NFC, Java Card, 2 Faktori Autentimine, IsoDep, APDU, EstEID, Signeerimine, Enkrüp-
timine, Autentimine, Turvalisus, GCM, BroadcastReceiver, Kahe liidesega kaart, Android,
RSA, Sertifikaat,

Acknowledgement
Author of the thesis would like to give his greatest thanks to his supervisor, Professor Eero
Vainikko, without whom this thesis would not have seen the light of day. He also thanks
him for his patience and extreme helpfulness in guiding him with the preparation and exe-
cution of this thesis.

3

Table of Contents
1! Introduction ... 5!
2! NFC security solution analysis .. 7!

2.1! NFC .. 7!
NFC Devices ... 8!

2.2! NFC connection security .. 9!
Eavesdropping ... 9!

Data Corruption ... 10!
Data Modification ... 10!

Data Insertion .. 11!
Man-In-The-Middle .. 11!

2.3! NFC Secure Channel Connection .. 13!
Public-Key Based Cryptography ... 13!

Public-Key-Cryptography Practical Considerations ... 14!
Symmetric Cryptography With Shared Secret .. 16!

2.4! Web Application Security .. 17!
Two-Factor Authentication ... 18!

Three-Factor Authentication ... 19!
Proposed NFC Solution Web Application Security .. 19!

Comparison ... 20!
2.5! Existing Authentication Solutions .. 21!

Image-Based Authentication ... 21!
SMS One-Time Password ... 22!

Device Generated One Time Password ... 22!
Out-of-Band Authentication .. 23!

Biometrics ... 23!
Another Application for Authentication ... 24!

Authentication Using Mobile Device NFC Emulation ... 24!
RFID Rag As Additional Security Token ... 25!

Password Authentication Solution .. 25!
Comparison ... 26!

3! Proposed NFC Security Solution for Web Applications ... 29!
3.1! Platform Selection .. 29!

3.2! Architecture .. 29!

4

Server .. 30!
Smartphone Application .. 31!

Java Card ... 31!
3.3! Data Model ... 32!

3.4! Security .. 34!
Mobile Device Verification ... 34!

Verify Authentication .. 34!
Verify Signature .. 35!

Security Between NFC Card and Reader .. 36!
Security Between Device and Web Server ... 36!

3.5! Application Flow .. 37!
Authorise Device Flow ... 37!

Authentication flow ... 39!
Signing flow .. 41!

Unauthorize Device Flow ... 43!
3.6! Future Opportunities .. 45!

Mobile Two-Factor-Authentication .. 45!
Corporate Security .. 46!

No Passwords Solution ... 46!
EstEID NFC Mobile Reader ... 46!

4! Conclusions ... 48!
5! References ... 49!

Appendix ... 52!
I.! !!!!!Java Card Application APDU’s ... 52!

II.! !!!Cryptographic Algorithm Benchmarking ... 55!
III.! !NFC Security Solution for Web Application Prototype .. 57!

IV.! !Rest API calls .. 68!
VI.! !Source code ... 72!

VII.! License .. 73!

5

1 Introduction
As online security is becoming part of our everyday life and people are more aware of the
different threats, there is always a need for better and innovative security solutions
resistant to hacking and identity theft. There are multiple different solutions using a
mobile device as an authentication endpoint, but what happens, when mobile is the actual
means of internet access? Mobile is becoming the main internet access point for a large
amount of people and at the moment there is no good solution to secure your mobile
connection and to double-authenticate yourself without mobile being the second layer of
authentication endpoint. What should be done to improve the authentication via mobile
devices and how can secure authentication be enabled within a mobile device, using it as
the only entry point?

Commonly used authentication solutions involve a mobile device as an authentication
endpoint by communicating with it via some third party channel like cellular network,
image recognition software or internet. There are multiple different authentication
solutions out there, many of them are using NFC [24] for additional authentication, but all
of them are using NFC simply to read the unique card ID or to emulate the mobile device
into being an NFC card - by doing that, they enable a second level of authentication with
only one “something user has” token and do not provide an additional level of
authentication and are lacking security.

Therefore there is a need for a security solution that meets the following needs:

a) Enables two-factor authentication for mobile devices – Additional means of
authentication while using only mobile device as access point.

b) Add another physical layer to the authentication process – Another “what user has”
token within authentication flow.

c) Resistant to internal attacks – solution must not be internally attackable, if device
is compromised.

d) One solution for all – one solution usable within multiple different applications and
implementable with ease, requiring the user to remember less.

e) Secure storage – Securely store user certificates and private keys.

In order to provide a solution matching those needs, this thesis compares different existing
solutions to find pros and cons within these solutions and examines the level of security
existing in commonly used means of authentication. In order to improve the field of
security solutions, author proposes his own secure authentication solution for web
applications involving NFC, GCM [18], Android mobile phone and web application
server. To prove the validity of NFC as security endpoint, an analysis of NFC security and
possible attack vectors were made. Based on this analysis, a decision was made, if NFC
and the communication between two NFC devices (NFC Java Card and NFC mobile
device) is secure enough to host authentication solution for high security risk web
applications.

The solution proposed by author (shown in Figure 1) consists of a workstation, a mobile
device and a NFC enabled Java Card. The workstation is a regular user computer running
any operating system with the capability to access a web browser. The mobile device must
be a device with NFC communication capabilities and smart card must be a Java Card

6

with NFC interface. By using only those components author proposes a new authentication
functionality, that provides a second level of authentication via NFC card using a mobile
device as a card reader, also authenticating mobile device within the authentication
process. Additionally, the author is proposing solution providing the functionality to sign
different user tasks and actions inside the web application via the same solution used for
authentication. Signing is done by additional passphrase requested from the user and is
separated from the authentication flow.

Figure 1. Proposed NFC solution concept.

7

2 NFC security solution analysis

2.1 NFC
NFC (Near Field Communication) is radio frequency based communication between dif-
ferent NFC enabled devices or smart cards. Connection between endpoints can be estab-
lished by touching two devices together or bringing them into proximity (distance of 20
cm or less)[28]. Connection is established via electromagnetic induction between two loop
inductor antennas and it operates on ISM Band 13.56 MHz radio frequency, having trans-
fer rates between 106 Kbit/s and 424 Kbit/s [15].

There are two different endpoint modes in NFC communication - Active or Passive. Ac-
tive modes use Amplitude Shift Keying (ASK) to send the data [6]. Meaning RF signal is
modulated with data according to coding scheme. If transfer rate is 106 KBaud, then Mil-
ler encoding scheme [42] is used and if transfer rate is bigger than 106 KBaud then Man-
chester encoding scheme [41] is used. Both of those coding schemes send one data bit in
given time slot. The time slot is divided into two separate halves, as half bits.

a) In Miller encoding [6] - 0 is encoded with delay into first half and 0 with no delay
is encoded into second half bit. 1 is encoded with no delay into first half and 1 is
encoded with delay into second half.

b) In Manchester encoding [6] - the encoding is done similar to the Miller coding, but
instead of having pause in either half bit, a whole half bit is either modulated or a
pause.

c) Modified Miller encoding [6] - additional rules are used for encoding zeros. If 1 is
followed by 0, the two following half bits will have a pause, but in modified Miller
encoding, the following two half bits are encoded without a pause.

Communication speed also determines the strength of the modulation. For 106 KBaud rate
transfer, the modulation is 100% - meaning the pause in RF signal is actually 0, but for
transfer rates greater than 106 KBaud 10% modulation ratio is used. Using 10% modula-
tion ratio means that a pause in RF signal is not actually 0, but it is around 82% of the non-
paused signal strength. This discrepancy in the modulation strength is key aspect of securi-
ty flaws in NFC communication and this is further analyzed in section 2.3. In passive
mode, the communication data is encoded using weak modulation, and Manchester encod-
ing with 10% modulation strength is always used.

Figure 2. NFC communication core.

8

NFC Devices
There are 3 types of NFC devices [6]:

a. Active devices working as NFC readers - Devices use external power to power
NFC electromagnetic field, sharing power with NFC tags, powering them up and
communicating with them.

b. Passive devices working as NFC tags - NFC tag solutions with no external power
supply. They are started when entering into NFC electromagnetic field and their
process lifecycle is equal to the duration of staying in the electromagnetic field.

c. Active/Passive devices – These devices have the ability to be both an active NFC
reader and a passive NFC.

Using previously described types of NFC devices, there are three different communication
configurations possible between two NFC enabled devices described in Table 1.

Additional to the active/passive modes of NFC devices, there are also two possible roles a
device can play in NFC communication.

a) Initiator - A device that initiates NFC communication between two devices
b) Target - A device that receives a communication request and responds to it

As NFC communication is based on message and reply concept. Therefore, if we have an
active device A and a passive device B, then A is able to start the communication and re-
ceive responses from device B, but device B is not able to start the communication itself
and can only reply to requests made by device A. The possible combinations of an NFC
device’s roles and modes are described in Table 2.

Table 1. NFC communication configurations.

Device A Device B Description

Active Active Describing NFC peer-to-peer solution as the data sending device gen-
erates an RF field and acts as an active device and the data receiving
device acts as a passive device. When device A sends data, device B is
passive, and when device B sends data, device A is passive.

Passive Active Device B is acting as a passive device and device A is generating an
RF field and is active.

Active Passive Device A is an active device and device B is passive

9

In addition, it should be mentioned, that NFC communication is not limited to paired de-
vices and one initiator can communicate with multiple devices at the same time. This
means the NFC communication is started simultaneously, but the sending device must
select the device the message is meant for and other devices must ignore the sent message,
therefore the actual communication between devices is still one-to-one.

2.2 NFC connection security
As NFC communication is established without any physical restrictions, the communica-
tion between devices is open to the public, exposing it to multiple threats. NFC communi-
cation can be disrupted by corrupting the data, listening to it or replacing data while trans-
ferring.

Eavesdropping
As NFC is a wireless technology, then it is certain that eavesdropping can be an easy secu-
rity breach as devices communicating via NFC use RF waves to talk to each other. Attack-
er can use an antenna to also receive the communication sent between the devices and with
sufficient knowledge of RF waves and how data is coded into them, the attacker can ex-
tract communication data from the received communication. The equipment needed to do
such eavesdropping must be assumed to be available to an attacker, as equipment needed
to create such an attack is publicly available to everyone and no special equipment is
needed. As NFC communication is claimed to work only within 20 cm or less proximity
between devices, a question arises: how close must the attacker be to the communicating
devices to extract readable data from the received RF waves? This question cannot be an-
swered with full accuracy, as there are multiple parameters that affect the distance of ex-
tracting readable data from RF waves. Parameters that affect the range of NFC radio fre-
quency waves are [6]:

a) Power sent out by the NFC device - The amount of power used to send RF waves
affect the range of RF waves, as more power produces wider range, exposing the
device more for attacks

b) Location - RF waves travel differently in different environments.(e.g. metal walls,
underground etc.)

c) NFC characteristics of sender device - RF wave range depends greatly on the send-
ing phone RF characteristics (e.g. antenna size and geometry, mobile case shield-
ing effect etc.)

d) Quality of the attackers devices - Distance between the attacker and the communi-
cation NFC devices depend vastly on the quality of the attackers devices (antenna
size and geometry, RF signal decoder, receiver)

Due to those parameters, an exact distance of RF waves in NFC communication can not be
given and if the distance is given, then it can only be correct for a given set of parameters
and not for all possible parameter values [28].

Table 2. NFC communication configurations based on initiator and target.

 Initiator Target

Active device Possible Possible

Passive device Not Possible Possible

10

Additionally, there is a huge difference in what mode the sender is operating. If the data
sender is operating in passive mode, then the senders RF field is powered by the other par-
ty of this communication and the fields distance is much smaller than the RF field distance
on the active sender, making it much harder to eavesdrop information sent by the passive
sender. Touch estimate on how big can the distance be to successfully eavesdrop NFC
communication is about 10 m for active devices and 1 m for passive devices [6].

As NFC is a wireless technology, it can not protect itself against eavesdropping. Even if
data transmitted in passive mode is harder to eavesdrop on, it is not sufficient to ignore the
threat. Therefore, the only real solution against eavesdropping is to create a secure channel
connection with software. This solution is further described in section 2.2.3.

Data Corruption
Additional to the eavesdropping discussed in section 2.2.1.1, an attacker can also try to
modify eavesdropped data that is transmitted via an NFC connection. One use case is, that
an attacker simply disrupts the communication between devices by corrupting the data
sent by other devices. This can be achieved by using eavesdropping during the communi-
cation and sending valid frequencies of data spectrum within a correct time period in
communication. Correct time is calculated from the NFC communication modulation
scheme. This attack simply does not allow the user to achieve correct communication re-
sults between devices [6]. NFC devices can detect the data corruption attacks by checking
the RF field and the power of the transmitted RF waves. Power needed to create data cor-
ruption in NFC communication is much greater than the power used to normally com-
municate with NFC devices. Therefore all these attacks should be discoverable [6].

Data Modification
A Data Modification attack is similar to a Data Corruption attack, but with the difference,
that attacker-sent manipulated data is valid in NFC communication. Implementation-
ability of the attack highly depends on the applied strength of signal amplitude modula-
tion, as decoding of the signal differs for 100% and 10% modulation. When the communi-
cation is using 100% modulation, the decoder checks both half bits of RF signal on or RF
signal off. To inject some valid data into the NFC communication, the attacker must fill
the pause in the modulation with carrier frequency and generate a pause of RF signal, what
is then received by correct party of the NFC communication. This means that the attacker
must send RF signal in a so perfectly overlaps with the original RF signal, making the
original signal a zero signal in receiving decoder, which is almost impossible to accom-
plish.

In modified Miller encoding, in case of subsequent bits, the attacker can change the se-
cond bit to zero by modifying the pause that encodes the second bit. Doing that, the de-
coder would see no pause in the second bit and would decode it as zero, because the forgo
bit was 1. Therefore, in 100% modulation, the attacker can only change bit value from 1 to
0, in case bit is preceded by a bit of value 1, but never vice versa [6]. Using 10% modula-
tion, the decoder is measuring signal levels of 82% modulation and 100% modulation,
compares them, and if they respond to the correct range, the signal gets decoded. An at-
tacker could try to increase the 82% signal to make it match the 100% signal, making it
appear as full signal and making the actual full signal appear as 82% signal [29]. Doing
that, the decoder would decode false bits into correct ones and correct bits into false ones.

11

Whether the attack is feasible, mostly depends on the input range of the receiver. It is like-
ly that the higher signal levels would exceed the input range of the receivers’ decoder, but
the threat cannot be ruled out completely. We can say, that a data insertion attack is not
achievable for 100% Miller encoding, but is possible for 10% Manchester encoding [6].

Possible solutions to avoid data modification attacks are:

a) 106 KBaud transfer rates - By using only 106k Baud transfer rates, the attackers
can not achieve data insertion attacks. However using this transfer rate makes the
communication most vulnerable to eavesdropping described in section 2.2.

b) Check RF field - Continuous check by sending the device to detect interference in
RF field and stopping the data transaction when this kind of interference happens.

c) Secure channel - Create an encrypted channel between two devices. Further de-
scribed in section 2.3

Data Insertion
Attacker inserts additional messages into NFC communication. This sort of attack can
only happen, when the device answer takes a very long time. This means the attacker must
send the data before the sending device sends it (replies to request) [29]. This attack is
successful only if the attacker sends the whole data before the replying device starts to
answer. When the two data streams are trying to transmit at the same time, then data colli-
sion happens and data gets corrupted [6].

There are multiple solutions to avoid this kind of attacks:

a) No delay - Making the device communication without delays, so the answering de-
vice answers immediately, not giving the attacker enough time to interfere. (At-
tacker can not be faster than the correct device, they can be both the same speed,
but sending the same data at once from two different sources results in data colli-
sion).

b) Channel listening - Constantly listening to the communication channel so the de-
vices can detect a 3rd party trying to interfere communication.

c) Secure channel – Create an encrypted channel between two devices. Further de-
scribed in section 2.3.

Man-In-The-Middle
A typical man-in-the-middle attack is when two parties want to talk to each other and are
tricked into a three party communication by an attacker. For example: Device A wants to
communicate with Device B, but at the start of the communication, Device C as an attack-
er tricks both devices into communication with Device C instead of each other. Device A
and Device B are convinced that they are communicating with each other - shown in Fig-
ure 3.

12

This attack can happen regardless of a secure channel, as the secure channel endpoint is
switched by Device C and Device A and B must have sufficient security knowledge to
eliminate Device C as a valid endpoint for Device A or B. A Classical man-in-the-middle
attack starts with key authentication, where Device A and Device B want to establish a
secret key to set up a mutual secure channel. Device C creates secure channels with both
Device A and Device B and the communication between Devices A and B seem complete-
ly normal to them.

How does the man-in-the-middle attack behave in case of NFC communication? Assum-
ing Device A is in active- and device B in passive mode then the situation is as follows.
Device A has generated an RF field to communicate with Device B. If Device C is close
enough, it can read the data sent by Device A. Device C disrupts the transmission between
A and B, so B does not receive the data. This can be achieved by Device C, but it is also
visible to Device A and if A detects the attack it can stop the key agreement protocol
communication. But to further analyze the man-in-the-middle attack we must assume that
Device A does not detect the disturbance in the key exchange protocol. When Device C
has successfully blocked A and B communication and received communication request by
A, Device C must generate RF field to communicate with device B, meaning two RF
fields must be active at the same time. It is impossible to align the two RF fields, making it
impossible for Device B to understand the data sent by Device C. Because of this and the
fact that Device A can easily detect the changes in the RF field it is evident that the man-
in-the-middle attack is practically impossible for NFC communication.

The only other possible solution for the NFC man-in-the-middle attack is if Device A and
Device B both use active modes. Then again assuming that Device A does not detect dis-
turbance in the RF field the attack is possible. This is due to the Active-Active communi-
cation. When Device A has sent data to Device B (Intercepted by Device C), device A
turns off its RF field. Now Device C turn on RF field and send data to Device B. Now the
problem here is, that Device A is also listening and expecting an answer from Device B.
Instead of a response from Device B, it will receive an answer from Device C and can yet
again detect the problem and stop the communication. Only possible man-in-the-middle
attack in this case is switching the communication endpoint for Device A from Device B
to Device C, and Device C must know what kind of answers Device A is waiting for.
Therefore it can be said, that man in the middle attack is practically infeasible for NFC
communication [6] and it does not need additional solutions to counter fight it. It is rec-
ommended, however, to use Active-Passive communication modes for high security risk
NFC communication. In which case the active party should detect all abnormalities in the
NFC field.

Figure 3. Man-in-the-middle communication directions.

13

2.3 NFC Secure Channel Connection
Having a secure channel between two NFC endpoints is clearly the best solution to avoid
any kind of attack, as NFC has proven to be resistant to man-in-the-middle attack (de-
scribed is section 2.2). Therefore we can assume that it is secure to establish a secure
channel connection between two NFC devices. In our case, it is a connection between an
active NFC mobile device and a passive NFC smartcard. To achieve that, it is possible to
use either Asymmetric cryptography or Symmetric cryptography.

Public-Key Based Cryptography
Public key based cryptography, also known as asymmetric cryptography, is a cryptograph-
ic algorithm that uses two separate keys for each communication participant. Each partici-
pant has a set of private and public keys, that are mathematically linked. Public key is used
for encrypting the plaintext into cipher text and for verifying the digital signature. Private
key on the other hand is used to decrypt cipher text and to create digital signatures. It is
called asymmetric, due to the use of two keys performing opposite functions. The security
lies within the private key of the key pair. Public-Key cryptography relies wholly on the
fact that it is computationally infeasible for a correctly generated private key to be de-
duced from its public key pair [8]. Therefore, the public key can be securely published to
other parties without compromising the security of the protocol. Some public key algo-
rithms provide key distribution and secrecy, others provide digital signatures and some
provide both. Therefore, a suitable public key cryptosystem must be chosen to handle key
exchange and establish a secure channel. A standard RSA or Elliptic curve based cryptog-
raphy is suited for this kind of problems.

Rivest Shamir Adelman (RSA) [26] is one of the oldest public key cryptography algo-
rithms and also the most used one at the moment. The RSA cryptosystem is based on the
high computation cost of factoring, which means that having sufficient computational re-
sources and time, an adversary cannot obtain the private key from the key set via factor-
ing. Factoring is not the only method to break RSA, but at the moment no other method
has proven successful either [10]. The RSA public and private key are generated based on
the algorithm [25]:

a) Select two random prime numbers a, b, always in a way that the bit length of a is
approximately the same as of b

b) Compute n = a * b
c) Compute fi(n) = (a-1)*(b-1)
d) Select a random integer e so that e < fi(n) and gdc(e, fi(n)) = 1, after that compute

integer d, with e*d =1 mod fi(n)
e) (n, e) is public key and d is private key

To encrypt data m with public key then result s = hash(m)d(mod n) and to verify the result
then hash h = se (mod n)

Elliptic Curve Cryptography (ECC) is described with an equation [27]
y2 = x3 + ab + b, where 4a3 + 27b2 != 0
ECC public and private key are generated based on the following algorithm [10]:

a) Find elliptic curve E(K), where K is finite field such as Fp or F2”, and find point Q
on E(K). n is the order of Q

b) Select pseudo random number x in a way that 1 <= x <= (n - 1)
c) Compute point P = xQ

14

d) ECC key pair is (P, x) where P is public key and x is private key
ECC uses smaller keys than RSA encryption algorithm [10], which is vital in the proposed
NFC solution, as Java Card memory sizes needed to store keys and certificates are
minimal. In terms of key generation ECC outperforms RSA at all key lengths with
massive differences, as RSA 1024 key length key pair generation takes 0.16 seconds, but
ECC manages to generate responding key with 0.08 seconds. In terms of signature
generation, RSA outperforms ECC with the 0.01 seconds and 0.15 seconds respectively.
In terms of signature verification, RSA also outperforms of ECC, with the difference of
0.01 seconds and 0.23 seconds respectively.

Public-Key-Cryptography Practical Considerations
Forward Public Key Encryption (FPKE), is an encryption that makes sure, that communi-
cation is kept secret during transmission, as all data moving along the communication
channel is encrypted. It assumes that both receiver and sender are in possession of their
own private key and other parties’ public key. In order to send a message from one party
to another using FPKE, the sender uses the receiver's public key as an encryption key and
encrypts the contents of the message to be transmitted. After encryption, the message is
sent to receiver. The receiver uses uses their own private key to decrypt the message con-
tents. Using the receiver's public key to encrypt the data is also useful for preserving the
confidentiality of the message, as only receiver with the appropriate private key can de-
crypt the message. Therefore once the sender has encrypted the message with receiver's
public key, it is impossible for the sender to decrypt it. Although, FPKE do not protect
against the non-repudiation problem, as the message could be sent by anyone who has
access to receiver's public key. Therefore, the author argues, that FPKE alone is not secure
enough for proposed NFC security solution and there is a need to further analyze possible
usages of Public Key Encryption solutions.

Inverse Public Key Encryption (IPKE), also known as digital signature, is based on the
sender encrypting the message with his private key and adding the result to the message as
signature. The receiver receives the message along with the digital signature of the mes-
sage, and then uses the sender’s public key to verify the message signature, making sure
that the sender is correct. IPKE is the complete opposite of the FPKE, as it ensures the
non-repudiation of the message, but it does not secure the message itself. Therefore the
author claims that IPKE is also unusable in proposed security solution, as it does not pro-
tect against eavesdropping.

Enveloped Public Key Encryption (EPKE) is applying public-key cryptography and both
ensuring that the transaction communication is handled confidentially, and that the con-
tents are protected against modifications and non-repudiation. This method is mainly used
in open network environments similar to the environment in the proposed solution. EPKE
makes use of the Transport Layer Security (TLS) or Secure Sockets Layer (SSL). EPKE
consist of both Forward Public Key Encryption and Inverse Public Key Encryption, creat-
ing the foundation of Enveloped Public Key Encryption. In order for the EPKE to work,
the following is required:

a) Each communication party has their own unique set of public and private keys.
b) Every participant's private and public key set must be mathematically related, as

party’s private key must be able to decrypt data encrypted by the party's public key
and party’s public key must be able to verify data signed with the party’s private
key.

15

c) The private key is kept private and only the owner of the private key knows it,
whereas the public key is published to other communication parties.

d) Communication parties must be aware of the public keys used by other trusted par-
ties, making sure the communication is only allowed between trusted participants.

In order to send the message using EPKE, the message must be encrypted by the sender's
private key and the result must be added to the message, ensuring non-repudiation of the
message. Then the sender encrypts the message together with a digital signature using the
receiver's public key. Now the message is in a so called digital envelope and is sent to the
receiver. After receiving, the receiver decrypts the message using its private key, revealing
the message and the digital signature of this message. Now the receiver uses the sender’s
public key to verify that the message is received from the correct sender, and validating
that the message is in fact correct. The author claims that EPKE is the most suitable form
of Public Key encryption to be used within the proposed solution, as it is secure from
eavesdropping and enables to verify the sender of messages.

The proposed solution uses Java Cards to handle one part of the communication protocol.
This means the computational powers of these cards are limited, but due to the
computationally complex nature of the RSA encryption algorithm, the time used to
encrypt/decrypt amounts of data can increase vastly depending on the amount of data
decrypted/encrypted. To overcome the issue of handling bigger amounts of data, the
author suggests to use data hashing prior to the private key encryption, reducing the
amount of data encrypted to fixed amount based on the hashing algorithm. Using SHA1
hashing algorithm the large amounts of data can be reduced to 160 bits of data that need to
be encrypted. Both sender and receiver must be aware of the signature hashing and signing
functionality, otherwise the digital signature comparisons will not match. The only
downfall of using this sort of hashing prior to encryption is that smaller than 160 bit data
gets hashed to 160 bit data, making the amount of data encrypted bigger that it originally
was. Table 3 shows the difference between SHA1 hashing and RSA encryption signing in
one second. There is a difference of over 100 times between SHA1 hashing and RSA
encryption, as shown in Table 3. Further analysis is described in Appendix 2.

The author’s proposed Public Key cryptography secure channel solution proposes the use
of EPKE together with session handling and symmetric cryptography. As the sender and
receiver have knowledge of each others public keys, they can obtain the knowledge during
communication establishment or have it predefined for them. When communication is
started, the initiator verifies the receiver by requesting a public key. On receiving
receiver's public key, the sender generates a session key and encrypts it using the
receiver's public key. The receiver then receives the session key by decrypting the
message with its private key. Now sender and receiver have a shared temporary session

Table 3. SHA1 and RSA encryption benchmarking.

Block size SHA1 RSA

512 bit 5807998.5 hash / s 7334.6 sign / s

1024 bit 416352.3 hash / s 2099.3 sign / s

2048 bit 57689.7 hash / s 397.3 sign / s

16

key they can use to encrypt the messages. By encrypting the messages with shared
knowledge, the sender only needs to encrypt the message, without even digitally signing
the message, as the temporary shared session key assures the communication is coming
from the correct sender. This also allows the receiver and sender to use symmetric
encryption which is faster than asymmetric encryption. This proposed solution is the same,
as web TLS protocol is handling the key verification, secret sharing and channel creation.

Symmetric Cryptography With Shared Secret
Symmetric cryptography is a single key cryptography, where the same key is used to en-
crypt and decrypt message data. This cryptography is mainly used to encrypt data with
shared knowledge, so that whoever needs to use the encrypted data, they need the same
encryption secret to decrypt it. Symmetric cryptography can be used for the proposed se-
curity solution, by simply sharing the secret between NFC mobile devices and NFC smart-
cards. In this case the sender encrypts the message with the shared key and a suitable algo-
rithm before sending the encrypted message to the receiver. Receiver decrypts the message
with the same key obtained during initialization. As per Java Card 3.0.4 API documenta-
tion, the same Java Card version the Estonian ID card is based on, Java Card supports
multiple different symmetric cryptography algorithms that can be used for this sort of
shared secret security channel. Supported symmetric cryptography algorithms are AES,
DES, 3DES and SEED [11].

Author rules out SEED algorithm, as it is mainly used in South Korea and not many solu-
tions support it. Java Card does support it, but it works with a 64-bit key, which is too
weak for our liking [12]. The author also rules out DES algorithm, as it is an older, less
secure version of DDES algorithm, using a single 64-bit block cipher under a 56-bit key
[13]. That leaves us with 3DES and AES algorithms. In the following section, the author
analyses 3DES and AES symmetric encryption algorithms and tries to find the best suita-
ble algorithm for the proposed NFC security solution.

Triple Data Encryption Standard (3DES) was developed on top of DES, correcting the
flaws in the single DES encryption algorithm. DES key is 56-bit and 16 cycle Feistel sys-
tem is used with 16 48-bit sub keys permuted from the one 56-bit key - One key for each
Feistel cycle [1]. Algorithm basic for 3DES are the same, as they are in DES encryption,
but the key size is triple the size of the key in DES algorithm. This is simply handled by
doing 3 different encryptions with 3 given keys on the same block of data, therefore all
operations of DES encryption must be done three times, each time using different part of
the given 168-bit key. 3DES data encryption throughput is slightly smaller than DES
throughput, coming from 3 times the encryption done with the message blocks, but it is
not 3 times smaller as we would to assume [4].

Advanced Encryption Standard (AES) was developed to replace DES encryption algo-
rithm, and is based on substitution and permutation. AES uses Rijndael algorithm, which
has a fixed block size of 128-bit and key size of 128, 192 or 256 bit. Key size determines
the number of repetitions of transformation rounds done to get the cipher text output.

a) For 128-bit key, 10 repetition cycles are made
b) For 192-bit key, 12 repetition cycles are made
c) For 256-bit key, 14 repetition cycles are made

Each repetition consists of 4 processing rounds:

17

a) SubBytes - Each byte in a state matrix is replaced with a sub byte, using an 8-bit
substitution box, also known as Rijndael S-box

b) ShiftRows - Shifts bytes in matrix rows by a certain offset
c) MixColumns - Takes four bytes from column and outputs four bytes, where input

bytes affect all four output bytes via linear transformation
d) AddRoundKey - Adds derived sub key to round

Based on the research of [4], we can also assume that AES encryption is slightly better at
encrypting and decrypting plain text, hex or byte data and that the AES key size affects the
cipher text computation time very little.

There is no vital difference between AES and 3DES encryption when dealing with small
amounts of data, as encryption time only becomes evident when encrypting or decrypting
data bigger than 5 megabytes [4]. As the author’s proposed system uses Java Cards to
handle data encryption and decryption, the data sent between the Java Card and mobile
device never exceeds 5 megabytes, as the maximum single message size is 32 kilobytes
[11]. It would take 5 x 1021 years to break AES 128-bit encryption [1], but it only takes
800 Days to crack 3DES 112 bit key. Based on these findings, we can be certain, that AES
encryption algorithm is secure and fast enough to use in the proposed NFC security solu-
tion. Based on these results, it is safe to claim, that the AES encryption would be the best
choice for the proposed NFC security solution.

2.4 Web Application Security
Security is constantly the main concern when building a new web application from the
ground up. There are multiple security solutions out there that have single-factor authenti-
cation and multiple-factor authentication schemes. Picking the correct security solution for
your application depends largely on the security level needed for the application and how
paranoid your system must be. The top four security breaches for web applications are to
do with cross-site scripting, information leakage and broken access controls [16].

a) Cross-site scripting is an attack where the attacker exploits the user logged in func-
tionality and accesses other user data by brute-forcing himself/herself as another
user, having the knowledge of how the site is scripted for every user.

b) Information leakage is an attack, where the application handles errors badly, and
leaking information through thrown errors.

c) Broken access control is an attack that enables attacker to access someone else's
data with their own account.

d) Broken authentication is an attack where the attacker can authenticate him-
self/herself as someone else and use the system with someone else’s account.

Broken authentication attacks are the main attack type the author’s proposed solution is
trying to fix. This is the only thing that can be generalized throughout every web applica-
tion. Fixes for cross-site scripting, information leakage and broken access controls depend
heavily on the web application they are used in and need to be prevented during the devel-
opment of the web application. Therefore we are looking into different ways of web appli-
cation authentication compared to the author’s proposed one.

Single factor authentication uses only one type of authorization and is open to multiple
different attacks - eavesdropping, dictionary attacks replay attacks etc. [7] Therefore, the
single factor authentication can be completely ruled out when building a web application

18

with high security needs. After ruling out single-factor authentication, secure web applica-
tion development is left with multiple factor authentications to pick the correct one for the
respective solution.

Two-Factor Authentication
Most commonly used authentication form is the two-factor authentication (TFA) where
the authentication passes two different devices or tokens, both in the possession of the
same user, making it twice as secure, as single-factor authentication. Two-factor authenti-
cation can give us three guarantees [3], as we can ask for three types of evidence for iden-
tity:

a) Something material the user has (Smartcard, mobile device etc.)
b) Something the user has remembered (Password, picture etc.)
c) Something the user is (Biometrical - fingerprint, picture etc.)

In order to achieve TFA we need to choose two types of proof from the given list. Usually
a user-remembered password phrase and user material object is used, as according to [3]
biometrical authentication is the weaker form of security authentication. Biometrical
factors can be easily copied - fingerprints can be retrieved from any surface you touch
without gloves or protective gear. Even the mobile phone can be used to copy your
biometrics - therefore biometrics is yet to be advanced to use it successfully in secure
solutions. When creating an authentication scheme, where two device are in the loop of
authentication, it is crucial to make sure that both of these devices are in control of the
same user [7]. Therefore the registration phase of the devices must be secure and handled
only once, at signup or device switching. if the device registration phase is handled
correctly, and authentication is done using two different endpoints, the system can be more
sure that the user authenticating himself/herself is actually the user he/she claims to be.
The device used for two-factor authentication can differ according to the selected
authentication solution - mobile device, smart card, token generator, service, computer etc.

Most similar to the author’s proposed NFC smartcard authentication from two-factor
authentication, is the web application smart card authentication. A solution, where a
smartcard is used together with a smartcard reader to authenticate a user to the system.
The Estonian ID card solution can be taken as a perfect example - it allows users to log
into different web applications by simply authenticating himself/herself via an Estonian
government-issued smart card. Regular EstEID solutions work by simply asking the user
for username and then prompting the user directly to the smart card authentication. This
solution that can not be considered 100% regular TFA, as it requests the user to input
his/hers remembered password on the smart card instead of the web application, but it still
ticks all the needed boxes for two factor authentication [2].

The Estonian ID card solution can be altered to work similarly to a regular TFA,
prompting the user for a password together with a username, and requesting the user to
input password for the smart card also, but this kind of a solution is working against user
experience and common practices of TFA. The author’s proposed NFC solution smart card
works similar to the regular EstEID smartcard, providing all the same functionality via
NFC as the Estonian ID card provides via smart card reader, but it can’t be considered as a
rival solution for EstEID, as NFC security solution can act as an extra feature of EstEID
solution.

19

Three-Factor Authentication
Similar to the two-factor authentication, three-factor authentication uses the same three
evidence of identity, but it is using biometrics in addition to the user-remembered
passphrase and the physical device. Biometric authentication is an identification of user
via human characteristics - fingerprint, voiceprint and iris scan [9]. These characteristics
are believed to be reliable, as they hold vast amount of high-entropy information that can
not be lost or forgotten. A third biometric authentication factor can be added to the simple
two-factor smart card authentication by just adding another step to pass in biometric data
to authentication flow. Together with adding biometric data to the authentication flaw
comes the responsibility to handle biometric data by allowing user to change it similar to a
password change [9]. But having three-factor authentication, computational costs are
multiplied, as biometric validation requires high computational power and the additional
security received from it, is not that secure, as biometrics can be easily replicated. In
conclusion, adding a third factor to TFA is costly and not very beneficial, as it does not
eliminate any extra attack types that the two-factor authentication does not already
address.

Proposed NFC Solution Web Application Security
The author’s proposed NFC web application security solution can be qualified as an ad-
vancement of the two-factor authentication and we can go to the extent of calling it 2.5-
factor authentication. The proposed solution uses two user-remembered passphrases:

a) Web application passphrase
b) Smart card passphrase

 In addition to that, it uses two user verified devices:
a) NFC mobile device
b) NFC smart card

The main authentication functionality is based on the regular smart card two-factor au-
thentication. Similar to [14], this solution contains 4 + 1 different authentication phases:

A. Registration phase
a. System distributes customer NFC smart cards with PIN envelopes to users.
b. User authenticates mobile device by entering their username and password

within NFC mobile application.
B. Login phase

a. User tries to login into web application. Web application prompts the user
to select login device view

C. Authentication phase
a. User receives verification request to selected mobile device. User authoriz-

es himself/herself with the given NFC card or Estonian ID card by entering
PIN into mobile device connected with appropriate NFC card

D. Password change phase
a. User opens mobile application and wishes to change NFC card PIN. User

verifies himself/herself with PIN2 and is able to enter new PIN1. This is
completely offline phase and everything is handled by mobile device and
NFC card

b. User requests to change web application passphrase, authentication is car-
ried out similar to the Authentication phase and user gets to change the
passphrase

E. Device change phase (Additional phase)

20

a. User can add, remove or switch accounts related to mobile device by being
in possession of the username, NFC card and password.

What makes the author’s proposed solution unique is the fact that it can verify two differ-
ent customer devices, allowing the user be in possession of two authorized devices (Both
smart card and mobile device). By doing that the solution adds an additional security layer
on top of the regular smartcard authentication solution, allowing the user to use their mo-
bile phone as smart card reader, verifying the user mobile device at the same time. This
functionality is missing, when using regular smart card readers. Similarly to the Estonian
ID card, the user NFC smart cards hold 3 different user PIN numbers, making it possible
to request different level of authorization when performing different tasks. PIN numbers
unlock the access to user certificates held on the NFC smart card. With these certificates,
user can either authorize or sign requests.

Comparison
In order to prove the legitimacy of the author’s proposed solution, a comparison of differ-
ent web application authentications against the author’s proposed one is needed. To give a
better comparison we take into account different web application authentication possibili-
ties. Therefore we compare Single-Factor, Two-Factor, Three-Factor and the author’s pro-
posed authentications. Based on Table 4 we can completely rule out Single-Factor Authen-
tication and Three-Factor Authentication as competitive solutions for author proposed
NFC security authentication solution. Two-Factor authentication can be considered as a
main competitive solution for the NFC security authentication solution, but they cannot be
compared as equal, as the NFC security solution is an improvement of Two-Factor Au-
thentication. Both solutions offer better security with multiple security layers at the cost of
user experience. Both require an extra step from the user and take a bit longer to success-
fully authenticate the user than the Single-Factor Authentication does. Based on this, it is
safe to say, that the author’s proposed NFC security solution is a valid Two-Factor Au-
thentication improvement and can be taken as a competitive authentication solution for
other Two-Factor Authentication solutions.

21

2.5 Existing Authentication Solutions
In order to give a better estimate of the proposed solution’s efficiency and profitability,
there is a need for competition research. As this solution is one of a kind and has no direct
competition solution wise, general estimation of authentication solutions must be provided
and comparison between different existing authentication and signing solutions has to be
made. After examining different solutions, a decision was made, if the proposed solution
brings a better authentication solution to the table, or is it just another authentication solu-
tion similar to the variety of different solutions out there. In order to analyze the different
authentication and signing solutions, a solution with different purpose and architecture
was selected, focusing the selection on Two-Factor authentication, mobile devices and
NFC.

Image-Based Authentication
Image-based authentication relies on the preliminary authentication of the user, during
which the user selects multiple different images from an image grid as a passphrase (user
needs to remember all of the images without correct order). During the authentication re-
quest, the user is given a 3x3 or a 4x4 picture matrix [40] with some of the user authenti-
cated pictures and along with random pictures. Within this picture matrix, user must select
the correct (previously selected) images. The given solution is supported by Confident
Technologies1 and is relying on the fact that person's memory is better at remembering
pictures, than random passwords and this solution can not be attacked with a key-logger,
as the pictures occur in a random order and in random places. This also provides the secu-
rity of detecting device authorization pattern using fingerprints left on the mobile device

1 http://confidenttechnologies.com/
2 http://www.google.com/about/company/
3 http://openid.net/

Table 4. Single-Factor, Two-Factor, Three-Factor and Author Proposed authentication
solution comparison.

 Advantages Disadvantages

Single-Factor Authentication + Simple
+ Fast
+ User friendly
+ Single point of failure
+ No service integrations

- Only one protecting pass-
phrase

- No security endpoint
- Unsecure
- Easy to bypass

Two-Factor Authentication + User friendly
+ Fast
+ Reliable

- One security endpoint
- Complex user experience

Three-Factor Authentication + Multiple layered security
+ Third biometrical factor
+ Big future opportunities

- Slow
- High computing require-

ments
- Easy to bypass
- Hard to develop
- One security endpoint

Author NFC Authentication + 2 security passphrases
+ 2 separate security endpoints
+ User friendly
+ Secure
+ Reliable

- Complex user experience
- Multiple service integrations

22

screen [33]. To make remembering the pictures easier for the user during security solution
initialization, the user can only select certain categories instead of exact pictures and later
will need to identify correct category pictures during authentication, making it possible to
add large selection of images to each category.

SMS One-Time Password
SMS One-Time Password (OTP) authentication scheme uses SMS service to send a one-
time password to authorize the user. This scheme uses known user devices to provide a
second level of authentication to the user. In order to access the application, the user must
have the passphrase and his/her mobile device. After entering the passphrase, the applica-
tion send an SMS including OTP for single-usage login, and user must enter the received
password into the application. This is the example usage of TFA described in section 2.4
in this thesis. The most widely known SMS one-time password solution is Google’s2 two-
factor authentication solution. Another way to use the SMS OTP, is to use it directly from
the mobile device, as the mobile application receives SMS from the server containing the
password and uses this password directly with no user actions needed. This password is
only valid for one single login session and is terminated after user logs out of the applica-
tion or it expires due to user inactivity.

Device Generated One Time Password
Similar to the SMS one-time password solution (described in section 2.5.2), the device
generated OTP solution uses a generated limited time single-login password for authenti-
cation, with the difference, that the OTP is generated within the user device. OTP genera-
tion is in this case software based and usually requires the device time to be synchronized
with server’s time [32]. The best example is yet again from Google called Google Authen-
ticator - a mobile application generating 6 figure OTP codes to be used as second authenti-
cation factor for users. This is relying on the solution, that user first authenticates him-
self/herself with registration passphrase and after the password authentication has been
successful, a second level of authentication is requested with the user’s device and Google
Authenticator mobile application. Device generated OTP is better than SMS OTP, as the

2 http://www.google.com/about/company/

Table 5. Image based authentication pros and cons.

Pros Cons

- User do not have to remember passphrases
- Not distinguishable fingerprints left on the

screen

- 3x3 picture matrix with selected 3 catego-
ries only gives 84 possible passwords

- Vulnerable for brute force attacks
- Pictures must be unambiguous to every-

one

Table 6. SMS OTP pros and cons.

Pros Cons

- Second factor based on “Something you
have” token

- SMS delivery time may vary
- Cloned devices receive the same SMS
- Usability

rP

23

generated one time password will never travel over network between device and server.
OTP is generated in the mobile application and user enters the generated code directly to
the requesting application.

Out-of-Band Authentication
Out-of-Band authentication is based on an automated phone call from the server to the
user device in order to authenticate the user. This solution is using completely different
channel (from the channel the authentication request has been started) to communicate
with user and by doing that, eliminating the security issue of using the same channel for all
authentication activity. The authentication flow is simple, as when user tries to login to
application, the server automatically calls the user mobile device and dictates a pass
phrase or code for the user to enter into the application in order to authenticate
himself/herself [39]. This solutions security level is similar to the SMS OTP solution
(described in section 2.5.2), as it uses different channel and OTP to authenticate the user.

Biometrics
Biometric authentication is using user’s unique biometrical fingerprint for authentication.
The characteristics used are usually based on the user’s physiological appearance and not
based on the behavior of the user. [33] The most common characteristic is fingerprint, but
person has multiple different unique physiological characteristics that can be used for au-
thentication. For example the user’s tone of voice, eye iris, face metrics etc. the main prob-
lem for using biometrics as a main authentication endpoint is the fact that not many devic-
es provide biometric identification for their user, biometric authentication devices are ex-
pensive and the solutions are also expensive to develop and integrate. Biometric authenti-
cation provides third level to authentication patterns enabling Three-Factor Authentication
[38] described in section 2.4 user’s biometric fingerprint can not be changed during theft
either and therefore it is not suited to be the single point of user authentication.

Table 7. Device Generated OTP pros and cons.

Pros Cons

- Second factor based on “Something you
have” token

- Cloned devices can generate the same
OTP

- Usability
- Internally attackable

Table 8. Out-of-Band authentication pros and cons.

Pros Cons

- Server can verify mobile device together
with user authentication

- Voice channel is insecure
- Cloned device can receive the call
- Not suitable for high risk solutions
- Hard to implement on server side
- Expensive

24

Another Application for Authentication
Similar to OpenID3 solutions, another application provides user authentication for the
required authentication. This solution can be used if the company’s do not want to create
their own authentication solution and are trusting another vendors to provide a secure and
reliable authentication solution. This solution provides application full authentication flow
without having to implement it themselves. Excellent examples of complete such solutions
are Google OAuth4 and Estonian ID card, where full authentication is handled by the
vendors and either successful authentication or the unsuccessful authentication response is
returned to the application. Google OAuth relies on generated tokens and returns a user
session token to application that requested the authentication [34]. The Estonian ID card
solution provides a unique user certification-based solution, where the user can login using
their ID card solution [35].

Authentication+Using+Mobile+Device+NFC+Emulation+
This authentication solution is based on the capabilities of the mobile device emulating a
NFC card. Usually the security is stored on the mobile SIM card and the mobile phone
simply communicates with the SIM card to access the user’s private key in order to
provide the needed cryptography and authenticate the user via mobile device, but there is
also a possibility of adding an encrypted secure store within the mobile application to store
the secrets and provide the needed cryptography. This solution works similar to the author
proposed solution, but with the difference that the mobile device itself is the NFC card,
providing card functionality to NFC readers that are communicating with application user
is using within workstation [36]. The user must enter a PIN to authenticate himself within
the mobile NFC security environment and after successful verification the device
communicates with NFC reader to send authenticated user data over to the reader. This
solution adds one extra layer to regular Two-Factor Authentication by requesting user PIN

3 http://openid.net/
4 https://developers.google.com/identity/protocols/OAuth2

Table 9. Biometric authentication pros and cons.

Pros Cons

- Unique to every user
- Linking account to physical person

- Expensive
- Irreplaceable
- Very few devices support it

P

Table 10. Another application for authentication pros and cons.

Pros Cons

- Single authentication endpoint
- User must remember only one solution

passphrase
- Convenient for user

- Authentication control lost to vendors
- No certainty, if solution is hacked
- No information regarding the actual au-

thentication flow

25

within the mobile device, allowing this solution to have 2 passcodes, similar to author
proposed solution. The only downside of this solution is, that the user does not have
another extra security NFC card to separate it from the mobile device he/she is using. This
solution also requires an additional NFC reader – a problem the author is trying to resolve,
as users usually do not have NFC readers and they are reluctant to buy additional
hardware.

RFID+Rag+As+Additional+Security+Token+
This security solution is based on the NFC reader mobile phones being able to read RFID
(Radio Frequency Identification) tags drom NFC cards and transmitting them to the server.
This means each user must have their own NFC card with unique RFID. During
authentication, the user receives a request to their mobile phone to read the RFID tag and
authenticate himself/herselt into the application [37]. This solution is again similar to the
author proposed one, but it only read RFID from the NFC card and does not utilize all the
possibilities an NFC card can provide. As anyone can read the RFID from this card, it
means this card is not protected and if an attacker gets access to the card and the device,
then after knowing the passcode, nothing is topping the attacker from accessing the
account. Therefore this RFID only provides one physical token that needs to be kept
separate from the authentication device.

Password+Authentication+Solution+
Password authentication solution is the most commonly used means of authentication out
there. This is based on a single passphrase and a username a user must remember in order
to authenticate himself/herself within a given application.

Table 11. NFC card emulation authentication.

Pros Cons

- Easy to use
- One device for authentication
- Multiple solutions can use the same im-

plementation and device application

- Personalizing each user device is hard and
time consuming

- Additional reader required
- No separation between user device and

security holder
- No secure placement of keys, if SIM is not

used
- Requires special SIM from operators

Table 12. RFID as security token.

Pros Cons

- Easy to use
- Additional “something you have” token
- Simple to distribute between users
- Cheap to implement
- Multiple usages to the same RFID card

- No security within the RFID card
- Easy to replicate
- No certainty, if solution is hacked

26

Comparison+
In order to compare these different solutions and to prove the validity of the author’s
proposed solution, there is a need to compare the security and usability of different
solutios compared to the one the author is proposing. In order to do that, security and
usability comparison tables are presented. In order to compare the different security
solutions security, author examines the resistance of the solution to the following attacks:
[36]

a) Physical observation
b) Targeted impersonation - Attacker tries to impersonate a user after observing the

user’s authentication procedure.
c) Guessing attack - Attacker tries to guess the passphrases.
d) Internal observation - Attacker can impersonate a user by intercepting the user’s

input from inside the user’s device.
e) Leaks from other verifiers
f) Man-in-the-Middle attack

The security comparison of different existing authentication solutions is described in Table
14. If column is marked with ‘O’ then the given solution is resistant to the given attack. If
the column is marked with ‘X’, then the solution is vulnerable to these attacks.

Table 14. Comparison of different solutions security.

 Passw
ord authentication

 Im
age based authentication

 SM
S O

TP

 D
evice generated O

TP

 O
ut-of-B

and authentication

 B
iom

etrics

 A
nother application for authentication

 N
FC

 em
ulation authentication

 R
FID

 tag as authentication token

 A
uthor proposed solution

Physical observation X X O O O O X O O O
Targeted impersonation X O O O O O X O O O
Guessing attack X X O O O O O O O O
Internal observation X X X X O X X O X O
Leaks from other verifi-
ers X X X X X X X O O O

Man-in-the-Middle X X O X X X X O O O

Table 13. Password authentication.

Pros Cons

- Easy to use
- Fast
- Easy to recover
- Easy to distribute

- Insecure
- Not scalable

27

In order to give an appropriate usability comparison of different usability criteria must be
made. Usability cirterias used for comparison are [36]

a) Memorywise effort – Measuring the amount of information the user has to
remember

b) Scalability place on users – The amount of information needed to remember each
different solution using this sort of authentication

c) Nothing to carry – The amount of extra devices/features needed from the user in
order to authenticate himself/herself

d) Physical effortless – How much physical effort the user must make within the
authentication flow

e) Efficiency – How long does the authentication process take
f) Infrequent error – Reliability of the authentication solution
g) Easy recovery from loss – Recoverability of the authentication solution, if a user

forgets the required passphrases

For the usability comparison, the password authentication solution is taken as reference
point and if the performance/usability of the given scheme is better than with the password
authentication, then it will be marked with ‘+’ sign. If the performance is the same as with
the password solution, it is marked as ‘=’ and if the performace/usability is worse than
with the password scheme, then it is marked with ‘-‘.

As it is visible from the usability comparison in Table 15, security always comes at a price
for user experience and usability. The more difficult the authentication solution, the more
it requires the user to make the physical effort and memorize different passphrases. The

Table 15. Comparison of different solutions usability.

 Passw
ord authentication

 Im
age based authentication

 SM
S O

TP

 D
evice generated O

TP

 O
ut-of-B

and authentication

 B
iom

etrics

 A
nother application for authentication

 N
FC

 em
ulation authentication

 R
FID

 tag as authentication token

 A
uthor proposed solution

Memory wise ef-
fort = - = = = + = = = -

Scalability = = = = = + + + + +
Nothing to carry = = - - - - - - - -
Physical effort = = - - - - - - - -
Efficiency = - - - - - - - - -
Infrequent error = - - - - - - = = =
Recoverability = - - - = - - - - +

28

author’s solution is better for recoverability, when the user has forgotten his/hers PIN1,
then he/she can recover it using PIN2 and can even do it offline without any outside
connection whatsoever. In the case that the user has lost his/hers NFC card, then the
recoverability is inconveniet for the user, as he/she needs a new card. When it comes to
security, the author’s proposed solution has similar security as the NFC emulated card
does and is resistant to most attacks. Physical observation is not enough to bypass the
security within author proposed security solution, as even if you have the passphrases user
has, you need the user’s device and the user’s NFC card also. Impersonation is impossible,
as private certificates are located on top of the NFC card and they are not extractable from
it. Guessing attack is also impossible, as NFC PIN1 and PIN2 have only 3 tries before it
locks the card. Internal observation would not be successful either, as it is impossible to
observ NFC card internally. No other verifiers are user within the author’s proposed
solution, eliminating all other verification-based security risks. The impossibility of Man-
In-The-Middle attack in the context of NFC was explained in section 2.2 of this thesis.

29

3 Proposed NFC Security Solution for Web Applications
The author’s proposed NFC security authentication solution extends web application secu-
rity to a new level, enabling user verification via the NFC Java Card solution. Each user
receives their own security card, issued by authorized issuing authorities like the Estonian
government. Which the card enables the user to log into different web applications using
their personal passcodes.

3.1 Platform Selection
Java Card platform was selected for the NFC smartcards, as it gives the possibility to add
custom applications on top of smart cards, that can be accessed via contactless (NFC) or
contacted reader interfaces. For the given prototype, a multi interface Java Card solution is
selected, which means Java Card has both contactless and contact interface enabled at the
same time, giving access to shared memory space on the card, using the same Java Card
application. As NFC is an integrate part of the security solution, there is a need for an NFC
compatible mobile device. Possible selections are Android OS (operating system), IOS or
Windows OS based device. IOS devices do not have proper NFC support therefore we rule
them out immediately. Selection between Windows and Android must be made. Based on
Q4 2014 data, Android OS holds a market share of 76.6% compared to the 2.8% market
share of Windows phone [19]. Due to the huge market gap, an Android OS based phone is
selected.

The web application platform can be selected based on the creators liking and the given
backend solutions (server solution) can be implemented with all the best-known web ap-
plication solutions. The only requirement is, that the solution must be compatible with the
Google Cloud Messaging service [18], used for Android communication. For the proto-
type, the author is using Java based web application platform called Grails5, an open
source free to use framework for Java Virtual Machines. Allowing to build Java web solu-
tions using Groovy, Grails and Hibernate. Grails has the whole Java web service develop-
ment tools combined together with its integrated ORM6, domain specific Languages, me-
ta- and asynchronous programming [17]. Grails has multiple connection adapters for dif-
ferent databases, but for this solution, MySQL7 database engine is selected to work hand-
in-hand with the Java Hibernate8 database connector. One of the biggest benefits of the
Grails web framework is its ability to create and distribute software plugins with ease,
enabling the solution to be integrated into other web applications seamlessly.

3.2 Architecture
The proposed NFC security solutions architecture can be divided into 2 separate sections,
separated by a secure web layer. One part of the solution is the user side (left hand side of
the Figure 4), where the user has his/hers workstation, mobile phone and NFC security
card. The other side of the solution (right hand side of the Figure 4.) is the web application
server side that handles the data sent to the user and the access given to the user. Between
those sides is the vast open web (Internet) with a secure channel connecting both sides of

5 https://grails.org/
6 http://en.wikipedia.org/wiki/Object-relational_mapping
7 https://www.mysql.com/
8 http://hibernate.org/

30

this solution and a Google Cloud Messaging (GCM) service to handle the NFC authentica-
tion start.

User side consists of user mobile device (android device in the prototyping phase), com-
puter and NFC card. User operates on computer and is required for additional security
authentication. User device receives a authentication required notification via GCM ser-
vice and user is prompted into authentication application, where user must connect NFC
card with the device and enter a PIN for the NFC card. The server side consists of a serv-
er solution hosting the web application the user is using and managing security levels to-
gether with user NFC card certificates. Server side is connected to GCM service to send
notifications to user devices, requiring authentication from user.

Server
Server architecture contains a local machine running Tomcat 8.0.15 web server and host-
ing a JVM website within this Tomcat web server. For the database, this solution is using
MySQL database. Website is built on Grails Model View Controller (MVC) solution and
is using hibernate and MySQL J connector [20] to connect with server MySQL database.
The Web Server architecture is described in Figure 5.

Figure 4. High-level solution architecture.

Figure 5. Server architecture.

31

This application is also integrated with Google Cloud Messaging service (GCM) [18], that
has the capability to deliver notifications to client phones, waking them up from sleep and
saving the effort to keep customer phone constantly connected to the web server. The
GCM connection is established via regular HTTP [21] calls.

Smartphone Application
The mobile application is based on Android mobile phones with NFC readers. This appli-
cation is built using Android Software Development Kit (SDK) [22]. The mobile NFC app
uses the device embedded NFC reader to access Java Card information and functionality.
App also has the capabilities to use Android-embedded Key Store to keep web application
certificate for TLS 1.2 communication. Google cloud messaging service is using android
notification service, sending notifications to NFC Android application and starting appli-
cation authentication flow. The Android application architecture is described in Figure 6.

Android application uses Android SDK embedded IsoDep9 communication protocol to
communicate with the Java Card application via the NFC reader. IsoDep protocol connects
to Java Card and communicates via APDU (Application Protocol Data Unit) calls [11].
Possible APDU calls are described in Appendix 1.

Java Card
The smart card used in this solution is dual interface Infineon jTop Java Card v3.0 with
shared memory. The dual interface allows users to use both contactless and contact smart
card interface enabling the use of this card with both NFC and regular smartcard readers.
This card has shared memory between two interfaces, giving access to the same Java Card
applet via both interfaces. Inside this shared memory is the Java Card applet containing
APDU processing solution. Smart card architecture is described in Figure 7.

9 http://developer.android.com/reference/android/nfc/tech/IsoDep.html

Figure 6. Smartphone application architecture.

32

The Java Card application is based on the Estonian ID card, using the same APDU’s as the
Estonian ID card does [5]. This gives the ability to directly use Estonian NFC ID card for
authentication, when it is enabled in the near future. Commands, enabled in the NFC ap-
plication and Java Card applet, are listed in Appendix 1.

3.3 Data Model
Application is using Read-, Write-, Update (RWU) database model, where new entries can
only be added, read or updated,but not deleted. Database domain model is described in
Figure 8.

Figure 7. Java Card architecture.

Figure 8. Server application domain model

33

The data model described in Figure 9 holds user data, user roles, user devices, user device
statuses, user device Google Cloud Messaging tokens and user certificates. Regarding au-
thentication and signing, the requests and results of authentication and signing, are also
stored in MySQL database for better observation and debugging. In future development,
authentication and signing requests and responses can be stored in memory cache based
databases and final results can be added to relational database and not overloading the da-
tabase. The full model of the NFC security prototype solution database is described in
Figure 9.

Figure 9. Server application data model

34

3.4 Security

Mobile Device Verification
During registration, the web application collects all possible data from the Android build
file and sends it to the web application. Based on that data, a unique set of data is selected
(data that will not change during device updates etc.) and based on this data, the applica-
tion calculates user device fingerprint. The fingerprint is calculated based on 4 unique and
unchangeable values, using device IMEI10, serial, display and MAC11 values. Fingerprint
calculation is based on SHA-512 hash and byte array XOR. Fingerprint is used as Base64
string [31]. Algorithm solution code sample is described below.

String getDeviceFingerprintFromDevice(UserDevice device) {
 MessageDigest mda = MessageDigest.getInstance("SHA-512");
 byte[] deviceBytes = mda.digest(device.imei.getBytes());
 byte[] tempBytes = mda.digest(device.mac.getBytes());
 deviceBytes = xorByteArrays(deviceBytes, tempBytes);
 tempBytes = mda.digest(device.screenResolution.getBytes());
 deviceBytes = xorByteArrays(deviceBytes, tempBytes);
 tempBytes = mda.digest(device.serial.getBytes());
 deviceBytes = xorByteArrays(deviceBytes, tempBytes);
 byte[] encodedBytes = Base64.encodeBase64(deviceBytes);
 return new String(encodedBytes);
}

This device fingerprint is the unique identification token for the users device during au-
thentication and signing. Each time an authentication response is received, additional de-
vice data is received and fingerprint is calculated to make sure, the response is coming
from a correct device. If the device fingerprint does not match to the customer allowed
device fingerprint, authentication/signing will fail on the server side and the user will not
be granted access.

Verify Authentication
In the prototyping phase, the authentication verification works similar to the signature ver-
ification of the user (described in section 3.4.3). User authenticates himself/herself via
NFC card by simply signing a pre-generated hash with authentication certificate located
on the NFC card. Public authentication certificate can also be extracted from the NFC card
with simple APDU calls (described in Appendix 1). Private key of authentication certifi-
cate is pre-personalized into NFC card and can only be changed with master key that is
kept secret from users. Therefore in order to authenticate, user must remember the PIN1
passphrase verified by the NFC card and after verification (security level changed in NFC
card), user can encrypt web application generated hash with the authentication private key
using RSA encryption algorithm (described in section 2.3.1 of this thesis). After encryp-
tion, the web application verifies the encryption with user public authentication certificate
(pre-entered into web application) and if there is a match, the user gets authenticated into
web application.

UserCertificates certs = authenticationReq.user.certificates.first();
CertificateFactory certFactory = CertificateFactory.getInstance("X.509");
InputStream inps = new
ByteArrayInputStream(certs.authorizationPublicCertificate);
X509Certificate cert = (X509Certificate) certFactory.generateCertificate(inps);

10 http://www.imei.info/
11 http://en.wikipedia.org/wiki/MAC_address

35

Security.addProvider(new BouncyCastleProvider());
Cipher asymmetricCipher = Cipher.getInstance("RSA/ECB/PKCS1Padding", "BC");
asymmetricCipher.init(Cipher.DECRYPT_MODE, cert.getPublicKey());
byte[] decrypted = asymmetricCipher.doFinal(encryptedHashBytesArr);
if(originalHashByteArray.encodeAsHex() == decrypted.encodeAsHex()) {
 return true;
}
return false;

For authentication, Grails uses Java security libraries and embedded BouncyCastle12 secu-
rity provider, RSA algorithm with ECB (Electronic codebook) cipher block mode [30] and
PKCS1Padding for encrypted data padding. First a user authorization public certificate
byte array is received from the database and generated into X509Certificate Java class,
implementing certificate functionality. A security provider RSA decrypt is executed with
user public key taken from the certificate and decrypted byte array is received. In order to
do fast comparison between original hash byte array and decrypted hash byte array, the
arrays are encoded to HEX13 string and then compared. If the original hash HEX string
matches the decrypted hash HEX string, the authentication has been successful. Depend-
ing on whether the authentication has been successful or not, a Boolean value “false” or
“true” is returned accordingly.

Verify Signature
In order to sign an action, task or a dataset made in the web application, a hash must be
generated from the data that is about to be signed and a signing request must be sent to the
mobile application. Mobile application authenticated the user with a PIN2 passphrase and
by doing that the security level of the Java Card applet is changed to signing. After suc-
cessful user verification, hash received from web application is signed using users signing
private key stored in NFC card memory (APDU calls described in Appendix 1). After the
hash has been signed, it is returned to the web application, where the signed hash is veri-
fied using users public signing certificate, pre-entered into the web application. If the sig-
natures match, the user’s signing process was successful. Signature verification is handled
with RSA public and private key cryptography (described in section 2.3.1 of this thesis).
Signature verification is handled using the Java security implementation, included in the
Java Development Kit.

UserCertificates certs = authenticationReq.user.certificates.first();
CertificateFactory certFactory = CertificateFactory.getInstance("X.509");
InputStream inps = new ByteArrayInputStream(certs.signingPublicCertificate);
X509Certificate cert = (X509Certificate) certFactory.generateCertificate(inps);
Security.addProvider(new BouncyCastleProvider());
Cipher asymmetricCipher = Cipher.getInstance("RSA/ECB/PKCS1Padding", "BC");
asymmetricCipher.init(Cipher.DECRYPT_MODE, cert.getPublicKey());
byte[] decrypted = asymmetricCipher.doFinal(encryptedHashBytesArr);
if(originalHashByteArray.encodeAsHex() == decrypted.encodeAsHex()) {
 return true;
}
return false;

For signing, Grails uses Java security libraries and embedded BouncyCastle security pro-
vider, RSA algorithm with ECB (Electronic codebook) cipher block mode [30] and
PKCS1Padding for encrypted data padding. First a user signing public certificate byte ar-
ray is requested from database and generated into X509Certificate Java class, implement-

12 https://www.bouncycastle.org/
13 http://en.wikipedia.org/wiki/Hex

36

ing certificate functionality. A security provider RSA decrypt is executed with the user’s
public key taken from certificate and decrypted byte array is received. In order to do fast
comparison between original hash byte array and decrypted hash byte array, the arrays are
encoded to HEX string and then compared. If the original hash HEX string matches the
decrypted hash HEX string, the authentication has been successful. Depending on whether
the authentication has been successful or not a Boolean value false or true is returned ac-
cordingly.

Security Between NFC Card and Reader
Security between the NFC card and the NFC card reader (embedded into mobile device) is
not secured in the first prototype iteration. During prototype phase, we are relying on NFC
channel security and the fact that this solution is using one active and one passive device
for NFC communication, therefore the NFC attack area is quite small and the attack can
affect only one person personally, not the whole user base. As described in section 2.2 of
this thesis, we can assume that NFC is open to neither Man-In-The-Middle nor eavesdrop-
ping attacks, therefore the passphrases are not easy to obtain. The most likely type of at-
tack is data corruption that only prevents user from logging into desired web application,
as data is corrupted during transmission between Java Card and NFC reader. It is possible
to use a shared secret encryption on NFC communication further described in section 2.3
of this thesis this would make the NFC connection secure and resilient to all possible
passphrase attacks.

Security Between Device and Web Server
The communication between the device and the application server is secured with an
HTTPS14 connection using TLS 1.2 and a one-way certificate authentication [23]. Server
is using a trusted certificate authority issued certificate and Android mobile device has this
server certificate authority added to trusted CA15 list in Android KeyStore16. TLS secure
connection flow is described in Figure 10.

During the TLS connection establishing, server exchanges public certificate to client. Do-
ing so, the client can verify that the connecting party is who he claims to be by verifying

14 http://en.wikipedia.org/wiki/HTTPS
15 http://en.wikipedia.org/wiki/Certificate_authority
16 http://developer.android.com/reference/java/security/KeyStore.html

Figure 10. TLS handshake model

37

encrypted byte arrays with public key received from certificate. Both sides must have
knowledge of trusted certificates and allowed connections. After the client verifies the
server and keys have been exchanged, a unique session key is generated and shared. All
future communication is encrypted with this key.

3.5 Application Flow
Given NFC security solution has multiple flows that need to be handled separately. To
start with, the user first needs to have an account in given web application - a prerequisite
to start NFC authentication flow. Web application must have prior knowledge of users
authentication and signing certificate public keys and need to know the username and
passphrase of the user. If the prerequisites are handled, the user can enter the NFC security
authentication application and it’s flows. To start with, user must authenticate the device
with given web application. To do so, the user must pass the Authorize device phase de-
scribed in section 3.5.1 in this thesis. After successfully passing device authorization, user
can then authenticate himself/herself with the mobile application or sign web application
actions using given mobile applications. Authentication- and Signing phase of the NFC
security solution are described in section 3.5.2 and 3.5.3 of this thesis. Final phase that is
directly related to using proposed NFC solution mobile application and NFC card is unau-
thorize device phase, where the user unauthorizes device from web application.

Authorise Device Flow
In order to authorize the device, the user’s device must first obtain a GCM device key and
store it in device application local storage. This key is received on the first startup of the
mobile application and is removed together with application uninstall. A new key is ob-
tained after application reinstall. After the mobile application has received the GCM key, a
device verification call is made to web application in order to verify (described in Appen-
dix 4), if device is already activated by some user or not. If the device is not registered by
any user - user can authorize this device as his/her authentication endpoint.

In order to authorize a device the user must enter their username and password, within the
main view of the android application (described in Appendix 3), to authenticate him-
self/herself and register a new mobile device to the web application as an authentication
device. After user has finished entering the username and passphrase, the application gen-
erates SHA-512 hash from user entered password and encodes it into Base64 string. After
the hashing has finished, username, password hash Base64 string, GCM key and device
data is sent to web application (API call described in Appendix 4). Full authentication
flow is described in Figure 11.

If device authorization has been successful, device is added to users allowed device list
and user can now use this device to authenticate himself/herself within the web applica-
tion. If user has used this device before, then already existing device is reactivated as a
valid authentication endpoint for the user. One device can be linked with only one user at a
time. In order to use this device as an authentication point for another user, the user must
first unauthorized the device (described in section 3.5 of this thesis) and the reauthorize
the device as their device.

38

Figure 11. Device authorisation flow

39

Authentication flow

To authenticate the user using the proposed NFC authentication solution, user must first
try to login to web application. Upon arrival to web application user gets redirected to log-
in page, where user must enter his/hers username and passphrase. After the sign-in button
has been pressed, the web application first validates user username and password and if
they are correct, it displays user the list of authenticated devices that can be used for NFC
second layer authentication. At this point user must select a proper device – a device that
he/she has switched on and connected to the network. After user has selected a device
used for authentication, server generates a random SHA-512 hash and sends this hash to
the selected mobile device via GCM service and waits for an answer from the device
(maximum wait time is configurable, but is 120 seconds for prototype). At this point the
authentication responsibility is delegated to the mobile device and the NFC Java Card.

When the mobile device receives an authentication request from server, the request is de-
livered to proper mobile application (NFC authentication application in this case) using
BroadcastReceiver17 and notification intents. A new Intent launches the NFC authentica-
tion application with authentication dialog box. While this dialog is open, user must pair
his/hers device with NFC card – pairing is successful, when PIN1 retry counter is dis-
played to user. After successful pairing, user must enter PIN1 (distributed together with
user personalized Java Cards) in order to log into web application. After user has entered
PIN1 into dialog screen, authentication is handed over to Java Card application.

Mobile application uses an NFC card and authentication APDUs (described in Appendix
1) to encrypt the hash received from server with user authentication private key located
inside NFC card. After hash signing is successful, mobile device sends back signed hash
and original hash to server (using API call described in Appendix 4). The server validates
the received hash against the users authentication public key (described in section 3.4 of
this thesis) and if they match, then user gets authenticated and logged into web applica-
tion. Detailed user authentication flow is described in Figure 12.

17 http://developer.android.com/reference/android/content/BroadcastReceiver.html

40

Figure 12. Authentication flow

41

Signing flow

Signing flow is used to add an additional security verification to user tasks or activities
within web application. Signing is used to maintain the integrity of the data (signed data
can be validated, if someone has changed it or not) and to add an electronically proven
signature, that this data has been authorized and validated by given user. This enables the
web application to require signing from users to ensure the user is aware of the action and
to tie this action with a certain user. Signing is relying on the fact, that the NFC card is
accessible only for this given user and therefore this signature has the same effect as a
written signature.

In order to start signing process, web application must require authorized user to select a
signing device from the list of authorized user devices or use a device that was used to
authenticate the given session he/she is using. When user has selected a device / web ap-
plication has identified the authentication device used previously to authenticate the user,
web application must calculate signing hash over all the data about to be signed. NFC pro-
totype is using SHA-1 hash and hash byte array XOR to generate hash over all the fields if
there is more than one field to be signed. In case there is only one field of data to be
signed, web application will use SHA1 hash of this field as signing hash.

After general data signature hash has been calculated, web application sends hash together
with signing request to user device via GCM service. User device receives a signing re-
quest via BroadcastReceiver and creates a new Intent launching the mobile application and
shows a signing dialog to the user. While this dialog is open, user must pair his/hers de-
vice with NFC card pairing is successful, when PIN2 retry counter is displayed to user.
After successful pairing, user must enter PIN2 of NFC authentication in order to sign the
received data. After user has entered PIN2 into dialog screen, mobile application gives the
signing over to NFC Java Card.

NFC card uses APDU’s (described in Appendix 1.) to sign the hash received from server
with user signing private key located inside NFC card. After hash signing is successful,
mobile device sends signed hash and original hash back to server (using API call de-
scribed in Appendix 4.), where server validates the received hash against user signing pub-
lic key (described in section 3.4 of this thesis) and if they match, signing has been success-
ful and signature is added to data/task. Signing flow is described in Figure 13.

42

Figure 13. Signing flow

43

Unauthorize Device Flow

Unauthorization of user device enables user to remove certain mobile device from allowed
authorized device list by simply using NFC security mobile application. If user has unau-
thorized his/her device, they can later authorize it again and start using this device as an
authorization endpoint for NFC security solutions.

In order to unauthorized a user’s device, the device must first be authorized within the web
application. This is verified via a device verification call (API call described in Appendix
4) and if the device is authorized to some user, username of this user is displayed within
mobile application (described in Appendix 3). If user device is authorized and in order to
unauthorize it, user must open mobile application and press unauthorize device button and
confirm the unauthorization (described in Appendix 3). After the button click, mobile ap-
plication makes an HTTPS connection to web application and sends a device unauthoriza-
tion call, containing device data and GCM token (API call described in Appendix 4).

After user has unauthorized the device, this device can no longer be used for authentica-
tion or signing and it is not displayed as a login option for user. Device unauthorization
flow is described in Figure 14.

44

Figure 14. Unauthorize device flow

45

3.6 Future Opportunities
Author proposed NFC security solution for web application could be applied to solve mul-
tiple different authentication problems. Same solution, but with some additional develop-
ment, can be easily converted into Mobile TFA, NO passwords solution, NFC card reader
etc. All these solutions are enabled by the complex nature of the dual interface Java Card,
enabling both contacted and contactless connection with same Java Card applet. Combin-
ing NFC card with Estonian ID card would open yet another possible future development
direction, by enabling EstEID communication via NFC card reader and mobile device.
This would allow full EstEID capabilities in mobile device without any extra ID card
reader necessary. Possibilities for future development seem endless, therefore there is a
need to narrow down the possibilities and thoroughly examine the more beneficial solu-
tions.

Mobile Two-Factor-Authentication
As mobile is becoming a more and more independent device, enabling user to manage all
necessary task using only his/her mobile device, the need for mobile security is on an
uprise. Mobile device is an excellent second point of authentication device for TFA, but as
mobile is turning into the main device, there is a need for another authentication point to
rely on - to provide TFA on mobiles. Here is where NFC security offers an excellent
solution with no additional development. Proposed NFC solution enables very hard to
break two factor authentication for mobile devices, by using NFC smartcard as second
authentication device for users. Mobile phones have direct communication capabilities
(NFC reader integrated into most smartphones since 2006) [24] with NFC smartcards, no
additional hardware or development is needed. Mobile application simply connects to
NFC card, whenever a TFA authentication is needed and authenticates the user via an
NFC card similar to the proposed NFC security solution for web application. Mobile TFA
flow is described in Figure 15. where step 1 starts with authentication to mobile
application, after what, in step 2 NFC PIN1 authentication request is generated to NFC
authentication Android app (or NFC authentication embedded into an authorized
application). User authenticates himself/herself with NFC card integrated PIN1 passphrase
and system verifies authentication similar to section 3.4 of this thesis.

Figure 15. TFA from mobile devices

46

Proposed solution for web applications can be improved and converted into mobile TFA
with ease. As mobile applications communicate with server via API calls, authentication
can be provided for mobile application instead of web application.

Corporate Security
Corporations could create their own NFC security cards that would enable users to access
through different NFC enabled doors, but also use this card as a main authentication token
for company systems, by forcing user to authenticate themselves via PIN codes and NFC
cards for all corporate systems. As NFC cards hold user certificates, these certificates can
be used for multiple purposes (VPN, Authentication etc.). Additional authentication can be
requested via signing request, if user wants to access higher security areas or accept some
tasks that need additional verification. All user decisions and actions within corporate sys-
tem can be signed using an NFC card and user mobile device.

No Passwords Solution
User can have multiple accesses to different solution by using only one personalized NFC
card that has been issued to him/her. All solutions can be combined into using the same
NFC authentication solution and the user does not need to remember all different login
usernames and passwords. User can simply authenticate himself/herself via single PIN
stored in NFC card. Creating a new system requiring a user authentication is also easier, as
during development, developers can use pre made solutions to integrate with NFC security
solution for web applications, removing the need to handle usernames and password with-
in the system.

EstEID NFC Mobile Reader
Proposed solution can be converted into EstEID NFC authentication solution, by simply
enabling NFC on Estonian ID card. This would give users the capability of using their
personal ID cards as additional authentication endpoints for mobile applications together
with web applications and it also enables the use of mobile device as an ID card reader,
disabling the need for separate ID card reader. It also adds an additional security layer on
top of EstEID authentication, as mobile device as a reader, can also be identified and
traced during authentication. It is possible to enable only some user devices to be allowed
as NFC card readers. By doing that, the user has full control over what devices can and
cannot be used to authenticate via NFC. EstEID can also add a possibility for the user to
decide if NFC authentication is allowed or not with certain ID card, therefore disabling
NFC attacks while NFC authentication is not used as a means of authentication. Also the
list of APDU’s enabled (APDU’s described in appendix 1) via NFC interface can be lim-
ited to only the needed APDU’s for authentication. PIN change and more secure APDU’s
can be enabled for contact interface only. By using these precautions, it is safe to say, that
Estonian ID card with an NFC interface would be secure and safe to use as a main identi-
fication for Estonian citizens and e-residents.

This proposed solution would also change the authentication flow of the proposed proto-
type, by enabling TLS connection setup via NFC card (similar to working Estonian ID
solution). Authentication would simply start a TLS connection where client certificate is
needed and when client certificate request is received from the web application, client
computer (used to access web application) picks up the request and forwards it to the user-
selected mobile device. Mobile device then acts as an Estonian ID card reader and enables
all ID card actions via NFC. Behind the scenes, mobile application sends back user public
authentication certificate and signed TLS handshake hash to users computer and then user

47

browser will get full TLS authentication. Only restriction to this solution is, that user mo-
bile device and user computer must be in the same private network (Wi-Fi, Ethernet or
hotspot created with mobile device)

48

4 Conclusions
In conclusion, NFC security has proven to be secure enough to handle user authentication
and signing via mobile phone and an internet connection. NFC can also be made more
secure, by using a secure channel communication within the NFC communication relying
on a shared secret to encrypt the communication data moving between the two devices. As
author proposed solution is using one active device (mobile phone) and one passive device
(dual interface NFC Java Card), the possible attack vector of NFC connection is reduced
to eavesdropping and data corruption - the communication can be eavesdropped or
disruped within a small distance of the card itself. Adding additional APDU whitelisting to
the Java Card APDU adds another security feature, enabling administrative actions of the
card to be managed only via contacted interface. By enabling a secure channel between
device and NFC card, plus adding whitelist to the Java Card applet, it is safe to claim that
the proposed NFC solution device to Java Card communication is completely secure.
Communication between mobile device and web application is ensured by TLS 1.2
cryptographic protocol and must also be considered as a secure channel between both
endpoints. Taking into account all the security features added to the solution, the security
of the solution is proven to be highly secured.
The author’s proposed solution relies on the analysis made within this thesis to claim that
NFC authentication solution for web applications can be created securely and can be used
to authenticate user within web application, or sign user’s activities using mobile device
NFC. Prototype has proven the concept of how the solution should work and enables
successful authentication and signing within created web application. Prototype has both
dual password solution, where user authenticated himself/herself first with web application
passcode and then via proposed NFC solution to get authenticated into web application
and no passwords solution, where user simply enters their username and selects a device to
authenticate himself/herself with. Both solutions work as described and prove the validity
of the proposed solution. Author proposed NFC authentication has huge pottential to
become a two-factor authentication endpoint for mobile only solutions and has the
possibility to use NFC enabled Estonian ID cards as authentication devices. Additionally,
author proposed solution adds another level of security to already existing pile of security
solutions, enabling new solutions to be built on top of the given solution.

49

5 References
[1] H. O. Alanazi, B. B. Zaidan, A. A. Zaidan, H. A. Jalab, M. Shabbir, Y. Al-Nabhani,

“New Comparative Study Between DES, 3DES and AES within Nine Factors,”
Journal of computing, vol. 2, no. 3, pp 152-157, 2010

[2] AS Sertifitseerimiskeskus, (2014) “Architecture of ID-software, Version 0.4, ID-
software version: 3.9,” 28.04.2015 [Online] http://open-eid.github.io/

[3] B. Chess and B. Arkin, “The Case for Mobile Two-Factor Authentication. Security
& Privacy”, IEEE vol. 9, no. 5), pp 81-85, 2011

[4] D. S. A. Elminaam, H. M. A. Kader, M. M. Hadhoud, “Evaluating The Perfor-
mance of Symmetric Encryption Algorithms,” International Journal of Network
Security, vol. 10, no. 3, pp 213-219, 2010

[5] AS Sertifitseerimiskeskus, (2013) “EstEID v. 3.5 Estonian Electronic ID–card ap-
plication specification,” 28.03.2015 [Online] http://id.ee/public/TB-SPEC-EstEID-
Chip-App-v3_5-20140327.pdf

[6] E. Haselsteiner and K. Breitfuß, “Security in Near Field Communication (NFC):
Strengths and Weaknesses,” Workshop on RFID security, pp 1-10, 2006

[7] S. Hallsteinsen, I. Jørstad, D. V. Thanh, “Using the mobile phone as a security to-
ken for unified authentication.” Systems and Networks Communications, pp 1-6,
2007

[8] H. A. Housani, J. Baek, C. Y. Yeun, “Survey on Certificateless Public Key Cryp-
tography,” ICITST Internet Technology and Secured Transactions, pp 53 - 58, 2011

[9] X. Huang, Y. Xiang, A. Chonka, J. Zhou, R. H. Deng, “A Generic Framework for
Three-Factor Authentication: Preserving Security and Privacy in Distributed Sys-
tems,” IEEE Transactions On Parallel and Distributed Systems, vol. 22, no. 8, pp
1390-1397, 2011

[10] N. Jansma, B. Arrendondo, “Performance Comparison of Elliptic Curve and RSA
Digital Signatures,” Technical Report. University of Michigan: Ann Arbor, pp 1-11,
2004

[11] Sun Microsystems Inc, (2011) “Java Card Platform Specification 3.0.4,”
05.04.2015 [Online] http://www.oracle.com/technetwork/java/javacard/specs-jsp-
136430.html

[12] H. Ko, J. Kim, J. Jung, Y. Lee, S. Joe, Y. Chang, “A Study on the 128 bits SEED
algorithm to apply in RFID tag,” Convergence Information Technology, pp 406-
411, 2007

[13] T. Nie and T. Zhang, “A Study of DES and Blowfish Encryption Algorithm,” Ten-
con 2009 - 2009 IEEE Region 10 Conference, pp 1-4, 2009

[14] R. S. Pippal, C. D. Jaidhar, S. Tapaswi, “Highly Secured Remote User Authentica-
tion Scheme using Smart Cards,” Industrial Electronics and Applications (ICIEA),
pp 1001 - 1005, 2012

[15] D. Rinner, H. Witschnig, E. Merlin, “Broadband NFC - A System Analysis for the
Uplink,” Information Forensics and Security, pp 292-296, 2009

[16] D. Stuttard and M. Pinto, “The Web Application Hacker’s Handbook: Discovering
and Exploiting Security Flaws,” Wiley Publishing Inc., pp 1-593, 2008

[17] G. Rocher, P. Ledbrook, M. Palmer, J. Brown, L. Daley, B. Beckwith, L. Hotari,
“The Grails Framework - Reference Documentation ver. 2.4.4,” 18.04.2015
[Online] http://grails.github.io/grails-doc/2.4.4/

[18] Google Inc., “Google Cloud Messaging for Android,” 18.04.2015 [Online]
https://developer.android.com/google/gcm/index.html

50

[19] IDC Corporate USA, “Smartphone OS Market Share, Q4 2014,” 18.04.2015
[Online] http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[20] Oracle Corporation, “MySQL Connector/J Developer Guide,” 18.04.2015 [Online]
http://dev.mysql.com/doc/connector-j/en/index.html

[21] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
(1999) “Hypertext Transfer Protocol -- HTTP/1.1,” pp 1-176, 18.04.2015, [Online]
http://www.hjp.at/doc/rfc/rfc2616.html

[22] J. Steele and N. To, “The Android Developer's Cookbook: Building Applications
with the Android SDK” Pearson Education, pp 1-400, 2010

[23] T. Dierks and E. Rescorla, (2008) “The Transport Layer Security (TLS) Protocol
Version 1.2” 18.04.2015 [Online]
http://tools.ietf.org/html/rfc5246?as_url_id=AAAAAAVBehpzRqATU5xWpMST
PjTY4oV6aOnai43OyHdsdcjqdSlYu0y-
i_wtuyMcDhdfR_le_fBCnWW1xu50YwXZ7oot

[24] NearFieldCommunication.org “Development of NFC Compatible smartphones,”
25.04.2015 [Online]
http://www.nearfieldcommunication.org/smartphone-development.html

[25] C. Lu, A. L. M. Santos, F. R. Pimentel, “Implementation of Fast RSA Key Genera-
tion on Smart Cards” Proceedings of the 2002 ACM symposium on Applied compu-
ting, pp 214-220, 2002

[26] R. Rivest, A. Shamir, L. Adleman, “A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems” Communications of the ACM 21, pp 120-126, 1978

[27] N. Koblitz, A. Menezes, S. Vanstone, “The State of Elliptic Curve Cryptography,”
Kluwer Academic Publishers, pp 173-193, 2000

[28] M. Mostafa and A. Allah, “Strengths and Weaknesses of Near Field Communica-
tion (NFC) Technology” Global Journal of Computer Science and Technology, vol.
11, issue. 3 ver. 1.0, pp 1-6, 2011

[29] A. Paus, “Near Field Communication in Cell Phones,” Seminararbeit Ruhr-
Universität Bochum, pp 1-19, 2007

[30] A. J. Menezes, P. C. Oorschot, S. A. Vanstone, “Handbook of Applied Cryptog-
raphy,” CRC Press, pp 816, 1996

[31] S. Josefsson, (2006) “The Base16, Base32, and Base64 Data Encodings,”
08.05.2015 [Online] https://tools.ietf.org/html/rfc4648

[32] A. Sethi, O. Manzoor, T. Sethi, “User Authentication on Mobile Devices,”
10.05.2015, [Online] http://www.cigital.com/wp-
content/uploads/downloads/2012/11/mobile-authentication.pdf

[33] R. B. Davies, “Exclusive OR (XOR) and hardware random number generators,”
10.05.2015, [Online] http://www.robertnz.net/pdf/xor2.pdf

[34] Google Inc. “Using OAuth 2.0 to Access Google APIs,” 10.05.2015, [Online]
https://developers.google.com/identity/protocols/OAuth2

[35] Sertifitseerimiskeskus AS, “Overview of the EstEID certification hierarchy,”
10.05.2015 [Online] http://id.ee/index.php?id=35774

[36] H. Lee, W. Hong, C. Kao, C. Cheng, “A user-friendly Authentication Solution us-
ing NFC Card Emulation on Android,” 2014 IEEE 7th International Conference on
Service-Oriented Computing and Applications, pp 271-278, 2014

[37] M. Massoth and T. Bingel, “Performance of different mobile payment service con-
cepts compared with a NFC-based solution,” 2009 ICIW Fourth International Con-
ference on Internet and Web Applications and Services, pp 205-210, 2009

51

[38] C. I. Fan and Y. H. Lin, “Provably Secure Remote Truly Three-Factor Authentica-
tion Scheme With Privacy Protection on Biometrics,” IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, pp 933-945, 2013

[39] H. Fuijii and Y. Tsuruoka, “SV-2FA: Two-Factor User Authentication with SMS
and Voiceprint Challenge Response,” ICITST -2013, pp 283-287, 2013

[40] M. Sreelatha, M. Shashi, M. R. Teja, M. Rajashekar, K. Sasank, “Intrusion Preven-
tion by Image Based Authentication Techniques,” ICRTIT – 2011, pp 1239 – 1244,
2011

[41] R. Foster, “Manchester encoding: opposing definitions resolved,” Engineering Sci-
ence and Education Journal, Vol. 9, Issue. 6, pp 278-280, 2000

[42] V. Lalitha and S. Kathiravan, “A Review of Manchester, Miller, and FM0 Encod-
ing Techniques,” Smart Computing Review, vol. 4, no. 6, pp 481-490, 2014

52

Appendix

I. Java Card Application APDU’s
Abstract: Appendix 1 describes APDUs sent via IsoDep protocol within mobile applica-
tion in order to provide authentication functionality to web application. This APDU list is
based on Estonian ID card possible commands list and provides exactly the same func-
tionality as EstEID card does via contacted interface.

1. Read PIN retry counters
1.1. Select Master File directory

CLA INS P1 P2 Le

00 A4 00 0C 00

1.2. Select counter file

CLA INS P1 P2 Lc Data

00 A4 02 0C 02 0016

1.3. Read counters

PIN1 counter
CLA INS P1 P2 Le

00 B2 01 04 00

PIN2 counter
CLA INS P1 P2 Le

00 B2 02 04 00

PUK counter
CLA INS P1 P2 Le

00 B2 03 04 00

2. Read certificates

2.1. Select Master File directory

CLA INS P1 P2 Le

00 A4 00 0C 00

53

2.2. Select EEEE file
CLA INS P1 P2 Lc Data

00 A4 01 04 02 EEEE

2.3. Select certificate

Authentication certificate

CLA INS P1 P2 Lc Data

00 A4 02 04 02 AACE

Digital signature certificate

CLA INS P1 P2 Lc Data

00 A4 02 04 02 DDCE

2.4. Read certificate

CLA INS P1 P2 Le

00 B0 01 - FF 00 00

3. Verify PIN1
3.1. Select Master File directory

CLA INS P1 P2 Le

00 A4 00 0C 00

3.2. Select EEE file

CLA INS P1 P2 Lc Data

00 A4 01 04 02 EEEE

3.3. Set Security environment

CLA INS P1 P2 Le

00 22 F3 01 00

3.4. Verify PIN1

CLA INS P1 P2 Lc Data(PIN1 as ASCII)

00 20 00 01 04 31323334

54

4. Sign hash using PIN1
PIN1 verification (described in section 3 of Appendix 1) required before executing this
APDU

CLA INS P1 P2 Lc Data Le

00 88 00 00 Hash array length Hash array 00

5. Verify PIN2

5.1. Select Master File directory

CLA INS P1 P2 Le

00 A4 00 0C 00

5.2. Select EEEE file

CLA INS P1 P2 Lc Data

00 A4 01 04 02 EEEE

5.3. Set security environment

CLA INS P1 P2 Le

00 22 F3 01 00

5.4. verify PIN2

CLA INS P1 P2 Lc Data(PIN2 as ASCII)

00 20 00 02 05 3132333435

6. Sign hash using PIN2

PIN2 verification (described in section 5 of Appendix 1) required before executing this
APDU

CLA INS P1 P2 Lc Data Le

00 2A 9E 9A Hash array length Hash array 00

55

II. Cryptographic Algorithm Benchmarking
Abstract: Appendix 2 describes different cryptographic algorithm speeds and compared
them with each other. Main focus is comparing symmetric and asymmetric cryptography
algorithms, with different key and block sizes and to identify the best suitable crypto-
graphic algorithms for NFC security solution proposed in this thesis.

Hardware used for testing cryptography speeds

Operating system OS X Yosemite

Processor 2.2 GHz Intel core I7

Memory 16 GB 1600 MHz DDR3

Graphics Intel Iris Pro 1536 MB

Performance analysis done using OpenSSL built in speed testing tools, with minimized
operating system load on the hardware.

Hash generation

Block size SHA1
(Hash/s)

SHA256
(Hash/s)

SHA512
(Hash/s)

MD5
(Hash/s)

16 2927071.3 1939447.3 1453248.7 2619817.3

64 2051071.3 1168507.0 1451481 2002429

256 1161599.7 552187.7 666911.7 1077459

1024 416352.3 171633.7 258243 365903.7

2048 57689.7 22411.7 37263 52981

Symmetric Encryption algorithms

Block size 3DES (Enc/s) DES (Enc/s) AES128

(Enc/s)
AES192
(Enc/s)

AES256
(Enc/s)

16 1724741.7 4482440 8488211.7 7102791 6279469.3

64 419486 1113314.3 2141398 1897358 1722419.7

256 109878.7 273940 535701 451289.3 434633

1024 27567.3 67393.3 138249 112720.7 108602.7

2048 3465 8492.7 16524 14815 13540.3

56

Asymmetric Encryption algorithms

RSA

Key size (bit) RSA (Sign/s) RSA (Veri-
fy/s)

512 7334.6 101908.4

1024 2099.3 43349.3

2048 397.3 15873.5

4096 64.9 4708.0

Elliptic Curve

Key size (bit) EC (Sign/s) EC (Verify/s)

160 9483.5 2155.7

192 9186.5 2138.2

224 6317.7 1432.6

256 5132.4 1158.6

384 2660.7 552.0

512 2453.6 504.5

571 142.0 69.5

57

III. NFC Security Solution for Web Application Prototype
Abstract: Appendix 3 describes the different user activity flows within NFC security so-
lution for web application prototype. 5 different flows - device authorization, user authori-
zation, signing, device unauthorisation and NFC card test are described with visual aids
from web application and mobile application.

1. Device authorization
Start NFC mobile application for the first time on a new device (unauthorized device)

Fill in server username and password (needed to authenticate user for web application)

58

Press register device button, to authenticate this device as you NFC authentication end-
point

Your device has been successfully authenticated

2. User authorization

Open web application and authenticate user with username and password

59

After successful username and password authentication, user gets redirected to select NFC
authentication device page, where user must select one device to authenticate with.

When user has selected the NFC authentication device, an authentication request is sent to
selected device via GCM service.

60

New authentication request is shown to user (Requiring user to authenticate him-
self/herself using NFC card and PIN1 passphrase).

User must fill in the PIN1 passphrase with 4 digits, matching the personalized PIN1 on the
NFC card.

61

User authentication was successful, and user can continue to using the web application

After user has agreed to continue, he/she gets redirected to main page of the web applica-
tion

62

3. Signing

In order to start signing prototype, user must open signing demo view

User must enter the text phrase he/she wants to sign and press “Sign” button

63

A new signing request is forwarded to user authenticated mobile device (same device used
in authentication flow) via GCM service.

A new signing request is received in user mobile device and signing flow has been started
in NFC mobile application

64

User must fill in the PIN2 passphrase, matching the PIN2 passphrase personalized into
NFC card.

Signing has succeeded and signing request is closed.

65

Signing response is received by web application and the result is displayed to the user.

4. Device unauthorisation

In order to authorize the device, user must open the NFC application in mobile device and
press “Unauthorise device” button

66

Unauthorisation verification is requested from the user. If the user decides to unauthorize
the device, then after pressing the “YES” button, the device gets unauthorized.

When device is unauthorized, it opens the possibility to register the device again with web
application username and password.

67

5. NFC card test

To test the NFC connection, there is the possibility to open NFC mobile application and
simply pair the device with NFC card. If connection is successful, NFC card personalized
first name, last name, PIN1 retry count and PIN2 retry count is displayed.

68

IV. Rest API calls

Challenge
name

Direction Part Value

1. Verify device POST URL https://localhost:8080/api/verify-device

 JSON {

 device_key: “ewjoi4jio4j34oij4oi34jo3j43o5j35”,
 device:{
 osversion:"test",
 release:"test",
 device":"test",
 model:"test",
 product:"test",
 brand:"test",
 display:"test",
 cpuabi:"test",
 unknown:"test",
 hardware:"test",
 buildid:"test",
 manufacturer:"test",
 serial:"test",
 deviceuser:"test",
 host:"test",
 imei:"test",
 imsi:"test",
 numberline1:"37255526262",
 mac:"test",
 screen" :"345x345",
 androidid:"test",
 deviceid":"test",

 }
}

 GET JSON {
 status:”OK” or “NOK”,

 message: 1-8,
 username: “jonas”

}

2. Add device POST URL https://localhost:8080/api/add-device

 JSON {

69

 device_key: “ewjoi4jio4j34oij4oi34jo3j43o5j35”,

 username: “jonas”,
 device:{
 osversion:"test",
 release:"test",
 device":"test",
 model:"test",
 product:"test",
 brand:"test",
 display:"test",
 cpuabi:"test",
 unknown:"test",
 hardware:"test",
 buildid:"test",
 manufacturer:"test",
 serial:"test",
 deviceuser:"test",
 host:"test",
 imei:"test",
 imsi:"test",
 numberline1:"37255526262",
 mac:"test",
 screen" :"345x345",
 androidid:"test",
 deviceid":"test",

 }
}

 GET JSON {
 status:”OK” or “NOK”,

 message: 1-8,
 username: “jonas”

}

3. Unauthorize
device

POST URL https://localhost:8080/api/unauthorize-device

 JSON {

 device:{
 osversion:"test",
 release:"test",
 device":"test",
 model:"test",
 product:"test",

70

 brand:"test",
 display:"test",
 cpuabi:"test",
 unknown:"test",
 hardware:"test",
 buildid:"test",
 manufacturer:"test",
 serial:"test",
 deviceuser:"test",
 host:"test",
 imei:"test",
 imsi:"test",
 numberline1:"37255526262",
 mac:"test",
 screen" :"345x345",
 androidid:"test",
 deviceid":"test",

 }
}

 GET JSON {
 status:”OK” or “NOK”,

 message: 1-8,
 username: “jonas”

}

4.
Authentication
result

POST URL https://localhost:8080/api/authentication-result

 JSON {
 username: “jonas”,

 original_hash:”Base64 generated hash”,
 encrypted_hash:”Base64 encrypted hash”

}

 GET JSON {

 status:”OK” or “NOK”,
 message: 1-8,

 username: “jonas”
}

71

5. Sign result POST URL https://localhost:8080/api/sign-response

 JSON {
 username: “jonas”,

 original_hash:”Base64 generated hash”,
 encrypted_hash:”Base64 encrypted hash”

}

 GET JSON {

 status:”OK” or “NOK”,
 message: 1-8,

 username: “jonas”
}

72

VI. Source code
The source code of the NFC web application solution can be downloaded from bitbucket
git repository https://username@bitbucket.org/jonx/nfc-grails.git

The source code of the Android application can be downloaded from bitbucket git
repository https://username@bitbucket.org/jonx/nfc-android.git

73

VII. License
Non-exclusive licence to reproduce thesis and make thesis public

I, Jonas Kiiver (date of birth: 23.01.1990),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:
1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of
the copyright,

of my thesis

NFC Security Solution for Web Applications,
supervised by Professor Eero Vainikko,

2. I am aware of the fact that the author retains these rights.
3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2015

